

Fair user traffic association in cache equipped cellular networks

Jonatan Krolikowski, Anastasios Giovanidis, Marco Di Renzo

► To cite this version:

Jonatan Krolikowski, Anastasios Giovanidis, Marco Di Renzo. Fair user traffic association in cache equipped cellular networks. [Research Report] Telecom ParisTech; CentraleSupélec, Université Paris-Saclay; CNRS-LTCI; CNRS-L2S. 2016. hal-01380689v1

HAL Id: hal-01380689 https://hal.science/hal-01380689v1

Submitted on 13 Oct 2016 (v1), last revised 10 Feb 2017 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Fair user traffic association in cache equipped cellular networks

Jonatan Krolikowski^{*}, Anastasios Giovanidis[†] and Marco Di Renzo^{*} *CNRS-L2S, CentraleSupélec, Université Paris Sud, Université Paris-Saclay [†]CNRS-LTCI, Télécom ParisTech, Université Paris-Saclay Email: { jonatan.krolikowski, anastasios.giovanidis} @telecom-paristech.fr, marco.direnzo@lss.supelec.fr

Abstract—Caching of popular content on wireless nodes is recently proposed as a means to reduce congestion in the backbone of cellular networks and to improve Quality of Service. From a network point of view, the goal is to offload as many users as possible from the backbone network to the wireless caches. However, if not done appropriately, this can lead to an unbalanced association of users to caches. As a result, some nodes can be overloaded while the resources of others are underused.

Given a fixed content placement, this work proposes an efficient distributed algorithm to balance the association of user traffic among cellular cache memories. The algorithm finds the globally optimal solution and can be executed on base stations using a limited amount of information exchange between them. It is based on a novel algorithm we call *Bucket-filling*. The solution guarantees the utilization of each cache in a fair way rendering all available caches useful. The improvement compared to common user assignment policies is highlighted for single- as well as for multi-tier random networks.

I. INTRODUCTION

By 2020, wireless data traffic is estimated to reach roughly the 8-fold of its volume of 2015 [1]. Such increase in data demand will be satisfied by densifying the network with new tiers as well as by allowing cooperation among stations. However, this increase of wireless traffic can pose new problems to the wireless backhaul network that are related to congestion. Increasing backhaul capacity cannot be a solution to this problem because it is very costly.

An alternative strategy to ease the backhaul is to equip wireless nodes with large cheap cache memories. Content can be stored on them based on some knowledge of the popularity of the content requested by the users in the cellular network. The content is thereby brought closer to the user and the costly usage of backhaul bandwidth is reduced.

Since different nodes may cache the same content, a question which arises naturally is: How should users be associated to the cache-equipped wireless nodes? The most common user association policy always chooses the closest station to the user (or the one with the strongest signal). This policy provides a strong quality wireless link with a high probability. However, in such case the user load among the caches is completely dependent on the distribution of user traffic in the network and could thus be very uneven. Some stations may be overloaded beyond their resources while others remain underused.

The existing literature treats mostly the question how to determine good content placement policies with respect to certain optimality criteria such as the hit ratio or user delays. User association is handled in different ways:

In [2], the authors use caching to minimize bandwidth cost in a tree-like network. The routing decisions of users are, however, independent of each other. Thus, this model does not actually balance the user load. The authors of [3] associate users to any covering station that caches their requested content without balancing the traffic loads. In other works [4][5], users are associated to the closest base station, not knowing if the requested content is stored in the cache or not. The number of users associated to different base stations is not taken into account. The authors of [6] maximize the hit ratio by means of integer optimization. They introduce a bandwidth constraint limiting the amount of users that can be connected to each cellular station. While this model avoids overloading cellular stations, it cannot guarantee a balanced routing among them. In [7], user association is balanced between a cached and an uncached path. Association to the individual caches is modeled by shortest distance, again not allowing control over the use of the separate resources. The model in [8] includes both fractional content placement and routing variables and allows for the balancing of user traffic loads at the cache-equipped base stations. In the solution of the problem, however, the convergence to an optimal routing is dependent on iterative fractional content placement updates. In our approach, we assume the content placement fixed for a longer period of time. This requires a load balancing scheme in its own right that is not covered by this work.

