
HAL Id: hal-01380632
https://hal.science/hal-01380632

Submitted on 13 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-objective Local Search Based on Decomposition
Bilel Derbel, Arnaud Liefooghe, Qingfu Zhang, Hernan Aguirre, Kiyoshi

Tanaka

To cite this version:
Bilel Derbel, Arnaud Liefooghe, Qingfu Zhang, Hernan Aguirre, Kiyoshi Tanaka. Multi-objective
Local Search Based on Decomposition. International Conference on Parallel Problem Solving from
Nature (PPSN 2016), 2016, Edinburgh, United Kingdom. pp.431 - 441, �10.1007/978-3-319-45823-
6_40�. �hal-01380632�

https://hal.science/hal-01380632
https://hal.archives-ouvertes.fr

Multi-objective Local Search

based on Decomposition

Bilel Derbel1, Arnaud Liefooghe1,
Qingfu Zhang2, Hernan Aguirre3, and Kiyoshi Tanaka3

1 Univ. Lille, CNRS, UMR 9189 – CRIStAL / Inria Lille-Nord Europe, France
2 City University, Computer Science Department, Hong Kong
3 Shinshu University, Faculty of Engineering, Nagano, Japan

Abstract. It is generally believed that Local search (Ls) should be used
as a basic tool in multi-objective evolutionary computation for combi-
natorial optimization. However, not much effort has been made to in-
vestigate how to efficiently use Ls in multi-objective evolutionary com-
putation algorithms. In this paper, we study some issues in the use of
cooperative scalarizing local search approaches for decomposition-based
multi-objective combinatorial optimization. We propose and study multi-
ple move strategies in the Moea/d framework. By extensive experiments
on a new set of bi-objective traveling salesman problems with tunable
correlated objectives, we analyze these policies with different Moea/d

parameters. Our empirical study has shed some insights about the impact
of the Ls move strategy on the anytime performance of the algorithm.

1 Introduction

Several single-objective approaches, ranging from problem-specific algorithms to
more generic approaches such as meta-heuristics and evolutionary algorithms,
have been designed, tuned and studied extensively in combinatorial optimiza-
tion. Among many others, local search (Ls) heuristics [2] refer to algorithms
where a solution is improved in an iterative search process by performing lit-
tle perturbation on its vicinity. A common ingredient being at the basis of this
class of algorithms is the so-called neighborhood exploration and move strat-

egy. The specification of at least one neighborhood structure and its proper
combination with a move strategy is in general a cornerstone in the design of
advanced single-objective Ls-based algorithms. Actually, this statement holds
also when turning to the multi-objective setting, where a whole set of solu-
tions, optimizing simultaneously two or more objective functions, is to be com-
puted. Ls components have been investigated to design effective aggregation-
based [3, 4, 10, 12] and dominance-based [9, 10, 12] multi-objective algorithms. In
particular, within the class of dominance-based algorithms, it is shown in [9]
how different move strategies can have a deep impact on search performance.
In this paper, we are interested in studying the new opportunities offered by
the so-called Moea/d (multi-objective evolutionary algorithm based on decom-
position) [14] framework in incorporating Ls components. In fact, Moea/d is
a recently-proposed aggregation-based framework which was extensively stud-
ied for continuous problems. Interestingly, Moea/d is a reference algorithm in

2 Derbel, Liefooghe, Zhang, Aguirre, Tanaka

multi-objective optimization, mainly due to its high flexibility in incorporating
different search paradigms, and the high quality of the so-obtained algorithms.
Nonetheless, very few investigations can be found on the proper incorporation
of Ls within Moea/d for discrete domains. Some adaptations exist, but they
are often based on genetic operators [1, 11], and relatively few in-depth investi-
gations [5, 6] considering Ls in Moea/d were conducted against the large body
of works in continuous domains.

