
HAL Id: hal-01381045
https://hal.science/hal-01381045

Submitted on 13 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GammaLib and ctools
Jürgen Knödlseder, M. Mayer, C. Deil, J.-B. Cayrou, E. Owen, N.
Kelley-Hoskins, C.-C. Lu, R. Buehler, F. Forest, T. Louge, et al.

To cite this version:
Jürgen Knödlseder, M. Mayer, C. Deil, J.-B. Cayrou, E. Owen, et al.. GammaLib and ctools: A
software framework for the analysis of astronomical gamma-ray data. Astronomy and Astrophysics -
A&A, 2016, 593, pp.A1. �10.1051/0004-6361/201628822�. �hal-01381045�

https://hal.science/hal-01381045
https://hal.archives-ouvertes.fr

A&A 593, A1 (2016)
DOI: 10.1051/0004-6361/201628822
c© ESO 2016

Astronomy
&Astrophysics

GammaLib and ctools

A software framework for the analysis of astronomical gamma-ray data

J. Knödlseder1, M. Mayer2, C. Deil3, J.-B. Cayrou1, E. Owen3, N. Kelley-Hoskins4, C.-C. Lu3, R. Buehler4,
F. Forest1, T. Louge1, H. Siejkowski5, K. Kosack6, L. Gerard4, A. Schulz4, P. Martin1, D. Sanchez7,

S. Ohm4, T. Hassan8, and S. Brau-Nogué1

1 Institut de Recherche en Astrophysique et Planétologie, 9 avenue Colonel-Roche, 31028 Toulouse Cedex 4, France
2 Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
3 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
4 Deutsches Elektronen-Synchrotron, Platanenallee 6, 15738 Zeuthen, Germany
5 AGH University of Science and Technology, ACC Cyfronet AGH, ul. Nawojki 11, PO Box 386, 30-950 Kraków 23, Poland
6 CEA/IRFU/SAp, CEA Saclay, Bat 709, Orme des Merisiers, 91191 Gif-sur-Yvette, France
7 Laboratoire d’Annecy-le-Vieux de Physique des Particules, 9 chemin de Bellevue, BP 110, 74941 Annecy-le-Vieux Cedex, France
8 Institut de Fisica d’Altes Energies, The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Spain

Received 29 April 2016 / Accepted 1 June 2016

ABSTRACT

The field of gamma-ray astronomy has seen important progress during the last decade, yet to date no common software framework
has been developed for the scientific analysis of gamma-ray telescope data. We propose to fill this gap by means of the GammaLib
software, a generic library that we have developed to support the analysis of gamma-ray event data. GammaLib was written in C++
and all functionality is available in Python through an extension module. Based on this framework we have developed the ctools
software package, a suite of software tools that enables flexible workflows to be built for the analysis of Imaging Air Cherenkov
Telescope event data. The ctools are inspired by science analysis software available for existing high-energy astronomy instruments,
and they follow the modular ftools model developed by the High Energy Astrophysics Science Archive Research Center. The ctools
were written in Python and C++, and can be either used from the command line via shell scripts or directly from Python. In this paper
we present the GammaLib and ctools software versions 1.0 that were released at the end of 2015. GammaLib and ctools are ready
for the science analysis of Imaging Air Cherenkov Telescope event data, and also support the analysis of Fermi-LAT data and the
exploitation of the COMPTEL legacy data archive. We propose using ctools as the science tools software for the Cherenkov Telescope
Array Observatory.

Key words. methods: data analysis – virtual observatory tools

1. Introduction

The last decade has seen important progress in the field of
gamma-ray astronomy thanks to significant improvements in
the performance of ground-based and space-based gamma-ray
telescopes. Gamma-ray photons are currently studied over more
than eight decades in energy, from a few 100 keV up to more than
10 TeV. The technologies used for observing gamma rays are
very diverse and cover indirect imaging devices, such as coded
mask and Compton telescopes, and direct imaging devices,
such as pair creation telescopes, and air or water Cherenkov
telescopes.

Despite this technical diversity, the high-level data that is
produced by the instruments for scientific analysis have great
similarities. Generally, the data is comprised of lists of in-
dividual events, each of which is characterised by temporal,
directional and energy information. Many space-based mis-
sions (e.g. CGRO, INTEGRAL, Fermi) provide event data us-
ing the Flexible Image Transport System (FITS) data format
(Pence et al. 2010) and follow the Office of Guest Investigator
Programs (OGIP) conventions (Corcoran et al. 1995), and ef-
forts are also underway to convert data from existing ground-
based observatories (H.E.S.S., VERITAS, MAGIC, HAWC)

into the same framework1. The next-generation ground-based
Cherenkov Telescope Array (CTA) Observatory, a world-wide
project to create a large and sustainable Imaging Air Cherenkov
Telescope (IACT) observatory (Acharya et al. 2013), will also
follow that path. The CTA will provide all-sky coverage by im-
plementing two IACT arrays, one in the northern hemisphere
that will be located in La Palma, and one in the southern hemi-
sphere that will be located in Chile, equipped in total with more
than a hundred IACTs of three different size classes to cover
the energy range 20 GeV−300 TeV. The CTA Observatory will
distribute the high-level event data in form of FITS files to the
astronomical community (Knödlseder et al. 2015).

Despite the standardisation in the data formats, there are no
common tools yet for the scientific analysis of gamma-ray data.
So far, each instrument comes with its suite of software tools,
which often requires costly development cycles and maintenance
efforts, and which puts the burden on the astronomer to learn
how to use each of them for scientific research. For X-ray as-
tronomy, the High Energy Astrophysics Science Archive Re-
search Center (HEASARC) has developed standards (such as
XSELECT or XSPEC) that unify the data analysis tasks, making

1 http://gamma-astro-data-formats.readthedocs.org

Article published by EDP Sciences A1, page 1 of 19

http://dx.doi.org/10.1051/0004-6361/201628822
http://www.aanda.org
http://gamma-astro-data-formats.readthedocs.org
http://www.edpsciences.org

A&A 593, A1 (2016)

X-ray data more accessible to the astronomical community at
large.

We aim to follow a similar path for gamma-ray astronomy,
and therefore developed the GammaLib software package as a
general framework for the analysis of gamma-ray event data
(Knödlseder et al. 2011). On top of this framework we developed
the ctools software package, a suite of software tools that en-
ables building flexible workflows for the analysis of IACT event
data (Knödlseder et al. 2016). The development of the ctools and
GammaLib software packages has recently been driven by the
needs for CTA, but the interest in these packages is also growing
within the collaborations of existing IACTs. We therefore want
to provide a reference publication for both software packages
that makes the community at large aware of their existence, but
that also describes in some detail their content.

Both software packages are developed as open source codes2

under the GNU General Public License version 3. GammaLib
and ctools are version controlled using the Git system that is
managed through a GitLab front end3. The code development
is managed using Redmine4 and we use a Jenkins-based multi-
platform continued integration system to assure the integrity and
the functionality of the software5. Code quality is controlled us-
ing SonarQube6. GammaLib and ctools are built and tested on a
large variety of Linux distributions, on Mac OS X (10.6−10.11),
on FreeBSD and on OpenSolaris. Usage on Windows is not
supported.

GammaLib is mostly written in C++ and provides Appli-
cation Programming Interfaces (APIs) for C++ and Python.
GammaLib is an object oriented library that comprises over
200 classes for a total volume of nearly 120 000 lines of code.
The ctools package is written in Python and C++ and comprises
nearly 30 analysis tools that make up almost 20 000 lines of
code. The interface between C++ code and Python is generated
for both packages using the Simplified Wrapper and Interface
Generator (SWIG)7. Both Python 2 (from version 2.3 on) and
Python 3 are supported.

This paper describes GammaLib and ctools release ver-
sion 1.0. Sections 2 and 3 present the GammaLib and ctools
software packages, respectively. Section 4 summarises the per-
formance of the software. We conclude with an outlook on future
developments in Sect. 5.

2. GammaLib

2.1. Overview

GammaLib is a single shared library that contains all
C++ classes, support functions, and some global variables that
are needed to analyse gamma-ray event data. A central feature
of GammaLib is that all functionalities that are necessary for the
analysis of gamma-ray event data are implemented natively, re-
ducing thus external dependencies to a strict minimum. This is
essential to keep the long-term software maintenance cost down,
and helps in assuring independence from operating systems and

2 The source code can be downloaded from http://cta.irap.omp.
eu/ctools/download.html which also provides access to Mac OS
X binary packages. Up to date user documentation for both packages
can be found at http://cta.irap.omp.eu/gammalib and http://
cta.irap.omp.eu/ctools
3 https://cta-gitlab.irap.omp.eu
4 https://cta-redmine.irap.omp.eu
5 https://cta-jenkins.irap.omp.eu
6 https://cta-sonar.irap.omp.eu
7 http://www.swig.org

user-friendly installation. The price to pay for this feature was a
larger initial development effort that we had to invest at the be-
ginning of the project. The only external library GammaLib re-
lies on is HEASARC’s cfitsio library8 that is however available
as binary package on all modern Linux and Mac OS X systems.
An optional dependency is the readline and ncurses libraries
that enhance the Image Reduction and Analysis Facility (IRAF)
command line parameter interface that is implemented as a user
interface, but GammaLib is also fully functional if these libraries
are not available.

All GammaLib classes start with an capital “G”, followed by
a capitalised class name. If the class name is composed of several
words, each word is capitalised (CamelCase). Examples of Gam-
maLib class names are GModels, GSkyMap or GFitsBinTable.
Names of classes that contain lists of objects (container classes)
are generally formed by appending an “s” to the class name of
the objects they contain. For example, GModels is a container
class for GModel objects. GammaLib functions or global vari-
ables are defined within the gammalib namespace. For exam-
ple, gammalib::expand_env() is a function that expands the
environment variables in a string, or gammalib::MeV2erg is a
multiplier that converts energies from units of MeV to units of
ergs.

2.2. Software layout

The GammaLib classes are organised into three software lay-
ers, each of which comprises several modules (see Fig. 1). The
top layer provides support for instrument-independent high-level
data analysis, comprising the handling of observations, models,
and sky maps. Also the support for creating ftool applications is
part of this layer. Core services related to numerical computa-
tions and function optimisation are implemented in the second
layer. The third layer is an interface layer that allows handling
of data in FITS, XSPEC and XML formats, and that implements
support for Virtual Observatory (VO) interoperability.

2.2.1. Observation module

The observation module contains the abstract GObservation
base class that defines the interface for a generic gamma-ray ob-
servation. In GammaLib, an observation is defined as a period in
time during which an instrument was taking data, in a stable con-
figuration that can be described by a fixed instrument response
function (the time period does not need to be contiguous). The
data is represented by events that may either be provided in a list
or that are binned in a n-dimensional data cube.

Each event or event bin is characterised by three fundamen-
tal properties: instrument direction p′, measured energy E′, and
trigger time t′ (we use in the following primed symbols to de-
note reconstructed or measured quantities, and unprimed sym-
bols to denote true quantities). We note that the instrument di-
rection is not necessarily given in sky coordinates, but could
be for instance the detector number or any other instrument re-
lated property that characterises the arrival direction of an event.
While energy and time are handled in a unit or reference inde-
pendent way, it should be noted that GammaLib stores energies
internally in MeV and defines the time zero at 1st January 2010,
00:00:00 (TT).

