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Abstract—Caching of popular content on wireless nodes is
recently proposed as a means to reduce congestion in the
backbone of cellular networks and to improve Quality of Service.
From a network point of view, the goal is to offload as many
users as possible from the backbone network to the wireless
caches. However, if not done appropriately, this can lead to an
unbalanced association of users to caches. As a result, some nodes
can be overloaded while the resources of others are underused.

Given a fixed content placement, this work proposes an
efficient distributed algorithm to balance the association of user
traffic among cellular cache memories. The algorithm allows the
network to achieve the globally optimal solution and can be
executed on base stations using a limited amount of information
exchange between them. It is based on a novel algorithm we
call Bucket-filling. The solution guarantees the utilization of each
cache in a fair way rendering all available caches useful. The
improvement compared to common user assignment policies is
highlighted for single- as well as for multi-tier random networks.

I. INTRODUCTION

By 2020, wireless data traffic is estimated to reach roughly
the 8-fold of its volume of 2015 [1]. Such increase in data
demand will be satisfied by densifying the network with new
tiers as well as by allowing cooperation among stations. How-
ever, this increase of wireless traffic can pose new problems to
the wireless backhaul network that are related to congestion.
Increasing backhaul capacity cannot be a solution to this
problem because it is very costly.

An alternative strategy to ease the backhaul is to equip
wireless nodes with large cheap cache memories. Content can
be stored on them based on some knowledge of the popularity
of the content requested by the users in the cellular network.
The content is thereby brought closer to the user and the costly
usage of backhaul bandwidth is reduced.

Since different nodes may cache the same content, a ques-
tion which arises naturally is: How should users be associated
to the cache-equipped wireless nodes? The most common user
association policy always chooses the closest station to the user
(or the one with the strongest signal). This policy provides a
strong quality wireless link with a high probability. However,
in such case the user load among the caches is completely
dependent on the distribution of user traffic in the network and
could thus be very uneven. Some stations may be overloaded
beyond their resources while others remain underused.

The existing literature treats mostly the question how to
determine good content placement policies with respect to

certain optimality criteria such as the hit ratio or user delays.
User association is handled in different ways:

In [2], the authors use caching to minimize bandwidth cost
in a tree-like network. The routing decisions of users are,
however, independent of each other. Thus, this model does
not actually balance the user load. The authors of [3] associate
users to any covering station that caches their requested con-
tent without balancing the traffic loads. In other works [4][5],
users are associated to the closest base station, not knowing
if the requested content is stored in the cache or not. The
number of users associated to different base stations is not
taken into account. The authors of [6] maximize the hit ratio
by means of integer optimization. They introduce a bandwidth
constraint limiting the amount of users that can be connected
to each cellular station. While this model avoids overloading
cellular stations, it cannot guarantee a balanced routing among
them. The proposed approximation algorithm needs to run
in a centralized manner. In [7], user association is balanced
between a cached and an uncached path. Association to the
individual caches is modeled by shortest distance, again not
allowing control over the use of the separate resources. The
model in [8] includes both fractional content placement and
routing variables and allows for the balancing of user traffic
loads at the cache-equipped base stations. In the solution of
the problem, however, the convergence to an optimal routing
is dependent on iterative fractional content placement updates,
which is decided for all the network. In our decentralized
approach, we assume the content placement fixed for a longer
period of time. This requires a load balancing scheme in its
own right that is not covered by this work.

In this paper, we model the problem of associating users to
stations with given cached content as an optimization problem
that allows to incorporate a load fairness criterion as objective.
We further develop a policy to optimally solve this problem in
a distributed way. For a given cache placement, the resulting
policy guarantees that all resources are used as evenly as
possible. The calculations can be executed on the individual
stations requiring a limited amount of information exchange.
Our solution is based on a novel algorithm named Bucket-
filling. We show that the policy is beneficial both in single-
and in multi-tier networks.

The remainder of this paper is organized as follows: Sec-
tion II presents the network model and the problem formu-
lation. In Section III, we introduce the solution techniques



and procedures: Augmented Lagrangian, Diagonal Quadratic
Approximation and Bucket-filling algorithm. Numerical eval-
uations of the resulting policy are presented in Section IV for
random networks (single-tier and 2-tier) with varying coverage
or node density. Finally, Section V concludes our work.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider the downlink of a cellular communications net-
work with a finite set M = {m1, . . . ,mM} of Cached Base
Stations (CBSs). Each CBS covers an area which is a subset
of the plane R2. Additionally, there is a Master Base Station
(MBS) m0 which provides coverage to the entire area of the
network.

