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Bayesian Inference With Muller C-Elements
Joseph S. Friedman, Member, IEEE, Laurie E. Calvet, Member, IEEE, Pierre Bessière,

Jacques Droulez, and Damien Querlioz, Member, IEEE

Abstract—Bayesian inference is a powerful approach for inte-
grating independent conflicting information for decision-making.
Though an important component of robotic, biological, and
other sensory-motors systems, general-purpose computers per-
form Bayesian inference with limited efficiency. Here we show that
Bayesian inference can be efficiently performed with stochastic
signals, which are particularly adapted to novel low power nano-
devices that exhibit faults and device variations. A simple Muller
C-element directly implements Bayes’ rule. Complex inferences
are performed by C-element trees, which compute the probability
of an event based on multiple independent sources of evidence.
A naïve Bayesian spam filter circuit is demonstrated as a peda-
gogical application, and design techniques for improving circuit
functionality are described. Limitations of this structure are dis-
cussed in terms of signal autocorrelation. The stochastic inference
structure is exceptionally robust to faults, an essential feature of
decision circuits, and can therefore leverage the increased effi-
ciency of emerging nanodevices. This hardware implementation
of Bayesian inference is extremely area and power efficient, with
an area-energy-delay product several orders of magnitude less
than the conventional floating point implementation. These results
open a pathway for a direct stochastic hardware implementation
of Bayesian inference, enabling a new class of embedded decision
circuits for robotics and medical applications.

Index Terms—Fault-tolerant circuit design, Muller C-element,
nanotechnology, stochastic computing, variation-prone devices.

I. INTRODUCTION

BAYESIAN inference permits decision-making with max-
imal information integration from distinct inputs [1]. It

computes the probability of an event through the incorporation
of information from numerous sources. Bayesian inference
has been suggested as a fundamental component of biological
systems [2]–[4], and has been successfully applied to robotics
and other sensory-motor systems [5].

Conventionally, Bayesian inference is performed by general-
purpose processors in which the operations on probability
values are executed by floating point arithmetic logic units.
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These systems provide high precision, but consume significant
energy and area. In addition to the substantial resources re-
quired by floating point operations, conventional approaches
do not make efficient use of the high parallelism of Bayesian
inference [6]. Furthermore, conventional systems require exact
values throughout the computation, impeding the exploitation
of variation and error-prone emerging nanodevices that can
compute with reduced power consumption [7]. It is therefore
highly desirable to devise a specialized hardware structure
to directly compute Bayesian inference that is robust to the
imperfections characteristic of novel nanotechnology.

Several distinct approaches have been proposed for a special-
ized Bayesian hardware, including fully digital systems with
dedicated architectures [8], [9], and analog computation of
probabilistic inference [10], [11]. Here we propose the sto-
chastic computation of Bayesian inference, with probabilistic
signals encoded as clocked bitstreams. Stochastic computing
permits complex computations with minimal hardware, but
its inherent imprecision and correlations have impeded its
development.

We show that stochastic Bayesian inference can be per-
formed directly with Muller C-elements, using surprisingly
simple circuits. The increase in precision with run-time inherent
to stochastic computation [12], [13] is particularly well-suited
to decision circuits. The C-element circuit performs useful
inferences despite the imprecision and correlations of stochas-
tic computing and process variations of scaled nanodevices
[14]–[18]. Furthermore, the fault tolerant nature of stochastic
computing permits the exploitation of the extreme low energy,
high speed, and small size of emerging nanotechnology that
can serve as low-area, low-power computing [19] and random
number generation units [20], [21].

In this work, we thus leverage stochastic computing to
perform Bayesian inference with a simple circuit structure.
We use the spam-detection problem as an instructive example
to analyze circuit performance, as it is a common application
of Bayesian inference in commercial products [6]. We explore
limitations to the inference circuit structure, and discuss the
mitigation of these concerns. Finally, we highlight that in com-
parison to the conventional computation of Bayesian inference,
the proposed circuit structure can achieve sufficient precision
with orders-of-magnitude increases in performance and energy
efficiency.

