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Temperature dependence of the NMR relaxation rate 1/T1 for quantum spin chains

Maxime Dupont,∗ Sylvain Capponi,† and Nicolas Laflorencie‡

Laboratoire de Physique Théorique, Université de Toulouse and CNRS, UPS (IRSAMC), F-31062, Toulouse, France
(Dated: October 13, 2016)

We present results of numerical simulations performed on one-dimensional spin chains in order
to extract the so-called relaxation rate 1/T1 accessible through NMR experiments. Building on
numerical tensor network methods using the Matrix Product States (MPS) formalism, we can follow
the non-trivial crossover occurring in critical chains between the high-temperature diffusive classical
regime and the low-temperature response described by the Tomonaga-Luttinger liquid (TLL) theory,
for which analytical expressions are known. In order to compare analytics and numerics, we focus on
a generic spin-1/2 XXZ chain which is a paradigm of gapless TLL, as well as a more realistic spin-1
anisotropic chain, modelling the DTN material, which can be either in a trivial gapped phase or in
a TLL regime induced by an external magnetic field. Thus, by monitoring the finite temperature
crossover, we provide quantitative limits on the range of validity of TLL theory, that will be useful
when interpreting experiments on quasi one-dimensional materials.

I. INTRODUCTION

One-dimensional (1d) quantum systems are known to
be very peculiar due to strong quantum fluctuations that
prohibit long-range order and can give rise to unusual
phases of matter. In this context, it is remarkable that
quantum spin chains fall generically into two classes re-
garding their low-energy properties [1, 2]: (i) critical be-
havior where gapless low-energy excitations can be de-
scribed in the framework of Tomonaga-Luttinger liquid
(TLL) theory; (ii) gapped behavior.

Nevertheless, condensed-matter experiments are
mostly done on quasi -1d materials, hence the role of
small inter-chain couplings (as compared to the dom-
inant 1d energy scale J1d) may become important at
low-enough temperature (eventually leading to magnetic
ordering). Conversely, at high temperature (T � J1d),
quantum fluctuations vanish so that a classical picture
emerges. As a consequence, for realistic experimental
systems the validity of a universal 1d TLL regime is not
granted and should be checked in some unbiased way. In
particular, understanding the intermediate temperature
regime T ∼ J1d, highly relevant to understand several
experimental data, is a great theoretical challenge
regarding dynamical observables.

In this paper, we focus on nuclear magnetic resonance
(NMR) for quantum spin systems [3], and more specif-
ically on the 1/T1 spin-lattice relaxation rate. Indeed,
this quantity contains lots of information on the dynam-
ical properties of the system since it is directly related
to dynamical spin-spin correlations. Moreover, being a
local quantity (a crucial property of NMR technique), we
will argue that reliable data can be obtained even though
we will simulate finite spin chains.

Being of fundamental interest, the low-T behav-
ior of the NMR relaxation rate has been investigated
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for several 1d or quasi-1d quantum magnets. Spin-
gapped compounds, such as two-leg ladders SrCu2O3 [4],
BiCu2PO6 [5], Sr14−xCaxCu24O41 [6], weakly coupled
Haldane chains Y2BaNiO5 [7], or dimerized spin chains
AgVOAsO4 [8], exhibit an activated relaxation at low-
T . For gapless Heisenberg chain systems, the low-energy
critical behavior has been studied [9–12] for Sr2CuO3

which is an almost ideal realization with a large J1d ∼
2000 K and much smaller 3d couplings so that Néel tem-
perature is pushed down to TN ' 5 K. For such an SU(2)
symmetric material, a careful comparison of experimen-
tal and numerical NMR data has shown the prominent
role of logarithmic corrections [13].

Another route to TLL behavior is to apply an external
magnetic field on gapped materials such as spin-1 Hal-
dane gap compound [14] (CH3)4NNi(NO2)3 or dimerized
spin-1/2 chains [15]. For such systems, a theoretical anal-
ysis of the 1/T1 behavior has been performed in Refs. 16
and 17.

A useful experimental review on NMR properties of
several spin chains can be found in Ref. 18. Note also that
1/T1 measurements have also been used to characterize
one-dimensional metallic phase in carbon nanotube [19]
or quasi-1d superconductor [20].

More recently, interesting quasi-1d spin-gapped ma-
terials have also been investigated using NMR [21]: an
anisotropic spin-1 system NiCl2-4SC(NH2)2 (DTN) and
a spin-ladder one (C5H12N)2CuBr4 (BPCB). In both
cases, 1/T1 measurements could be interpreted either as
coming from magnon (respectively spinon) excitations in
the gapped (respectively gapless) 1d phase, and the quan-
tum critical regime was also argued to be universal. Most
importantly, the whole temperature range, including 1d
as well as 3d regimes, was discussed.

Experimentally, when decreasing temperature, the
NMR relaxation rate 1/T1 has been found to diverge
in the TLL regime, with power-law governed by a char-
acteristic exponent. Such an analysis is used in exper-
iments to determine the corresponding TLL exponent
K [22, 23]. For example, it was a smoking-gun signature
of attractive TLL in (C7H10N)2CuBr4 (DIMPY) com-
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pound [24, 25]. However, given that we are generically
dealing with quasi-1d materials, critical fluctuations and
3d ordering will limit the low-energy 1d regime, and a
genuine TLL critical behavior is observable only within
some finite window in temperature. This remains to be
analyzed more quantitatively, which is the main purpose
of this work.