Every CBS is equipped with a cache memory in which
content files f from a finite catalog F can be stored. The
MBS m0 has access to the entire catalog via the backbone
network. Each user arrives in some position on the plane R2

and requests for a content file f ∈ F .
In order for a request to be served successfully, the user has

to be associated to a BS (CBS or MBS). In our model, the
association is unique in the sense that an association to two or
more BSs is not permitted. In case a user request occurs in the
overlap of two or more coverage areas, it can be associated to
any one of the covering BSs. Since the MBS is covering the
entire network area, every user can potentially be associated
to it. The specific user position within the coverage area (e.g.
near the center or at the edge) is not relevant in our model.

The boundaries of the overlapping coverage areas of the
CBSs partition the plane into a set of disjoint regions. In other
words: two points in R2 are in the same region if and only if
they are in the coverage areas of exactly the same subset of
CBSs. Let S denote the set of all regions covered at least by
one CBS. Note that all requests not covered by any CBS are
routed to the MBS.

The cache placement is given apriori. Each CBS is capable
of handling only requests for files which are stored in its cache
and are coming from regions it covers. Such tuples of region
s and file f are called region-files q = (s, f), and we denote
the complete set of region-files by Q. Not included in Q are
requests for files not stored in a covering CBS. These requests
are forwarded to the MBS. The subset of CBSs that cache
content f and cover region s is denoted by M(q) ⊆ M.
Conversely, Q(m) ⊆ Q are the region-files which can be
served by m.

We assume that the association of requests with a CBS is
always more beneficial than the association with the MBS.
Therefore, in an optimal solution of the routing problem, no
traffic of q ∈ Q is routed to the MBS: For each region-file
q = (s, f) ∈ Q there is a station covering s with f in its
cache. Hence, all routing towards the MBS is decided apriori
to be the tuples of region-files not in Q. As a consequence,
only the CBSs decide which users each one of them should
serve.

For each region-file q ∈ Q, the expected number of user
requests is denoted by Nq ∈ R+. The vector of these
popularity values is denoted by N := (Nq), q ∈ Q. The

information on file popularity is considered locally available
at each covering CBS. Note that the model does not assume
spatially uniform traffic and that the vector N is general.

We introduce the routing variable ym,q ≥ 0 for all
m ∈M, q ∈ Q(m). Each ym,q with q = (s, f) denotes the
number of requests for content file f in region s which are
associated to CBS m. The vector of all routing variables is
denoted by y. For each q ∈ Q, the sum of all routing variables
towards the covering CBSs must be smaller than or equal to
Nq . Formally, for every feasible solution:∑

m∈M(q)

ym,q ≤ Nq, ∀ q ∈ Q. (1)

The total traffic volume associated with CBS m depends
on the partial vector ym := (ym,q), q ∈ Q(m) and can be
expressed as follows:

vm(ym) :=
∑

q∈Q(m)

ym,q.

The aim of our model is to balance the traffic volume among
the CBSs, i. e. that no CBS is over- or underutilized. This
guarantees the usefulness of each cache. We measure the
usefulness of a CBS m by the utility function Um which takes
the traffic volume routed to the CBS as its argument.

Following the concept of diminishing returns, Um is in-
creasing and concave as well as continuously differentiable.
The overall objective is to maximize the sum of utilities subject
to routing constraints. The Convex Program formulation of the
Cache Routing Problem is

(CRP) max
0≤ym≤Nm,m∈M

∑
m∈M

Um(vm(ym))

s. t.
∑

m∈M(q)

ym,q = Nq, ∀ q ∈ Q,

where Nm := (Nm,q), q ∈ Q(m) is the vector of numbers
of requests for the region-files covered by m. Note that we
introduce an equality constraint instead of the inequality in
(1), since the utility functions are increasing. There is, thus,
no traffic volume in the optimal solution that remains unrouted.