The observation module contains also the abstract
GResponse base class that represents the instrument response
function R(p′, E′, t′|p, E, t) that describes the transformation

8 http://heasarc.gsfc.nasa.gov/fitsio/

A1, page 2 of 19

http://cta.irap.omp.eu/ctools/download.html
http://cta.irap.omp.eu/ctools/download.html
http://cta.irap.omp.eu/gammalib
http://cta.irap.omp.eu/ctools
http://cta.irap.omp.eu/ctools
https://cta-gitlab.irap.omp.eu
https://cta-redmine.irap.omp.eu
https://cta-jenkins.irap.omp.eu
https://cta-sonar.irap.omp.eu
http://www.swig.org
http://heasarc.gsfc.nasa.gov/fitsio/

J. Knödlseder et al.: GammaLib and ctools

Fig. 1. Organisation scheme of the GammaLib library (see text for a description of the entities shown).

from the physical properties of a photon (sky direction p,
energy E, and time t) to the measured characteristics of an
event (the instrument response function is given in units of
cm2 sr−1 s−1 MeV−1). The instrument response function and the
events are the basic constitutents of a GammaLib observation,
which implies that every observation can hold its proper (and
independent) instrument response function. We will use in the
following the index i to indicate that a function applies to a
specific observation.

A fundamental function for each observation is the likeli-
hood function Li(M) that quantifies the probability that the data
collected during a given observation is drawn from a particular
model M (see Sect. 2.2.2 for a description of the model handling
in GammaLib). The formulae used for the likelihood computa-
tion depend on the type of the data (binned or unbinned) and the
assumed underlying statistical law. For event lists, the Poisson
formula

− ln Li(M) = ei(M) −
∑

k

ln Pi(p′k, E
′
k, t
′
k |M) (1)

is used, where the sum is taken over all events k, characterised by
the instrument direction p′k, the measured energy E′k and the trig-
ger time t′k. Pi(p′, E′, t′|M) is the probability density that given
the model M, an event with instrument direction p′, measured
energy E′ and trigger time t′ occurs. ei(M) is the total number of
events that are predicted to occur during an observation given the
model M, computed by integrating the probability density over
the trigger time, measured energy and instrument direction:

ei(M) =

∫
GTI

∫
Ebounds

∫
ROI

Pi(p′, E′, t′|M) dp′ dE′ dt′. (2)

The temporal integration boundaries are defined by so-called
good time intervals (GTIs) that define contiguous periods in time
during which data was taken. The spatial integration boundaries
are defined by a so-called region of interest (ROI).

For binned data following a Poisson distribution the formula

− ln Li(M) =
∑

k

ek,i(M) − nk,i ln ek,i(M) (3)

is used, where the sum over k is now taken over all data cube
bins. nk,i is the number of events in bin k observed during obser-
vation i, and

ek,i(M) = Pi(p′k, E
′
k, t
′
k |M) ×Ωk × ∆Ek × ∆Tk (4)

is the predicted number of events from model M in bin k of ob-
servation i. The probability density is evaluated for the reference
instrument direction p′k, measured energy E′k and trigger time t′k
of bin k, typically taken to be the values at the bin centre, and
multiplied by the solid angle Ωk, the energy width ∆Ek and the
exposure time (or ontime) ∆Tk of bin k9. Alternatively, if the data
follow a Gaussian distribution the formula

− ln Li(M) =
1
2

∑
k

(
nk,i − ek,i(M)

σk,i

)2

(5)

is used, where σk,i is the statistical uncertainty in the measured
number of events for bin k.

Observations are collected in the GObservations container
class, which is the central object that is manipulated in a Gam-
maLib data analysis. By summing for a given model M over
the negative log-likelihood values of all observations in the con-
tainer using

− ln L(M) = −
∑

i

ln Li(M), (6)

the joint maximum likelihood is computed, enabling the combi-
nation of an arbitrary number of observations to constrain the pa-
rameters of a model M. This opens the possibility of performing

9 Any dead time correction is taken into account by the instrument
response function.

A1, page 3 of 19

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628822&pdf_id=1

A&A 593, A1 (2016)

multi-instrument and multi-wavelength analyses of event data
with GammaLib by combining observations performed by dif-
ferent instruments in a single observation container. If OpenMP
support is available, Eq. (6) will be parallelised and hence ben-
efits from the availability of multi-core and/or multi-processor
infrastructures to speed up computations.

2.2.2. Model module

The model module collects all classes needed to describe event
data in a parametrised way. The generic abstract base class of all
models is the GModel class, which provides methods to compute
the probability density Pi(p′, E′, t′|M j) of observing an event
with instrument direction p′, measured energy E′, and trigger
time t′ during an observation i for a given model M j. We note
that we used here the index j to indicate a specific model. Mod-
els can be combined using the GModels container class, which
in turn computes the sum

Pi(p′, E′, t′|M) =
∑

j

Pi(p′, E′, t′|M j) (7)

of the probability densities of all models. GModels is a member
of the GObservations container class, so that all information
needed for gamma-ray event data analysis is contained in a sin-
gle object.

There are two basic classes that derive from the abstract
GModel base class: the GModelSky class which implements a
factorised representation of the spatial, spectral, and temporal
components of a celestial source, and the abstract GModelData
base class which defines the interface for any instrument specific
description of events, and which is generally used to model in-
strumental backgrounds. While a celestial model MS

j (p, E, t) is
defined as function of true quantities, a data model MD

j,i(p′, E′, t′)
is defined as function of reconstructed or measured quantities,
and may also depend on the observation i. The event probability
density for a celestial source model is computed by convolving
the model with the instrument response function of the observa-
tion using

Pi(p′, E′, t′|M j) =

∫
p,E,t

Ri(p′, E′, t′|p, E, t)×MS
j (p, E, t) dpdE dt

(8)

while for a data model, the event probability density is directly
given by the model using

Pi(p′, E′, t′|M j) = MD
j,i(p′, E′, t′). (9)

The factorisation of a celestial source model is given by

MS (p, E, t) = MS(p|E, t) × ME(E|t) × MT(t), (10)

where MS(p|E, t), ME(E|t), and MT(t) are the spatial, spectral,
and temporal components of the model (we drop the indices j
from now on). We note that this definition allows for energy-
and time-dependent spatial model components, and for time-
dependent spectral model components. So far, however, only
model components that are constant in time are implemented.

The spatial component can be either modelled as a point
source, a radially symmetric source, an elliptical source, or a
diffuse source. For the latter, options comprise an isotropic in-
tensity distribution on the sky, an arbitrary intensity distribution
in form of a sky map, or an arbitrary energy-dependent inten-
sity distribution provided in form of a map cube. Several model

components exist for radial or elliptical sources. Disk models de-
scribe uniform intensity distributions within radial or elliptical
boundaries. The radial Gaussian model represents an intensity
distribution given by

MS(p|E, t) =
1

2πσ2 exp
(
−

1
2
θ2

σ2

)
, (11)

where θ is the angular separation from the centre of the distri-
bution, and σ is the Gaussian width of the distribution. The ra-
dial shell model represents a spherical shell projected on the sky
given by

MS(p|E, t) = n0

√
sin2 θout − sin2 θ −

√
sin2 θin − sin2 θ

if θ ≤ θin√
sin2 θout − sin2 θ

if θin < θ ≤ θout

0
if θ > θout

(12)

where θin and θout are the apparent inner and outer shell radii on
the sky, respectively, and

n0 =
1

2π

(√
1 − cos 2θout −

√
1 − cos 2θin

2
√

2

+
1 + cos 2θout

4
ln

 √
2 cos θout

√
2 +
√

1 − cos 2θout

−

1 + cos 2θin

4
ln

 √
2 cos θin

√
2 +
√

1 − cos 2θin

−1

(13)

is a normalisation constant. Finally, the elliptical Gaussian
model represents an intensity distribution given by

MS(θ, φ|E, t) = n0 × exp
− θ2

2r2
eff

 , (14)

where the effective ellipse radius reff towards a given position
angle is given by

reff =
ab√

(a sin(φ − φ0))2 +

√
(b cos(φ − φ0))2

(15)

and a is the semi-major axis of the ellipse, b is the semi-minor
axis, φ0 is the position angle of the ellipse, counted counterclock-
wise from North, and φ is the azimuth angle with respect to ce-
lestial North. The normalisation constant n0 is given by

n0 =
1

2π × a × b
· (16)

The spectral model components ME(E|t) include a power law
model

ME(E|t) = k0

(
E
E0

)γ
(17)

where k0 is a prefactor, E0 is the pivot energy, and γ is the spec-
tral index. We note that in GammaLib spectral indices are de-
fined including the sign, hence typical gamma-ray sources have

A1, page 4 of 19

J. Knödlseder et al.: GammaLib and ctools

values of γ = −2 . . . − 4. A variant of the power law model that
replaces the pivot energy and prefactor by the integral flux N
over an energy range [Emin, Emax] is given by

ME(E|t) =
N(γ + 1)Eγ

Eγ+1
max − Eγ+1

min

· (18)

A broken power law is implemented by

ME(E|t) = k0 ×

(

E
Eb

)γ1
if E < Eb(

E
Eb

)γ2
otherwise

(19)

with Eb being the break energy, and γ1 and γ2 being the spectral
indices before and after the break, respectively. An exponentially
cut-off power law is implemented by

ME(E|t) = k0

(
E
E0

)γ
exp

(
−E
Ecut

)
(20)

with Ecut being the cut-off energy. A variant of this model is the
super exponentially cut-off power law model, defined by

ME(E|t) = k0

(
E
E0

)γ
exp

(
−

(
E

Ecut

)α)
(21)

which includes an additional power law index α on the cut-off
term. A log parabola model is defined by

ME(E|t) = k0

(
E
E0

)γ+η ln(E/E0)

, (22)

where η is a curvature parameter. And a Gaussian function that
can be used to model gamma-ray lines is defined by

ME(E|t) =
N0
√

2πσ
exp

(
−(E − Ē)2

2σ2

)
, (23)

where Ē is the centre energy, andσ is the line width. An arbitrary
spectral model is defined by a file function based on energy and
intensity values specified in an ASCII file from which a piece-
wise power law model is constructed. The file function can be
adjusted to the data by applying a global scaling factor. Alterna-
tively, the spectral node model is allowing for adjusting each pair
of energy and intensity values as free parameters of a piece-wise
power law model.

2.2.3. Sky map module

The sky map module collects classes that are used for handling
sky maps. The central class of the module is the GSkyMap class
which transparently handles sky maps provided either in the
FITS World Coordinate Systems (WCS; Greisen & Calabretta
2002) or all-sky maps that are defined on the HEALPix grid
(Górski et al. 2005). Currently, seven WCS projections are
implemented (Aitoff, zenithal/azimuthal perspective, cartesian,
Mercator’s, Mollweide, stereographic and gnomonic), and we
plan to implement in the future the full set of projections that
is available in the wcslib library10. We note that sky pixels in
GammaLib are defined at the bin centre, hence the first pixel of
a WCS map covers the pixel range [−0.5,+0.5] in the x- and the
y-direction.

The sky map module also contains classes to define and han-
dle arbitrary regions on the sky. Methods exist to test whether

10 http://www.atnf.csiro.au/people/mcalabre/WCS/wcslib/

a given sky direction is contained in a sky region, or whether a
region overlaps or is contained in another sky region. The format
for defining sky regions is compatible with that used by DS911,
enabling the loading of DS9 region files into GammaLib. So far,
only a circular sky region has been implemented.

2.2.4. Application module

The last module of the high-level analysis support layer is the
application module that provides classes that support building
of ftools-like analysis tools, and which specifically establish the
link to the ctools software package (see Sect. 3). The central
class of this module is the GApplication base class, which
upon construction grants access to user parameters provided in
the IRAF command line parameter interface, a format that is al-
ready widely used for high-energy astronomy analysis frame-
works, including ftools, the Chandra CIAO package, the IN-
TEGRAL OSA software, or the Fermi-LAT science tools (see
Appendix D).