The rest of the paper is organized as follows. In
Sec. II, we present the theoretical models and provide
useful definitions. Section III describes the numerical
technique based on finite temperature Matrix Product
States (MPS) approach. Results are then discussed in
Sec. IV. Finally, we present our conclusion in Sec. V.

II. MODELS AND DEFINITIONS

We give in this section the two models that will be
studied in this paper and a small discussion on their
phase diagram. Both models present a TLL gapless phase
and a gapped phase, induced by an external magnetic
field. We will also provide definition of the NMR relax-
ation rate 1/T1 and discuss its expected behavior with
temperature.

A. Theoretical models

1. The spin-1/2 XXZ chain

We first consider one of the simplest paradigmatic ex-
ample of TLL liquid, namely the spin-1/2 XXZ chain
Hamiltonian:

HXXZ = J

L−1∑

j=1

(
Sxj S

x
j+1 + Syj S

y
j+1 + ∆Szj S

z
j+1

)

− gµBh
L∑

j=1

Szj (2.1)

where ∆ ∈ (−1, 1] denotes the Ising anisotropy, J the
coupling strength and h is an applied magnetic field in
the z direction with g the gyromagnetic factor and µB
the Bohr magneton constant. The Hamiltonian is defined
with open boundary conditions (OBC), as will be used
in our numerical simulations.

In the range ∆ ∈ (−1, 1] the XXZ model can be de-
scribed by a TLL as long as its spectrum remains gap-
less [2]. As a function of magnetic field, the gapless
regimes extends up to a critical field gµBhc = J(∆ + 1),
and the system becomes gapped for h > hc. In the lat-
ter regime, the gap increases linearly with the applied
magnetic field, ∆g = gµB(h− hc), see Fig. 1.
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FIG. 1. (color online) (i) Upper panel : magnetization curve
of the XXZ Hamiltonian (2.1) as a function of the magnetic
field for ∆ ∈ (−1, 1]. There is a gapless TLL phase below hc =
J(∆ + 1)/gµB and a gapped one above when the system is
fully polarized. (ii) Lower panel : magnetization curve of the
1d DTN Hamiltonian (2.2) as a function of the magnetic field.
Two gapped phases (large-D and polarized) are respectively
located below hc1 and above hc2. The intermediate gapless
phase can be described by a TLL theory.

2. The quasi-1d spin-1 compound “DTN”

We also discuss a quasi-1d magnetic insulator com-
pound NiCl2-4SC(NH2)2, also called DTN, whose rele-
vant 3d structure consists of weakly coupled S = 1 chains
in the two other transverse (with respect to the chain
axis) directions. Its experimental interest comes from
the appearance of a Bose-Einstein condensation (BEC)
phase when applying a magnetic field at low tempera-
ture [26, 27]. More recently, Br-doped (disordered) DTN
was suggested to be a good experimental candidate for
observing a Bose glass phase [28–30].

Although there is 3d magnetic order observed below
TN ∼ 1 K in DTN [26] due to weak inter-chain couplings
along the two transverse directions, J3d/J1d ' 0.08, one
expects 1d physics and a TLL regime at higher T . The
effective Hamiltonian to describe this situation reads

HDTN−1d = J

L−1∑

j=1

Sj ·Sj+1+

L∑

j=1

[
D
(
Szj
)2 − gµBhSzj

]
,

(2.2)

where Sj = (Sxj , S
y
j , S

z
j ) are spin-1 operators. In the cur-

rent literature, [31] J = 2.2 K is the 1d antiferromagnetic
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coupling and D = 8.9 K is the single-ion anisotropy. The
magnetic field h is given in Tesla with g = 2.31[32].

The phase diagram of this 1d Hamiltonian (2.2) is
sketched in Fig. 1. In the absence of magnetic field, due
to the large on-site anisotropy D, the system is in the
so-called large-D phase [33]. This is a trivial phase, adi-
abatically connected to the product state | → . . . →〉
where each state is in a non-magnetic Sz = 0 eigenstate.
Clearly, this phase has a finite spin-gap, which corre-
sponds to the first critical field hc1 needed to magnetize
the system. Its value is known to be, at first order in
J/D � 1 [34]: hc1/gµB = D − 2J + O(J2/D) ' 3 T.
At finite magnetic field there is a gapless TLL regime for
h ∈ [hc1, hc2], with hc2/gµB = D+ 4J = 11.40 T. Above
this critical saturation field, the system becomes gapped
again, entering a fully polarized phase. As a side remark,
we recall that in the true 3d material DTN, both criti-
cal fields are shifted due to interchain couplings, so that
hc1 = 2.10(5) T [35], and hc2 = 12.32 T [36].

In the TLL phase and close to the upper critical field
hc2, the DTN Hamiltonian (2.2) can be mapped toward
an effective XXZ model of spins S = 1/2 (2.1). Using per-
turbation theory, effective parameters [21, 37] are given

by J̃ = 2J and ∆̃ = 0.5. This result can be refined us-
ing contractor renormalization (CORE) method [38, 39]

leading to the same value of J̃ but a slightly reduced
∆̃ = 0.36. Both mappings lead to a value of the effective
magnetic field h̃ = h− J −D.