II. STOCHASTIC BITSTREAMS

Stochastic computing uses traditional logic gates in a unique
manner to perform operations on clocked binary stochastic
single-bit streams rather than standard multi-bit binary signals.
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This allows for the compact implementation of many com-
plex operations—for example, the product of probabilities is
computed by a simple AND gate [13]. Stochastic computing
is therefore an attractive alternative to CMOS for inherently
probabilistic computation, and its data encoding makes it par-
ticularly effective for exploiting error-prone nanodevices.

A. Encoded Probability

In a randomly generated stochastic bitstream, the dynamics
of a 0−> 1 (1−> 0) switch can be defined by a state switching
probability a (b). The probability R encoded by a stochastic
bitstream is

R =
a

a+ b
(1)

which, for an uncorrelated bitstream (i.e., a+ b = 1), is
equivalent to

R = a. (2)

Each bit in this bitstream thus has a probability R of being “1,”
and a probability 1−R of being “0.” Throughout this work, the
percentage of “1”s in a bitstream encodes its probability.

B. Switching Rate

A particular probability can be represented by several distinct
bitstreams that all encode the same value. For example, both
bitstreams “0101010101” and “0000011111” encode the value
0.5, but the second bitstream contains longer “domains” of
consecutive “0”s and “1”s. This first bitstream therefore allows
for an evaluation of the value with significantly fewer bits of
information. For this contrived example, the value encoded by
the first N bits of the bitstream is closer to 0.5 for the first
bitstream than the second bitstream, for any value of N . As
will be seen in the following sections, this autocorrelation has
profound implications for Bayesian inference.

It should be noted that the switching rate of a stochastic
bitstream is significantly higher for signals with probabilities
close to 0.5 than for extreme probabilities close to 0 or 1. For
an uncorrelated stochastic bitstream with valueR, the switching
rate is given by

S = 2R(1−R) = 2a(1− a). (3)

C. Precision

The probabilistic nature of stochastic bitstreams implies that
there is no guarantee that the bitstream encodes the precisely
correct value. In a properly operating circuit, however, the prob-
ability encoded by the bitstream converges toward the correct
value as its length increases. The variance of an uncorrelated
stochastic bitstream of length N is

Var =
R(1−R)

N
. (4)

The expected variance of a bitstream thus decreases with 1/N ,
with smaller values for extreme probabilities. The strong effect
of probability R on variance creates a bias that distorts the

Fig. 1. (a) Muller C-element truth table. (b) Compact C-element with weak
latch. (c) Efficient one-stage C-element. (d) Standard cell C-element design.

precision analysis, thereby making variance a poor metric of
bitstream precision. A more appropriate metric for the error of
a probabilistic signal is the Kullback-Leibler (KL) divergence

KL = (1−R) ln
1−R

1−Q
+R ln

R

Q
(5)

which measures the information lost when a probability Q is
used to approximate a probability R. The KL divergence is de-
signed to measure error independently of R and, interestingly,
the bitstream divergence approaches 1/2N for increasing N .

III. TWO-INPUT C-ELEMENT INFERENCE

To obtain the probability of a particular event V , Bayesian
inference incorporates the probability of V given the prior
P (V ) and evidence input E1 as

P (V |E1) =
P (E1|V )P (V )

P (E1|V )P (V ) + P (E1|V )P (V )
(6)

which may be rewritten

P (V |E1)=
P ∗(E1)P (V )

P ∗(E1)P (V )+(1−P ∗(E1)) (1−P (V ))
(7)

with parameter P ∗(E1) defined by

P ∗(E1) ≡
P (E1|V )

P (E1|V ) + P (E1|V )
. (8)

We now show that (7) is computed by a Muller C-element,
enabling efficient inference circuits.

A. Muller C-Element

The Muller C-element, characterized by the truth table of
Fig. 1(a), is a two-input memory element [22]. The output Z
maintains its state Zprev unless both inputs X and Y are oppo-
site the current output state, in which case the output switches
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to the shared input value. Several circuits perform this function
with eight to twelve transistors, as shown in Fig. 1(b)–(d),
each with its own tradeoffs [23]. Individual C-elements have
recently found use in stochastic computing, particularly for
error correction applications [14], [15], [24].

