Introduction

Mathematical models of the behavior of liquid crystals (see Fig. 1), attract much attention of scientists. The mathematical models of the hydrodynamics of incompressible, homogeneous nematic liquid crystals were firstly developed in the 1960s by J. Ericksen and F. Leslie (see, for instance, [START_REF] Ericksen | Conservation laws for liquid crystals[END_REF][START_REF] Leslie | Some constitutive equations for anisotropic fluids[END_REF]).

In this paper, we consider the full Ericksen-Leslie system of equations (see, for instance, [START_REF] De Gennes | The Physics of Liquid Crystals[END_REF]). In our previous papers, we investigated plane periodic model [START_REF] Chechkin | Nematic liquid crystals. Existence and uniqueness of periodic solutions to Ericksen-Leslie equations[END_REF][START_REF] Chechkin | Existence and uniqueness theorems for two-dimensional Ericksen-Leslie system[END_REF] and plane problem in a bounded domain [START_REF] Chechkin | Existence and uniqueness theorems in two-dimensional nematodynamics. Finite speed of propagation[END_REF][START_REF] Chechkin | Existence and uniqueness theorems for two-dimensional Ericksen-Leslie system[END_REF], homogenization of micro inhomogeneous nematic liquid crystals ( [START_REF] Ratiu | Homogenization of the equations of the dynamics of nematic liquid crystals with inhomogeneous density[END_REF] for periodic, [START_REF] Chechkin | Nematodynamics and Random Homogenization[END_REF] for random) in the case of a zero molecular moment of inertia, and two-dimensional nematodynamics in the case of a non-zero molecular moment of inertia [START_REF] Chechkin | Existence and uniqueness theorems in two-dimensional nematodynamics. Finite speed of propagation[END_REF]. We study the existence and uniqueness of solutions to the following Ericksen-Leslie system

⎧ ⎨ ⎩ u -μ u = -∇ p -∂ ∂x j ∂F ∂n x j • ∇n + F div u = 0 J n -2 q n + h = G, n = 1 (1) 
where summation on repeated indices is understood and

n x j := ∂ ∂x j n.
Here, u is the Eulerian, or spatial velocity vector field, n is the director field, the constant μ > 0 is the viscosity coefficient, the constant J > 0 is the moment of inertia of the molecule, F(x, t) and G(x, t) are given external forces, and the overdot ˙:

= ∂ ∂t + u • ∇ is the material derivative. The function F (n, ∇n)
is the Oseen-Zöcher-Frank free energy and is defined by

F (n, ∇n) := 1 2 K 1 (div n) 2 + K (n • curl n) 2 + n × curl n 2
where K , K 1 are real positive constants. The molecular field h is defined by

h := ∂F ∂n - ∂ ∂x j

∂F ∂n x j

The pressure p and the Lagrange multiplier 2 q are determined, respectively, by the conditions div u = 0 and n = 1. In this case, the ith component of the molecular field has the expression

h i = (K -K 1 )n k x k x i -Kn i x k x k + q n i
where q is a scalar function depending on n and its derivatives. Define the linear differential operator L by

Lv := (K -K 1 )∇(div v) -K v (2) 
Given the Ericksen-Leslie system (1), define the new vector field (first introduced in [START_REF] Gay-Balmaz | The geometric structure of complex fluids[END_REF])

ν := n × ṅ ∈ F (D, R 3 )
With all these hypotheses and notations, system (1) becomes

u -μ u = -∇ p + (Ln • ∇n) + F, div u = 0 ( 3 ) J ν = Ln × n + n × G (4) ṅ = ν × n (5) 
with unknowns u, ν, n. Thus, the Ericksen-Leslie system (1) implies the new first-order system (3)- [START_REF] Chechkin | Existence and uniqueness theorems for two-dimensional Ericksen-Leslie system[END_REF].

Conversely, if the initial conditions of the first order system (3)-( 5) satisfy the identities n(x, 0) = 1, n(x, 0) ⊥ ν(x, 0) at time t = 0, then for any t > 0 we have

n ≡ 1, ν = n × ṅ, 2q = n • h -J ν 2
and (3)-( 5) turns into [START_REF] Ericksen | Conservation laws for liquid crystals[END_REF]. Thus, under these hypotheses on the initial conditions, the first-order system (3), ( 4), ( 5) is equivalent to the original Ericksen-Leslie system (1) (as was first noticed in [START_REF] Gay-Balmaz | The geometric structure of complex fluids[END_REF]).

