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Molar standards & information units in the ‘new-SI’

P. Fraundorf and Melanie Lipp
Physics & Astronomy/Center for Nanoscience, U. Missouri-StL (63121) USA*
(Dated: October 13, 2016)

In a 2015 paper, Mohr and Phillips point out practical ambiguities associated with the treatment
of dimensionless units in the SI, with an eye toward helping scientists to address these in the

future.

In particular the two fundamental constants “related to counting”, namely Avogadro’s

number N4 and Boltzmann’s constant kg, in the proposed new SI will serve primarily as scaling

relations between dimensionless quantities.

We show here that the role of molar heat capacity

as a multiplicity exponent gives to the numerical value chosen for kg a natural connection to
information units, like bits. At the same time, the promise of graphene (e.g. in nanotube form) as
a portable molar and mass standard (thanks to its small intersheet-bonding mass deficit) suggests a
natural connection between the numerical value chosen for N4 and well-defined graphene structures,
including a particular graphite arm-chair hex-prism.
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I. INTRODUCTION

The recent paper by Mohr and Phillips! raises impor-
tant issues about the explicit specification of “dimension-
less” units, and has helped to broaden the discussion of
strategies®? for considering such units in the upcoming
revision of the international system of units?*. For ex-
ample, measures of spatial frequency (like wavenumber,
reciprocal lattice vector magnitude, etc.) implicitly vary
with discipline® (e.g. as 27/ or 1/dp;) when (as is often
done) they are listed only as “reciprocal distance”. The
explicit specification of angle units (like radians or cycles)
would remove this ambiguity, and make the conventions
cross-consistent as well.

This note focuses instead on the two fundamental con-
stants that involve counting®, and on the possiblity that
along with “dimensionless” units for angles and count-
ing the proposed new SI might also want to consider
dimensionless units for information. Following Taylor®,
one might define unit [A] in terms of an implicitly-
physical, as e.g. in Taylor’s equation 3b, “invariant-
quantity” A divided by a numerical reference constant
{A}4) that we are free to choose in context of both
existing practice and future needs. Here we make the
case that Avogadro’s number N4 and Boltzmann’s con-
stant kg don’t have physical invariants associated with
them, but that they are instead scale-factors which con-
nect physically-dimensionless size scales (N4) or infor-
mation units (kg). As a result it might make sense to

choose the unit-defining numerical constant for N4 to
a physical structure with potential for replicating stan-
dards downstream, and to link the numerical constant
for kp to an information-unit convention. Specific possi-
bilities are suggested as well.

II. AVOGADRO AND SIZE SCALES

In the proposed new SI, the second [s] may be de-
fined in terms of the ground-state hyperfine splitting
transition-frequency of Cs-133, the meter [m] then in
terms of the lightspeed constant, the kilogram [kg] and
joule [J] then in terms of Planck’s constant, the coulomb
[C] and ampere [A] in terms of the fundamental charge,
and the lumen [lm] and candela [cd] in terms of the lu-
minous/radiant intensity-ratio for 540[THz] light.

The new SI may also decouple the definition of Avo-
gadro’s number from the number of Daltons (defined not
by the SIe.g. as one twelfth the mass of an isolated C-12
atom) per gram’. This is perhaps reasonable given the
fact that, when molecular binding energies are consid-
ered, mass is not simply proportional to the number of
atoms in an object.

Hence Avogadro’s number N4 would not be linked to
an experimental invariant, like the number of isolated C-
12 atoms needed to make up a kilogram of mass. With-
out a physical invariant, this makes Avogadro’s number
a scale-factor for the dimensionless quantity “number
of entities’ in moving from the size-scale of atoms and
molecules to the human-specific “macroscopic” size scale
of the laboratory.

Hence the mole [mol] may be defined by picking any
number consistent with prior practice, or by “in additon”
asking that the numeric value of V4 be associated with a
physical object for which precise molar standards (with
a specified number of atoms/molecules) may be possible
to generate in the days ahead. One such standard might
be a well-defined 3-dimensional graphite structure. This
is because graphite is quite stable (in the absence of hot
oxygen & molten iron), and is made of graphene sheets
which might be generated e.g. with well-defined chirality
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FIG. 1. Single-atom isothermal-setting process schematic.

by future nanotube generators to create portable mo-
lar standards. These in turn, thanks to the weak bind-
ing between graphene sheets, could also serve as rela-
tively precise mass standards independent of the layering-
configuration of the graphene sheets themselves.

For example, imagine that Avogadro’s number N4 was
defined as the number of atoms in an arm-chair graphite
hex-prism with m hexagonal graphene sheets each with
m atoms on a side, using:

{entities] B Na N Na 1)

mol | ~ 6.022 141... x 1023 ~ 3m2 4 9m3/2’
We specifically propose® using m = 51,150,060 carbon
atoms along the sides and height of an armchair-graphite
hex-prism, as a value which perhaps provides the closest
match to the experimental value at present.