Traffic association is balanced if the available resources are
used in a fair way. Different notions of fairness can be found
in the literature [9][10]. Each one is related to a different
utility function and the solution of the corresponding Network
Utility Maximization (NUM) problem. A first example is max-
min fairness. It is achieved when the users are associated to
the CBSs in a way that the volume of one CBS cannot be
increased without decreasing the volume of another CBS that
serves less users. Another example is proportional fairness. A
NUM solution is proportionally fair when it is feasible and,
for any other feasible vector, the aggregate of proportional
changes is zero or negative. The utility function corresponding
to proportional fairness is the logarithm [9]. In our case,
since the aggregate volume routed through the CBSs is known
apriori, it can be shown that max-min fairness and proportional
fairness are equivalent.



In the next section, we derive a strategy that achieves the
proportionally fair (and thereby also max-min fair) solution to
the CRP. The general solution procedure is, however, also valid
for any other set of increasing, continuously differentiable and
concave utility functions.

III. SOLUTION

The CRP is solved with a distributed algorithm which
consists of three nested loops. Each one of them is described
in the following.

A. Dual method for the Augmented Lagrangian

The CRP is solved using the dual method on the Augmented
Lagrangian (see [11], Section 3.4.4). We use the Augmented
instead of the regular Lagrangian to achieve a distributed
solution. In our case, the regular Lagrangian is not appropriate
since it is not strictly concave in the primal variables and hence
the primal solution is not unique. This creates conflicts when
different stations compete for the same users and convergence
cannot be guaranteed. Like the regular Lagrangian, the Aug-
mented one relaxes constraints of the CRP and introduces a
price λq for the violation of each constraint. The difference
between them is an additional quadratic term penalizing the
violation of each constraint together with a factor % > 0.
This penalty guarantees strict concavity in the primal variables.
Denoting the Augmented Lagrangian by L(%), we get

L(%)(y,λ) =
∑

m∈M
Um(vm(ym))

−
∑
q∈Q

λq(Nq −
∑

m∈M(q)

ym,q)

− %

2

∑
q∈Q

(Nq −
∑

m∈M(q)

ym,q)2, (2)

where λ := (λq), q ∈ Q is the price vector. The domains of the
dual variables are λq ∈ R for all q ∈ Q, since the respective
constraints are equalities.

The Duality theorem (see [11], Appendix C) applies, which
means that the duality gap is 0, and the dual method can be
used. The objective function of the dual problem is

D(%)(λ) := max
0≤ym≤Nm,m∈M

L(%)(y,λ) = L(%)(y∗(λ),λ),

where

y∗(λ) = arg max
0≤ym≤Nm,m∈M

L(%)(y,λ) (3)

is the primal maximum of (2) for a given price vector λ. The
dual problem is then defined as

(CRP-dual) min
λ∈RQ

D%(λ).

Starting from an arbitrary initial dual vector λ(0), the dual
vector is iteratively updated according to

λq(t+ 1) = λq(t) + %
( ∑

m∈M(q)

Nq − y∗m,q(λ(t))
)
, (4)

where the steplength % > 0 is the penalty used in (2). The
convergence of this method is well known (see [13] or Section
3.4.4 of [11]).

For practical implemetation issues of each update step of
the region-file price λq, q ∈ Q, only the primal solutions of
the covering CBSs need to be known. Thus, for a distributed
implementation, exchange of such information among neigh-
boring stations is sufficient.

The next subsection presents the distributed solution for the
primal problem (3), which needs to be found for every iteration
of the dual algorithm.

B. Distributed solution for the primal problem

The solution for (3) is unique since the domain of y is
convex and compact and, for any fixed feasible vector λ,
the Augmented Lagrangian L(%) is strictly concave. We use
the Diagonal Quadratic Approximation Method (DQA) [13]
to derive seperate problems which can be solved by each
cache. A limited amount of exchanged information between
neighboring caches is required.