B. Relaxation rate 1/T1

The nuclear spin-lattice relaxation rate T−1
1 measured

by NMR [40] is basically testing the local and dynamical
spin correlation function Saann (ω0) with a = x, y, z, and
ω0 being the NMR frequency at a given site n,

1

T1
=
γ2

2

{
A2
⊥ [Sxxnn (ω0) + Syynn (ω0)] +A2

‖S
zz
nn (ω0)

}

=
1

T⊥1
+

1

T
‖
1

(2.3)

Here, A⊥ is the transverse hyperfine coupling constant,
A‖ the longitudinal one, γ the gyromagnetic ratio and

Sabnn (ω) = Re

{
2

∫ ∞

0

dt eiωt
[
〈San (t)Sbn (0)〉

− 〈San (t)〉〈Sbn (0)〉
]}

, (2.4)

with Sa = Sb
†
, Sa(t) = eiHtSae−iHt, and 〈〉 is the ther-

mal average defined later in (3.4). For convenience, the x
and y spin components can be expressed using the raising
and lowering operators,

Sxxnn (ω) + Syynn (ω) =
1

2

[
S+−
nn (ω) + S−+

nn (ω)
]
. (2.5)

It is theoretically justified to take the limit ω0 → 0
since the NMR frequency is of a few tens or hundreds
of MHz, corresponding to temperatures of the order of
mK, thus being the smallest energy scale in the problem.
Indeed, such temperatures are neither reached in experi-
ments of interest nor in our numerical simulations, in par-
ticular for our purpose of probing the finite temperature
TLL regime in quasi-1d systems. As a side remark, the
two correlations S+−

nn (ω0) and S−+
nn (ω0) become equiva-

lent in this limit ω0 → 0.
The weight of the transverse and longitudinal contri-

butions in the relaxation rate 1/T1 is experimentally gov-
erned by the hyperfine coupling tensors A⊥ and A‖. To
favor one over the other, a specific nucleus can be tar-
geted for the NMR experiment. In the case of DTN,
proton 1H (nuclear spin I = 1/2) probes both compo-
nents while nitrogen 14N (I = 1) probes dominantly the
transverse one [36].

Hyperfine coupling tensors put aside or set equal to
one, the low temperature behavior of the transverse and
longitudinal components of 1/T1 depends on microscopic
parameters of the model. At low temperature, the trans-
verse component is larger than the longitudinal one and it
is thus justified to consider 1/T1 ' 1/T⊥1 . In the follow-
ing we will fix γ2A2

⊥,‖ = 1, and compute the relaxation
rates

1

T⊥1
=

∫ ∞

0

dtRe
[
〈S±n (t)S∓n (0)〉

]
, (2.6)

and

1

T
‖
1

=

∫ ∞

0

dtRe [〈Szn (t)Szn (0)〉 − 〈Szn (t)〉〈Szn (0)〉] .

(2.7)

Note that the single operator averages are time inde-
pendent, 〈Szn (t)〉 = 〈Szn (0)〉.

C. Tomonaga-Luttinger liquid description in the
gapless phase

The 1d gapless phase, experimentally accessible by
tuning a control parameter such as the external mag-
netic field, can be effectively described by the TLL
Hamiltonian[2],

HTLL =
1

2π

∫
dr
{
uK [∂rθ (r)]

2
+
u

K
[∂rφ (r)]

2
}

(2.8)

where u is the velocity of excitations and K is the dimen-
sionless TLL parameter. They both fully characterize the
low-energy properties of the system and are thus model-
dependent. θ(r) and φ(r) are bosonic fields obeying the
commutation relation [φ(x), θ(y)] = iπδ(x− y).

For the XXZ model (2.1), the TLL parameters K and
u are known from Bethe ansatz equations [41]. At zero
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magnetic field, analytical expressions are known as a
function of the Ising anisotropy ∆:

K =
π

2 arccos (−∆)
and

u

J
=
π
√

1−∆2

2 arccos ∆
. (2.9)

For generic non-integrable models, the TLL parameters
can be obtained numerically using DMRG by fitting
static correlation functions [42, 43] which has been suc-
cessfully done in the past years for various quasi-1d com-
pounds [17, 44].

In the TLL framework, the dynamical correlation
Sabnn(ω) defined in (2.4) can be computed analytically as
a function of the temperature in the “low energy limit”
which we will try to define more precisely in this paper.
Let us recall that the dynamical spin susceptibility is de-
fined as,

χabij (t) = −iΘ (t) 〈
[
Sai (t) , Sbj (0)

]
〉, (2.10)

where Θ(t) is the Heaviside function. Since a typical
relevant case in experiments is the local quantity i =
j = n, we only consider this case in the following. In
frequency space, the susceptibility can be related to the
dynamical spin correlation function by [45]

Sabnn (ω) =
2

e−βω − 1
Im
[
χabnn (ω)

]
. (2.11)

In the low energy limit βω � 1 an analytical expression
for Eq. (2.11) can be obtained, leading to [17, 46, 47]

1

T⊥1
=

2Ax cos
(
π

4K

)

u

(
2πT

u

) 1
2K−1

B

(
1

4K
, 1− 1

2K

)
, (2.12)

and

1

T
‖
1

=
Az cos (πK)

2u

(
2πT

u

)2K−1

B (K, 1− 2K)

+
KT

4πu2
, (2.13)

with B(x, y) the Euler beta function and Ax,z prefac-
tors of the static correlation functions. Thus, generically
1/T⊥1 (T ) diverges at zero temperature as a K-dependent

power-law, and dominates over 1/T
‖
1 . Note that for fi-

nite magnetic field (equivalent to non half-filled case),
additional subleading corrections are expected [48].