In this paper, we provide a comprehensive study on incorporating basic Ls

move strategies into the Moea/d framework. More precisely, our contribution
is three-fold. Firstly, we revisit conventional single-objective move strategies and
illustrate how they can be hybridized with Moea/d. In particular, we highlight
how the replacement flow of Moea/d can be adapted to support such strate-
gies. Secondly, we study the performance of the so-designed algorithms using a
new set of bi-objective traveling salesman problem (TSP) instances with tunable
objective correlations. Our thorough experimental analysis shows that different
behaviors can be obtained depending on objective correlation, and more impor-
tantly on available budgets. Our findings are the byproduct of a running time
analysis providing evidence on the importance of the Ls move strategy in the
design of anytime decomposition-based multi-objective algorithms. Thirdly, we
provide a comprehensive study on the impact of Moea/d common parameters.
The research conducted in this paper is also to be viewed as establishing the first
steps towards the design of more powerful decomposition-based multi-objective
algorithms based on more advanced local search components. In fact, notwith-
standing that we are not horse-racing against state-of-the-art algorithms for the
considered optimization problems, and that we consider basic move strategies,
our findings on the anytime performance of the designed algorithms suggests
that incorporating Ls into Moea/d is still in its very infancy beginning, and
hence, would deserve further research investigations in the future.

The rest of this paper is organized as follows. In Section 2, we recall some
background on Ls and Moea/d. In Section 3, we describe in more details differ-
ent strategies for incorporating Ls components into Moea/d. In Section 4, we
give our experimental setup. In Section 5, we discuss our experimental findings.
In Section 6, we conclude the paper and discuss some open research directions.

2 Background

A multi-objective optimization problem (MOP) can be defined by a solution
set X and by an objective function vector f = (f1, , . . . , fm) to be minimized.
The Moea/d [14] framework. Moea/d falls into the class of decomposition-
based algorithms. It seeks good-performing solutions in multiple regions of the
Pareto front by decomposing the original MOP into a number of scalarized single-
objective sub-problems. Different scalarizing functions have been proposed so-far.
In this paper, we use the common weighted Chebyshev function, to be minimized:
g(x | �, z?) = max

k2{1,...,m} �k

·
��
z

?

k

� f

k

(x)

��; where x 2 X, � = (�1, . . . ,�m

)

is a positive weighting coefficient vector, and z

?

= (z

?

1 , . . . , z
?

m

) is a reference
point. In this respect, the originality of the Moea/d framework is to define

Multi-objective Local Search based on Decomposition 3

a T -neighborhood relation between sub-problems. Let (�

1
, . . . ,�

µ

) be a set of
µ uniformly distributed weighting coefficient vectors defining µ sub-problems.
Moea/d maintains a population P = (x

1
, . . . , x

µ

), where every individual corre-
sponds to one sub-problem. For each sub-problem i 2 {1, . . . , µ}, its T -neighbors,
denoted B(i), are defined by considering the T closest weight vectors. Sub-
problem solutions are evolved with respect to their neighbors. For every sub-
problem, an offspring solution from the T -neighbors set B(i) is generated using
some evolutionary operators. Then, the offspring can replace one or more T -
neighbors if it improves the scalar (Chebyshev) value of the corresponding solu-
tion of the neighboring sub-problem. Different variants of this baseline Moea/d

flow exist. In the remainder, we consider the modifications introduced in [8],
considered as a state-of-the-art variant in continuous domains, where (i) the T -
neighbors of a sub-problem is the whole population with a small probability �, or
B(i) otherwise, and (ii) a newly generated offspring can replace at most nr other
solutions, where nr and � are two user-defined parameters. Other Moea/d vari-
ants could be considered as well, but for the sake of analysis, we only consider
the most common and widely-used variant from [8, 14].
Ls move strategies. Ls is a single solution-based walk that iteratively improves
the current solution by means of local transformations, and then moving to
an improving close-by solution. Those transformations are usually based on a
neighborhood function N : X ! 2