B. Stochastic C-Element Inference

For C-element input signals i with no autocorrelation (ai +
bi = 1 for switching probabilities ai and bi), the output proba-
bility is

P (Z) =
P (X)P (Y )

P (X)P (Y ) + (1− P (X)) (1− P (Y ))
. (9)

Substituting P ∗(E1) for P (X), P (V ) for P (Y ), and P (V |E1)
for P (Z), (9) is equivalent to (7), demonstrating the Bayesian
inference performed by C-elements. This equivalence moti-
vates the implementation of Bayesian inference with stochastic
computing, and shows that a simple C-element performs the
complete inference of Bayes’ rule.

C. C-Element Switching

Due to the inertia inherent to C-elements, the output switches
equally often or or less frequently than the inputs. In contrast
to a randomly generated bitstream, the switching rate of the
C-element output bitstream is not uniquely determined by the
probability it encodes, but is dependent on the combination of
input probabilities. The upper bound of the output switching
rate is the maximum switching rate of the two inputs. In
particular, for uncorrelated bitstreams with opposite values
(ai + bi = 1, RX +RY = 1) and therefore equal switching
rates, the expected switching rate of the output is one half
of the input switching rate. Furthermore, the expected output
switching rate when one input signal carries the value 0.5
is one half of the switching rate of the other input. The
decreased switching causes a memory effect that results in
autocorrelation- that is, the state of each bit is correlated to the
states of other bits in the bitstream.

This autocorrelation causes a decrease in the amount of pre-
cision provided by a bitstream. The stochastic bitstream output
of the C-element is also probabilistic and imprecise, but con-
verges more slowly toward the precise Bayesian inference. In
particular, the lower the switching rate of the output, the longer
the “domains” of consecutive “0”s and “1”s, and the more
imprecise the bitstream. Therefore, as can be seen in the simu-
lation results shown in Fig. 2, the error is significantly increased
for extreme inputs with low switching rates. The output signals
polynomially converge to the exact Bayesian inference as N
increases, but have consistently larger errors for opposite ex-
treme input combinations. As these extreme opposite inputs can
be considered as strong conflicting evidence, this error can be
understood as inference uncertainty.

IV. MULTI-INPUT CASCADED C-ELEMENT INFERENCE

A. Cascaded C-Element Tree

The integration of additional inputs provides the capabil-
ity for more complex inferences. Incorporating E2 into the

Fig. 2. Mean simulated precision (KL divergence from exact value) of
C-element inference for various input signal combinations as a function of
observed bitstream length. Error bars depict 95% confidence interval.

Fig. 3. Cascaded C-element Bayesian inference circuits that integrate a prior
and (a) two inputs; (b) four evidence inputs in a sequential structure; (c) seven
inputs in a tree structure.

inference gives the probability of event V :

P (V |E1,E2)

=
P (V |E1)P (E2|V,E1)

P (V |E1)P (E2|V,E1) + (1− P (V |E1))P (E2|V ,E1)
.

(10)

Under the naïve assumption that evidence inputs E1 and E2 are
conditionally independent, P (E2|V,E1) = P (E2|V ), and (10)
reduces to

P (V |E1,E2)

=
P (V |E1)P

∗(E2)

P (V |E1)P ∗(E2) + (1− P (V |E1)) (1− P ∗(E2))
. (11)

This can in theory be computed using two cascaded C-elements,
as illustrated in Fig. 3(a).
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TABLE I
SAMPLE MESSAGES FOR SPAM-DETECTION

This inference can be extended to multiple independent evi-
dence inputs E1, E2, . . . , Ei to give (12), shown at the bottom
of the page. This multi-input inference can be approximated
with cascaded C-elements [Fig. 3(b)]. The final output is
expected to be

P (V |{E1, . . . , Ei})

=
P (V )

∏i
x=1 P

∗(Ex)

P (V )
∏i

x=1 P
∗(Ex) + (1− P (V ))

∏i
x=1 (1− P ∗(Ex))

.

(13)

Straightforward arithmetic shows that the C-elements can
equivalently be organized in trees as in Fig. 3(c).