D. Gapped regime behavior

In contrast to a TLL gapless phase where 1/T1 has
power-law behavior at low temperature, we also consider
the gapped regime where fluctuations are exponentially
suppressed [16, 49–53], such that for T < ∆g

1

T
⊥,‖
1

∝ exp
(
−α⊥,‖∆g/T

)
, (2.14)

where ∆g is the energy gap of the system, and α⊥,‖
an O(1) prefactor which depends on the relaxation pro-
cesses, and also on the temperature range [52]. Below,
in section IV B 2, we show numerical results for the high-
field gapped regime of the XXZ chain where our data
are perfectly described by α⊥,‖ = 1. At higher temper-
ature above the gap, one may also expect a non-trivial
crossover to TLL regime [54].

III. NUMERICAL METHODS

To get the relaxation rate one needs to obtain in the
first place the dynamical correlation

〈
San (t)Sbn (0)

〉
. We

used the TEBD (Time Evolution Block Decimation) al-
gorithm [55] with both real/imaginary time through the
MPS formalism adapted for 1d systems [56]. A general
one-dimensional system containing L sites with OBC can
be represented by the following MPS,

|Ψ〉 =
∑

{si}
As1a1A

s2
a1a2 · · ·A

sL
aL−1
|s1〉|s2〉 · · · |sL〉 (3.1)

where the local index si is the physical index represent-
ing an element of the local Hilbert space at site i. Its
dimension is d and is equal to 2 (↑ and ↓) for spin-1/2
or 3 (↑, ↓ and →) for spin-1. We note ai the bond in-
dex whose dimension is directly related to the “number
of states” m to describe the system, meaning that m is
a control parameter in the numerical simulations.

The first step is to perform an imaginary time evo-
lution on the system to reach the desired temperature.
Once the state is at hand, the second step consists of
evolving it through a real time evolution. At each time
step, the correlation is measured. When all the data
in time-space have been obtained, a numerical Fourier
Transform can be performed to get the data in frequency-
space.

A. Time evolution with MPS

We will be general and consider the case with a Hamil-
tonian H consisting of nearest-neighbor interactions only
– it is the case for the XXZ (2.1) or DTN Hamiltonian
(2.2) introduced before. Now, we need to evolve our MPS
up to a time t. The operation can be discretized us-
ing smaller time steps τ such that t = Nτ , leading to

e−itH =
∏N

e−iτH. If the time step τ is small enough,
a first (or higher) order Trotter decomposition can be
performed,

e−itH '
N∏
e−iτHeven

N∏
e−iτHodd +O(τ2) (3.2)

where Heven and Hodd respectively correspond to the
even and odd bond Hamiltonians only acting on two
nearest-neighbor spins. The decomposition is possible
because even – odd – bond Hamiltonians commute with
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each others. But it is not exact and leads to an error in
τ due to the fact that [Heven,Hodd] 6= 0. The advantage
is that the bond Hamiltonians can easily be diagonalized
and exponentiated since they are only d2 × d2 matrices.

And so, applying successive evolution gates on the
MPS as well as singular value decompositions to restore
the MPS original tensor-site dependent form (3.1) will
eventually lead to a time-t evolved state.

B. Finite temperature with MPS

It was useful to introduce time-evolution concepts also
to discuss finite-temperature with MPS [57]. The main
idea is to represent the density matrix ρβ of the physical
(mixed) state in an artificially enlarged Hilbert space as
a pure state |Ψβ〉 – which is what we can deal with in
the MPS formalism. The auxiliary space can simply be
constructed as a copy of the original one.

Assuming that we know the purification of the density
matrix ρβ=0 as a wave function |Ψβ=0〉 it can be shown
that an imaginary time evolution has to be performed
over the infinite temperature state in order to get the
finite temperature state,

|Ψβ〉 = e−βH/2|Ψβ=0〉 (3.3)

with the Hamiltonian only acting on the physical sites.
This imaginary time evolution can be performed using
the TEBD algorithm described before in III A. Expecta-
tion values can then be measured at inverse temperature,

〈O〉β =
Tr
[
Oe−βH

]

Tr [e−βH]
=
〈Ψβ |O|Ψβ〉
〈Ψβ |Ψβ〉

(3.4)

For this procedure to work, the initial state |Ψβ=0〉 has
to be a product state of Bell states between each physical
site and its associated auxiliary site,

|Ψβ=0〉 =
1√
N

L∏

n=1

∑

{s}
|pns ans 〉 (3.5)

with |p〉 corresponding to physical sites, |a〉 to auxiliary
ones and N a normalization constant. The summation is
over the d possible local states s. Such a state is simple
enough to be built exactly in the MPS formalism.

C. Numerical limitations

The main limitations are about the temperature and
the final time one can reach using the methods described
above. The reason in both cases is directly related to a
rapid growth in the entanglement entropy while evolving
the state. This implies to keep larger and larger num-
ber of states m in the MPS if one wants to be accurate,
strongly limiting numerical simulations in practice.

On the one hand, it becomes increasingly difficult to
reach low temperatures. Indeed, one expects a volume-
law entanglement entropy (i.e. linear with the system
size L) due to the auxiliary sites which are used to purify
the thermal state. As a consequence, the number of kept
states m needed to describe accurately the system will
grow exponentially as the temperature T decreases.