In this paper, we model the problem of associating users to stations with given cached content as an optimization problem that allows to incorporate a load fairness criterion as objective. We further develop a policy to optimally solve this problem in a distributed way. For a given cache placement, the resulting policy guarantees that all resources are used as evenly as possible. The calculations can be executed on the individual stations requiring a limited amount of information exchange. Our solution is based on a novel algorithm named *Bucketfilling*. We show that the policy is beneficial both in single-and in multi-tier networks.

The remainder of this paper is organized as follows: Section II presents the network model and the problem formulation. In Section III, we introduce the solution techniques and procedures: Augmented Lagrangian, Diagonal Quadratic Approximation and Bucket-filling algorithm. Numerical evaluations of the resulting policy are presented in Section IV for random networks (single-tier and 2-tier) with varying coverage or node density. Finally, Section V concludes our work.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider the downlink of a cellular communications network with a finite set $\mathcal{M} = \{m_1, \ldots, m_M\}$ of Cached Base Stations (CBSs). Each CBS covers an area which is a subset of the plane \mathbb{R}^2 . Additionally, there is a Master Base Station (MBS) m_0 which provides coverage to the entire area of the network.

Every CBS is equipped with a cache memory in which content files f from a finite catalog \mathcal{F} can be stored. The MBS m_0 has access to the entire catalog via the backbone network. Each user arrives in some position on the plane \mathbb{R}^2 and requests for a content file $f \in \mathcal{F}$.

In order for a request to be served successfully, the user has to be associated to a BS (CBS or MBS). In our model, the association is unique in the sense that an association to two or more BSs is not permitted. In case a user request occurs in the overlap of two or more coverage areas, it can be associated to any one of the covering BSs. Since the MBS is covering the entire network area, every user can potentially be associated to it. The specific user position within the coverage area (e.g. near the center or at the edge) is not relevant in our model.

The boundaries of the overlapping coverage areas of the CBSs partition the plane into a set of disjoint regions. In other words: two points in \mathbb{R}^2 are in the same region if and only if they are in the coverage areas of exactly the same subset of CBSs. Let S denote the set of all regions covered at least by one CBS. Note that all requests not covered by any CBS are routed to the MBS.

The cache placement is given apriori. Each CBS is capable of handling only requests for files which are stored in its cache and are coming from regions it covers. Such tuples of region s and file f are called *region-files* q = (s, f), and we denote the complete set of region-files by Q. Not included in Q are requests for files not stored in a covering CBS. These requests are forwarded to the MBS. The subset of CBSs that cache content f and cover region s is denoted by $\mathcal{M}(q) \subseteq \mathcal{M}$. Conversely, $Q(m) \subseteq Q$ are the region-files which can be served by m.

We assume that the association of requests with a CBS is always more beneficial than the association with the MBS. Therefore, in an optimal solution of the routing problem, no traffic of $q \in Q$ is routed to the MBS: For each region-file $q = (s, f) \in Q$ there is a station covering s with f in its cache. Hence, all routing towards the MBS is decided apriori to be the tuples of region-files not in Q. As a consequence, only the CBSs decide which users each one of them should serve.

For each region-file $q \in Q$, the expected number of user requests is denoted by $N_q \in \mathbb{R}_+$. The vector of these popularity values is denoted by $\mathbf{N} \coloneqq (N_q), q \in Q$. The information on file popularity is considered locally available at each covering CBS. Note that the model does not assume spatially uniform traffic and that the vector N is general.

We introduce the routing variable $y_{m,q} \ge 0$ for all $m \in \mathcal{M}, q \in \mathcal{Q}(m)$. Each $y_{m,q}$ with q = (s, f) denotes the number of requests for content file f in region s which are associated to CBS m. The vector of all routing variables is denoted by \mathbf{y} . For each $q \in \mathcal{Q}$, the sum of all routing variables towards the covering CBSs must be smaller than or equal to N_q . Formally, for every feasible solution:

$$\sum_{n \in \mathcal{M}(q)} y_{m,q} \le N_q, \ \forall q \in \mathcal{Q}.$$
 (1)

The total traffic volume associated with CBS m depends on the partial vector $\mathbf{y}_m := (y_{m,q}), q \in \mathcal{Q}(m)$ and can be expressed as follows:

n

$$v_m(\mathbf{y}_m) \coloneqq \sum_{q \in \mathcal{Q}(m)} y_{m,q}.$$

The aim of our model is to balance the traffic volume among the CBSs, i. e. that no CBS is over- or underutilized. This guarantees the *usefulness* of each cache. We measure the usefulness of a CBS m by the utility function U_m which takes the traffic volume routed to the CBS as its argument.