B. Example: Bayesian Spam Filter Circuit

To illustrate the feasibility of multi-input Bayesian inference
with cascaded C-elements, we evaluate its use for spam filtering
[6], a canonical Bayesian inference. Final applications of our
proposal will target situations in which decisions are auto-
mated, such as brain-machine interfaces and robotics, and for
which an efficient direct hardware implementation would fuel
tremendous advances.

We consider the messages in Table I: A and B are likely to
be ham (i.e., not spam), C is almost definitely spam, D seems to
be ham but contains many words that are associated with spam,
E is probably spam, and F is entirely inconclusive. To infer the
probability that a message is spam, a simple Bayesian spam
filter considers the “spamicity” P ∗(Wmx

x ) of each word Wx

given its presence (mx = 1) or absence (mx = 0). Statistics
are provided in Appendix A. The probability that a message
is spam given the presence or absence of various keywords is
computed in accordance with Section IV-A. Assuming no prior
information (P (S) = 0.5) the posterior probability reads

P (S|{Wm1
1 , . . . ,Wmi

i })

=

∏i
x=1 P

∗ (Wmx
x )∏i

x=1 P
∗ (Wmx

x ) +
∏i

x=1 (1− P ∗ (Wmx
x ))

. (14)

The three-stage C-element tree of Fig. 3 can be used to
perform the spam filter operation on messages A-F for eight
key words. The presence or absence of each word provides a

Fig. 4. Symbols: Spam probability value for messages A-E of Table I obtained
by cascaded C-elements for several simulation runs as a function of observed
bitstream length. Horizontal lines: exact inference. The output of the C-elments
converges toward an approximated Bayesian inference as bitstream length
increases.

particular probability that a message is spam. These P ∗(Wmx
x )

values are encoded as stochastic bitstreams and are used as
inputs to the first stage of the C-element tree.

Simulation results for several runs of the spam filter are
shown as points in the plot of Fig. 4, with the exact naïve
Bayesian inference shown as a solid line. This simple Bayesian
system successfully filters the messages, with high outputs for
message C and E, low outputs for messages A, B, and D, and an
ambiguous output for F. These decisions can be reached reliably
by observing bitstreams of 1000 bits. Despite the inertia and
autocorrelation, these simulation results show that the inference
performed by individual C-elements can be extended to multi-
input Bayesian inference with cascaded C-elements.

As can be seen in the figure, there is significant variation of
the output values for short bitstreams. As the bitstream length
increases, the outputs converge toward values that are quite
close to the exact Bayesian inference. However, the output
is not perfectly exact, due to the inertia resulting from the
autocorrelated domains. The largest discrepancy is for message
E: the output converges to a value of 0.7, while an exact
inferences gives a value of 0.78. It should further be noted that
message D converges slower than other messages, which is a
result of the extreme values at its input. We now discuss the
origin of this non-ideal behavior.

C. Cascaded C-Element Switching & Inertia

Beyond the first stage of the tree, the inputs to C-elements
are autocorrelated; that is, ai + bi �= 1. More specifically, fol-
lowing the reasoning of Section III-C, ai + bi ≤ 2−n, where
n is the number of C-elements through which information
has passed since the original stimulus. The C-elements can
therefore no longer be considered as isolated black boxes, and

P (V |{E1, . . . , Ei}) =
P (V |{E1, . . . , Ei−1})P ∗(Ei)

P (V |{E1, . . . , Ei−1})P ∗(Ei) + (1− P (V |{E1, . . . , Ei})) (1− P ∗(Ei))
(12)
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Fig. 5. Normalized distribution of bitstream domain sizes for trees of various
depths and input values of 0.5. The domain sizes of the output bitstreams
increase with the number of C-element stages.

the autocorrelation between consecutive bits Bt and Bt+1 of
an output bitstream B can be described in terms of the mutual
information I as

I(B) = 1 + (1− S) log2(1 − S) + S log2(S) (15)

for a bitstream encoding a value 0.5 with switching rate S
defined as

S=P (Bt = 1 ∧Bt+1= 0) + P (Bt= 0 ∧Bt+1= 1). (16)

As signals propagate through successive stages, the inertial
nature of the C-elements induces strings of consecutive “1”s
and “0”s. As mentioned previously, these “domains” suggest an
increase in autocorrelation, and are therefore detrimental to the
operation of the inference circuit. This domain growth is shown
in Fig. 5, which presents the distribution of domain sizes at
each stage for a tree with input values of 0.5. Though the input
bitstream domains are quite short, the domains grow as the
signals propagate through the circuit. By the fifth stage, which
is the result of 32 input signals, the domain distribution deviates
from that expected for uncorrelated stochastic bitstreams, with
the most common domain length being 17 bits.