X , which assigns a set of neighboring solutions
N (x) ⇢ X to any solution x 2 X. It should be clear for the reader that we
differentiate between the T -neighborhood of Moea/d and the neighborhood of a
solution in Ls. In the most simple Ls variant, also referred to as hill-climbing, the
search stops when the current solution is not outperformed by any neighbor. This
means that a local optimum is reached. The move strategy, defining the transition
rule to select an improving neighbor, is also a key ingredient in Ls-based search.
Typical strategies are as follows: (i) In a best-improvement (or steepest descent)
move, the neighbor that improves the most is selected at each iteration. This
means that the whole neighborhood is generated, which can be time-consuming
for large neighborhoods. (ii) In a first-improvement move, the first improving
neighbor is immediately selected. This avoids to systematically generate and
evaluate the whole neighborhood. The exploration order of neighbors can remain
unchanged, or instead can be randomly shuffled at each iteration. Additionally,
the neighborhood structure can be used as a an evolutionary mutation operator
when some few neighboring solutions are sampled at random. Hence, (iii) a
random strategy can be considered as well, where a random neighbor is generated
and replaces the current solution if there is an improvement.

3 The Mlsd Scheme

Incorporating Ls into Moea/d can be viewed as a natural outcome since several
single-objective sub-problems are to be improved cooperatively. Although the
standard neighborhood exploration mechanisms of Ls might not be very com-
plicated to integrate into Moea/d, still important design technicalities have to
be explicitly and carefully specified, especially when exploring new neighboring
solutions and when performing replacement in original Moea/d.

4 Derbel, Liefooghe, Zhang, Aguirre, Tanaka

Algorithm 1: Mlsd-sr: high-level pseudo-code
Input: µ: population size; T : neighborhood size; � 2 [0, 1]; nr 2 J0, µK; s 2 {Best, First,Rnd};

r 2 {Min,Rnd}.
1
�

�

1
, . . . ,�

µ generate weight vectors w.r.t. µ sub-problems;

2 8i 2 {1, . . . , µ}B(i) the T closest sub-problems w.r.t �i;

3 P=

�

x

1
, . . . , x

µ generate the initial population;

4 evaluate P ;

5 (update external archive with P ;) /* optional */

6 set z

?
from P ;

7 while Stopping Condition do

8 for i 2 {1, . . . , µ} do

9 if rand {[0, 1]} < � then Bi B(i); else Bi P ;

// Stage #1: Move selection

10 k rand {Bi};
11 I ;;

/* Check moves and record improved sub-problems */

12 for y 2 N (xk) do /* By default, s = Best */

13 evaluate y;

14 (update external archive with y;) /* optional */

15 update z

?
using y;

16 Jy
�

j 2 Bi s.t. g(y | �j
, z

?) < g(xj | �j
, z

?)

;

17 if Jy 6= ; then

18 cy 0;
19 I I [{(y, cy, Jy)};
20 if s = First then break;

21 if s = Rnd then break; /* go to line 22 */

// Stage #2: Replacement

22 while 9j 2 Bi s.t. (9(y, cy, Jy) 2 I s.t. j 2 Jy and cy < nr) do

23 if r = Min then

24 y

⇤ argmin

y s.t. (y,cy,Jy)2I

n

g(y | �j
, z

?)
o

25 else if r = Rnd then

26 y

⇤ rand {y s.t (y, cy, Jy) 2 I};

27 x

j y

⇤
;

28 cy⇤ cy⇤ + 1;
29 Bi Bi \ {j};

In the high-level pseudo-code depicted in Algorithm 1, we provide a relatively
detailed description of different possible ways of hybridizing Moea/d with Ls

move policies. The proposed scheme is called Mlsd-sr (Multi-objective Local
Search based on Decomposition). One should notice that Mlsd is parametrized
by two elements, namely s (referring to the selection policy) and r (referring to
the replacment policy). This allows us to differentiate between two stages: (i) the
move selection stage (lines 10 to 21), and (ii) the replacement stage (lines 22 to
29). We thereby obtain four possible variants, as discussed in the following.