Following the concept of diminishing returns, U_m is increasing and concave as well as continuously differentiable. The overall objective is to maximize the sum of utilities subject to routing constraints. The Convex Program formulation of the Cache Routing Problem is

$$\begin{aligned} (\mathbf{CRP}) \max_{0 \leq \mathbf{y}_m \leq \mathbf{N}_m, m \in \mathcal{M}} & \sum_{m \in \mathcal{M}} \mathbf{U}_m(v_m(\mathbf{y}_m)) \\ \text{s. t.} & \sum_{m \in \mathcal{M}(q)} y_{m,q} = N_q, \quad \forall \, q \in \mathcal{Q}, \end{aligned}$$

where $\mathbf{N}_m := (N_{m,q}), q \in \mathcal{Q}(m)$ is the vector of numbers of requests for the region-files covered by m. Note that we introduce an equality constraint instead of the inequality in (1), since the utility functions are increasing. There is, thus, no traffic volume in the optimal solution that remains unrouted.

Traffic association is balanced if the available resources are used in a fair way. Different notions of fairness can be found in the literature [9][10]. Each one is related to a different utility function and the solution of the corresponding Network Utility Maximization (NUM) problem. A first example is max*min fairness.* It is achieved when the users are associated to the CBSs in a way that the volume of one CBS cannot be increased without decreasing the volume of another CBS that serves less users. Another example is proportional fairness. A NUM solution is proportionally fair when it is feasible and, for any other feasible vector, the aggregate of proportional changes is zero or negative. The utility function corresponding to proportional fairness is the logarithm [9]. In our case, since the aggregate volume routed through the CBSs is known apriori, it can be shown that max-min fairness and proportional fairness are equivalent.

In the next section, we derive a strategy that achieves the proportionally fair (and thereby also max-min fair) solution to the CRP. The general solution procedure is, however, also valid for any other set of increasing, continuously differentiable and concave utility functions.

III. SOLUTION

The CRP is solved with an algorithm which consists of three nested loops. Each one of them is described in the following.

A. Dual method for the Augmented Lagrangian

The CRP is solved using the dual method on the Augmented Lagrangian (see [11], Section 3.4.4). We use the Augmented instead of the regular Lagrangian since, for our problem, the latter is not strictly concave in the primal variables **y**. Thus, differentiability of the Lagrangian in the dual variables which is necessary for the iterative solution cannot be guaranteed [12]. Like the regular Lagrangian, the Augmented one relaxes constraints of the CRP and introduces a *price* λ_q for the violation of each constraint. The difference between them is an additional quadratic term penalizing the violation of each constraint together with a factor $\rho > 0$. This penalty guarantees strict concavity in the primal variables. Denoting the Augmented Lagrangian by $L^{(\rho)}$, we get

$$L^{(\varrho)}(\mathbf{y}, \boldsymbol{\lambda}) = \sum_{m \in \mathcal{M}} U_m(v_m(\mathbf{y}_m))$$
$$- \sum_{q \in \mathcal{Q}} \lambda_q(N_q - \sum_{m \in \mathcal{M}(q)} y_{m,q})$$
$$- \frac{\varrho}{2} \sum_{q \in \mathcal{Q}} (N_q - \sum_{m \in \mathcal{M}(q)} y_{m,q})^2, \qquad (2)$$

where $\boldsymbol{\lambda} \coloneqq (\lambda_q), q \in \mathcal{Q}$ is the price vector. The domains of the dual variables are $\lambda_q \in \mathbb{R}$ for all $q \in \mathcal{Q}$, since the respective constraints are equalities.

The Duality theorem (see [11], Appendix C) applies, which means that the duality gap is 0, and the dual method can be used. The objective function of the dual problem is

$$D^{(\varrho)}(\boldsymbol{\lambda}) \coloneqq \max_{0 \leq \mathbf{y}_m \leq \mathbf{N}_m, m \in \mathcal{M}} L^{(\varrho)}(\mathbf{y}, \boldsymbol{\lambda}) = L^{(\varrho)}(\mathbf{y}^*(\boldsymbol{\lambda}), \boldsymbol{\lambda}),$$

where

$$\mathbf{y}^{*}(\boldsymbol{\lambda}) = \operatorname*{arg\,max}_{0 \leq \mathbf{y}_{m} \leq \mathbf{N}_{m}, m \in \mathcal{M}} L^{(\varrho)}(\mathbf{y}, \boldsymbol{\lambda}) \qquad (3)$$

is the primal maximum of (2) for a given price vector λ . The dual problem is then defined as