On the other hand, the maximal (real) time that can
be reached is of the order of few tens of J−1 typically,
for similar reasons as discussed above, namely the linear
growth of entanglement entropy with time [58]. Thus,
fixing a maximum number of kept states m limits sim-
ulations to a finite time tmax. Note that this limitation
applies at all temperatures, even T = 0.

Despite these severe limitations, recent progress in the
field has allowed some improvements. For instance, we
will make use of the auxiliary degrees of freedom which
are used to purify the thermal state by time-evolving
them with −H, which is mathematically exactly the same
but has been shown to improve substantially the time
range [59]. By construction, this trick only applies to
finite-temperature simulations though. Last, although
its use did not prove to be systematically reliable in our
case, we would like to mention the possibility to use
so-called linear prediction technique, coming from data
analysis [60] which aims at predicting “longer time” be-
havior from the knowledge of dynamical correlations at
“intermediate time”.

IV. RESULTS

We provide in this section our numerical results [61]
about the relaxation rate 1/T1 using models and tech-
niques presented in the previous sections II and III. First
of all we will focus on the XX model (equivalent to free
fermions) for which we can compute exactly the dynam-
ical correlations for all temperatures and that will serve
as a benchmark for our simulations. Next, we will turn
to the interacting XXZ case for S = 1/2, and then to a
S = 1 chain model relevant to the DTN material.

A. Case study : XX point (∆ = 0)

The XXZ Hamiltonian (2.1) at ∆ = 0, known as XX
model, can be mapped onto a model of free spinless
fermions using a Jordan-Wigner transformation. We re-
strict ourselves to h = 0. It can be diagonalized in Fourier
space with εk = J cos k and k = nπ

L+1 with n = 1, 2, . . . , L
considering open boundary conditions,

HXX =
J

2

L−1∑

j=1

(
c†jcj+1 + h.c.

)
=
∑

k

εkc
†
kck. (4.1)

Unlike the bosonization expressions (2.12) and (2.13)
which are only valid in the low-energy limit, the results
presented in this section will be valid for all regimes. We
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FIG. 2. (color online) We compare numerical results (circles) used to determine the 1/T1 with analytical results (straight lines)
for the XX model. For the transverse (⊥) case, exact results are computed on a chain of size L = 64 (OBC). As for the
longitudinal (‖) case, the chain size is L = 1000 (OBC). Numerics on their side are performed on a chain of L = 64 (OBC)
sites. The left panel shows the real value of the dynamical correlations. For readability, we only display numerical results for
the lowest temperature for the longitudinal correlations. Indeed, this is a priori the hardest to compute and thus the most
subject to errors. The right panel shows the real part of the Fourier transform of the real time data. Although we only show
data up to t = 40 J−1 the Fourier Transform of the exact zz correlations was performed using data up to t = 1000 J−1.

present the details of the calculations in appendix A for
the analytical exact expressions of the dynamical corre-
lations for the XX model using precisely the same condi-
tions as in our numerical simulations (i.e. a finite chain
length with open boundary conditions).

We show the ‘bare’ results in Fig. 2 that will be used
to obtain the relaxation rate thereafter. Ideally, one is
interested in the thermodynamic limit (i.e. L→∞) but
we see that, at finite temperature (hence finite correla-
tion length), working on finite length chains with only a
moderate number of sites L allows to get reliable data.
Indeed, the MPS estimates agree perfectly with the exact
expressions (see appendix A).

First of all, we consider the local dynamical correlation
of the site in the middle of the chain reducing de facto
boundary effects. Then, as finite size effects are known to
be caused by the reflection of the propagating excitations
at TLL velocity u on the boundary of the system, one can
estimate a time below which the dynamical correlations
can be considered as free of finite size effects (basically,
ut ∼ L).

We first discuss the transverse correlations, see Fig. 2.
For all temperatures, they decay rather quickly to zero,
so that we can safely truncate data to a maximum time
tmax (which is anyway a natural cutoff provided by the
inverse of the NMR frequency ω0) and get reliable values
of 1/T⊥1 by integrating over time. Moreover, we have also
checked that finite size effects are extremely small since
we are computing a local correlation.

The same cannot be said for the longitudinal correla-
tions. They continue to oscillate even for high temper-
atures and long times, and their amplitude gets (very)
slowly smaller with time. This implies severe limitations
to get data in the thermodynamic limit. For instance,
exact computations using (A2) were done on L = 1000

and still displayed oscillations of amplitude around 10−4

at t = 1000 J−1. This makes the value of 1/T
‖
1 very

difficult to estimate. This well-known behavior is related
to spin diffusion-like behavior [62, 63] which cause a log-
arithmic divergence at small frequency ω. However, we
have to remember that the NMR frequency ω0 eventually
provides a natural cutoff.

For completeness we display the real part of the Fourier
transform on the right panels of Fig. 2 for which the 1/T1

value as defined in section II B corresponds to the ω = 0
value.

B. Spin-1/2 XXZ chain at ∆ 6= 0

1. Gapless regime

Building on the perfect agreement observed previously
between MPS estimates and the exact analytical solu-
tion of the XX model, we are now confident to extend
our study of the more generic XXZ case −1 < ∆ ≤ 1,
described by a TLL, and compute the relaxation rates.
Results are plotted in Fig. 3 for various values of the
anisotropy. The simulations were performed on systems
of size L = 64 with a cutoff of ε = 10−10 in the singular
values. We kept a maximal number of D = 500 states.
A fourth order Trotter decomposition was used with a
Trotter step of τ = 0.1.