The Mlsd scheme iteratively loops over sub-problems until a stopping condi-
tion is satisfied. At each iteration w.r.t. sub-problem i, two stages are performed.
The first stage consists in generating some new candidate solutions to be consid-
ered in the second stage. First, a parent solution x

k is selected randomly from
the neighborhood of sub-problem i. The selected solution is then locally explored
using the Ls neighborhood structure N . Three different move strategies can be
considered. The first one (s = Best) consists in traversing all solutions y 2 N (x

k

)

in an exhaustive manner while checking for any improvement. Notice that vari-
able J

y

(line 16) denotes the set of sub-problems improved by an incumbent

Multi-objective Local Search based on Decomposition 5

solution y, and c

y

is a counter initialized to 0. The tuple (y, c

y

, J

y

) is then saved
into set I which contains all the records w.r.t any improving solution in N (x

k

).
In the second strategy (s = First), the exploration of neighbors N (x

k

) stops as
soon as an improving solution y is found. This strategy guarantees that if N (x

k

)

contains at least one improving solution, then it is selected and recorded in set I
for the next stage. The last move strategy (s = Rnd) picks a single incumbent
solution y uniformly at random from N (x

k

), and records the tuple (y, c

y

, J

y

) in
set I only if y is improving at least one neighboring sub-problem.

The second stage consists in replacing the solutions of neighboring sub-
problems. If no improvement was observed, then the replacement stage is sim-
ply skipped. Otherwise, i.e. when |I| � 1, two possible strategies are consid-
ered. In the first one (s = Min), the solution of every sub-problem j in the
T -neighborhood of sub-problem i is replaced by the best improving solution y

?

found during the previous stage (if any). In the second one (s = Rnd), an im-
proving solution (if any) is picked randomly to replace the current solution of j.
Notice that in case the set I contains one single recorded tuple, the two previous
replacement strategies are equivalent. Notice also that if a First or a Rnd policy
is adopted in the selection stage, the designed replacement strategies are also
equivalent. Hence, the two replacement strategies might imply different variants
of Mlsd only when a Best strategy is adopted in the first stage.

Finally, it is important to notice the role of the nr parameter in the replace-
ment stage. In fact, since several candidate improving solutions can be considered
in the case s = Best, each time a solution y is selected for the replacement in
line 27, its associated counter c

y

is incremented. Consequently, once this counter
reaches the value nr, the corresponding solution cannot be selected anymore to
replace any sub-problem, as specified by the condition of line 22.

4 Experimental Setup

For the sake of studying the behavior of the Mlsd-sr framework, we consider
the Traveling Salesman Problem (TSP) as a baseline benchmark problem. The
motivation behind this choice is two fold. First, permutation-based optimization
problems, like TSP, are of choice when evaluating the behavior of Ls-based
algorithms. Second, the TSP is a fundamental problem that appears at the
bottleneck of many real-world applications and is representative of a wide range
of more complex combinatorial optimization problems. We emphasize that this
choice is to be understood from a purely benchmarking perspective. In particular,
it is worth noticing that the multi-objective TSP has attracted a lot of interest in
recent years and one can report several state-of-the-art algorithms, see e.g. [5, 9,
10, 12]. This paper does not propose yet another algorithm for TSP, and we shall
not consider to compare the Mlsd-sr with those algorithms. Besides, designing
TSP-specific algorithms is a whole piece of research that we are not targeting
in this experimental study. Accordingly, we shall only focus on analyzing the
relative performance of the different move strategies described previously.
Multi-objective TSP with correlated objectives. Given a complete graph
G = (V,E) with n nodes and non-negative edge costs, the symmetric single-

6 Derbel, Liefooghe, Zhang, Aguirre, Tanaka

objective TSP seeks a cyclic permutation that contains each node exactly once
and such that the total cost is minimized. A solution can be represented as a
permutation ⇡ of size n. Since multiple costs like distance or travel time can
be considered, a multi-objective variant of the TSP can be formulated. Let
{v1, v2, . . . , vn} be the set of nodes, and {[v

i

, v

j

] | v
i

, v

j

2 V } the set of edges. In
the m-objective case, we have m cost matrices such that each edge [v

i

, v

j

] 2 E

is assigned a cost c

k

ij

for each objective function k 2 {1, . . . ,m}. The objective
functions can then be defined as follows: f