The preceding papers (see [START_REF] Lin | Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena[END_REF][START_REF] Lin | Nonparabolic dissipative system modeling the flow of liquid crystals[END_REF][START_REF] Shkoller | Well-posedness and global attractors for liquid crystals on Riemannian manifolds[END_REF][START_REF] Hong | Global existence of solutions of the simplified Ericksen-Leslie system in dimension two[END_REF][START_REF] Lin | Liquid crystal flows in two dimensions[END_REF][START_REF] Huang | Regularity and existence of global solutions to the Ericksen-Leslie system in R 2[END_REF][START_REF] Wu | On the general Ericksen-Leslie system: Parodi's relation, well-posedness and stability[END_REF][START_REF] Dai | Existence of regular solutions to the full liquid crystal system[END_REF][START_REF] Huang | Strong solutions of the compressible nematic liquid crystal flow[END_REF] and [START_REF] Wang | Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data[END_REF]) are mostly concerned with the case J = 0.

In this article, we focus on the system (3)-( 5) with J = 0 and announce the existence and uniqueness of solutions for 3-dimensional periodic media (Theorem 2.2) as well as for the problem in a bounded domain with Dirichlet (Theorem 3.2) and Neumann-type (Theorem 4.2) boundary conditions, in appropriate natural spaces. The uniqueness theorem holds under weaker conditions than the existence theorem, i.e. the spaces in the uniqueness theorem are bigger. We also give a result on the finite speed of propagation of the director field disturbance in such media (Theorem 3.3, Corollary 3.4).

Solutions in a periodic domain

Let Q T := (0, T ) × T, where T = R 3 /Z 3 is the 3-dimensional flat torus. We study the system (3)-( 5) in

Q T with initial conditions u(0, x) = u 0 , ν(0, x) = ν 0 , n(0, x) = n 0 (6) 
Here u, ν, n are unknown vector fields, p is an unknown scalar function, and J > 0, K i > 0, μ > 0 are given constants.

Throughout the paper we use the following notations:

-ḟ := ∂ f ∂t + u • ∇ f = f t + u j f x j is the material time derivative of f ; -a bold letter b denotes a 3-dimensional vector b = (b 1 , b 2 , b 3
), or a vector field with values in R 3 ; -a standard summation convention is used on repeated indices, independent of their position, e.g.,

a i b i := i a i b i ; -L 2 (T) := v : T → R 3 | v 2 2 := T v 2 dx < ∞ ; -(u, v) := T u • v dx is the inner product in L 2 (T); -W m 2 (T) is the Sobolev space of functions on T having m distributional derivatives in L 2 (T); -for any v ∈ W m 2 (T), m ∈ N, define D m v 2 2 := i 1 +i 2 +i 3 =m ∂ m v ∂x i 1 1 ∂x i 2 2 ∂x i 3 3 2 2 -Sol(T) := {v : T → R 3 | v ∈ C ∞ (T), div v = 0}; -Sol(Q T ) := {v ∈ C ∞ (Q T ) | v(t, •) ∈ Sol(T), ∀t ∈ (0, T )}; -Sol 2 (T) is the closure of Sol(T) in the norm L 2 (T); -Sol m 2 (T) is the closure of Sol(T) in the norm W m 2 (T). Definition 2.1. A quadruple (u, ν, n, ∇ p) is a strong solution to problem (3)-(6) in the domain Q T if (i) u is a time-dependent vector field in L 2 ((0, T ); Sol 3 2 (T)), u t ∈ L 2 (Q T ); (ii) ν is a vector field in L ∞ ((0, T ); W 2 2 (T)), ν t ∈ L ∞ ((0, T ); L 2 (T)); (iii) n is a vector field in L ∞ ((0, T ); W 3 2 (T)), n t ∈ L ∞ ((0, T ); W 1 2 (T)); (iv) ∇ p ∈ L 2 (Q T ); (v) u, n, ν satisfy the initial conditions (6), i.e. (u, n, ν) (u 0 , n 0 , ν 0 ) in L 2 (T) as t → 0;
(vi) Eqs. ( 3)-( 5) hold almost everywhere.

The following assertion is valid.