The GApplication class also contains a logger that assures
that all information provided during the execution of a tool will
be presented to the user in a uniform way. By default, the logger
will write output into an ASCII file, but simultaneous logging
into the console can be enabled upon request.

2.2.5. Core modules

A number of services that are central to many GammaLib classes
are collected into four core modules (cf. Fig. 1). Services use-
ful for numerical computations are in the numerics module,
and include classes for numerical integration and differentiation,
as well as mathematical functions (e.g. error function, gamma
function) and constants (e.g. π, ln 2,

√
2). Classes that allow vec-

tor and matrix operations are collected in the linear algebra mod-
ule, including classes to manage symmetric or sparse matrices.
Classes that are used for function minimisation are collected in
the optimisation module. Function minimisation is done using
an optimiser, which will adjust the parameters of a function to
minimise the function value. The standard optimiser for Gam-
maLib is based on the iterative Levenberg-Marquardt method
(Marquardt 1963). There is provision for including alternative
optimisers. Additional services are collected in the support mod-
ule. This includes classes for linear and bilinear interpolation,
random number generation using a high-quality long-period na-
tively implemented generator (Marsaglia & Zaman 1994), the
handling of comma-separated value tables in ASCII files, and
filename handling.

2.2.6. Interfaces

GammaLib provides a number of interfaces to support input and
output of files and information. This includes in particular an
interface to FITS files which is implemented in the fits module.
The central class of this module is GFits which provides an in-
memory representation of a FITS file. Each FITS file contains a
list of Header Data Units (HDUs) composed of header keywords
and either an image or a table. Both ASCII and binary tables are
supported. To read and write FITS files, GammaLib relies on the
cfitsio library.

GammaLib also includes an interface that allows manipulat-
ing of data provided in the XSPEC format used for X-ray as-
tronomy (Arnaud 1996). GammaLib also includes a module that
11 http://ds9.si.edu/doc/ref/region.html

A1, page 5 of 19

http://www.atnf.csiro.au/people/mcalabre/WCS/wcslib/
http://ds9.si.edu/doc/ref/region.html

A&A 593, A1 (2016)

enables input and output of ASCII files in Extensible Markup
Language (XML) format. Finally, GammaLib includes a mod-
ule than enables the exchange of data and information with other
Virtual Observatory (VO) compatible applications, such as for
example the Aladin interactive sky atlas that can be used for sky
map display. VO support is still experimental in the release 1.0.

2.2.7. Instrument modules

All modules that have been described so far are completely
instrument independent, and are used to handle data obtained
with any kind of gamma-ray telescope. To support the analy-
sis of a specific instrument, instrument-specific modules have
been added that implement a number of pure virtual base
classes of the observation module. The general naming con-
vention for instrument-specific classes is to prefix the class
names after the initial “G” with a unique instrument code, i.e.
GCTAObservation for the implementation of the CTA observa-
tion class. The GammaLib package includes so far instrument-
specific modules for CTA (code CTA, Sect. 2.2.8), Fermi-LAT
(code LAT, Sect. 2.2.9), and COMPTEL (code COM, Sect. 2.2.10),
as well as a generic interface for multi-wavelength data (code
MWL, Sect. 2.2.11). In the following sections we will describe the
instrument-specific modules that exist so far in the GammaLib
package.

2.2.8. CTA module

While the initial driver for developing the CTA module was to
support event data analysis for the upcoming Cherenkov Tele-
scope Array Observatory, the recent developments were also mo-
tivated by the needs of existing IACTs, such as H.E.S.S., VERI-
TAS, and MAGIC. Maximum likelihood techniques are conven-
tionally used for the analysis of data from medium-energy and
high-energy instruments (e.g. Mattox et al. 1996; de Boer et al.
1992; Diehl et al. 2003), but the technique is rather new in the
field of very-high-energy astronomy, and consequently its val-
idation by applying it to data obtained with existing IACTs is
extremely valuable for the preparation of CTA. To enable the
joint analysis of data from all IACTs, specific instrument codes
have been implemented (CTA, HESS, VERITAS, and MAGIC) and
should be used in the observation definition XML file (see Ap-
pendix B), although all IACTs will make use of the same classes
of the CTA module.

CTA event data is provided as a FITS file, containing for
each event the reconstructed photon arrival direction, the recon-
structed energy, and the arrival time. In addition, each event is
enumerated by an identifier, and optionally may be characterised
by instrument coordinates and an event phase (in case the data
has been folded with the ephemerides of a pulsar or a binary
system).

The instrument response for CTA is assumed to factorise into

R(p′, E′, t′|p, E, t) = Aeff(p, E, t) × PSF(p′|p, E, t)
× Edisp(E′|p, E, t) (24)

where Aeff(p, E, t) is the effective area in units of cm2,
PSF(p′|p, E, t) is the point spread function that satisfies∫

PSF(p′|p, E, t) dp′ = 1 (25)

and Edisp(E′|p, E, t) is the energy dispersion that satisfies∫
Edisp(E′|p, E, t) dE′ = 1. (26)

Fig. 2. Screenshot of effective area information stored in Response
Table format.

In addition, the expected instrumental background
rate Brate(p′, E′, t′), given in units of counts s−1 MeV−1 sr−1,
is treated as the fourth response component.

The format for storing the CTA response information has
been inspired by the FITS file format that is used by the Fermi-
LAT science tools, and is based on so-called response tables.
A response table consists of a FITS binary table with a single row
and a number of vector columns that stores an arbitrary number
of n-dimensional data cubes of identical size. The axes of each
cube dimension are defined using pairs of columns that specify
the lower and upper bin boundaries of all axis bins. The names
of the columns are composed by appending the suffixes _LO and
_HI to the axes names. The axes columns are followed by an ar-
bitrary number of data cubes. Figure 2 illustrates how an energy
and off-axis dependent effective area response is stored in this
format. The first four columns define the lower and upper bin
boundaries of the energy axis (ENERG_LO and ENERG_HI) and
the off-axis angle axis (THETA_LO and THETA_HI), followed by
a fifth column that holds the effective area data cube (EFFAREA).

For the point spread function, two variants exist that both de-
pend on energy and off-axis angle, but differ in the functional
form that is used to describe the PSF. The first variant imple-
ments a superposition of three 2D Gaussian functions that are
each characterised by a width and a relative amplitude. Alterna-
tively, a King profile defined by

PSF(p′|p, E, t) =
1

2πσ2

(
1 −

1
γ

) (
1 +

1
2γ

δ2

σ2

)−γ
, (27)

can be used, where δ is the angular separation between the true
and measured photon directions p and p′, respectively, σ de-
scribes the width and γ the tail of the distribution. In both cases,
the energy and off-axis angle dependent functional parameters
are stored in the data cubes of the respective Response Tables.

The energy dispersion is stored as a three-dimensional data
cube spanned by true energy, the ratio of reconstructed over true
energy, and off-axis angle. The background rate is stored as a
three-dimensional data cube spanned by the detector coordinates
DETX and DETY and the reconstructed energy.

In addition to the fundamental factorisation (Eq. (24)) of the
CTA instrument response, there exists a specific response defi-
nition that is used in a so-called stacked analysis. In a stacked
analysis, data from multiple observations is combined into a sin-
gle counts cube, and consequently, an average response needs to
be computed based on a proper weighting of the individual in-
strument response functions for each observation. The response
for a stacked analysis is composed of an exposure cube, a point
spread function cube and a background cube; the handling of
energy dispersion is not supported so far. The exposure cube is
computed using

Xcube(p, E) =
∑

i

Aeff,i(p, E, t) × τi, (28)

where Aeff,i(p, E, t) is the effective area and τi the livetime of
observation i, and the sum is taken over all observations. The

A1, page 6 of 19

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628822&pdf_id=2

J. Knödlseder et al.: GammaLib and ctools

point spread function cube is computed using

PSFcube(p, E, δ) =

∑
i PSFi(p′|p, E, t) × Aeff,i(p, E, t) × τi∑

i Aeff,i(p, E, t) × τi
, (29)

and the background cube is computed using

Bcube(p′, E′) =

∑
i Bi(p′, E′, t′) × τi∑

i τi
· (30)

The CTA module also contains some models to describe the dis-
tribution of the instrumental background in the data. All models
are factorised using

B(p′, E′, t′) = BS(p′|E′, t′) × BE(E′|t′) × BT(t′), (31)

where BS(p′|E′, t′) is the spatial, BE(E′|t′) the spectral, and
BT(t′) the temporal component of the model. We note that this
factorisation is similar to the one used for celestial source mod-
els (Eq. (10)) with all true quantities being replaced by recon-
structed quantities. In fact, the spectral and temporal model com-
ponents ME(E′|t′) and MT(t′) that are provided by the model
module can be used as spectral and temporal components of the
CTA background model, and only the spatial component needs
an instrument specific implementation (this is related to the fact
that the instrument direction p′ is instrument specific, while en-
ergy E′ and time t′ are generic quantities).

The available background models for CTA differ in the im-
plementation of the spatial component BS(p′|E′, t′). A first op-
tion consists of using the energy-dependent background rate
templates that are stored in the instrument response function to
describe the spatial component of the model, i.e.

BS(p′|E′, t′) = Brate(p′, E′, t′). (32)

Alternatively, the spatial distribution of the background rate can
be modelled using the effective area of the instrument, i.e.

BS(p′|E′, t′) = Aeff(p′, E′, t′), (33)

with the true arrival direction, energy and time being replaced
by the reconstructed quantities. A specific model exists also to
model the background for a stacked analysis, using the back-
ground cube as spatial component, i.e.

BS(p′|E′, t′) = Bcube(p′, E′). (34)

Finally, a radially symmetric parametric background model can
be used that defines the off-axis dependence of the background
rate as function of the offset angle θ. Three implementations for
the radial dependency exist: a Gaussian in offset angle squared,
defined by

BS(p′|E′, t′) = exp
(
−

1
2
θ4

ς2

)
, (35)

where ς is a width parameter, a radial profile defined by

BS(p′|E′, t′) =

(
1 +

(
θ

c0

)c1
)−c2/c1

, (36)

where c0 is the width of the radial profile, c1 is the width of
the central plateau, and c2 is the size of the tail of the radial
distribution, and a polynomial function

BS(p′|E′, t′) =

m∑
l = 0

clθ
l, (37)

where cl are polynomial coefficients, and m is the degree of the
polynomial.

2.2.9. Fermi-LAT module

The Fermi-LAT module provides support to include event data
collected with the Large Area Telescope (LAT) aboard NASA’s
Fermi satellite into a joint maximum likelihood analysis, but it
relies on the official Fermi science tools12 to prepare the data in
the appropriate format. So far, the module supports only the anal-
ysis of data processed with the Pass 6 and Pass 7 event-level re-
constructions, but the implementation of Pass 8 analysis support
is in progress. Also, only a binned maximum likelihood analy-
sis has been implemented so far. Such an analysis requires on
input a livetime cube, prepared using the gtltcube Fermi-LAT
science tool, and a source map that also includes a counts map,
created using the gtsrcmaps Fermi-LAT science tool.