First, in the gapless regime we do observe an excellent
quantitative agreement between numerical estimates and
the TLL prediction Eq. (2.12) at low-enough tempera-
ture. This asymptotic regime with a power-law behavior
∼ T 1

2K−1 occurs only below T/J ∼ 0.1− 0.2 (depending
on the anisotropy ∆). Here we stress that there are no
free parameters in the analytic expressions. Indeed, the
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FIG. 3. (color online) Transverse relaxation rate 1/T⊥1
vs. reduced temperature T/J for the spin-1/2 XXZ
chain at various ∆ and h = 0 obtained numerically us-
ing MPS techniques (circles, from top to bottom: ∆ =
−0.8, −0.6, −0.5, −0.4, −0.2, 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1).
Numerics are compared to TLL theory Eq. (2.12) at low
temperature (thick lines) for |∆| < 1, and with Eq. (4.2) for
the SU(2) Heisenberg point ∆ = 1. The thin lines between
the circles are guides to the eyes.

TLL parameters are computed using the exact expres-
sions Eq. (2.9) for u and K, and Ax is obtained following
Refs. 64 and 65. The isotropic limit ∆ = 1 is a spe-
cial point where logarithmic corrections appear in sev-
eral quantities [66–68], leading to a very slow divergence
of the (isotropic) NMR relaxation rate [12, 69]

1

T1
' 1√

2π3

√
ln

Λ

T
+

1

2
ln

(
ln

Λ

T

)
, (4.2)

where Λ ' 24.27J . MPS estimates compare well with
this parameter-free expression, as visible in Fig. 3.

Interestingly, we notice the non-monotonic behavior of
1/T⊥1 with temperature only when ∆ & 0 (which cor-
responds to repulsive or vanishing interactions in the
fermionic language).

As a last comment, we have observed that for infinite
temperature (β = 0), the value of 1/T⊥1 does not depend
on the sign of ∆, which is expected since the many-body
spectrum of H∆ is an odd function of ∆. Its value is min-
imum for ∆ = 0 with 1/T⊥1 =

√
π/(2J) [70] and increases

with |∆|. At the isotropic point |∆| = 1 we expect the
relaxation rate to diverge due to the diffusion-like behav-
ior [62, 63] of the dynamical correlation function. Our re-
sults at infinite-T go beyond Baker-Campbell-Hausdorff
expansion developed up to O(t2) in Ref. 71 to com-
pute 〈S±j (t)S∓j (0)〉 at short times, which would suggest

1/T⊥1 ∼ J−1(1+∆2)−
1
2 . This prediction is in contrast to

what we found, namely the transverse relaxation rate in-
creasing with |∆|. Indeed, while such an expansion finds

2 4 6 8 10 12

βJ

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1
/
T
⊥
,‖

1

∆g = 0.5

∆
g =

1.0

∆
g

=
1.5

h/gµB = 2.0 J

h/gµB = 2.5 J

h/gµB = 3.0 J

1/T
‖
1

1/T⊥1

1/T
‖
1

1/T⊥1

FIG. 4. (color online) Transverse and longitudinal relax-

ation rates 1/T
⊥,‖
1 plotted against reduced inverse temper-

ature βJ for the spin-1/2 XXZ chain in its gapped phase
for the anisotropy ∆ = 0.5. The critical magnetic field is
hc = 3J/2gµB and the value of the gap ∆g = gµB (h− hc).
Numerical results are obtained using MPS techniques (cir-
cles and diamonds) and the exponentially decaying behavior
is verified with the straight lines set with the expected gap

value 1/T
⊥,‖
1 = c⊥,‖ · e−β∆g and c⊥,‖ a non-universal free

parameter.

the correct gaussian behavior for ∆ = 0 (free-fermions),
higher-order terms have to be taken into account for
|∆| > 0 where the transverse dynamical correlation func-
tion at longer times gets larger when increasing |∆|.

2. Gapped XXZ chain

We then set the anisotropy value to ∆ = 0.5 and apply
a magnetic field to move into the gapped phase. Trans-

verse and longitudinal relaxation rates 1/T
⊥,‖
1 are plot-

ted in Fig. 4 where we observe an excellent agreement
with an exponentially activated behavior ∼ exp(−β∆g),
where ∆g is the spin gap. We notice that as the gap gets
smaller, the lower the temperature has to be to observe
the exponential law.

C. DTN

We now move to the DTN compound in its 1d limit
described by Eq. (2.2). We compute the relaxation rates
for various values of the magnetic field h, mainly close
to hc2 which is relevant for NMR experiments [21]. It
is a more challenging system to simulate than the XXZ
model as it is made of spins S = 1 (enlarged local Hilbert
space). The simulations were performed on open chains
of size L = 64 with a cutoff of ε = 10−10 in the singular
values. We kept a maximal number of D = 150 states.
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FIG. 5. (color online) Transverse relaxation rate 1/T⊥1 plot-
ted vs. temperature T for the spin-1 DTN chain obtained
numerically using MPS techniques (circles). The low temper-
ature behavior is compared to TLL prediction (straight lines).
The magnetic field h is given in Tesla. The inset compares
TLL prediction and numerical results for T = 0.4 K and cov-
ers the whole TLL phase from hc1 to hc2. The lower panel is
a zoom on the low temperature asymptotic power-law regime.