The DQA overcomes the problem that the objective function
L(%)(y,λ) of (3) is not easily separable among the variables
related to the different CBSs, since it contains quadratic terms
combining different variables ym,q (see (2)). To achieve this,
we introduce the functions L(%)

m : RQm×R
∑

m̃ Qm̃×RQ → R
for all m ∈M:

L(%)
m (ym, ỹ,λ) := Um(vm(ym)) +

∑
q∈Q(m)

λqym,q

− %

2

∑
q∈Q(m)

(N̄m
q (ỹ)− ym,q)2,

where N̄m
q (ỹ) := Nq −

∑
m̄∈M(q)
m̄6=m

ỹm̄,q is the number of

requests in q not associated with caches other than m in the
routing vector ỹ = (ỹm,q),m ∈ M, q ∈ Q(m) which is here
seen as a parameter. The primal problem to be solved by each
cache m is defined as

(CRP-primal-m) max
0≤ym≤Nm

L(%)
m (ym, ỹ,λ). (5)

Since L(%)
m (ym, ỹ,λ) is strictly concave in y and the domain

is compact, CRP-primal-m has a unique solution which we call
ỹ∗m. The vector containing the solutions of CRP-primal-m for
all caches is ỹ∗.

The DQA method consists of parallel execution of CRP-
primal-m at the caches with consecutive update of the vector
ỹ in the fashion of a nonlinear Jacobi algorithm. It produces a
succession of vectors ỹ(0), ỹ(1), ỹ(2), . . .. Starting from some
given vector ỹ(0), the vector ỹ(τ+1) is defined as the convex
combination of ỹ(τ) and ỹ∗(τ). Given a constant 0 < α ≤ 1,
we get

ỹ(τ + 1) = ỹ(τ) + α(ỹ∗(τ)− ỹ(τ)). (6)

In [13] it is shown that the DQA method converges. Observe
that the convergence depends on the uniqueness of the primal
solutions ỹ∗(τ). For every update (6), each station only



requires results from its neighboring stations that cover a
common region-file.

C. Bucket-filling
What is left is to find an efficient solution to

CRP-primal-m (5) running on each CBS separately: In order
to do so, we develop a novel technique we call Bucket-
filling. First, we can simplify our notation since the problem is
separated by cache, and the vectors ỹ and λ are parameters.
In this subsection, y := ym, U := Um, N := Nm, v := vm,
Q := Q(m), N̄q := N̄m

q (ỹ). Then, the solution to (5) can be
rewritten as

y∗ = arg max
0≤y≤N

U(v(y)) +
∑
q∈Q

λqyq −
%

2

∑
q∈Q

(N̄q − yq)2

= arg max
0≤y≤N

U
(∑

q∈Q
yq

)
−
∑
q∈Q

[%
2
y2
q − (λq + %N̄q)yq

]
.

The last step comes from the development of the quadratic
term and from omitting the additive constants which do not
affect the optimal solution. Further defining aq := λq + %N̄q ,
the CRP-primal-m can be stated as

y∗ = arg max
0≤y≤N

f(y) (7)

with f(y) := U
(∑

q∈Q yq

)
−∑q∈Q

[
%
2y

2
q − aqyq

]
.

We will now show that one known value in the optimal
routing vector is sufficient to derive the entire solution of
CPR-primal-m. This observation allows to develop the Bucket-
filling technique.

Given the optimal vector y∗, we define the function fq(y) :
[0, Nq]→ R for q ∈ Q as

fq(y) := U
(
y +

∑
q̃ 6=q

y∗q̃

)
−
[%

2
y2 − aqy

]
−
∑
q̃ 6=q

[%
2

(y∗q̃ )2 − aq̃y∗q̃
]
. (8)

The maximum of this function is the optimal solution y∗q . In
other words, arg max0≤y≤Nq

fq(y) = y∗q .
Furthermore, note that fq is continuously differentiable,

strictly concave and defined on a compact set which implies
that it has a unique maximum. We denote the unique root of
its derivative

f ′q(y) = U′
(
y +

∑
q̃ 6=q

y∗q̃

)
− [%y − aq] (9)

by y′q . Then we get

0 ≤ y′q ≤ Nq =⇒ y∗q = y′q,

y′q < 0 =⇒ y∗q = 0, (10)

y′q > Nq =⇒ y∗q = Nq.

Now, we can formulate the following key lemma:

Lemma 1. Let y∗ be defined as in (7). Let 1, 2 ∈ Q with
0 < y∗1 < N1, 0 < y∗2 < N2. Then

y∗1 =
a1 − a2

%
+ y∗2 .

Proof. From (10) we know that f ′1(y∗1) = 0 and f ′2(y∗2) = 0
and thus f ′1(y∗1) = f ′2(y∗2). From (9), we get

%y∗1 − a1 = %y∗2 − a2

The statement follows from a simple calculation.