The Fermi-LAT response function is factorised using

R(p′, E′, t′|p, E, t) = Aeff(E, θ)×PSF(δ|E, θ)×Edisp(E′|E, θ) (38)

where Aeff(E, θ) is the effective area in units of cm2, PSF(δ|E, θ)
is the point spread function that satisfies∫

PSF(δ|E, θ) dδ = 1, (39)

Edisp(E′|E, θ) is the energy dispersion that satisfies∫
Edisp(E′|E, θ) dE′ = 1, (40)

θ is the inclination angle with respect to the LAT z-axis, and δ is
the angular separation between the true and measured photon
directions p and p′, respectively. The instrument response func-
tion is independent of time. Two functional forms are available
for the point spread function which are both composed of a su-
perposition of two King functions:

PSF1(δ|E, θ) = nc

(
1 −

1
γc

) (
1 +

1
2γc

δ2

σ2

)−γc

+ nt

(
1 −

1
γt

) (
1 +

1
2γt

δ2

σ2

)−γt

, (41)

and

PSF3(δ|E, θ) = nc

((
1 −

1
γc

) (
1 +

1
2γc

δ2

s2
c

)−γc

+ nt

(
1 −

1
γt

) (
1 +

1
2γt

δ2

s2
t

)−γt)
· (42)

The parameters nc, nt, sc, st, σ, γc and γt depend on energy E
and off-axis angle θ. The energy dispersion is so far not used.

The LAT events are partitioned into exclusive event types
that for Pass 6 and Pass 7 data correspond to pair conversions
located in either the front or the back section of the tracker (for
Pass 8 the event partitioning has been generalised to other event
types). For each event type, a specific response function exists
that will be designated in the following with the superscript α.

The livetime cube is a means to speed up the exposure cal-
culations in a Fermi-LAT analysis and contains the integrated
livetime as a function of sky position and inclination angle with
respect to the LAT z-axis. This livetime, denoted by τ(p, θ), is
the time that the LAT observed a given position on the sky at
a given inclination angle, and includes the history of the LAT’s
orientation during the entire observation period. A Fermi-LAT

12 http://fermi.gsfc.nasa.gov/ssc/data/analysis/

A1, page 7 of 19

http://fermi.gsfc.nasa.gov/ssc/data/analysis/

A&A 593, A1 (2016)

livetime cube includes also a version of the livetime information
that is weighted by the livetime fraction (i.e. the ratio between
livetime and ontime) and that allows correction of inefficiencies
introduced by so-called ghost events, and that we denote here
by τwgt(p, θ). The exposure for a given sky direction p, photon
energy E and event type α is then computed using

Xα(p, E) = f α1 (E)
∫
θ

τ(p, θ) Aα
eff(E, θ) dθ

+ f α2 (E)
∫
θ

τwgt(p, θ) Aα
eff(E, θ) dθ, (43)

and the exposure weighted point spread function is computed
using

PSFα(δ|p, E) = f α1 (E)
∫
θ

τ(p, θ) Aα
eff(E, θ) PSFα(δ|E, θ) dθ

+ f α2 (E)
∫
θ

τwgt(p, θ) Aα
eff(E, θ) PSFα(δ|E, θ) dθ, (44)

where f α1 (E) and f α2 (E) are energy and event type dependent ef-
ficiency factors.

Finally, the point spread function for a point source is com-
puted using

PSF(δ|p, E) =

∑
α PSFα(δ|p, E)∑

α Xα(p, E)
, (45)

where the sum is taken over all event types.

2.2.10. COMPTEL module

The COMPTEL module provides support to include event data
collected with the Compton Telescope aboard NASA’s CGRO
mission into a joint maximum likelihood analysis. The mod-
ule accepts high-level data available at HEASARC’s archive
for high-energy astronomy missions13, and is to our knowledge
the only software that can be used today to exploit the legacy
COMPTEL data in that archive. There are three basic data files in
FITS format that are used to describe a COMPTEL observation
for a given energy range and that are available from HEASARC:
a DRE file, containing the binned event data, a DRX file, con-
taining the exposure as function of sky direction, and a DRG
file, containing geometry information. In addition, the energy-
dependent instrument response is described by IAQ files that
however are not available in the HEASARC archive. Therefore,
IAQ files applying to the standard energy ranges of COMPTEL
(0.75−1, 1−3, 3−10 and 10−30 MeV) are included in the Gam-
maLib package.

COMPTEL measured photons using two detector planes sep-
arated by 1.5 m, where an incoming photon interacts first by
Compton scattering with a detector of the upper plane before
being absorbed in a detector of the lower plane. A COMPTEL
event is characterised by an instrument direction spanned by the
angles (χ, ψ, ϕ̄). (χ, ψ) is the direction of the photon after scat-
tering in the upper detector plane, which is determined from the
photon interaction locations in both detector planes, and

ϕ̄ = arccos
(
1 −

mec2

E2
+

mec2

E1 + E2

)
(46)

is the Compton scattering angle as inferred from the energy de-
posits E1 and E2 in the upper and lower detector planes, respec-
tively. The measured energy of the photon is estimated from the

13 http://heasarc.gsfc.nasa.gov/docs/journal/cgro7.html

sum

E′ = E1 + E2 (47)

of the energy deposits in both detector planes. The probabil-
ity that a photon which interacted in the upper detector plane
will encounter a detector of the lower plane is described by
DRG(χ, ψ, ϕ̄), which also includes any cuts related to the re-
moval of events coming from the Earth limb.

The COMPTEL response is factorised using

R(p′, E′, t′|p, E, t) =
DRX(p)

T
×DRG(χ, ψ, ϕ̄)×IAQ(χ, ψ, ϕ̄|p, E),

(48)

where DRX(p) is the exposure in units of cm2 s, T is the on-
time in units of s, and IAQ(χ, ψ, ϕ̄|p, E) quantifies the interac-
tion probability for a Compton scattering in the upper detector
plane followed by an interaction in the lower detector plane. We
note that IAQ(χ, ψ, ϕ̄|p, E) is azimuthally symmetric about the
source direction, and the IAQ file is stored as a 2D FITS image
providing the interaction probabilities as function of ϕ̄ and ϕgeo
for a given energy range, where ϕgeo is the angular separation
between (χ, ψ) and p.

The GCOMObservation class implements a COMPTEL ob-
servation for a given energy range. Performing a spectral anal-
ysis for COMPTEL thus implies appending an observation per
energy range to the observation container. A COMPTEL obser-
vation also contains a DRB data cube that provides an estimate
of the instrumental background. This instrumental background
model can be adjusted to the data by maximum likelihood fit-
ting of its ϕ̄ distribution. Since DRB files are not provided by
HEASARC, the user may specify the DRG file as a first or-
der approximation of the instrumental background distribution
in COMPTEL data. It is planned to implement more accurate
background models for COMPTEL in the future.

2.2.11. Multi-wavelength module

The multi-wavelength module provides support to add flux
points that were obtained by external analyses to constrain a
joint maximum likelihood fit. A typical example would be to
constrain a synchrotron component using data obtained at radio
wavebands or in the optical or X-ray bands. Another example is
the addition of gamma-ray flux points in case the original event
data is not publicly available. Since the multi-wavelength mod-
ule handles data in physics space, the response function has the
trivial form

R(p′, E′, t′|p, E, t) = 1. (49)

So far, flux points need to be specified in a FITS table composed
of at least 2 columns. If the table contains two columns it is as-
sumed that they respectively contain the energy and the flux in-
formation. For three columns it is assumed that the third column
contains the statistical uncertainty in the flux measurement. For
four or more columns it is assumed that the first four columns
respectively contain the energy, the energy uncertainty, the flux
and the flux uncertainty. Energy (or wavelength) information can
be provided in units of erg(s), keV, MeV, GeV, TeV, or Ångström.
Flux information can be provided in units of ph cm−2 s−1 MeV−1

or erg cm−2 s−1. The FITS table unit keywords are analysed to
infer the proper units of the energy and flux axes. We plan to
connect in the future the multi-wavelength module to the Vir-
tual Observatory interface to support the interoperability with
VO services.

A1, page 8 of 19

http://heasarc.gsfc.nasa.gov/docs/journal/cgro7.html

J. Knödlseder et al.: GammaLib and ctools

3. ctools

3.1. Overview

The ctools package has been written with the goal to provide a
user-friendly set of software tools allowing for the science anal-
ysis of IACT event data. The software operates on lists of re-
constructed IACT events that have been calibrated in energy and
from which most of the particle background has been removed
based on air Cherenkov shower image characteristics. The soft-
ware also requires IACT instrument response functions describ-
ing the transformation from physical properties of photons to
measured characteristics of events. We propose to use ctools as
the science tools software for CTA, yet the software also sup-
ports the analysis of data from existing IACTs such as H.E.S.S.,
VERITAS, or MAGIC, provided that the data and response func-
tions are converted into the proper format.

The ctools package allows for the creation of images, spectra
and light curves of gamma-ray sources, providing the results in
FITS format that is compatible with standard astronomical tools
that can be used for their display. Tools to graphically display the
analysis results are therefore not included in ctools, but a number
of Python plotting scripts based on the matplotlib Python module
(Hunter 2007) are available in the examples folder of the ctools
package for visualisation of results.

Each ctool performs a single, well-defined analysis step, so
that scientists can combine the modular tools into a customised
workflow that matches the specific needs of an analysis. The
ctools philosophy is very similar to the rational behind the ftools
(Pence et al. 1993), which are widely used in X-ray astronomy,
and have also inspired the science analysis frameworks of INTE-
GRAL and Fermi-LAT.

The ctools package is based on the GammaLib analysis
framework, which is the only external library dependency of the
software. This assures the seamless installation of the software
on a large variety of operating systems and platforms, and keeps
the long-term software maintenance cost at a manageable level.
Each tool of the package is a class that derives from GammaLib’s
GApplication class, providing thus a standard user interface
and common functionalities and behavior to all tools. A tool can
be implemented as compiled executable written in C++ or as a
Python script. To distinguish both, we call the former a ctool and
the latter a cscript. Names of ctools start with “ct” while names
of cscripts start with “cs”. ctools and cscripts expose identical
user interfaces, and are largely indistinguishable to the user. Our
current philosophy is to use ctools for the basic building blocks
of the package, while cscripts are used for high-level tasks, call-
ing eventually several of the ctools. We will use the terms tool or
tools in this paper if we make no distinction between a ctool or
a cscript.

All tools can be called from the command line using
the IRAF Command Language parameter interface (see Ap-
pendix D). All tools are also available as Python classes in the
ctools and cscripts Python modules that are compliant with
Python 2 (from version 2.3 on) and Python 3. Within Python,
observation containers can be passed from one tool to another,
avoiding the need for storing intermediate results on disk. This
enables the creation of pure in-memory analysis workflows, cir-
cumventing potential I/O bottlenecks and profiting from the con-
tinuously growing amount of memory that is available on mod-
ern computers.

The ctools package ships with a calibration database that
contains instrument response functions that are needed to simu-
late and analyse CTA event data. The calibration database is or-
ganised following HEASARC’s calibration database (CALDB)

format14, which places all calibration relevant information into
a directory tree starting from the path defined by the CALDB en-
vironment variable. Instrument response functions are specified
for ctools by the caldb and irf parameters, where the first gives
the name of the calibration database (which is caldb=prod2
for the IRFs shipped with ctools), and the second gives the
name of the IRF (one of North_0.5h, North_5h, North_50h,
South_0.5h, South_5h, or South_50h, labelling response
functions for the northern and southern CTA arrays, with vari-
ants that have been optimised for exposure times of 0.5 h, 5 h
and 50 h).

3.2. Available tools

Figure 3 provides a summary of the available tools in release 1.0
of the ctools package, grouped according to functionality, and
arranged according to the typical usage in a workflow. Work-
flow examples can be found in the online ctools user man-
ual15. Simulation of event data is supported by the csobsdef
script and the ctobssim tool, event data selection is done
using the ctselect tool, and event binning and related re-
sponse preparation is supported by the ctbin, ctcubemask,
ctexpcube, ctpsfcube, and ctbkgcube tools. For maxi-
mum likelihood analysis there are the ctlike, ctbutterfly,
ctulimit, cttsmap and ctmodel tools and the csresmap
script. For imaging analysis there exists the ctskymap tool,
spectral analysis is done using the csspec script, and for timing
analysis there is the cslightcrv script. In addition, there are the
utility scripts cscaldb to inspect the IRF database, cssens to
determine a sensitivity curve, cspull to generate pull distribu-
tions, and cstsdist to investigate Test Statistics distributions.
In the following we provide a brief description of the tools.