(CRP-dual)
$$\min_{\boldsymbol{\lambda} \in \mathbb{R}^{Q}} D_{\varrho}(\boldsymbol{\lambda}).$$

Starting from an arbitrary initial dual vector $\lambda(0)$, the dual vector is iteratively updated according to

$$\lambda_q(t+1) = \lambda_q(t) + \varrho \Big(\sum_{m \in \mathcal{M}(q)} N_q - y_{m,q}^*(\boldsymbol{\lambda}(t))\Big), \quad (4)$$

where the steplength $\rho > 0$ is the penalty used in (2). The convergence of this method is well known (see [13] or Section 3.4.4 of [11]).

For practical implementation issues of each update step of the region-file price $\lambda_q, q \in \mathcal{Q}$, only the primal solutions of the covering CBSs need to be known. Thus, for a distributed implementation, exchange of such information among neighboring stations is sufficient.

The next subsection presents the distributed solution for the primal problem (3), which needs to be found for every iteration of the dual algorithm.

B. Distributed solution for the primal problem

The solution for (3) is unique since the domain of y is convex and compact and, for any fixed feasible vector λ , the Augmented Lagrangian $L^{(\varrho)}$ is strictly concave. We use the Diagonal Quadratic Approximation Method (DQA) [13] to derive separate problems which can be solved by each cache. A limited amount of exchanged information between neighboring caches is required.

The DQA overcomes the problem that the objective function $L^{(\varrho)}(\mathbf{y}, \boldsymbol{\lambda})$ of (3) is not easily separable among the variables related to the different CBSs, since it contains quadratic terms combining different variables $y_{m,q}$ (see (2)). To achieve this, we introduce the functions $L_m^{(\varrho)} : \mathbb{R}^{Q_m} \times \mathbb{R}^{\sum_{\tilde{m}} Q_{\tilde{m}}} \times \mathbb{R}^Q \to \mathbb{R}$ for all $m \in \mathcal{M}$:

$$L_m^{(\varrho)}(\mathbf{y}_m, \tilde{\mathbf{y}}, \boldsymbol{\lambda}) \coloneqq \mathrm{U}_m(v_m(\mathbf{y}_m)) + \sum_{q \in \mathcal{Q}(m)} \lambda_q y_{m,q} \\ - \frac{\varrho}{2} \sum_{q \in \mathcal{Q}(m)} (\bar{N}_q^m(\tilde{\mathbf{y}}) - y_{m,q})^2,$$

where $\bar{N}_q^m(\tilde{\mathbf{y}}) \coloneqq N_q - \sum_{\bar{m} \in \mathcal{M}(q)} \tilde{y}_{\bar{m},q}$ is the number of requests in q not associated with caches other than m in the routing vector $\tilde{\mathbf{y}} = (\tilde{y}_{m,q}), m \in \mathcal{M}, q \in \mathcal{Q}(m)$ which is here seen as a parameter. The primal problem to be solved by each cache m is defined as

(CRP-primal-m)
$$\max_{0 \le \mathbf{y}_m \le \mathbf{N}_m} L_m^{(\varrho)}(\mathbf{y}_m, \tilde{\mathbf{y}}, \boldsymbol{\lambda}).$$
(5)

Since $L_m^{(\varrho)}(\mathbf{y}_m, \tilde{\mathbf{y}}, \boldsymbol{\lambda})$ is strictly concave in \mathbf{y} and the domain is compact, CRP-primal-m has a unique solution which we call $\tilde{\mathbf{y}}_m^*$. The vector containing the solutions of CRP-primal-m for all caches is $\tilde{\mathbf{y}}^*$.

The DQA method consists of parallel execution of CRPprimal-*m* at the caches with consecutive update of the vector $\tilde{\mathbf{y}}$ in the fashion of a nonlinear Jacobi algorithm. It produces a succession of vectors $\tilde{\mathbf{y}}(0), \tilde{\mathbf{y}}(1), \tilde{\mathbf{y}}(2), \ldots$ Starting from some given vector $\tilde{\mathbf{y}}(0)$, the vector $\tilde{\mathbf{y}}(\tau+1)$ is defined as the convex combination of $\tilde{\mathbf{y}}(\tau)$ and $\tilde{\mathbf{y}}^*(\tau)$. Given a constant $0 < \alpha \leq 1$, we get

$$\tilde{\mathbf{y}}(\tau+1) = \tilde{\mathbf{y}}(\tau) + \alpha(\tilde{\mathbf{y}}^*(\tau) - \tilde{\mathbf{y}}(\tau)).$$
(6)

In [13] it is shown that the DQA method converges. For every update (6), each station only requires results from its neighboring stations that cover a common region-file.