The Lemma allows us to characterize the entire optimal
solution just from one value 0 < y∗q < Nq .

Corollary 1. Increasing the association of the region-file q
that was the highest value aq yields the highest increase of f .
For q, q̂ ∈ Q, once yq is increased by the value (aq − aq̂)/%,
the gradients of fq and fq̂ become equal.

We can now describe the novel Bucket-filling algorithm that
efficiently finds the optimal solution to CRP-primal-m:

Algorithm 1 Bucket-filling
1: Sort Q by aq non-increasingly.
2: Declare all q ∈ Q with maximum aq as active.
3: Increase yq of active q equally (because of Lemma 1) until

• another q becomes active by Corollary 1,
• a q becomes inactive by yq reaching Nq , or
• f ′(y) = 0 for all active region-files q.

4: If the last condition is fulfilled, or yq = Nq for all q, then
terminate. Otherwise, go to step 3.

The algorithm is illustrated in Fig. 1. It terminates and
returns the optimal solution y∗ defined in (7).

a) b) c) d) e)

0

a1−a2
%

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

a1−a2
% +N2

a1−a3
% +N3

N1

a1−a3
%

Fig. 1. Illustration of the Bucket-filling algorithm. Each bucket q is placed
with its bottom at level amax−aq

%
and has the height Nq . The buckets are

filled to a common level – or until they are full. The algorithm halts when
further increasing the water levels starts decreasing the objective value.

Observe that step 1 can be done in O(|Q| log(|Q|)) opera-
tions with a sorting algorithm such as quicksort. Step 2 runs
in O(|Q|). Step 3 is executed up to 2 |Q| times, since every
region-file is activated and deactivated no more than one time
each. Assuming that f can be evaluated in O(1), this implies
O(|Q|) as the asymptotic runtime for steps 3 and 4. This shows
that the overall runtime is dominated by sorting in step 1 and
thus is O(|Q| log(|Q|)).

This algorithm is executed in every inner loop of the DQA
method, which is why its efficiency is paramount.



D. Algorithm

To sum up, the complete algorithm that findes the globally
optimal solution to the CRP is

Algorithm 2 Solve CRP
1: Choose dual vector λ(0), t = 0, ε > 0.
2: while ‖λ(t)− λ(t− 1)‖ > ε do
3: Choose ỹ(0), τ = 0.
4: while ‖ỹ(τ)− ỹ(τ − 1)‖ > ε do
5: Find ỹ∗m(τ) with Algorithm 1 at every m ∈ M

separately.
6: Exchange results among neighboring stations, set

ỹ(τ + 1) as in (6), τ = τ + 1.
7: end while
8: Exchange results among neighboring stations, set

λ(t+ 1) as in (4) , t = t+ 1.
9: end while

The choice of the first dual vector λ(0) in line 1 is arbitrary.
The first primal vector ỹ(0) in line 3 can be chosen as the last
primal vector of the iteration before.

IV. NUMERICAL EVALUATION

For the simulation of the algorithm, we consider an urban
area of 2.5 km × 2.5 km with uniform user distribution. A
catalog of 6 files of equal size is known. The popularity of the
files follows a Zipf distribution with parameter 1. Throughout
the simulations, CBSs are placed in the area following a
Poisson Point Process (PPP) with density 8 CBS

km2 . This means
that their total number in each run is a random Poisson
realization, and their position is uniform in the simulation
window. In this way we avoid the bias of testing only particular
network topologies. We run two simulation scenarios, the first
for single-tier and the second for two-tier netowrks. Each
scenario consists of 1000 simulation runs and we consider the
averaged results over the runs. Coverage follows the Boolean
model where a disc area is centered on each wireless station
with some defined radius. The surface of different overlapping
areas is found in each run by the Monte-Carlo method. The
users are routed to the CBSs following three different policies:

1) The policy from Algorithm 2 with logarithmic utility
function for each cache. As discussed, this policy guaran-
tees a proportionally fair (and also max-min fair) solution.
We call this policy fair.

2) The closest-available policy, which associates each user
with the closest CBS that both covers its position and has
the requested content cached.

3) The unsplittable policy which associates all users in a
region requesting the same file with a unique random
CBS among all covering CBSs having this content.