k

(⇡) = c

k

⇡(n)⇡(1) +
P

n�1
i=1 c

k

⇡(i)⇡(i+1).
The multi-objective TSP is known to be NP-hard and intractable [10]. In this
paper, we consider two-objective symmetric TSP instances (m = 2) with cor-

related random distance matrices. Following [12], edge costs are chosen from a
uniform distribution in [0, 4473]. However, we additionally define a correlation
coefficient ⇢ 2 [�1, 1] between the data contained in both cost matrices. The
generation of correlated data follows a multivariate uniform distribution [13].
The positive (resp. negative) data correlation allows to decrease (resp. increase)
the degree of conflict between the objective function values with a high accuracy.
Notice than when ⇢ = 0, our instances are the same as [12].
Parameter setting. We consider the 2-opt exchange operator as the neighbor-

hood N for TSP, i.e. given a candidate solution ⇡, the sequence of nodes located
between ⇡(i) and ⇡(j) is reversed. The neighborhood size is hence n·(n�1)

2 . We ex-
periment instances of size n = 100 and correlation values: ⇢ 2 {-0.8, -0.4, 0.0, 0.4,
0.8}. We consider a broad range for the other parameters, namely population size
µ 2 {50, 100, 150, 200}, T -neighborhood size T 2 {5, 10, 15, 20}, nr 2 {1, 2,1},
and � 2 {0.0, 0.1}. For every parameter combination, we consider the four vari-
ants of Mlsd-sr as summarized in the table below, thus ending up with 1 920

configurations, each one independently executed 20 times. For s = First, neigh-
boring solutions are explored in a random order. The stopping condition is

@@r
s Best First Rnd

Rnd X(Mlsd-BR)

Min X(Mlsd-BM) X(Mlsd-FM) X(Mlsd-RM)

a maximum budget of 10

8 function
evaluations. The initial population is
generated randomly and the weight
vectors are generated as in [14].

5 Experimental Analysis

We follow the performance assessment protocol proposed in [7] by using the hy-
pervolume relative deviation (Ihv) and the additive epsilon (I+

"

) indicators. The
hypervolume reference point is set to the worst objective-value, and the reference
set is the best-found approximation over all tested configurations. Notice that
we use an external archive recording all non-dominated solutions found so far.
High Budget Setting. We first report the descriptive statistics on the indicator-
values, together with a Mann-Whitney non-parametric statistical test with a
p-value of 0.05 and using a Bonferroni correction, for the highest budget of
10

8 calls of the evaluation function. In Table 1, we show the rank of differ-
ent Mlsd-sr variants with the rank being the number of variants that sta-
tistically outperform the one under consideration for each instance. The lower

Multi-objective Local Search based on Decomposition 7

Table 1. Algorithm rank summary using 108 function evaluations, µ = 100, nr = 2
and � = 0.1. The number in brackets stands for the average indicator-value.

hypervolume relative deviation (I

hv

· 10�2
) additive epsilon Indicator (I

+
" · 102)

s = B
Mlsd-FM Mlsd-RM

s = B
Mlsd-FM Mlsd-RM

⇢ T Mlsd-BM Mlsd-BR Mlsd-BM Mlsd-BR

�0.8
5 0 (1.41) 4 (2.07) 4 (1.95) 12 (2.61) 0 (49.45) 5 (75.43) 4 (66.89) 5 (78.23)

10 0 (1.38) 4 (2.05) 4 (2.02) 12 (2.57) 0 (51.21) 5 (85.53) 5 (86.38) 5 (76.68)

15 0 (1.33) 4 (1.98) 6 (2.17) 12 (2.57) 0 (52.27) 5 (82.10) 10 (91.86) 5 (76.72)

20 0 (1.39) 4 (2.04) 10 (2.28) 12 (2.47) 0 (53.95) 6 (86.20) 14 (103.3) 5 (77.53)

�0.4
5 0 (1.83) 1 (1.95) 8 (2.22) 12 (2.64) 0 (50.63) 2 (58.36) 4 (66.92) 8 (72.60)

10 0 (1.78) 0 (1.84) 2 (2.03) 12 (2.50) 0 (50.92) 2 (60.35) 4 (65.97) 6 (68.70)