C. Bucket-filling

What is left is to find an efficient solution to CRP-primal-m (5) running on each CBS separately: In order to do so, we develop a novel technique we call *Bucket-filling*. First, we can simplify our notation since the problem is

separated by cache, and the vectors $\tilde{\mathbf{y}}$ and $\boldsymbol{\lambda}$ are parameters. In this subsection, $\mathbf{y} \coloneqq \mathbf{y}_m$, $\mathbf{U} \coloneqq \mathbf{U}_m$, $N \coloneqq N_m$, $v \coloneqq v_m$, $\mathcal{Q} \coloneqq \mathcal{Q}(m)$, $\bar{N}_q \coloneqq \bar{N}_q^m(\tilde{\mathbf{y}})$. Then, the solution to (5) can be rewritten as

$$\mathbf{y}^* = \underset{0 \le \mathbf{y} \le \mathbf{N}}{\operatorname{arg\,max}} \operatorname{U}(v(\mathbf{y})) + \sum_{q \in \mathcal{Q}} \lambda_q y_q - \frac{\varrho}{2} \sum_{q \in \mathcal{Q}} (\bar{N}_q - y_q)^2$$
$$= \underset{0 \le \mathbf{y} \le \mathbf{N}}{\operatorname{arg\,max}} \operatorname{U}\left(\sum_{q \in \mathcal{Q}} y_q\right) - \sum_{q \in \mathcal{Q}} \left[\frac{\varrho}{2} y_q^2 - (\lambda_q + \varrho \bar{N}_q) y_q\right].$$

The last step comes from the development of the quadratic term and from omitting the additive constants which do not affect the optimal solution. Further defining $a_q := \lambda_q + \varrho \bar{N}_q$, the CRP-primal-*m* can be stated as

$$\mathbf{y}^* = \underset{0 \le \mathbf{y} \le \mathbf{N}}{\operatorname{arg\,max}} \quad f(\mathbf{y}) \tag{7}$$

with $f(\mathbf{y}) \coloneqq \mathrm{U}\left(\sum_{q \in \mathcal{Q}} y_q\right) - \sum_{q \in \mathcal{Q}} \left[\frac{\varrho}{2} y_q^2 - a_q y_q\right]$. We will now show that one known value in the optimal

routing vector is sufficient to derive the entire solution of CPR-primal-*m*. This observation allows to develop the Bucket-filling technique.

Given the optimal vector \mathbf{y}^* , we define the function $f_q(y)$: $[0, N_q] \to \mathbb{R}$ for $q \in \mathcal{Q}$ as

$$f_q(y) \coloneqq \mathrm{U}\left(y + \sum_{\tilde{q} \neq q} y_{\tilde{q}}^*\right) - \left[\frac{\varrho}{2}y^2 - a_q y\right] \\ - \sum_{\tilde{q} \neq q} \left[\frac{\varrho}{2}(y_{\tilde{q}}^*)^2 - a_{\tilde{q}}y_{\tilde{q}}^*\right].$$
(8)

The maximum of this function is the optimal solution y_q^* . In other words, $\arg \max_{0 \le y \le N_q} f_q(y) = y_q^*$.

Furthermore, note that f_q is continuously differentiable, strictly concave and defined on a compact set which implies that it has a unique maximum. We denote the unique root of its derivative

$$f'_{q}(y) = \mathbf{U}'\left(y + \sum_{\tilde{q} \neq q} y^{*}_{\tilde{q}}\right) - [\varrho y - a_{q}]$$
(9)

by y'_q . Then we get

$$0 \le y'_q \le N_q \implies y^*_q = y'_q,$$

$$y'_q < 0 \implies y^*_q = 0,$$

$$y'_q > N_q \implies y^*_q = N_q.$$
(10)

Now, we can formulate the following key lemma:

Lemma 1. Let \mathbf{y}^* be defined as in (7). Let $1, 2 \in \mathcal{Q}$ with $0 < y_1^* < N_1, 0 < y_2^* < N_2$. Then

$$y_1^* = \frac{a_1 - a_2}{\varrho} + y_2^*.$$

Proof. From (10) we know that $f'_1(y_1^*) = 0$ and $f'_2(y_2^*) = 0$ and thus $f'_1(y_1^*) = f'_2(y_2^*)$. From (9), we get

$$\varrho y_1^* - a_1 = \varrho y_2^* - a_2$$

The statement follows from a simple calculation.