III. BOLTZMANN AND INFORMATION UNITS

The statistical approach to thermal physics, pioneered
by Ed Jaynes?10 in the 1950’s to include the information-
theory connection between Gibb’s work and statistical
inference!!, in the second half of the 20th century has
pretty much found its way into all senior undergraduate
thermal physics texts!21® even if it is not familiar across
all disciplines. It includes the recognition that reciprocal-
temperature has natural (as distinct from historical)
units as energy’s uncertainty slope (1/T = dS/dE),
which stem from its role as a Lagrange multiplier in
the uncertainty maximization for “taking the best guess”
about where energy (when shared randomly) will go.

More recently, a strong connection between the 2nd
law of thermodynamics, these uncertainty measures,

and subsystem correlations in general has been estab-
lished. For example, Seth Lloyd has discussed the role
of the multi-moment correlation-measure mutual infor-
mation in the context of quantum computing'®. This
is a special case (namely that for an uncorrelated ref-
erence probability set) of an even more general corre-
lation measure called Kullback-Liebler divergence!” or
relative/cross-entropy!®, which e.g. is behind engineer-
ing measures (like “exergy”) for available work in a given
setting!®2°. Work on applying KL-divergence, in turn,
to layered complex systems?! (e.g. behind life’s depen-
dence on thermodynamic availability) as well as to model
selection (with separate converging threads in both the
behavioral?? and physical'® sciences) are active areas of
applied research.

Stepping back to the mathematics of statistical
inference®?, just as cycle and angle “units” arise when
we mark a unitless interval-fraction (e.g. in units of the
repeat-period) along the path of a periodic function, so
information “units” of base-b arise when we take the log
to the base-b of a unitless reciprocal-probability. Hence
the surprisal?* s = kIn[l1/p] > 0 associated with any
probability 0 < p < 1 has “dimensionless” units of [bits]
if k=1/In2, [nats] if k =1, or [J/K] if k = kp in units
of [J/K] is taken as dimensionless. Uncertainties and
entropies are generally defined as “average surprisals”,
while KL-divergence based measures of (delocalized) cor-
relation between subsystems, as well as of available infor-
mation on deviations from ambient, define a kind of “net-
surprisal” that may also be expressed in energy units (e.g.
as available work) if multiplied by ambient temperature
in [K].

It is natural in this context to ask “What specific cor-
relations are being linked to the 2nd law?”. The an-
swer might be “correlations between the state of any
two separate physical systems or subsystems”. A clas-
sic example?® 28 is the Szilard “vacuum-pump memory”,
which in simplest form (Fig. 1) is a two-chamber struc-
ture with a removable partition and one gas atom bounc-
ing around inside. Imagine that there is no record in the
outside world as to which side the atom is on. By using
e.g. a piston to reversibly push the “gas” into say the
left chamber we thermalize (at constant T) an available
work of W = (kgT)[J/nat]In(V,/V)[nat] = kT In2[J],
but we also lessen our total uncertainty about the state
of the “structure plus outside world” by AS/kp =
Q[J]/(kgT)[J/nat] = In2[nat] = 1[bit] of mutual infor-
mation (correlation between our idea of which side the
atom is on, and the position of the atom itself). Here as
usual W is work done to compress and Q is heat lost to
hold T constant, both in [J], and S is the entropy of our
1-atom gas in [J/K]. The second law of course allows us
to irreversibly forget which side we put it on, but makes
it less likely that we’ll unforget something we never knew.

In this context, therefore, the kelvin [K] may be de-
fined by expressing the thermodynamic information unit
[J/K] for measuring subsystem correlations, expressed in
terms of everyday measures of energy and temperature



(the reciprocal of energy’s uncertainty-slope dS/dFE), as
a certain number of [bits] (the smallest standard unit of
information) via the relationship which connects e.g. mo-
lar heat capacity? in [J/K] to the number of molecular
degrees-freedom in a gas:

1
[ Joule } ko ~nkpln2 (2)

nat Kelvin | _ 1.380 648... x 1023

where kp is Boltzmann’s constant and n ~ 1.0449378 x
10% is an integer, so that 1[J/K] is about 13.0617[ZB] ~
11.0637[ZiB|, where [ZiB] is a possible binary-multiple
unit symbol for 1[zebibyte] = 273|bits].

This integer may be selected to match the current value
of Boltzmann’s constant to any precision, or as a binary
multiple times a prime number. A 6-figure match is e.g.

provided by kp as 1/(261453171n2)[J/nat K]. Unfortu-
nately the large size of that prime number (45,317) lim-
its the mnemonic value of this choice, over e.g. simple
truncation of a decimal.

IV. DISCUSSION

In this comment we reinforce the case made by Mohr
and Phillips! that dimensionless units are an important
element of future work with fundamental constants. We
suggest adding “standards generation” into the choice of
a numerical constant for Avodagro’s number, and adding
information units into the discussion of a specific value
for Boltzmann’s constant. One possible example of each
is also provided.

pfraundorf@umsl.edu; also Physics, Washington Univer-
sity (63110), St. Louis, MO, USA
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