15 0 (1.70) 0 (1.92) 5 (2.08) 12 (2.56) 0 (49.39) 2 (58.69) 6 (68.77) 8 (71.54)

20 0 (1.78) 1 (1.95) 5 (2.06) 12 (2.51) 0 (52.14) 3 (60.60) 6 (69.52) 7 (69.94)

0.0

5 0 (2.42) 0 (2.30) 5 (2.67) 1 (2.69) 0 (45.08) 0 (41.62) 4 (51.59) 4 (52.27)

10 0 (2.23) 0 (2.28) 0 (2.44) 5 (2.85) 0 (39.84) 0 (41.71) 0 (47.41) 6 (52.98)

15 0 (2.32) 0 (2.25) 0 (2.52) 7 (2.71) 0 (42.15) 0 (42.22) 0 (49.12) 7 (50.31)

20 0 (2.39) 0 (2.26) 0 (2.49) 7 (2.80) 0 (43.79) 0 (41.02) 0 (47.95) 7 (53.25)

0.4

5 0 (2.66) 0 (2.33) 0 (2.61) 0 (2.47) 1 (44.82) 0 (38.06) 0 (42.65) 0 (40.59)

10 0 (2.51) 0 (2.43) 0 (2.44) 0 (2.50) 0 (42.17) 0 (39.45) 0 (38.80) 0 (39.44)

15 0 (2.59) 0 (2.34) 0 (2.54) 0 (2.64) 0 (39.49) 0 (37.86) 0 (42.62) 0 (42.86)

20 0 (2.54) 0 (2.30) 0 (2.68) 0 (2.52) 0 (39.23) 0 (38.48) 0 (42.14) 0 (41.33)

0.8

5 0 (2.54) 0 (2.15) 0 (2.08) 0 (2.10) 0 (33.76) 0 (29.78) 0 (28.00) 0 (28.25)

10 0 (2.49) 0 (2.21) 0 (2.05) 0 (2.36) 0 (32.83) 0 (30.17) 0 (28.21) 0 (31.87)

15 0 (2.56) 0 (2.22) 0 (2.14) 0 (2.31) 0 (32.78) 0 (28.68) 0 (27.56) 0 (30.62)

20 0 (2.39) 0 (2.40) 0 (2.23) 0 (2.16) 0 (31.57) 0 (31.39) 0 (29.60) 0 (28.54)

the rank, the better the algorithm. Both indicators agree that the best per-
forming variant of Mlsd over all considered instances is when a Best move
strategy is adopted together with a Min replacement strategy. The objective
correlation of considered instances appear to have a crucial impact. The gap
between Mlsd-BM and the other variants is substantial in the case of con-
flicting objectives whereas we found no significant differences for highly corre-
lated objectives. Overall, the considered Mlsd variants can be ranked as follows:
Mlsd-BM > Mlsd-BR ⇡ Mlsd-FM > Mlsd-RM. It is important to remark
that combining a Best move strategy with an elitist replacement strategy is cru-
cial, otherwise a First move strategy would be more appropriate. Notice that at
this stage of the analysis, the Mlsd-RM variant is overall the worst performing
one, and the relative performance gap between different T -neighborhoods are not
statistically significant. In the following, we shall show that these preliminary
conclusions can only hold for a high computational budget.

Anytime Analysis. When analyzing the quality of the approximation with
different budgets, we basically find that the relative performance of the consid-
ered variants is deeply impacted, independently of the parameter setting. This is
illustrated in Fig. 1 for a particular parameter setting. Interestingly, the Mlsd-

BM and Mlsd-BR variants can only outperform the other variants for a high
budget. Mlsd-RM, which was shown to be the worst-performing approach in
such a setting, now appears to be the best anytime strategy. This might be sur-
prising at a first glance. However, in the early stages of the search process, it
is more likely that among few random samples, an improving solution for dif-
ferent sub-problems is found. In contrast, Mlsd-BM would anyway explore all
neighboring solutions (quadratic in n) and consider at most one solution for re-