We want to evaluate the proportion of user traffic served by
different CBSs over the total traffic routed to CBSs for each
policy. In this way we can compare the policies based on
how (un)equally they associate traffic load among the available
CBSs. Observe that for all three policies, the total traffic

volume associated to CBSs is the same, because traffic is
routed to a CBS whenever possible. Hence, the comparison
is fair.

A. Single-tier Networks

In an ideal situation, all stations would serve exactly the
same amount of users. This, however, is normally not possible
in a random network. A routing policy is better than another,
when the maximum load of a CBS is lower and at the same
time the minimum load share is higher than in the other policy.
This way, an overload of the stations is avoided while the
usefulness of all stations is achieved. Simulating single-tier
Networks, we want to verify that the fair policy provides a
more balanced distribution of users to CBSs than the other
two. The coverage radius of the CBSs is varied between 62.5
m and 500 m. This can be translated to an expected number of
covering CBSs per user between 1 and 6. This mapping comes
from the Boolean model [4]. Two different sets of content files
with different popularities are placed uniformly randomly into
the caches. Since we are only interested in users associated
with CBSs, we disregard users not covered by any CBS.

Fig. 2 illustrates how the routing decisions of each of the
three policies affect the distribution of load shares among all
CBSs. It displays the average maximum (upper curve) and
minimum load share (lower curve) over the mean number of
CBSs a covered user can see.

Max share

Min share

Fig. 2. Minimum and maximum load share of a CBS in the network depending
on the mean coverage number.

The results show that with an increasing average number of
covering stations, the fair policy achieves a lower maximum
load as well as a higher minumum load. Since the overall
traffic routed to the CBSs is the same for all policies, we can
conclude that the fair policy makes the most balanced use of
the available resouces.

B. Two-tier Network

In a second scenario, we simulate an area covered by
two tiers [14]: one of large and one of small coverage. We
show that the fair policy is better at offloading traffic from
larger to smaller CBSs than the other policies (see Fig. 3).
While the fair policy burdens the small stations with a higher
load, we demonstrate that it distributes the load more evenly
among them so that no individual station is overburdened (see



Fig. 4). The first tier consists of large CBSs having a 187.5 m
coverage radius while the second tier of small CBSs has 62.5
m coverage radius. The large CBSs are equipped with caches
and the two most popular files are stored in all of them. The
smaller CBSs get one of these two files assigned uniformly
randomly in their cache.

In Fig. 3, we show the percentage of all users routed to
large CBSs for each of the three policies. The x-coordinate
increases with the ratio of small stations over large stations
in the network. When less users routed to the large CBSs,
then the policy provides a more efficient offloading of users
towards the small CBSs. The figure shows that, increasing the
amount of small CBSs, the fair policy offloads significantly
more traffic to the small stations than the unsplittable policy,
and slightly more than the closest-available policy.

Fig. 3. Aggregate traffic share of large CBSs depending on the amount of
small CBSs.

Fig. 4 shows (as in Fig. 2) the maximum and minimum
traffic load routed to a small CBS depending on each policy.
Even though for the fair policy more users are routed to the
small CBSs overall, the maximum load share one small CBS
takes is almost the same for all policies. The increase in traffic
load by the fair policy is distributed to the less loaded small
CBSs. This is indicated by the higher minimum load among
the stations. When applying either the closest-available or the
unsplittable policy these CBSs are underused. Thus, the fair
policy utilizes the available resources better.

V. CONCLUSIONS

We propose an algorithm that optimizes user traffic asso-
ciation among cache-equipped cellular stations for a given
cache placement. The main novelty of the solution lies in
its distributed computation. We make use of the Augmented
Lagrangian to solve a strictly concave problem. The novel
Bucket-filling subroutine takes optimal routing decisions lo-
cally at each station. With limited information exchange, our
policy achieves a fair distribution of users among the stations.
The efficiency of the algorithm allows for large networks with
different sizes of coverage areas and different cache sizes
to be solved optimally. Simulations of single-tier and multi-
tier networks show that our policy is superior to conventional

Max share

Min share

Fig. 4. Minimum and maximum load share of a small (2nd tier) CBS
depending on the ratio of small CBS number over large CBS number.

user traffic association policies in balancing user traffic among
stations.
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