3.2.1. csobsdef

The csobsdef script generates an observation definition XML
file from a list of pointings that can be used as a starting point for
the simulation of IACT observations (see Appendix B for a de-
scription of the XML file format). The pointing list is a comma-
separated value (CSV) ASCII file with header keywords in the
first row followed by a list of pointings, with one pointing per
row. For example, the ASCII file

name,id,ra,dec,duration,emin,emax,rad,deadc,caldb,irf
Crab,01,83.63,22.01,1800,0.1,100,5,0.95,prod2,South_0.5h
Crab,02,83.63,21.01,1800,0.2,100,5,0.95,prod2,South_0.5h
Crab,03,83.63,23.01,1800,0.3,100,5,0.95,prod2,South_0.5h

will produce an observation definition XML file containing 3 ob-
servations of 1800 s duration, wobbling around the Crab position
in Declination, and with energy thresholds, as specified by the
emin column, increasing from 0.1 TeV to 0.3 TeV. Alternatively
to Right Ascension and Declination, Galactic longitude and lat-
itude can be specified using the lon and lat keywords. Angles
are specified in units of degrees, energies in units of TeV. Only
the keywords ra and dec (or lon and lat) are mandatory. If no
duration keyword is provided the csobsdef script will query
a value and apply that duration to all pointings in the list. All
other keywords are optional and default values will be assumed
for all observations, unless the keyword is explicitly specified as
a parameter to csobsdef.
14 http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/
caldb_intro.html
15 http://cta.irap.omp.eu/ctools/user_manual/getting_
started/quickstart.html

A1, page 9 of 19

http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_intro.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_intro.html
http://cta.irap.omp.eu/ctools/user_manual/getting_started/quickstart.html
http://cta.irap.omp.eu/ctools/user_manual/getting_started/quickstart.html

A&A 593, A1 (2016)

Fig. 3. Overview over ctools.

3.2.2. ctobssim

The ctobssim tool simulates IACT event list(s) based on an in-
put model and the instrument characteristics described by the
instrument response function(s). The simulation includes pho-
ton events from astrophysical sources and background events
that are drawn from the input model using the numerical ran-
dom number generator provided by GammaLib. The seed value
for the random number generator can be specified through the
seed parameter. By default, ctobssim simulates a single IACT
pointing and produces a single event list, but by specifying ex-
plicitly an observation definition XML file using the inobs pa-
rameter, the tool can be instructed to generate an event list for
each observation that is defined in the XML file. If OpenMP sup-
port is available, ctobssim will parallelise the computations and
spread the simulations of multiple observations over all available
computing cores. ctobssim creates FITS file(s) comprising the
event list and their Good Time Intervals.

3.2.3. ctselect

The ctselect tool selects from an event list only those events
whose reconstructed arrival directions fall within a circular ac-
ceptance region, and whose reconstructed energies and trig-
ger times fall within specified boundaries. In addition, ar-
bitrary event selection criteria can be defined by using the

cfitsio row filtering syntax16. Optionally, ctselect applies save
energy thresholds that are specified in the effective area com-
ponent of the instrument response function via the LO_THRES
and HI_THRES FITS header keywords, or user supplied en-
ergy thresholds that are given in an observation definition XML
file through the emin and emax attributes (see Appendix B). If
ctselect is applied to a single event list, the tool outputs a new
FITS file that only contains the selected events. The tool can also
be applied to a list of observations by specifying an observation
definition XML file on input. In that case, ctselect will create
one events FITS file per observation, and outputs a new observa-
tion definition XML file that references the new event files.

3.2.4. ctbin

This ctbin tool creates a counts cube that is filled with events
from event list(s). A counts cube is a three-dimensional data cube
spanned by Right Ascension or Galactic longitude, Declination
or Galactic latitude, and reconstructed energy. The events are ei-
ther taken from a single event list file or from the event lists that
are specified in an observation definition XML file. If multiple
event lists are given in the observation definition XML file, the
tool will loop over all event lists and stack their events into a
single counts cube. ctbin creates a counts cube FITS file com-
prising the counts cube data, the counts cube energy boundaries,

16 https://heasarc.gsfc.nasa.gov/docs/software/fitsio/
c/c_user/node97.html

A1, page 10 of 19

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628822&pdf_id=3
https://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c_user/node97.html
https://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c_user/node97.html

J. Knödlseder et al.: GammaLib and ctools

and the Good Time Intervals of all event lists that have been filled
into the counts cube.

3.2.5. ctcubemask

The ctcubemask tool masks out specific regions from a counts
cube by setting the corresponding bin values to −1, since bins
with negative values will be ignored by GammaLib in a max-
imum likelihood analysis. The tool applies a spatial mask that
is comprised of a circular selection region (bins outside this re-
gion will be ignored) and a list of circular exclusion regions (bins
inside these regions will be ignored). The circular exclusion re-
gions are specified by an ASCII file in a format that is inspired
by the region format used by DS917. Specifically, the ASCII file
contains one row per exclusion region, given in the format

circle(83.63, 21.5, 0.4)

where 83.63 and 21.5 are the Right Ascension and Declina-
tion of the region centre and 0.4 is the radius (in degrees) of the
exclusion circle. The tool also only selects counts cube energy
layers that are fully contained within a specified energy interval.
ctcubemask creates a counts cube FITS file that is a copy of the
input counts cube where all masked bins will be set to values of
−1. Users can of course mask additional bins of the cube man-
ually to implement more complex masking schemes by setting
individual counts cube bins to values of −1.

3.2.6. ctexpcube

The ctexpcube tool generates an exposure cube for a stacked
maximum likelihood analysis according to Eq. (28). An expo-
sure cube is a three-dimensional data cube spanned by Right As-
cension or Galactic longitude, Declination or Galactic latitude,
and energy, which gives the exposure as function of true sky di-
rection and energy. ctexpcube creates an exposure cube FITS
file comprising the exposure cube, its energy boundaries, and the
Good Time Intervals of all observations that have been used for
the computation of the exposure cube.

3.2.7. ctpsfcube

The ctpsfcube tool generates a point spread function cube for
a stacked maximum likelihood analysis according to Eq. (29).
A point spread function cube is a four-dimensional data cube
spanned by true Right Ascension or Galactic longitude, true
Declination or Galactic latitude, true energy, and offset an-
gle between true and measured arrival direction of a photon.
ctpsfcube creates a point spread function cube FITS file com-
prising the point spread function cube, its energy boundaries, and
the definition of the angular separation axis.

3.2.8. ctbkgcube

The ctbkgcube tool generates a background cube for a stacked
maximum likelihood analysis according to Eq. (30). A back-
ground cube is a three-dimensional data cube spanned by recon-
structed Right Ascension or Galactic longitude, Declination or
Galactic latitude, and energy. An input model is used to predict
the expected number of background counts in each background
cube bin. ctbkgcube creates a background cube FITS file com-
prising the background rate per cube bin, and the energy bound-
aries of the background cube. The tool also creates an output
17 http://ds9.si.edu/doc/ref/region.html

model XML file that should be used as input for a maximum
likelihood analysis.

3.2.9. ctlike

The ctlike tool is the main engine of the ctools package, allow-
ing for the determination of the flux, spectral index, position or
extent of gamma-ray sources using maximum likelihood model
fitting of IACT event data. The analysis can be done using an
unbinned or binned formulation of the log-likelihood function
(Eqs. (1), (3), and (5)), and the tool is able to perform a joint
maximum likelihood analysis of data collected in separate ob-
servations or with different instruments.

Multiple observations, including data collected with different
instruments, can be handled by specifying an observation defini-
tion XML file on input (see Appendix B). Each of the observa-
tions will be kept separately and associated with its appropriate
instrument response function, as opposed to a stacked analysis
where average response functions are used. If an observation
definition XML file is provided, ctlike will use the joint like-
lihood of all the observations for parameter optimisation (see
Eq. (6)).

By default, ctlike will use the Poisson statistics for likeli-
hood computation, but for binned analysis also Gaussian statis-
tics can be requested. All model parameters which are flagged by
the attribute free=“1” in the model XML file, including spatial
parameters, will be adjusted by ctlike. For all model compo-
nents j for which the attribute tscalc=“1” is specified in the
model XML file, ctlike will also compute the Test Statistics
(TS) value that is defined by

TS = 2 ln L(M) − 2 ln L(M− j), (50)

where L(M) is the maximum likelihood value for the full
model M and L(M− j) is the maximum likelihood value for a
model from which the component j has been removed. Under
the hypothesis that the model M provides a satisfactory fit of
the data, TS follows a χ2

p distribution with p degrees of free-
dom, where p is the number of model parameters in component j
(Cash 1979).

ctlike creates an output model XML file that contains the
values of the best fitting model parameters. For all free parame-
ters, an error attribute is added that provides the statistical un-
certainty in the parameter estimate. If for a model component the
computation of the TS value has been requested, a ts attribute
providing the TS value is added. The output model can be used
as an input model for other ctools.

3.2.10. ctbutterfly

The ctbutterfly tool calculates a butterfly diagram for a spe-
cific source with power law spectral model. The butterfly dia-
gram is the envelope of all power law models that are within
a given confidence limit compatible with the data (by default a
confidence level of 68% is used). The tool computes the enve-
lope by evaluating for each energy the minimum and maximum
intensity of all power law models that fall within the error ellipse
of the prefactor and index parameters. The error ellipse is derived
from the covariance matrix of a maximum likelihood fit. The but-
terfly diagram can be displayed using the show_butterfly.py
script that is provided with the ctools package. For illustration,
Fig. 4 shows the output of the show_butterfly.py script, ob-
tained for a simulated source with a flux of 10 mCrab, observed
with the southern CTA array for 30 min.

A1, page 11 of 19

http://ds9.si.edu/doc/ref/region.html

A&A 593, A1 (2016)

105 106 107 108

Energy (MeV)

10-26

10-25

10-24

10-23

10-22

10-21

10-20

10-19

10-18

10-17

10-16

10-15

10-14

E
 d
N
/d
E
 (
M
e
V
−1
 s
−1
 c
m
−2
)

Fig. 4. Butterfly diagram for a simulated source with a flux of 10 mCrab,
observed with the southern CTA array for 30 min.

3.2.11. ctulimit

The ctulimit tool computes the upper flux limit for a specific
source model. Except for the node function, all spectral models
are supported. Starting from the maximum likelihood model pa-
rameters, the tool finds the model flux that leads to a decrease of
the likelihood that corresponds to a given confidence level (by
default a confidence level of 95% is used). ctulimit writes the
differential upper flux limit at a given reference energy and the
integrated upper flux limit into the log file.

3.2.12. cterror

The cterror tool computes the parameter errors for a specific
source model using the likelihood profiles. Starting from the
maximum likelihood model parameters, the tool finds the mini-
mum and maximum model parameters that lead to a decrease of
the likelihood that corresponds to a given confidence level (by
default a confidence level of 68% is used). cterror creates an
output model XML file that contains the values of the best fitting
model parameters. For all free parameters, an error attribute is
added that provides the statistical uncertainty in the parameter
estimate as obtained from the likelihood profile. While cterror
computes asymmetrical errors, which are written into the log file,
the XML file will contain the mean error that is obtained by av-
eraging the negative and positive parameter errors.