8 Derbel, Liefooghe, Zhang, Aguirre, Tanaka

● ● ● ● ●

●

●

●

●

● ● ● ● ●

●
●

●

●

● ● ● ● ●

●

●

●
●

● ● ● ● ●

●

●

● ●

● ● ● ● ●

●

●

● ●

● ● ● ● ●

●

●

●

●

● ● ● ● ●

●
●

●

●

● ● ● ● ●

●

●

●
●

● ● ● ● ●

●

●

● ●

● ● ● ● ●

●

●

● ●

archive, rho=−0.4 archive, rho=−0.8 archive, rho=0 archive, rho=0.4 archive, rho=0.8

population, rho=−0.4 population, rho=−0.8 population, rho=0 population, rho=0.4 population, rho=0.8
0.01

0.10

1.00

0.01

0.10

1.00

1e+05 1e+07 1e+05 1e+07 1e+05 1e+07 1e+05 1e+07 1e+05 1e+07
eval

R
H

V

Strategies ●best best−randomselect first random

Fig. 1. Runtime analysis of the different algorithm variants. Error bars indicate 95%
confidence intervals. � = 0, T = 10, nr = 1 and µ = 100. Notice the log-scales.

placement. Hence, Mlsd-RM is likely to progress faster and to save a significant
number of evaluations. As the quality of the population gets better, it becomes
more unlikely to find improving neighbors using random sampling. This can
explain why Mlsd-RM gets stuck and cannot improve the quality of the popu-
lation anymore. It is also interesting to remark that that Mlsd-FM provides an
intermediate trade-off, since it is relatively competitive against Mlsd-RM while
being able to catch Mlsd-BM again on the latest stages. Interestingly, these
results suggest that there is much room for future improvements in the anytime
behavior of Mlsd by considering hybrid move strategies.
Impact of the population size (µ). In Fig. 2, we show a subset of results
on the impact of different population sizes on Mlsd-BM and Mlsd-RM (since
no significant impact was found for Mlsd-FM). The larger the population size,
the better the final approximation set, independently of the considered strategy.
However, smaller population sizes are better for smaller budgets, especially for
instances with correlated objectives. We attribute this to the fact that a larger
population size impacts the population diversity, and is thus more critical when
the Pareto front is larger, which is the case for conflicting objectives.
Diversity Issues (T , nr and �). We are able to report a significant impact of
the T -neighborhood size only for the Mlsd-BM variant, for highly correlated
objectives and a small budget, as illustrated in Fig. 3. As for parameter nr, we
found a significant impact only for Mlsd-FM and Mlsd-RM, as illustrated in
Fig. 4. We recall that a larger nr�value allows a high-quality solution, possibly
improving multiple sub-problems simultaneously, to replace all those solutions
at once. Intuitively, the surviving solution has then more chance to improve the
overall population quality in subsequent iterations, but at the price of decreasing
diversity. we can see that smaller nr�values are better for convergence purposes,
whereas a larger nr�value provides a better performance for small budgets. In-
terestingly, this observation holds only for highly-correlated objectives. As for
parameter �, the impact on performance was only significant when using Mlsd-

BM for correlated objectives with a small T -neighborhood size, but it was not

Multi-objective Local Search based on Decomposition 9

● ●
●

●

●

●

● ●

● ●

●

●

●

●

● ●

● ●

●

●

●
● ● ●

●
●

●
●

● ● ● ●

●
●

●

●

● ● ● ●

●
●

●
●

● ● ● ●

MLSD−BM, rho = −0.8 MLSD−BM, rho = 0 MLSD−BM, rho = 0.8

MLSD−RM, rho = −0.8 MLSD−RM, rho = 0 MLSD−RM, rho = 0.8
0.01

0.10

1.00

0.01

0.10

1.00

1e+06 1e+08 1e+06 1e+08 1e+06 1e+08
objective function evaluations

H
yp

er
vo

lu
m

e
In

di
ca

to
r

Population size ● 50 100 150 200

Fig. 2. Runtime analysis for different population sizes. � = 0, T = 10, nr = 1.