As the output of a C-element only switches in the case
of both inputs having values opposite that of the output, the
C-elements have a tendency to propagate signals with values
biased toward the input values. More specifically, “inertia”
causes the C-elements to be biased toward strongly corre-
lated inputs with large domains. These correlation issues have
been investigated for stochastic decoding applications, and
several techniques have been described to decorrelate stochastic
bitstreams [25]. The proposed counter and moving average
circuits can reshuffle the bitstream and decrease the correlation,
but come at the cost of increased area, power dissipation, and
delay. This overhead therefore reduces the efficiency of the
cascaded C-element inference circuit. Inherently probabilistic
nanodevices [17], [20], [21], [26], [27] may be envisioned
for the random number generators necessary in these decorre-
lation circuits, potentially bringing a substantial reduction in
overhead. Decorrelation circuits can be periodically inserted
between cascaded C-elements, with optimal design dependent
on the tradeoff between efficiency and accuracy. Decorrelation

Fig. 6. Mean simulated precision of a two-stage C-element inference circuit,
for various input signal combinations as a function of observed bitstream
length. Error bars depict 95% confidence interval.

circuits should therefore be considered for applications that
require a level of accuracy unavailable with the simple cascaded
C-element circuit.

D. Cascaded C-Element Precision

The importance of domain size is evident from Fig. 6, which
shows the error for various bitstream lengths for several combi-
nations of inputs. Similar to the case of a single C-element, the
use of extreme probabilities leads to large domains and slow
convergence. With cascaded gates, the intermediate signals can
take on extreme values, resulting in massive errors for the green
line with inputs of 0.01, 0.01, 0.99, and 0.99. The intermediate
values are 10−4 and 1–10−4, preventing the representation of
meaningful information with fewer than 10 000 bits. There
are thus large output errors despite the expected output value
being 0.5.

The effect of cascading on precision is studied in more depth
in Fig. 7. Here, there is a tree structure with n stages and 2n

input stochastic bitstreams. The input values for one half of
the bitstreams are 0.5− k, where k is a constant plotted on the
x-axis. The second half of the bitstreams have input values of
0.5 + k. This is the least favorable way to organize inputs, as
the inputs of the final C-element encode extreme probabilities
(0.5− k)n−1 and (0.5 + k)n−1. Fig. 7(b) shows that the error
and autocorrelation increases with increasing n and k, as the
signals propagated by the second-to-last stage grow larger
domains and become more extreme. The simulations thus show
the importance of intermediate signals in determining output
precision, and explores the autocorrelation limitations on the
number of inputs and their values. Therefore, when possible,
the inputs should be organized to minimize the potential for
inertia and extreme values at intermediate nodes in the circuit.

Because of these considerations, the behavior of cascaded
C-elements deviates from that of a single C-element, and the
output of the C-element tree can diverge from the Bayesian
inference of (13). Despite the challenges posed by autocorre-
lation, we have shown with the pedagogical example of spam
filtering that cascaded C-elements can give useful results in
practical situations.
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Fig. 7. (a) Cascaded C-element tree circuit with n = 3 stages to evaluate
worst-case input probability combination. (b) Precision (solid lines) and auto-
correlation (dashed lines) of tree as a function of input values for various depths
with 500 000-bit bitstreams. Error bars depict 95% confidence interval.

V. COMPUTING IMPLICATIONS

The use of stochastic computation brings exceptional fault
tolerance, and the application-specific hardware enables high
efficiency. This direct hardware implementation of Bayesian
inference provides significant computing advantages which are
particularly pronounced with error-prone nanodevices.