3.2.13. cttsmap

The cttsmap tool generates a TS map for a specific source
model with point source, radial or elliptical spatial component.
The tool displaces the specified source on a grid of sky positions
and computes for each position the TS value (see Eq. (50)) by
fitting the remaining free parameters of the source model. If the
only remaining free parameter of the source model is the source
flux, the square-root of the TS values corresponds to the pre-trial
detection significance of the source in Gaussian sigma. We note
that the TS values are only valid if at least a few events are ac-
tually detected towards a grid position, which may not always
be the case for high energies and/or short observing times (irre-
spectively of whether these events actually come from the source
or from instrumental background). cttsmap creates a FITS file

Fig. 5. TS map for a simulated source with a flux of 10 mCrab, observed
with the southern CTA array for 30 min.

comprising a sky map of TS values, followed by one image ex-
tension per free parameter that contain sky maps of the fitted
parameter values. Figure 5 shows a TS map that has been ob-
tained for a simulated source with a flux of 10 mCrab, observed
with the southern CTA array for 30 min. Events between 0.1 and
100 TeV have been considered.

3.2.14. ctmodel

The ctmodel tool generates a model cube based on a model
definition XML file (see Appendix C). A model cube is a three-
dimensional data cube providing the number of predicted counts
for a model as function of reconstructed Right Ascension or
Galactic longitude, Declination or Galactic latitude, and energy.
ctmodel creates a model cube FITS file comprising the pre-
dicted number of events per bin, the energy boundaries of the
model cube, and the Good Time Intervals of all observations that
have been used to compute the model cube.

3.2.15. csresmap

The csresmap scripts generates a residual map for a given
model. It works for event lists, counts cubes or observation defi-
nition XML files. For event lists, parameters that define the spa-
tial and spectral binning need to be provided so that the script
can bin the data internally. The model is then convolved with
the instrumental response function for that binning and used for
residual computation. Before residual computation, the counts
and model cubes are collapsed into maps by summing over all
energies. Three options exist then for residual computation: the
subtraction of the model from the counts (algorithm=SUB), the
subtraction and division by the model (algorithm=SUBDIV),
and the subtraction and division by the square root of the model
(algorithm=SUBDIVSQRT). By default algorithm=SUBDIV is

A1, page 12 of 19

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628822&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628822&pdf_id=5

J. Knödlseder et al.: GammaLib and ctools

Fig. 6. Sky map of the observed events above 100 GeV for a simulated
source with a flux of 10 mCrab, observed with the southern CTA array
for 60 min. We note that the map is not background subtracted.

applied. csresmap creates a FITS file containing a sky map of
the residuals.

3.2.16. ctskymap

The ctskymap tool generates a sky map from either a single
event list or the event lists specified in an observation definition
XML file. The tool will loop over all event lists that are provided
and fill all events into a single sky map. So far, only the gener-
ation of maps of the measured number of counts are supported.
ctskymap creates a FITS file comprising a sky map. Figure 6
shows a sky map created by ctskymap for an observation of
a simulated source with a flux of 10 mCrab, observed with the
southern CTA array for 60 min.

3.2.17. csspec

The csspec script extracts the spectrum of a gamma-ray source
by fitting a model in a given set of spectral bins to the data. The
model fits are performed using ctlike and the script computes
the source flux and its statistical uncertainty in each spectral bin,
as well as the significance of the source detection. Optionally,
csspec computes also upper flux limits for each spectral bin.
The script works on event list(s) or counts cube(s). csspec cre-
ates a FITS file containing a table with the fitted source spec-
trum, comprising one row per spectral bin. The spectrum can be
displayed using the show_spectrum.py script that is provided
with the ctools package. For illustration, Fig. 7 shows the output
of the script that was obtained for a simulated source with a flux
of 1 Crab, observed with the southern CTA array for 30 min.

10-1 100 101 102

Energy (TeV)

10-12

10-11

10-10

10-9

E
 d
N
/d
E
 (
e
rg
 c
m
−2
 s
−1
)

Fig. 7. Spectrum obtained using csspec for a simulated source with a
flux of 1 Crab, observed with the southern CTA array for 30 min.

3.2.18. cslightcrv

The cslightcrv script computes a light curve by performing a
maximum likelihood fit using ctlike in a series of time bins.
The time bins can be either specified in an ASCII file, as an in-
terval divided into equally sized time bins, or can be taken from
the Good Time Intervals of the observation(s). The format of
the ASCII file is one row per time bin, each specifying the start
of stop value of the bin, separated by a whitespace. Times are
specified in Modified Julian Days (MJD). cslightcrv creates a
FITS file containing a table with the fitted model parameters and
their statistical errors, the statistical significance of the detection
as expressed by the TS value, and the upper flux limit, with one
row per time bin.

3.2.19. cssens

The cssens script computes the differential or integrated CTA
sensitivity using maximum likelihood fitting of a test source.
The differential sensitivity is determined for a number of en-
ergy bins, the integral sensitivity is determined for a number
of energy thresholds and an assumed source spectrum. The test
source is fitted to simulated data using ctlike to determine its
detection significance as a function of source flux. The source
flux is then varied until the source significance achieves a given
level, specified by the significance parameter sigma, and set by
default to 5σ. To reduce the impact of variations between indi-
vidual Monte Carlo simulations, a sliding average is applied in
the significance computation. The significance is estimated us-
ing the TS value defined by Eq. (50). The simplified assumption
is made that the significance (in Gaussian sigma) is the square
root of the TS values. The sensitivity curve can be displayed us-
ing the show_sensitivity.py script that is provided with the
ctools package. Figure 8 shows the differential sensitivity curve
that has been obtained using the cssens script for the south-
ern CTA array after 30 min of observations. Please note that
the high-energy sensitivity is slightly better than the one pub-
lished by CTA18, as the latter includes an additional constraint

18 https://portal.cta-observatory.org/Pages/
CTA-Performance.aspx

A1, page 13 of 19

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628822&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628822&pdf_id=7
https://portal.cta-observatory.org/Pages/CTA-Performance.aspx
https://portal.cta-observatory.org/Pages/CTA-Performance.aspx

A&A 593, A1 (2016)

10-2 10-1 100 101 102

Energy (TeV)

10-13

10-12

10-11

10-10

E
×
F(
E
)
(e
rg
 c
m
−2
 s
−1
)

Fig. 8. On-axis differential sensitivity for a point source obtained using
the cssens script for the southern CTA array (obtained for an observa-
tion time of 30 min).

of detecting a minimum of 10 photons from a source, while for a
TS computation the presence of a few photons may be sufficient
to reach a significance of 5σ.

3.2.20. cspull

The cspull script generates pull distributions for all free model
parameters. The pull is defined by

g =
x − µ
σ

(51)

where x is the fitted model parameter, µ is its true value, and σ is
the statistical uncertainty in the fitted model parameter. For an
unbiased and correct estimate of the model parameter and its sta-
tistical error, the pull will be distributed as a standard Gaussian
with mean zero and unit width. The cspull script will perform
ntrials statistically independent computations of the pull for
each free model parameter by simulating events using ctobssim
followed by a maximum likelihood model fitting using ctlike.
From the output file, pull distribution plots can be generated us-
ing the show_pull_histogram.py script that is included in the
package. Another script named show_pull_evolution.py can
be used to plot the evolution of the mean and standard deviation
of the pull distribution as function of the number of trials.

3.2.21. cstsdist

The cstsdist script generates TS distributions (see Eq. (50))
for a given source by repeatedly computing the TS value for
ntrials simulated data sets. This script supports unbinned
or binned data, support for a stacked analysis is not yet
implemented.

4. Performance

4.1. Numerical accuracy

The GammaLib and ctools packages have been developed with
the goal to achieve an accuracy of better than 1% in all numerical
computations. This means that if ctools are used to determine for

example the flux received from a gamma-ray source or the spec-
tral points of a spectral energy distribution (SED), the relative
precision of the flux or the spectral points is better than 1%. The
same is true for spatial parameters, such as source position or
source extension. For many cases the actual numerical precision
is in fact much better than 1%, but in any case, it should never
be worse. Note, however, that this does not imply that source pa-
rameters can be determined with an IACT with an accuracy of
1%. The accuracy depends in the end on the precision to which
the instrument response function is known, which is currently
more in the 10−20% range.

The user should also be aware that bins are always evalu-
ated at their centre, which can lead to biases when the binning is
chosen too coarse. This is particularly important when perform-
ing a binned or stacked analysis, where the spatial and spectral
binning needs to be sufficiently fine grained to fully sample the
variation of the model. In particular, the spatial binning should
be better than the best angular resolution over the energy range
of interest. Typically, a value of 0.02◦ per pixel should be used
for the spatial binning, and at least 10 bins per decade for the
spectral binning of IACT data.

There is an issue with the fit of the broken power law spec-
tral model, which has unreliable statistical errors, specifically for
the prefactor and the break value. Errors are in general too large,
which is related to the fact that the model gradient is discontinu-
ous in energy.

The user should also avoid fitting the pivot energies E0 of
spectral models. The pivot energy is not an independent param-
eter of the spectral models, and consequently, in case all other
spectral parameters are free, the pivot energy is unconstrained.
The pivot energy should therefore always be kept fixed, or other
parameters of the spectral model need to be fixed to assure the
non-degeneracy of the free model parameters.

Finally, we note that when the width of the radial shell model
becomes comparable to or smaller than the angular resolution,
the shell width tends to be overestimated while the shell radius
tends to be underestimated. The fitted shell width and radius
should thus not be over-interpreted when the width is close to
the angular resolution of the IACT. Also we note that the con-
vergence of the elliptical Gaussian model can be slow, and in
some situations requires on the order of 20 iterations before the
fit converges. Nevertheless, the numerical accuracy of the model
fitting results for the elliptical Gaussian model is satisfactory.

4.2. Science verification

Science verification of GammaLib and ctools is performed by
verifying that the pull distributions of all spatial and spectral
models follow a standard Gaussian with mean zero and unit
width. This verification is done using the cspull script. Figure 9
shows as an example the pull distribution of the prefactor and the
index of a power law spectral model, obtained for 10 000 trials
and based on a Crab-like point source observed during an obser-
vation duration of 30 min for an unbinned analysis.

Science verification is also actively ongoing within collab-
orations of existing IACTs. The confrontation of the software
to real IACT data is fundamental in verifying the concepts that
have been implemented. They will also play a key role in validat-
ing the handling of instrumental backgrounds using parametric
models, and feed back into their improvements. Initial results
are promising, but since the data is proprietary to the respective
collaborations, we will not publish them here.

A1, page 14 of 19

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628822&pdf_id=8

J. Knödlseder et al.: GammaLib and ctools

−4 −3 −2 −1 0 1 2 3 4
Pull (Pull_Crab_Prefactor)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

A
rb

it
ra

ry
 u

n
it

s

Pull_Crab_Prefactor

−4 −3 −2 −1 0 1 2 3 4
Pull (Pull_Crab_Index)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

A
rb

it
ra

ry
 u

n
it

s

Pull_Crab_Index

Fig. 9. Pull distributions for the prefactor and the index of a power law
spectral model for an unbinned analysis.

Table 1. Benchmark of ctools unbinned, binned and stacked analysis
pipelines as function of the observation duration.

Duration Unbinned Binned Stacked
full ctlike full ctlike full ctlike

(h) (s) (s) (s) (s) (s) (s)
0.5 7 1 41 35 35 28
1 8 2 41 35 35 27
2 9 3 42 35 36 28
4 13 6 43 36 36 27
8 17 8 44 36 38 28
16 28 16 48 37 42 29
32 51 31 53 37 48 29
64 94 61 64 37 60 29

128 184 124 86 38 86 30
256 359 244 129 38 131 31

Notes. Quoted numbers give the spent processor time in seconds. Pro-
cessor times are quoted for the full pipeline and for the ctlike maxi-
mum likelihood fitting step only.