Theorem 2.2. Suppose u 0 ∈ Sol 2 2 (T), ν 0 ∈ W 2 2 (T), n 0 ∈ W 3 2 (T), and F ∈ L 2 ((0, T ); W 1 2 (T)), G ∈ L 1 ((0, T ); W 2 2 (T)).
Then there is a T > 0 such that the solution to problem (3)-( 5), (6) (as given in Definition 2.1) does exist. Let 

(u 1 , ν 1 , n 1 , p 1 ) and (u 2 , ν 2 , n 2 , p 2 ) be solutions to problem (3)-(6) in the domain Q T . Then, for some 0 < T 0 ≤ T (u 2 , ν 2 , n 2 , ∇ p 2 ) = (u 1 , ν 1 , n 1 , ∇ p 1 ) almost everywhere in Q T 0 .
The proof is based on Galerkin-type approximations.

Solutions with Dirichlet-type boundary conditions

Let be a bounded domain in R 3 and consider nematic liquid crystal flow in the cylinder × R. We study Eqs. ( 3)-( 5) in the domain (0, T ) × with initial conditions [START_REF] Chechkin | Existence and uniqueness theorems in two-dimensional nematodynamics. Finite speed of propagation[END_REF] and additional boundary conditions u ∂ = 0, n -n 1 ∂ = 0, ν| ∂ = 0 for any t > 0 [START_REF] Ratiu | Homogenization of the equations of the dynamics of nematic liquid crystals with inhomogeneous density[END_REF] where n 1 is a given vector field on .

Condition u ∂ = 0 means that the domain has impenetrable boundary and that the fluid moves without slipping; nn 1 ∂ = 0 describes the director position at the boundary. The third condition comes from the original Ericksen-Leslie system and means that ṅ = 0 at the boundary.

In this section, we let Q T := (0, T ) × and introduce the function spaces

• Sol ( ) := {v : → R 3 | v has compact support, div v = 0} • Sol (Q T ) := {v ∈ C ∞ (Q T ) | v(t, •) ∈ • Sol ( ), ∀t} • Sol m 2 ( ) is the closure of • Sol ( ) in the norm W m 2 ( )
The definition of a solution to the Ericksen-Leslie equations is the natural modification for the case of a bounded domain with boundary of the one given in Definition 2.1.

Definition 3.1. The quadruple (u, ν, n, ∇ p) is a strong solution to problem (3)-( 6), [START_REF] Ratiu | Homogenization of the equations of the dynamics of nematic liquid crystals with inhomogeneous density[END_REF] 

in the domain Q T if -u is a vector field in L 2 ((0, T ); • Sol 1 2 ( )) ∩ L 2 ((0, T ); W 3 2 ( )), u t ∈ L 2 (Q T ); -ν is a vector field in L ∞ ((0, T ); • W 1 2 ( )) ∩ L ∞ ((0, T ); W 2 2 ( )), ν t ∈ L ∞ ((0, T ); L 2 ( )); -n -n 1 is a vector field in L ∞ ((0, T ); • W 1 2 ( )) ∩ L ∞ ((0, T ); W 3 2 ( )),
where n 1 is a given constant vector field, and 3)-( 5) hold almost everywhere.

n t ∈ L ∞ ((0, T ); W 1 2 ( )); -∇ p ∈ L 2 (Q T ); -u, n, ν satisfy initial conditions (6), i.e. (u, n, ν) (u 0 , n 0 , ν 0 ) in L 2 ( ); -Eqs. (
The following result is proved in the same way as Theorem 2.2, with natural modifications. Theorem 3.2. Assume that for all x ∈ ∂ the boundary is the graph of a C 2 -function in some neighborhood of x. Let n 1 = const,

n 0 ∈ • W 3 2 ( ), ν 0 ∈ W 2 2 ( ), u 0 ∈ • Sol 1 2 ( ) ∩ W 2
2 ( ), u 0 ∂ = 0, and assume that, for some d > 0, we have

n 0 (x) = const, ν 0 (x) = 0 if dist(x, ∂ ) < d Assume also that F ∈ L 2 ((0, T ); W 1 2 ( )), G ∈ L 1 ((0, T ); W 2 2 (
)), G equal to zero in a neighborhood of ∂ . Then problem (3)-( 6), ( 7) has a unique solution in Q T for some T > 0.

Instead of (3)-( 5), we consider the system [START_REF] Lin | Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena[END_REF] where (x) ∈ C ∞ ( ) is a given smooth non-negative function with compact support.

u -μ u = -∇ p + (Ln • ∇n) , div u = 0 ( 8 ) J (ν t + u i ν x i ) = (Ln × n) (9) n t + u i n x i = (ν × n)
Theorem 3.3. Fix u ∈ L 2 ((0, T ); • Sol 1 2 ( )) ∩ L 2 ((0, T ); W 2 2 ( )) and ∈ C ∞ ( ) with compact support, 0 ≤ ≤ 1. Consider Eqs. ( 9) 
, [START_REF] Lin | Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena[END_REF] for this given vector field u.