A fourth order Trotter decomposition was used with a
Trotter step of τ = 0.02.

Numerical results, shown in Fig. 5, compare extremely
well with TLL prediction at low temperature. Inter-
estingly, the TLL power-law behavior starts at slightly
higher temperature, as compared to the XXZ model,
T ' 0.5 K (T/J ∼ 0.2), especially as we approach the
middle of the TLL phase, away from the critical field
hc2. We point out that there are again no adjustable
coefficients, the TLL parameters being computed inde-
pendently using standard DMRG [72]. The tiny differ-
ence that appears at low temperature between numerical
data and TLL is due to the limited number of states m
kept when performing calculations. Though this does
not dispute the TLL prediction, it reveals the challenge
in such time-dependent simulations. The inset in Fig. 5
shows the transverse relaxation rate at T = 0.4 K for var-
ious values of the magnetic field covering the whole range
from hc1 to hc2. Once more, there is a very good agree-
ment between numerics and TLL theory except when one
gets close to the critical fields. Indeed, as we clearly see
in the lower panel of Fig. 5 for h = 11.0 T, the power law

is not met yet for the lowest temperature we could reach
T = 0.2 K.

The non-monotonic behavior of 1/T⊥1 observed in the
XXZ model is absent for the DTN and may seem odd
at first place since it can be mapped effectively onto a
S = 1/2 XXZ chain with ∆ = 0.5 or 0.36 and could thus
be compared with Fig. 3. However this non-monotonic
variation is observed at high temperature while this map-
ping is only justified in the low-energy limit as discussed
in II A 2.

One can also try to compare the relaxation rates of
Fig. 5 with the NMR data for the DTN compound
given in Ref 21. What draws our attention is the non-
monotonic regime of 1/T⊥1 observed at high temperature
experimentally, which, as we have just discussed, is not
theoretically predicted for a single DTN chain. Yet it
cannot be attributed to 3d effects as J3d = 0.18 K is
very small compared to the temperature T . We then ob-
served that experiments are performed by proton (1H)

NMR which probes both 1/T⊥1 and 1/T
‖
1 .

We therefore interpret this effect as due to the parallel
contribution of the relaxation rate. We show in Fig. 6

both the transverse and longitudinal 1/T
⊥,‖
1 as a function

of temperature. We cannot precisely estimate the value

of 1/T
‖
1 due to its dependence on ω0 (and therefore on

our maximum time in numerical simulations) so that we
give a lower bound. Its high temperature contribution
to the total relaxation rate clearly dominates over the
transverse part and explains well the experimental non-
monotonic regime at high T .

Perhaps more importantly, as displayed in Fig. 6, the
3d BEC ordering observed in DTN [26, 36] for mz ' 0.85
at TN ' 0.59 K occurs above the asymptotic regime
where the genuine TLL power-law behavior is expected.
It is therefore impossible to directly extract TLL expo-
nents in DTN, because of interchain effects that even-
tually lead to an ordering of the coupled TLLs. Ideally
we would expect for quasi-1d systems the TLL descrip-
tion of the NMR relaxation to be valid in the following
temperature regime: J1d � T � J3d.

Concerning the difficulty to obtain reliable data at high

temperature for the longitudinal 1/T
‖
1 , it is well known

that this is due to spin diffusion-like behavior [62, 63].
Therefore, measurements should in principle depend ex-
plicitly on the NMR frequency ω0.

V. CONCLUSION

Performing time-dependent numerical simulations at
finite temperature on 1d systems to compute the NMR
relaxation rate 1/T1, we have discussed the temper-
ature range validity of analytical predictions for two
models (i) the paradigmatic example for Tomonaga-
Lutinger liquids: the spin-1/2 XXZ chain for various
Ising anisotropies, and (ii) a more realistic S = 1 Hamil-
tonian, relevant for experiments on the DTN compound
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FIG. 6. (color online) Longitudinal 1/T
‖
1 and transverse 1/T⊥1

relaxation rates for the DTN spin-1 chain at h = 11.0 T, cor-

responding to mz ' 0.85. As 1/T
‖
1 cannot be estimated for

sure, we only provide a lower bound. The non-monotonic be-
havior observed experimentally at high T in Ref 21 apparently

comes from the large contribution of 1/T
‖
1 at high tempera-

ture. Experimental data for DTN [21] at the same magne-
tization are shown for comparison, after a proper rescaling
in order to match the low-T regime. The 3d BEC transition
temperature TN (mz ' 0.85) ' 0.59 K [36] is also shown.

as a function of an external magnetic field.
Both models present in some regime a gapless phase

that can be described by TLL “low-energy” theory, with
a relaxation rate dominated by its transverse component
1/T⊥1 ∼ T

1
2K−1 algebraically diverging at low tempera-

ture, where K is the dimensionless TLL exponent. We
observed that the expected power-law behavior occurs
only below T/J1d ∼ 0.1 − 0.2, thus defining the low-
energy limit of validity of TLL theory an order of magni-
tude below the energy scale J1d of the system. It is im-
portant to be able to define this limit as TLL predictions
are often used experimentally on quasi-1d compounds to
extract the value of K. As a consequence, we believe
that it remains experimentally challenging [15], and of-
ten impossible, to explore a genuine critical 1d regime
in quasi-1d compounds when J1d is small and 3d order-
ing prevents a wide TLL regime. For instance, we have
shown that for DTN, the BEC ordering temperature is
larger than the crossover temperature towards TLL be-
havior.