The Lemma allows us to characterize the entire optimal solution just from one value $0 < y_q^* < N_q$.

Corollary 1. Increasing the association of the region-file q that was the highest value a_q yields the highest increase of f. For $q, \hat{q} \in Q$, once y_q is increased by the value $(a_q - a_{\hat{q}})/\varrho$, the gradients of f_q and $f_{\hat{q}}$ become equal.

We can now describe the novel Bucket-filling algorithm that efficiently finds the optimal solution to CRP-primal-*m*:

Algorithm 1 Bucket-filling

1: Sort Q by a_q non-increasingly.

- 2: Declare all $q \in \mathcal{Q}$ with maximum a_q as *active*.
- 3: Increase y_q of active q equally (because of Lemma 1) until
 another q becomes active by Corollary 1,

 - a q becomes inactive by y_q reaching N_q , or
 - $f'(\mathbf{y}) = 0$ for all active region-files q.
- 4: If the last condition is fulfilled, or $y_q = N_q$ for all q, then terminate. Otherwise, go to step 3.

The algorithm is illustrated in Figure 1. It terminates and returns the optimal solution y^* defined in (7).

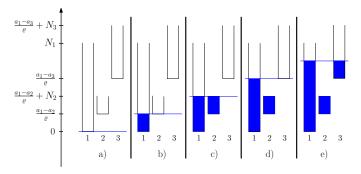


Fig. 1. Illustration of the Bucket-filling algorithm. Each bucket q is placed with its bottom at level $\frac{a_{\max}-a_q}{\varrho}$ and has the height N_q . The buckets are filled to a common level – or until they are full. The algorithm halts when further increasing the water levels starts decreasing the objective value.

Observe that step 1 can be done in $O(|\mathcal{Q}|\log(|\mathcal{Q}|))$ operations with a sorting algorithm such as quicksort. Step 2 runs in $O(|\mathcal{Q}|)$. Step 3 is executed up to $2|\mathcal{Q}|$ times, since every region-file is activated and deactivated no more than one time each. Assuming that f can be evaluated in O(1), this implies $O(|\mathcal{Q}|)$ as the asymptotic runtime for steps 3 and 4. This shows that the overall runtime is dominated by sorting in step 1 and thus is $O(|\mathcal{Q}|\log(|\mathcal{Q}|))$.

This algorithm is executed in every inner loop of the DQA method, which is why its efficiency is paramount.

D. Algorithm

To sum up, the complete algorithm that findes the globally optimal solution to the CRP is

Algorithm 2 Solve CRP

- 1: Choose dual vector $\lambda(0)$, t = 0, $\varepsilon > 0$.
- 2: while $\|\boldsymbol{\lambda}(t) \boldsymbol{\lambda}(t-1)\| > \varepsilon$ do
- 3: Choose $\tilde{\mathbf{y}}(0), \tau = 0$.
- 4: while $\|\mathbf{\tilde{y}}(\tau) \mathbf{\tilde{y}}(\tau 1)\| > \varepsilon$ do
- 5: Find $\tilde{\mathbf{y}}_m^*(\tau)$ with Algorithm 1 at every $m \in \mathcal{M}$ separately.
- 6: Exchange results among neighboring stations, set $\tilde{\mathbf{y}}(\tau+1)$ as in (6), $\tau = \tau + 1$.
- 7: end while
- 8: Exchange results among neighboring stations, set $\lambda(t+1)$ as in (4), t = t+1.
- 9: end while

The choice of the first dual vector $\lambda(0)$ in line 1 is arbitrary. The first primal vector $\tilde{\mathbf{y}}(0)$ in line 3 can be chosen as the last primal vector of the iteration before.