4.3. Benchmarking

Computing benchmarks of simple ctools analysis pipelines have
been generated using the benchmark_cta_analysis.py script
that is part of the ctools package. The benchmarks have been ob-
tained on a Dell PowerEdge R815 server equipped with four 12-
core AMD Opteron 6174 2.2 GHz processors running a CentOS
5 operating system (no parallel computing has been used in the
pipeline setup). The unbinned pipeline executes in sequence the
ctobssim, ctselect, and ctlike tools for a region of inter-
est of 3◦. The binned pipeline executes the ctobssim, ctbin,
and ctlike tools for 200 × 200 spatial bins of 0.02◦ × 0.02◦
in size, and 40 energy bins. The stacked pipeline executes the
ctobssim, ctbin, ctexpcube, ctpsfcube, ctbkgcube, and
ctlike tools for the same binning. The source model consisted
of a single point source with a power law spectrum on top of
the instrumental background. Only the spectral parameters of the
source and the background model have been fitted. The simula-
tion was done for the southern CTA array using the South_50h
IRF. Events in the energy range 100 GeV−100 TeV were simu-
lated and analysed.

Table 1 summarises the spent processor time in seconds in
each of the analysis pipelines for observation durations ranging
from 30 min to 256 h. Figure 10 provides a graphical represen-
tation of the results, where solid lines give the total time spent in
the pipelines while dashed lines represent the time spent in the
ctlike tool only. The processor time for ctlike in a binned or
stacked analysis is essentially independent of the duration of the
observation, which is expected since the number of operations

100 101 102

Observation duration (hours)

100

101

102

103

C
P
U
 t
im

e
 (
se
co
n
d
s)

Power law analysis benchmark

unbinned
binned
stacked

Fig. 10. Graphical representation of the ctools computing benchmark
results for the fit of the spectrum of a single point source. Solid lines
give the total time spent in the pipelines while dashed lines represent
the time spent in the ctlike tool only.

for these analyses depend only on the number of bins and not the
number of events (see Eq. (3)). In contrast, for an unbinned anal-
ysis the number of required operations increases with the number
of events (see Eq. (1)), and the processor time increases accord-
ingly. The crossover where the time spent in ctlike is equal
for unbinned and binned or stacked analysis is for an observa-
tion duration of ∼30 h. The additional processor time for the full
pipeline comes essentially from the event simulation step using
ctobssim, which in all cases increases with the duration of the
observing time. Above ∼60 h, the time spent in event simula-
tion exceeds the time spent in maximum likelihood model fitting
for a binned or stacked analysis. For unbinned analysis, the time
spent in maximum likelihood fitting dominates for observation
durations longer than ∼5 h.

Processor time benchmarks have also been obtained for all
spectral and spatial models. Table 2 summarises the results for an
observation duration of 32 h. The first part of the table provides
benchmarks for various spectral models that have been com-
bined with a point source spatial component with fixed position.
While the performance of the stacked analysis is relatively in-
sensitive of the spectral model that is used, unbinned and binned
analyses show some variations. The broken power law, super ex-
ponentially cut off power law, and the log parabola models take
longest in an unbinned analysis, making a stacked analysis more
efficient for observation durations longer than 6−7 h. For the bro-
ken power law, an unbinned analysis takes substantially more fit
iterations than a binned or a stacked analysis, which is related
to the discontinuity of the model gradients mentioned above
(cf. Sect. 4.1). The super exponentially cut-off power law and
the log parabola model are expensive in the evaluation, which is
a drawback for unbinned analysis where the model is evaluated
for each event, in contrast to a binned or stacked analysis, where
the model is effectively only evaluated once for each energy layer
thanks to an internal value caching mechanism.

The second part of Table 2 summarises benchmarks for var-
ious spatial models that have been combined with a power law
spectral model with free prefactor and index. All spatial param-
eters (position, size or orientation) have been adjusted by the fit.

A1, page 15 of 19

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628822&pdf_id=9
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628822&pdf_id=10

A&A 593, A1 (2016)

Table 2. Benchmark of ctools unbinned, binned and stacked analysis pipelines for an observation duration of 32 h as function of the spectral and
spatial model.

Model Unbinned/stacked Unbinned Binned Stacked
crossover full ctlike full ctlike full ctlike

duration (h) (s) (s) (s) (s) (s) (s)
Power law 30 51 31 53 37 48 29
Power law 2 25 53 33 57 40 49 29
Broken power law 7 201 183 76 60 54 35
Exponentially cut-off power law 22 65 40 60 39 54 30
Super exponentially cut-off power law 6 242 166 117 51 102 31
Log parabola 7 204 125 106 38 108 34
File function 30 50 31 55 39 51 31
Node function 33 48 30 57 41 53 35
Point source 30 97 78 127 111 89 70
Isotropic diffuse source 22 590 478 3515 3407 469 358
Sky map source (4◦ × 9◦ map) 0.5 613 595 4434 4419 43 25
Map cube source (1◦ × 1◦ map) 22 922 900 5053 5043 662 640
Radial disk source (r = 0.2◦) 2 3289 3268 592 574 320 299
Radial Gaussian source (σ = 0.2◦) 15 19 089 19 068 3404 3386 2683 2661
Radial shell source (θin = 0.3◦, θout = 0.4◦) 3 32 530 32 509 8439 8420 1327 1305
Elliptical disk source (a = 0.2◦, b = 0.4◦) 6 11 864 11 840 2324 2302 2893 2869
Elliptical Gaussian source (a = 0.2◦, b = 0.4◦) 3 154 337 154 316 6559 6540 9904 9882

Notes. The first column gives the model type (including the size parameters of the spatial model components), the second columns indicates the
observation duration from which on a stacked analysis is faster than an unbinned analysis. The remaining numbers give the spent processor time
in seconds. Processor times are quoted for the full pipeline and for the ctlike maximum likelihood fitting step only.

Fits of diffuse models take generally somewhat longer than fits
of a point source, the only exception being the use of a sky map
in a stacked analysis which is relatively fast due to an efficient in-
ternal caching of response values. We note that all diffuse model
response computations benefit from an internal caching mech-
anism that evaluates the response only once for each event or
event bin, taking advantage of the absence of spatial parameters
that modify the emission morphology for diffuse models. Fits
of radial or elliptical models take generally substantially longer
than fits of a point source or of diffuse models, owing to the
larger number of parameters that need to be adjusted. As spa-
tial parameters have no analytical gradient, the derivatives have
to be computed numerically, multiplying by three the number of
function evaluations that are needed for each spatial parameter.
Also, no simple response caching can be performed. The large
number of iterations needed for the convergence of the elliptical
Gaussian source (see Sect. 4.1) explains why the processing time
is excessively large for this spatial model. Nevertheless, future
code developments will aim at reducing the processing times for
the radial and elliptical spatial models, as they will be central to
many science analyses of IACT data.

For the time being, a stacked analysis is faster than an un-
binned analysis for observation durations that are longer than a
few hours, although the precise crossover duration is very model
dependent. With the exception of the elliptical Gaussian source
model, the ctlike processing time for a stacked analysis is al-
ways less than an hour, and can be as fast as 5 min for a ra-
dial disk model. A stacked analysis is therefore very often the
method of choice for fitting radial or elliptical spatial models to
IACT data.

5. Outlook
Following several years of development and testing, we have
now released the GammaLib and ctools software packages for

the scientific analysis of gamma-ray event data. So far, the soft-
ware mainly targets the analysis of Imaging Air Cherenkov Tele-
scope event data, but it can also be used for the analysis of Fermi-
LAT data or the exploitation of the COMPTEL legacy archive.

Future developments will focus on the expansion of the
ctools package to cover all features that are needed for a fully
developed CTA science tools software package. This includes
support for classical very-high-energy analysis techniques, such
as aperture photometry and on-off fitting, the addition of tools
for source extraction and identification, as well as for the timing
analysis of pulsars and binaries. It is also planned to enhance the
support for imaging analysis, for example by adding a tool that
enables the spatial deconvolution of the data to produce super-
resolved sky maps.

The GammaLib package will be expanded to also cover the
analysis of Pass 8 data for Fermi-LAT, to enhance the COMP-
TEL module by an improved treatment of the instrumental
background, and to implement full interoperability with Virtual
Observatory tools. Including additional instrument modules to
broaden the telescope coverage is also under investigation.

We want to conclude with the reminder that ctools and Gam-
maLib are open source software packages that benefit from a dy-
namic and enthusiastic community of researchers. The projects
are open to new contributions and enhancements, and if you have
suggestions or ideas on how to expand the existing software, you
are warmly welcomed to join the development team.

Acknowledgements. We would like to acknowledge highly valuable discus-
sions with members of the CTA Consortium, the Fermi-LAT Collaboration, the
H.E.S.S. Collaboration, the VERITAS Collaboration, and the MAGIC Collabo-
ration that all contributed to improve and consolidate the GammaLib and ctools
software packages. We also want to thank W. Collmar for making the COMP-
TEL instrument response functions available for inclusion into GammaLib. This
work has been carried out thanks to the support of the OCEVU Labex (ANR-
11-LABX-0060) and the A∗MIDEX project (ANR-11-IDEX-0001-02) funded
by the “Investissements d’Avenir” French government program managed by the
ANR.

A1, page 16 of 19

J. Knödlseder et al.: GammaLib and ctools

References

Acharya, B. S., Actis, M., Aghajani, T., et al. 2013, Astropart. Phys., 43, 3
Arnaud, K. A. 1996, in Astronomical Data Analysis Software and Systems V,

eds. G. H. Jacoby, & J. Barnes, ASP Conf. Ser., 101, 17
Cash, W. 1979, ApJ, 228, 939
Corcoran, M. F., Angelini, L., George, I., et al. 1995, in Astronomical Data

Analysis Software and Systems IV, eds. R. A. Shaw, H. E. Payne, &
J. J. E. Hayes, ASP Conf. Ser., 77, 219

de Boer, H., Bennett, K., Bloemen, H., et al. 1992, in Data Analysis in
Astronomy, eds. V. di Gesu, L. Scarsi, R. Buccheri, & P. Crane (Springer
Verlag), 241

Diehl, R., Baby, N., Beckmann, V., et al. 2003, A&A, 411, L117
Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Greisen, E. W., & Calabretta, M. R. 2002, A&A, 395, 1061

Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90
Knödlseder, J., Mayer, M., Deil, C., et al. 2011, Astrophysics Source Code

Library [record ascl:1110.007]
Knödlseder, J., Beckmann, V., Boisson, C., et al. 2015, ArXiv e-prints

[arXiv:1508.06078]
Knödlseder, J., Mayer, M., Deil, C., et al. 2016, Astrophysics Source Code

Library [record ascl:1601.005]
Marquardt, D. W. 1963, J. Soc. Industr. Appl. Math., 11, 431
Marsaglia, G., & Zaman, A. 1994, Comput. Phys., 8, 117
Mattox, J. R., Bertsch, D. L., Chiang, J., et al. 1996, ApJ, 461, 396
Pence, W., Blackburn, J. K., & Greene, E. 1993, in Astronomical Data Analysis

Software and Systems II, eds. R. J. Hanisch, R. J. V. Brissenden, & J. Barnes,
ASP Conf. Ser., 52, 541

Pence, W. D., Chiappetti, L., Page, C. G., Shaw, R. A., & Stobie, E. 2010, A&A,
524, A42