A. Fault Tolerance

For use with emerging nanotechnology, circuits should be
designed to tolerate faults. Stochastic computation was origi-
nally designed for imprecise components, and fault tolerance is
one of its primary strengths. Each incorrect bit in a stochastic
bitstream causes a deviation from the correct value by only
1/N , where N is the length of the bitstream. Additionally, if
it is equally likely for a “0” to improperly represented by a “1”
as for a “1” to be represented by a “0,” then these faults may
cancel out.

1) Not Switching: For the various C-element circuits shown
in Fig. 1, the most likely fault is a missed switching event due
to an insufficient current being provided to overpower the latch
[28]. This type of fault will be referred to as a “not switching”
fault, and can result from the use of a low supply voltage for
circuits composed of variability-prone nanodevices.

The effect of this “not switching” fault can be seen in Fig. 8,
which shows the impact of fault rates up to 99%. The simulation
reflects the arbitrary case of the two inputs X and Y having
probability values of 0.7 and 0.1; the expected output value
from (9) is 0.206. One million bits are used in this simulation.

Fig. 8. The simulated (black dots) and expected (black line) output value for
“not switching” faults. The mean KL divergence (red) is below 10−3 for a 99%
fault rate. Error bars depict 95% confidence interval.

As seen in the graph, even for extremely high error rates,
the output is close to the expected value. The KL divergence
remains below 0.01, which may be considered a “correct”
value, as discussed in the next subsection.

The error resulting from the “not switching” fault is unbi-
ased: the output deviates from the correct value, but is not
consistently larger or smaller. This is due to the nature of the
“not switching” fault: as this fault also causes incorrect values
in proceeding bits and there are necessarily equal numbers of
switching events from “0” to “1” as from “1” to “0,” there
is an increase in domain length without biasing the output.
This “not switching” fault is therefore equivalent to decreasing
the bitstream length by the fault rate. Replacing the x-axis of
Fig. 8 by 1 000 000× (1− Fnotswitching), these results can be
compared to the C-element outputs of Fig. 2. In both cases,
the KL divergence rises from slightly greater than 10−6 to
slightly greater than 10−4 as the bitstream length decreases
from 1 000 000 to 10 000.

The exceptional tolerance of the “not switching” fault per-
mits the consideration of advanced low-power design tech-
niques with emerging nanotechnology. Reduction of the supply
voltage provides a drastic decrease in power dissipation, but
increases the likelihood of faults. Additionally, the clock speed
can be increased to improve performance in exchange for an
increase in faults. This fault tolerance thus provides an oppor-
tunity to optimize the power dissipation and speed for various
applications and required levels of precision.

2) False Switching: If the latch itself is faulty, there is a
possibility for the C-element to switch in the absence of a
proper switching stimulus. This “false switching” fault is less
likely than the non-switching fault. For realistic fault rates, far
less than 1% in conventional circuits, the C-element structure
provides the approximately correct output (KL divergence less
than 0.001 for 1% fault rate). When the fault rate is increased
toward 100%, the output approaches a random bitstream with
probability 0.5. This can be understood as the expected result of
the output switching every clock cycle—both those in which it
is expected to switch, and those in which no switching event is
expected. While this is not a realistic concern, this bias toward
0.5 can be interpreted in the context of a decision-making
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process as uncertainty arising from unreliable nanoelectronic
components.

B. Inference Efficiency

This C-element Bayesian inference structure uses a simple
circuit to stochastically compute inferences. The precision in-
creases as more bits are used for the inference, at the cost
of increased energy and delay. In comparison to conventional
implementations with floating point operations, the C-element
inference structure provides significant improvements in area,
performance, and energy consumption. However, when per-
forming benchmark tests, the “correctness” of a Bayesian infer-
ence is application-specific. Here, a KL divergence of less than
0.01 is considered “correct” for an unspecified general circuit.
Using (5), this divergence corresponds to a value of 0.5 being
approximated as 0.57, a value of 0.1 being approximated as
0.15, and a value of 0.01 being approximated as 0.03. Clearly,
more precision is necessary for some applications; for others,
less precision is necessary.