We have also studied the transverse relaxation rates
of these two models in other regimes than TLL theory.
First, we considered high temperatures, with a peculiar
non-monotonic behavior in the S = 1/2 XXZ model in
the repulsive regime at high T , which does not exist for
the 1d S = 1 model of DTN. However, such a non-
monotonic dependence with temperature at high T is
experimentally observed in DTN. We showed that this
effect comes from the parallel contribution of the relax-

ation rate 1/T
‖
1 dominating at high temperature over

the transverse part. Finally, we verified that in gapped
phases the relaxation rates are exponentially suppressed
∼ exp (−∆g/T ) and can indeed lead to accurate deter-
minations of the spin gap, at least in a regime of tem-
perature T � ∆g since other relaxation mechanisms can
change the activated behavior at higher temperature.

We want to emphasize again the role of 3d ordering
at finite temperature, preventing the observation of a 1d
TLL regime. As discussed for the particular case of DTN,
one needs a hierarchy of energy scale J1d � T � J3d to
be able to directly extract the TLL exponent K from the
divergence of T−1

1 with T .

Concerning future advances for quasi-1d systems, we
can envision trying to simulate imaginary-time dynamics
using quantum Monte-Carlo techniques, provided that
the model has no minus-sign problem. While it will be
necessary to perform a numerical analytic continuation
(using for instance Maximum Entropy techniques), we
have some hope that this could lead to reliable results to
quantitatively capture the influence of interchain effects.
For 1d chains, it has been rather successful [10]. As a
matter of fact, our extensive 1d results could serve as
useful benchmarks for that too.

While we have considered various chains, we are far
from being exhaustive. Indeed, there are some TLL
models for which elementary excitations may not be
simple spin flips, for instance multipolar nematic phase
for which 1/T1 behavior will be different [73, 74]. In
a similar line of thought, we could imagine simulating
more complicated models including charge and spin
degrees of freedom to describe NMR relaxation in
metallic or superconducting wires.

Note added : While completing this work, a related
numerical study by Coira et al. has appeared [75]. Our
results are perfectly compatible with each other when
comparison can be made, such as the transverse 1/T1

data for a single spin-1/2 XXZ chain with ∆ ≥ 0.
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Appendix A: Dynamical correlations for the XX
model

For completeness, we remind the reader the exact ex-
pressions for time-displaced spin correlations in the ex-
actly solvable XX model.

1. Longitudinal correlations

The longitudinal correlations 〈Szi (t)Szj (0)〉 for the XX
model are basically density correlations when performing
the Jordan-Wigner transformation. Since we are inter-
ested in the temperature dependence of the correlations,
what we need to compute is actually,

〈Szi (t)Szj (0)〉 =
1

Z
Tr
[
eiHtSzi e

−iHtSzj e
−βH] (A1)

with Z = Tre−βH the partition function. Calculations
lead to[76],

〈Szi (t)Szj (0)〉 =
1

4
I1I2 (A2)

with I1,

I1 =
2

L+ 1

∑

k

sin ki sin kj

[
1 + tanh

βεk
2

]
e−iεkt (A3)

and I2,

I2 =
2

L+ 1

∑

k

sin ki sin kj

[
1− tanh

βεk
2

]
e+iεkt. (A4)

Also, the single operator averages are

〈Szi (t)〉 = 〈Szi (0)〉 = 1− 4

L+ 1

∑

k

sin2 ki

e−βεk + 1
. (A5)

2. Transverse correlations

The transverse correlations 〈S±i (t)S∓j (0)〉 have a more
complicated structure in the fermion representation due
to the string of operators in the exponential[77]. We in-

troduce the following identity eiπc
†
l cl = (−1)c

†
l cl = AlBl

with Al = c†l + cl and Bl = c†l − cl, leading to

2〈S±i (t)S∓j (0)〉 =

〈[
i−1∏

l=1

Al(t)Bl(t)

]
Ai(t)

[
j−1∏

l=1

Al(0)Bl(0)

]
Aj(0)

〉
. (A6)

Now thanks to Wick’s theorem this product of many
fermion operators can be rewritten as elementary expec-
tation values of two operators through the Pfaffian of
some skew-symmetric matrix. Its elements above the di-
agonal (which is purely made of zeros) are

〈A1(t)B1(t)〉 〈A1(t)A2(t)〉 . . . 〈A1(t)Aj(0)〉
〈B1(t)A2(t)〉 . . . 〈B1(t)Aj(0)〉

. . . . . .
〈Bj−1(0)Aj(0)〉

(A7)

At finite temperature,

〈Ai(t)Bj(0)〉 =
1

Z
Tr
[
eiHtAie

−iHtBje
−βH] . (A8)

The two-body expectation values can be computed going
in Fourier space,

〈Ai(t)Aj(0)〉 =
2

L+ 1

∑

k

sin kj sin ki

[
cos εkt− i sin εkt tanh

βεk
2

]
(A9)

and,

〈Ai(t)Bj(0)〉 =
2

L+ 1

∑

k

sin kj sin ki

[
− sin εkt− i cos εkt tanh

βεk
2

]
. (A10)

And equivalently 〈Bi(t)Bj(0)〉 = −〈Ai(t)Aj(0)〉 as well
as 〈Bi(t)Aj(0)〉 = −〈Ai(t)Bj(0)〉.
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S. Krämer, A. Zheludev, and M. Horvatić, Phys. Rev.
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