A1, page 17 of 19

http://linker.aanda.org/10.1051/0004-6361/201628822/1
http://linker.aanda.org/10.1051/0004-6361/201628822/2
http://linker.aanda.org/10.1051/0004-6361/201628822/3
http://linker.aanda.org/10.1051/0004-6361/201628822/4
http://linker.aanda.org/10.1051/0004-6361/201628822/6
http://linker.aanda.org/10.1051/0004-6361/201628822/7
http://linker.aanda.org/10.1051/0004-6361/201628822/8
http://linker.aanda.org/10.1051/0004-6361/201628822/9
http://arxiv.org/abs/record ascl:1110.007
http://arxiv.org/abs/1508.06078
http://arxiv.org/abs/record ascl:1601.005
http://linker.aanda.org/10.1051/0004-6361/201628822/13
http://linker.aanda.org/10.1051/0004-6361/201628822/14
http://linker.aanda.org/10.1051/0004-6361/201628822/15
http://linker.aanda.org/10.1051/0004-6361/201628822/16
http://linker.aanda.org/10.1051/0004-6361/201628822/17
http://linker.aanda.org/10.1051/0004-6361/201628822/17

A&A 593, A1 (2016)

Appendix A: Installing the software

GammaLib is distributed as source code releases that can
be downloaded from http://cta.irap.omp.eu/gammalib/
download.html. Alternatively, the trunk of the source code can
be accessed by cloning from the Git repository using

$ export GIT_SSL_NO_VERIFY=true
$ git clone https://cta-gitlab.irap.omp.eu/gammalib/gammalib.git

Building and installing the code follows the standard procedure
for GNU software packages:

$./autogen.sh
$./configure
$ make
$ make check
$ [sudo] make install

The first command is only required when the source code has
been cloned using Git, the (optional) sudo command is neces-
sary when admin privileges are needed to install the library into
the default /usr/local/gamma directory.

All instrument-specific modules are compiled by default
when building the package, but can optionally be disabled during
the configuration step. For instance

$./configure --without-lat --without-com --without-mwl

configures GammaLib to exclude the Fermi-LAT, COMPTEL
and multi-wavelength modules.

The ctools package is distributed as source code releases
that can be downloaded from http://cta.irap.omp.eu/
ctools/download.html. Alternatively, the trunk of the source
code can be accessed by cloning from the Git repository

$ export GIT_SSL_NO_VERIFY=true
$ git clone https://cta-gitlab.irap.omp.eu/ctools/ctools.git

Building and installing the code follows the same procedure as
for GammaLib. To get started with GammaLib and ctools, re-
fer to the “Quickstart” and “Using ctools from Python” sec-
tions of the user documentation at http://cta.irap.omp.eu/
ctools.

Science verification is part of the continuous testing strategy
implemented for ctools, and a user can exercise the standard sci-
ence verification pipeline by typing the

$ make science-verification

command in the ctools source package after having installed and
configured the software. Be aware, however, that this standard
test will take more than a day for completion.

Appendix B: Observation definition XML format

The possibility of analysing data from different instruments
with the same software framework opens up the opportunity
to use GammaLib and ctools for multi-instrument and multi-
wavelength analyses. To facilitate multi-instrument event data
analysis, the GObservations class can directly load observa-
tions based on information provided in an observation definition
XML file. In Python, the syntax for loading a observation defi-
nition XML file is

$ python
>>> import gammalib
>>> obs = gammalib.GObservations("myobservations.xml")

The format of the observation definition XML file is illustrated
below:

<?xml version="1.0" standalone="no"?>
<observation_list title="observation library">
<observation name="Crab" id="1" instrument="COM">
<parameter name="DRE" file="m50439_dre.fits"/>
<parameter name="DRB" file="m34997_drg.fits"/>
<parameter name="DRG" file="m34997_drg.fits"/>
<parameter name="DRX" file="m32171_drx.fits"/>
<parameter name="IAQ" file="ENERG(1.0-3.0)MeV"/>

</observation>
<observation name="Crab" id="1" instrument="LAT">
<parameter name="CountsMap" file="srcmap.fits"/>
<parameter name="ExposureMap" file="expmap.fits"/>
<parameter name="LiveTimeCube" file="ltcube.fits"/>
<parameter name="IRF" value="P7SOURCE_V6"/>

</observation>
<observation name="Crab" id="1" instrument="CTA">
<parameter name="EventList" file="cta_events.fits"/>
<parameter name="Calibration" database="prod2"

response="South_0.5h"/>
</observation>

</observation_list>

The definition of the observations is enclosed in a sin-
gle <observation_list> element that can contain an arbi-
trary number of <observation> elements. In the example
above, three <observation> elements are present, and the
instrument attribute specifies the instrument code for each of
these observations. Based on that attribute, GammaLib appends
instrument-specific observations to the GObservations con-
tainer, and dispatches the reading of the <observation> XML
elements to the respective GObservation::read() methods
that interpret the instrument specific content.

Optionally, energy thresholds for a given CTA observation
can be specified using the emin and emax attributes.

<observation name="Crab" id="1" instrument="CTA"
emin="0.1" emax="100">

The units of the energy threshold are TeV. The ctselect tool
will automatically apply these energy thresholds to the data if
the parameter usethres=USER is specified.

Appendix C: Model definition XML format

Models can be defined by manipulating the C++ or Python
model classes, but alternatively a model definition can be spec-
ified in form of an XML file that can directly be loaded by the
GModels class. In Python, the syntax for loading a model defi-
nition XML file is

$ python
>>> import gammalib
>>> models = gammalib.GModels("mymodels.xml")

The format of the model definition XML file is inspired from,
and is compatible with, the format used by the Fermi-LAT sci-
ence tools19. The general structure of a model definition XML
file is

<?xml version="1.0" standalone="no"?>
<source_library title="source library">
<source name="Crab" type="PointSource">
<spectrum type="PowerLaw">

<parameter name="Prefactor" .../>
<parameter name="Index" .../>
<parameter name="Scale" .../>

19 http://fermi.gsfc.nasa.gov/ssc/

A1, page 18 of 19

http://cta.irap.omp.eu/gammalib/download.html
http://cta.irap.omp.eu/gammalib/download.html
http://cta.irap.omp.eu/ctools/download.html
http://cta.irap.omp.eu/ctools/download.html
http://cta.irap.omp.eu/ctools
http://cta.irap.omp.eu/ctools
http://fermi.gsfc.nasa.gov/ssc/

J. Knödlseder et al.: GammaLib and ctools

</spectrum>
<spatialModel type="SkyDirFunction">
<parameter name="RA" .../>
<parameter name="DEC" .../>

</spatialModel>
</source>
<source name="Bkg" type="CTAIrfBackground" instrument="CTA">
<spectrum type="PowerLaw">
<parameter name="Prefactor" .../>
<parameter name="Index" .../>
<parameter name="Scale" .../>

</spectrum>
</source>

</source_library>

The collection of models is contained in a single
<source_library> element that in turn can contain an
arbitrary number of <source> elements. In the example above,
two <source> elements are present which each correspond
to one model. The type attribute of each <source> element
allows GammaLib to identify the appropriate model class. In
the example, the first model is a celestial point source model
with a power law spectral component, and the second model
is an instrumental background model for CTA. Each model
component contains a number of model parameters of the form

<parameter name=".." scale=".." value=".." min=".." max=".."
free=".."/>

where

– name is the model parameter name that is unique within a
model component;

– scale is a scale factor that will be multiplied with value to
provide a model parameter (this pre-scaling allows all value
attributes to be of the same order, which is needed to guar-
antee the numerical stability when the model is fitted to the
data);

– value is the pre-scaled model value (see above);
– min is the lower limit for the value term;
– max is the upper limit for the value term;
– free is a flag that specifies whether a model parameter

should be fitted (free="1") or kept fixed (free="0") when
then model is fitted to the data.

Please refer to http://cta.irap.omp.eu/gammalib/user_
manual/modules/model.html for a detailed description of the
syntax of the model definition XML file for each model type.

Appendix D: IRAF command-line parameter
interface

GammaLib implements the IRAF command line parameter in-
terface, a format for specifying application parameters that
is already widely used for high-energy astronomy analysis
frameworks, including ftools, the Chandra CIAO package, the
INTEGRAL OSA software, or the Fermi-LAT science tools. Fol-
lowing the IRAF standard, user parameters are specified in a
so-called parameter file, which is an ASCII file that lists one
parameter per row in the format

name, type, mode, value, minimum, maximum, prompt

where

– name specifies a unique user parameter name.
– type specifies the type of the user parameter and is one of

“b”, “i”, “r”, “s”, “f”, “fr”, “fw”, “fe”, “fn”, which stands
for boolean, integer, real (or floating point), string, and file
name. The various file name types test for read access, write
access, file existence, and file absence, respectively.

– mode specifies the user parameter mode and is one of “a”,
“h”, “l”, “q”, “hl”, “ql”, “lh”, “lq”, where “a” stands for
“automatic”, “h” for “hidden”, “l” for “learn”, and “q”
for “query” (the other possibilities are combinations of
modes); “automatic” means that the mode is inferred from
the “mode” parameter in the parameter file, “hidden” means
that the parameter is not queried, but can be specified by ex-
plicitly setting its value on the command line or from within
Python, “l” means that the value entered by the user will be
written to the parameter file on disk, so that the next time it
will be used as the default value, “q” means that the parame-
ter will be queried.

– value specifies the user parameter value. Possible val-
ues for boolean parameters are case-insensitive “y”, “n”,
“yes”, “no”, “t”, “f”, “true”, and “false”. The special case-
insensitive values “indef”, “none”, “undef” or “undefined”
are used to signal that a value is not defined. If “inf”, “in-
finity” or “nan” is specified and the parameter is of integer
type, its value will be set to the largest possible integer value.
If the parameter is of floating point type, its status will be set
to “Not A Number”.

– minimum specifies either a list of options, or the minimum
user parameter value for integer or floating point types, pro-
vided that maximum is also specified. Options are separated
by “|” characters.

– maximum specifies for integer or floating point types the max-
imum user parameter value, provided that minimum is also
specified.

– prompt specifies the text that will be prompted when query-
ing for user parameters.

User parameters can be either queried interactively or can be
specified on the command line which inhibits an application
to query the specified parameters. Command line parameters
are given by specifying the parameter name, followed without
whitespace by an equality symbol and the parameter value (hy-
phens are not needed). For example

$ ctobssim infile=myfilefits ra=83.0 dec=22.0

will set the infile, ra, and dec parameters of the ctobssim
tool. Using

$ ctobssim debug=yes

will instruct the ctobssim to log any output into the console.
And help text about ctobssim can be displayed using

$ ctobssim --help

A1, page 19 of 19

http://cta.irap.omp.eu/gammalib/user_manual/modules/model.html
http://cta.irap.omp.eu/gammalib/user_manual/modules/model.html

	Introduction
	GammaLib
	Overview
	Software layout
	Observation module
	Model module
	Sky map module
	Application module
	Core modules
	Interfaces
	Instrument modules
	CTA module
	Fermi-LAT module
	COMPTEL module
	Multi-wavelength module

	ctools
	Overview
	Available tools
	csobsdef
	ctobssim
	ctselect
	ctbin
	ctcubemask
	ctexpcube
	ctpsfcube
	ctbkgcube
	ctlike
	ctbutterfly
	ctulimit
	cterror
	cttsmap
	ctmodel
	csresmap
	ctskymap
	csspec
	cslightcrv
	cssens
	cspull
	cstsdist

	Performance
	Numerical accuracy
	Science verification
	Benchmarking

	Outlook
	References
	Installing the software
	Observation definition XML format
	Model definition XML format
	IRAF command-line parameter interface