Suppose, in addition, that for some 1 < α ≤ ∞ and for all i, j, there are constants m > 0, M > 0 such that the vector field u satisfies esssup

x |u i x j (x, t)| L α (0,T ) ≤ M and u(x, t) ≤ m, ∀(x, t) ∈ Q T
Assume also that the initial conditions n 0 and ν 0 of (9), [START_REF] Lin | Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena[END_REF], with this given vector field u, are such that ∇n 0 and ν 0 vanish for xx 0 < r. Then there exist constants m , t 0 > 0 such that ∇n and ν are equal to zero for all (x, t) satisfying xx 0 < rm t, t < t 0 Remark 1. A similar result, with identical proof, holds in a periodic domain. In this case, we assume u ∈ L 2 ((0, T ); Sol 1 2 (T)) ∩ L 2 ((0, T ); W 2 2 (T)) and take ≡ 1.

Corollary 3.4. Consider a solution (u, ν, n, p) of the problem (3)-( 5), [START_REF] Chechkin | Existence and uniqueness theorems in two-dimensional nematodynamics. Finite speed of propagation[END_REF] in the periodic domain, as given in Definition 2.1.

Assume also that the initial conditions n 0 and ν 0 are such that ∇n 0 and ν 0 vanish for xx 0 < r. Then there exist constants m , t 0 > 0 such that ∇n and ν are equal to zero for all (x, t) satisfying xx 0 < rm t, t < t 0 If (u, ν, n, p) is the solution to problem (3)-( 6), [START_REF] Ratiu | Homogenization of the equations of the dynamics of nematic liquid crystals with inhomogeneous density[END_REF] in a bounded domain, we need to assume, in addition, that ν, ∇n vanish in some neighborhood of the boundary ∂ .

Solutions with Neumann-type boundary conditions

The problem considered in Section 3 has an important drawback: the director vector field is assumed to be constant near the boundary. As shown below, this condition can be neglected if we change the boundary conditions. Suppose that K 1 = K = K and consider the domain as being a cuboid, i.e.

= 3 i=1 (a i , b i ), where -∞ < a i < b i < ∞.
The equations of motion are (3)-( 5) with initial conditions ( 6), but instead of the boundary conditions ( 7), we require

u • N (0,T )×∂ = 0 and u i x j τ i N j (0,T )×∂ = 0 ∀τ ⊥ N = 0 (11) 
The boundary condition on the director field n and the variable ν are

n x i N i (0,T )×∂ = 0 and ν x i N i = 0 (12) 
Definition 4.1. The quadruple (u, ν, n, ∇ p) is a strong solution to problem (3)-( 6), ( 11), [START_REF] Shkoller | Well-posedness and global attractors for liquid crystals on Riemannian manifolds[END_REF] in the domain Q T if

• u is a vector field in L 2 ((0, T ); Sol 1 2 ( )) ∩ L 2 ((0, T );

W 3 2 ( )), u t ∈ L 2 (Q T );
• ν is a vector field in L ∞ ((0, T ); W 2 2 ( )), ν t ∈ L ∞ ((0, T ); L 2 ( ));

• n is a vector field in L ∞ ((0, T ); W 3 2 ( )), where n 1 is a given constant vector field, and n t ∈ L ∞ ((0, T ); W 1 2 ( ));

• ∇p ∈ L 2 (Q T );
• u, n, ν satisfy the initial conditions (6), i.e. (u, n, ν) (u 0 , n 0 , ν 0 ) in L 2 ( );

• Eqs. ( 3)-( 5) and boundary conditions [START_REF] Lin | Nonparabolic dissipative system modeling the flow of liquid crystals[END_REF], [START_REF] Shkoller | Well-posedness and global attractors for liquid crystals on Riemannian manifolds[END_REF] hold almost everywhere. 6), [START_REF] Lin | Nonparabolic dissipative system modeling the flow of liquid crystals[END_REF], [START_REF] Shkoller | Well-posedness and global attractors for liquid crystals on Riemannian manifolds[END_REF] has a unique solution in Q T for some T > 0.
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 1 Fig. 1. The structure of horizontal flow of smectic (left), nematic calamitic and nematic discotic (center), cholesteric (right) liquid crystals.
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