● ● ●
●

●

●

●
●

● ● ● ●

●

●

● ●

● ● ●
●

●

●

● ●

MLSD−BM, rho = −0.8 MLSD−BM, rho = 0 MLSD−BM, rho = 0.8

0.01

0.10

1.00

1e+06 1e+08 1e+06 1e+08 1e+06 1e+08
objective function evaluations

H
yp

er
vo

lu
m

e
In

di
ca

to
r

T ● 5 10 15 20

Fig. 3. Runtime analysis for different T�values. � = 0, nr = 1 and µ = 100.

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ● ●

●

●

●

●

●
● ● ●

●

●

●

●

●
● ● ●

MLSD−FM, rho = −0.8 MLSD−FM, rho = 0 MLSD−FM, rho = 0.8

MLSD−RM, rho = −0.8 MLSD−RM, rho = 0 MLSD−RM, rho = 0.8

0.1

0.1

1e+06 1e+08 1e+06 1e+08 1e+06 1e+08
objective function evaluations

H
yp

er
vo

lu
m

e
In

di
ca

to
r

nr ● 1 2 20

Fig. 4. Runtime analysis for different nr�values. � = 0, T = 10 and µ = 100.

10 Derbel, Liefooghe, Zhang, Aguirre, Tanaka

helpful for improving the relative anytime performance. These empirical observa-
tions suggest that, contrary to the continuous case, the � parameter might not be
of great help when tackling combinatorial problems with conflicting objectives.

6 Conclusion

This paper investigates the foundations of the design of cooperative scalariz-
ing local search approaches within decomposition-based algorithms for multi-
objective combinatorial optimization. Our results revealed strong evidence on
the need of adaptive algorithms that would enable to mix different move strate-
gies and to better combine the neighborhood exploration with the replacement
stage in order to properly balance the exploration/exploitation trade-off. It is
our hope that our empirical study can enlighten our current understandings of
decomposition-based approaches for multi-objective combinatorial optimization,
and can stimulate new research paths towards the design of more powerful multi-
objective randomized search heuristics based on local search and decomposition.

References

1. Chang, P.C., Chen, S.H., Zhang, Q., Lin, J.L.: MOEA/D for flowshop scheduling
problems. In: CEC. pp. 1433–1438 (2008)

2. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann (2004)

3. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its
application to flowshop scheduling. IEEE Trans. Cyber. 28(3), 392–403 (1998)

4. Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimiza-
tion. EJOR 137(1), 50–71 (2002)

5. Ke, L., Zhang, Q., Battiti, R.: MOEA/D-ACO: A multiobjective evolutionary al-
gorithm using decomposition & ant colony. IEEE Trans. Cyber. 43(6), 1845–1859
(2013)

6. Ke, L., Zhang, Q., Battiti, R.: Hybridization of decomposition and local search for
multiobjective optimization. IEEE Trans. Cyber. 44(10), 1808–1820 (2014)

7. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of
stochastic multiobjective optimizers. TIK Report 214, Zurich, Switzerland (2006)

8. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto
sets, MOEA/D and NSGA-II. IEEE TEC 13(2), 284–302 (2009)

9. Liefooghe, A., Mesmoudi, S., Humeau, J., Jourdan, L., Talbi, E.G.: On dominance-
based local search. Journal of Heuristics 18(2), 317–352 (2012)

10. Lust, T., Teghem, J.: Two-phase Pareto local search for the biobjective traveling
salesman problem. Journal of Heuristics 16(3), 475–510 (2010)

11. Palacios Alonso, J.J., Derbel, B.: On maintaining diversity in MOEA/D: Applica-
tion to a biobjective combinatorial FJSP. In: GECCO. pp. 719–726 (2015)

12. Paquete, L., Stützle, T.: Design and analysis of stochastic local search for the
multiobjective traveling salesman problem. COR 36(9), 2619–2631 (2009)

13. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multi-
objective combinatorial search space: MNK-landscapes with correlated objectives.
European Journal of Operational Research 227(2), 331–342 (2013)

14. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. IEEE TEC 11(6), 712–731 (2007)