IV. NUMERICAL EVALUATION

For the simulation of the algorithm, we consider an urban area of 2.5 km \times 2.5 km with uniform user distribution. A catalog of 6 files of equal size is known. The popularity of the files follows a Zipf distribution with parameter 1. Throughout the simulations, CBSs are placed in the area following a Poisson Point Process (PPP) with density $8\frac{\text{CBS}}{km^2}$. This means that their total number in each run is a random Poisson realization, and their position is uniform in the simulation window. In this way we avoid the bias of testing only particular network topologies. We run two simulation scenarios, the first for single-tier and the second for two-tier netowrks. Each scenario consists of 1000 simulation runs and we consider the averaged results over the runs. Coverage follows the Boolean model where a disc area is centered on each wireless station with some defined radius. The surface of different overlapping areas is found in each run by the Monte-Carlo method. The users are routed to the CBSs following three different policies:

- The policy from Algorithm 2 with logarithmic utility function for each cache. As discussed, this policy guarantees a proportionally fair (and also max-min fair) solution. We call this policy *fair*.
- The *closest-available* policy, which associates each user with the closest CBS that both covers its position and has the requested content cached.
- The *unsplittable* policy which associates all users in a region requesting the same file with a unique random CBS among all covering CBSs having this content.

We want to evaluate the proportion of user traffic served by different CBSs over the total traffic routed to CBSs for each policy. In this way we can compare the policies based on how (un)equally they associate traffic load among the available CBSs. Observe that for all three policies, the total traffic volume associated to CBSs is the same, because traffic is routed to a CBS whenever possible. Hence, the comparison is fair.

A. Single-tier Networks

In an ideal situation, all stations would serve exactly the same amount of users. This, however, is normally not possible in a random network. A routing policy is better than another, when the maximum load of a CBS is lower and at the same time the minimum load share is higher than in the other policy. This way, an overload of the stations is avoided while the usefulness of all stations is achieved. Simulating single-tier Networks, we want to verify that the fair policy provides a more balanced distribution of users to CBSs than the other two. The coverage radius of the CBSs is varied between 62.5 m and 500 m. This can be translated to an expected number of covering CBSs per user between 1 and 6. This mapping comes from the Boolean model [4]. Two different sets of content files with different popularities are placed uniformly randomly into the caches. Since we are only interested in users associated with CBSs, we disregard users not covered by any CBS.

Figure 2 illustrates how the routing decisions of each of the three policies affect the distribution of load shares among all CBSs. It displays the average maximum (upper curve) and minimum load share (lower curve) over the mean number of CBSs a covered user can see.

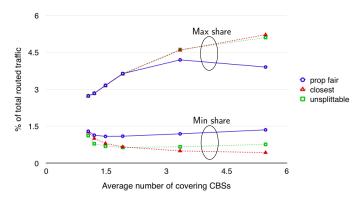


Fig. 2. Minimum and maximum load share of a CBS in the network depending on the mean coverage number.

The results show that with an increasing average number of covering stations, the fair policy achieves a lower maximum load as well as a higher minumum load. Since the overall traffic routed to the CBSs is the same for all policies, we can conclude that the fair policy makes the most balanced use of the available resouces.

B. Two-tier Network

In a second scenario, we simulate an area covered by two tiers [14]: one of large and one of small coverage. We show that the fair policy is better at offloading traffic from larger to smaller CBSs than the other policies (see Figure 3). While the fair policy burdens the small stations with a higher load, we demonstrate that it distributes the load more evenly among them so that no individual station is overburdened (see Figure 4). The first tier consists of large CBSs having a 187.5 m coverage radius while the second tier of small CBSs has 62.5 m coverage radius. The large CBSs are equipped with caches and the two most popular files are stored in all of them. The smaller CBSs get one of these two files assigned uniformly randomly in their cache.

In Figure 3, we show the percentage of all users routed to large CBSs for each of the three policies. The x-coordinate increases with the ratio of small stations over large stations in the network. When less users routed to the large CBSs, then the policy provides a more efficient offloading of users towards the small CBSs. The figure shows that, increasing the amount of small CBSs, the fair policy offloads significantly more traffic to the small stations than the unsplittable policy, and slightly more than the closest-available policy.

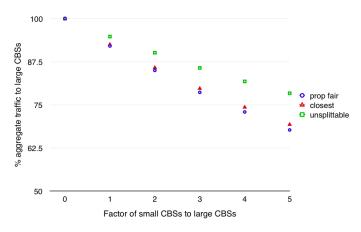


Fig. 3. Aggregate traffic share of large CBSs depending on the amount of small CBSs.