To perform a comparison, the circuit efficiency is evaluated
under identical technology node and process. Standard cells
from Synopsys’ SAED_EDK90_CORE library are used [29];
the efficiency of each component is considered at its ideal op-
erating conditions. For the C-element, the circuit of Fig. 1(d) is
chosen despite its non-ideality, as it can most easily be trans-
lated to standard cells. For the conventional floating point units,
the parameters are optimized for the SAED_EDK90_CORE
library by Tziantzioulis et al. [30]. These parameters are
described in Appendix B.

1) Area: For a two-input Bayesian inference, this stochas-
tic circuit requires just one C-element. This is in contrast to
the conventional floating point implementation, which requires
addition, multiplication, and division units. With the standard
cells described above, the floating point circuit consumes
∼16 000 times more area than a C-element. This estimate
ignores the overhead associated with random number gener-
ation, which may be efficiently achieved with emerging nan-
odevices [16], [20], [21] and will therefore become essential
elements of stochastic computers.

For multi-input Bayesian inference, a single floating point
circuit can be used. The stochastic C-element inference struc-
ture, however, requires T − 1 C-elements, where T is the
number of inputs. Therefore, the C-element provides an area
reduction of ∼5400x for a two-stage (four-input) inference and
∼2300x for a three-stage (eight-input) inference. Similar calcu-
lations can be performed for inferences with additional inputs.

2) Performance: Whereas the stochastic C-element infer-
ence structure provides increasing precision with increas-
ing time, the floating point implementation provides a
highly-precise inference after its characteristic latency period.
Therefore, the performance benefit provided by the C-element
structure is dependent on the necessary precision for the
specific application.

For multi-input Bayesian inference, the multi-stage
C-element circuit needs only one additional cycle per stage
to compute a bitstream with a particular length. However,
the autocorrelation and domain growth contribute to a loss

Fig. 9. Precision (KL divergence from exact inference) as a function of
computing time for various inference circuits.

Fig. 10. Precision as a function of energy consumed by various inference
circuits.

of precision, requiring longer bitstreams and slightly more
computation time to achieve a precise output. The floating point
circuit, by contrast, performs multiple pipelined computations
and computes a highly precise output after its characteristic
delay time. These processes are compared in Fig. 9, which
considers a tree with n stages and 2n input bitstreams all
encoding the probability 0.5. As can be seen in the figure,
the times required to achieve a KL divergence of 0.01 are of
the same order of magnitude.

3) Energy Consumption: The C-element inference circuits
consume a static energy proportional to the bitstream length
in addition to a dynamic energy related to the switching rate,
with the dynamic energy consumption largely dominant un-
der typical conditions. Therefore, the energy required for a
C-element to output a given value with a particular level of
precision is nearly independent of input probability values. For
extreme inputs, a large number of bits is required, but the effect
is counteracted by the low switching rate. In comparison to the
floating point implementation, there is an enormous reduction
in the energy required to produce a KL divergence of 0.01, of
roughly three orders of magnitude.

The multi-input C-element inference provides similarly
large reductions in energy consumption compared to the
floating point implementation. As shown in Fig. 10, the energy
consumption of both approaches increases with an increasing
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Fig. 11. AEDP as a function of precision for various inference circuits.

number of stages. These results show a ∼1000x reduction
in energy consumption to produce an output with a KL
divergence of 0.01.

VI. CONCLUSION

This work highlights the ability to perform Bayesian in-
ference with simple circuits that can exploit emerging nan-
otechnology. In a stochastic approach, a circuit composed of
Muller C-elements can integrate conflicting evidence from
independent sources to provide an increasingly precise approx-
imation of the probability of an event. Although extensions
that provide a more formal analysis of the autocorrelation
and explore inertia mitigation through signal rerandomization
are envisioned, the C-element inference structure introduced
here already achieves sufficient accuracy for some practical
applications, and validates the basic concept of using stochastic
computing to perform Bayesian inference.