Figure 4 shows (as in Figure 2) the maximum and minimum traffic load routed to a small CBS depending on each policy. Even though for the fair policy more users are routed to the small CBSs overall, the maximum load share of one individual small CBS is almost the same as with the other policies. The increase in traffic load by the fair policy is distributed to the less loaded small CBSs. This is indicated by the higher minimum load among the stations. These CBSs are underused when applying either the closest-available or the unsplittable policy. Thus, the fair policy utilizes the available resources better.

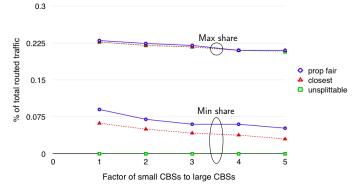


Fig. 4. Minimum and maximum load share of a small (2nd tier) CBS depending on the ratio of small CBS number over large CBS number.

V. CONCLUSIONS

In this paper, we have developed a model to optimize user traffic association among base stations that are equipped with caches in a cellular network with given cache placement. We derived a policy to associate users with base stations as the solution of an optimization problem. The main novelty of the solution lies in the use of the Augmented Lagrangian to solve a strictly concave problem and the proposal of the Bucket-filling algorithm which derives the optimal routing per station. The policy achieves a fair distribution of users among the stations. It can be implemented with a decentralized algorithm which allows for routing decisions to be taken locally at the stations with limited information exchange necessary. The efficiency of the algorithm allows for large networks with different sizes of coverage areas and different cache sizes to be solved optimally. Simulations of single-tier and multi-tier networks show that our policy is superior to conventional user traffic association policies in balancing user traffic among stations.

REFERENCES

- Cisco visual networking index: Global mobile data traffic forecast update, 2015–2020 white paper. White Paper, 2 2016.
- [2] S. Borst, V. Gupta, and A. Walid. Distributed caching algorithms for content distribution networks. In *Proceedings of the 29th Conference* on *Information Communications*, INFOCOM'10, pages 1478–1486, Piscataway, NJ, USA, 2010. IEEE Press.
- [3] K. Shanmugam, N. Golrezaei, A.G. Dimakis, A.F. Molisch, and G. Caire. Femtocaching: Wireless content delivery through distributed caching helpers. *Information Theory, IEEE Transactions on*, 59(12):8402–8413, Dec 2013.
- [4] B. Blaszczyszyn and A. Giovanidis. Optimal geographic caching in cellular networks. In *Communications (ICC), 2015 IEEE International Conference on*, pages 3358–3363. IEEE, 2015.
- [5] E. Bastug, M. Bennis, and M. Debbah. Cache-enabled small cell networks: Modeling and tradeoffs. In *ISWCS*, 2014 11th International Symposium on, pages 649–653, Aug 2014.
- [6] K. Poularakis, G. Iosifidis, and L. Tassiulas. Approximation algorithms for mobile data caching in small cell networks. *IEEE Transactions on Communications*, 62(10):3665–3677, 2014.
- [7] M. Dehghan, A. Seetharam, Bo Jiang, Ting He, Th. Salonidis, J. Kurose, D. Towsley, and R. Sitaraman. On the complexity of optimal routing and content caching in heterogeneous networks. In *INFOCOM*, 2015.
- [8] K.P. Naveen, L. Massoulie, E. Baccelli, A. Carneiro Viana, and D. Towsley. On the interaction between content caching and request assignment in cellular cache networks. In *Proceedings of the 5th Workshop on All Things Cellular: Operations, Applications and Challenges*, AllThingsCellular '15, pages 37–42, New York, NY, USA, 2015. ACM.
- [9] F. Kelly. Charging and rate control for elastic traffic. *European Transactions on Telecommunications*, 1997.
- [10] J. Mo and J. Walrand. Fair end-to-end window-based congestion control. *IEEE/ACM Trans. Netw.*, 8(5):556–567, October 2000.
- [11] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, USA, 1989.
- [12] D.P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific, 1996.
- [13] A. Ruszczyński. On convergence of an augmented lagrangian decomposition method for sparse convex optimization. *Mathematics of Operations Research*, 20(3):634–656, 1995.
- [14] M. Di Renzo, A. Guidotti, and G. E. Corazza. Average rate of downlink heterogeneous cellular networks over generalized fading channels: A stochastic geometry approach. *IEEE Trans. on Comm.*, 61(7):3050– 3071, 2013.