The efficiency and fault tolerance of the C-element inference
circuit provides significant advantages over conventional soft-
ware implementations using floating point hardware. As shown
in Fig. 11, the area-energy-delay product (AEDP) for producing
a KL divergence of 0.01 is roughly one billionth of the floating
point implementation. In addition, the exceptional fault toler-
ance provide an impetus for the use of stochastic C-elements in
nanoelectronic decision circuits based on Bayesian inference.

For decision circuits, it is useful to have a constantly increas-
ing precision with an initial approximation. Though floating
point operations remain more effective for applications involv-
ing extreme values or requiring exact outputs, stochastic com-
puting may provide important benefits for applications such as
robotics. It also inspires a pathway toward compact embedded
inference circuits with long battery life suitable for medical
applications. The stochastic circuit structure proposed here has
the potential to move Bayesian inference from software to
nano-hardware, thereby enabling enormous improvements in
decision-making efficiency.

APPENDIX A
BAYESIAN SPAM FILTER

A naïve Bayesian spam filter searches a message for partic-
ular key words and computes the probability of the supposition

TABLE II
WORD COUNT STATISTICS FOR SPAMICITY CALCULATIONS

TABLE III
INFERENCE CIRCUIT AREA COMPARISON

that the message is spam based on their presence or absence.
As shown in Table II, eight key words are chosen and used for
evaluating the messages. For each word, Laplace’s rule of suc-
cession is applied to correctly handle incomplete observation:

P
(
W 1

x |S
)
=

1 +#SpamWithWx

2 + #Spams
(17)

P
(
W 1

x |H
)
=

1 +#HamWithWx

2 + #Hams
. (18)

The spamicity is calculated in accordance with Bayes’ rule:

P
(
S|W 1

x

)
=

P (S)P
(
W 1

x |S
)

P (S)P (W 1
x |S) + P (H)P (W 1

x |H)
. (19)

Assuming that P (S) = P (H) gives

P ∗ (W 1
x

)
=

P
(
W 1

x |S
)

P (W 1
x |S) + P (W 1

x |H)
. (20)

The probability that a message is spam given the absence of a
particular key word is calculated similarly:

P ∗ (W 0
x

)
=

P
(
W 0

x |S
)

P (W 0
x |S) + P (W 0

x |H)
. (21)

The probability that a message is spam given the presence or ab-
sence of the various key words is calculated according to (14).
For the case of message D, the equation is

P (S|Message D)

= P

(
S

∣∣∣∣Nigeria1, Pizza1, Stochastic0,Check1,
You1,Transfer1,Commute1, Fortune0

)
. (22)

APPENDIX B
COMPARISON TO FLOATING POINT INFERENCE

A. Area Comparison

The areas of the various circuits are listed in Table III.
The circuit design has one hardware implementation for each
function, and the results are pipelined when a particular func-
tion is used on multiple occasions. Whereas the area of the
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TABLE IV
INFERENCE CIRCUIT PERFORMANCE COMPARISON

TABLE V
INFERENCE CIRCUIT ENERGY CONSUMPTION COMPARISON

conventional inference circuit is independent of the number of
inputs to the inference, the C-element approach requires 2n−1

C-elements for an inference circuit with n stages.

B. Performance Comparison

The delays of the various circuits are listed in Table IV.
For the conventional approach, ideal pipelining is assumed in
which the operations are pipelined with a spacing equivalent
to the number of issue cycles; there is therefore a decrease in
delay per inference when more than one stage is combined
for a cascaded circuit. These delay figures apply under the
assumption that the separate hardware units of the floating
point inference circuit each operate at their own ideal clock
frequency. These assumptions are likely to underestimate the
delay of the conventional inference.

C. Ernergy Consumption Comparison

The energy consumptions of the various circuits are listed
in Table V. For the C-element, the expected energy consumed
per bit is given for the worst case, with input values of 0.5. It is
assumed that switching energy (but not power) is independent
of frequency. For the conventional approach, it is assumed
that the circuit dissipates static power throughout the complete
inference calculation. In lieu of an accurate evaluation of the
activity rate of the various circuit components, it is assumed that
each cell of each arithmetic circuit switches once per arithmetic
operation. These assumptions are likely to underestimate the
energy consumption of the conventional inference.
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