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Dissipation in unsteady turbulence

Wouter J.T. Bos1 and Robert Rubinstein2
1 LMFA, CNRS, Ecole Centrale de Lyon - Université de Lyon - Ecully, France

2 Newport News, VA, USA

Recent experiments and simulations have shown that unsteady turbulent flows display a universal
behaviour at short and intermediate times, different from classical scaling relations. The origin of
these observations is explained using a non-equilibrium correction to Kolmogorov’s energy spectrum,
and the exact form of the observed, universal scaling is derived.

I. INTRODUCTION

Taylor’s dissipation rate estimate [1], and Kol-
mogorov’s inertial range scaling [2] are corner-stones of
the description of turbulent flows. In recent experiments
[3] it was observed that in a number of situations where
Taylor’s estimate is not valid, another universal expres-
sion fits the data, depending both on the local flow fea-
tures and the initial conditions. In this manuscript we
will show that these observations can be explained using
an unsteady correction to Kolmogorov’s inertial range
spectrum.

Kolmogorov’s concepts, introduced in the 1940s, state
that the energy distribution among scales at sufficiently
high Reynolds number is completely determined by the
scale-size and the energy flux through scales, for scale-
sizes sufficiently small compared to the most energetic
eddies, and sufficiently large compared to the smallest,
dissipative scales. In this range the energy spectrum is
approximately given by the relation,

E(κ, t) = CKϵ(t)2/3κ−5/3, (1)

where ϵ(t) is the average dissipation rate, κ the wavenum-
ber, and CK ≈ 1.5 a constant. This relation is observed,
to a good approximation, in a wide range of turbulent
flows. Taylor’s dissipation rate estimate,

ϵ(t) = Cϵ
U(t)3

L(t)
, (2)

relates the dissipation rate, which is in principle a small
scale quantity, to the dynamics of the large-scale quanti-
ties U , the RMS velocity and L the integral lengthscale
[4, 5]. The insight that the dissipation can be modeled us-
ing large-scale quantities, allows the formulation of sim-
ple engineering models that need not take into account
the multi-scale character of turbulence. Both relations
are intimately related [6, 7] and an estimate of the con-
stant Cϵ can be obtained using relation (1) (details are
given below). The quantity Cϵ can be expressed as a
function of two distinct Reynolds numbers, through the
relation,

Cϵ ∼
RL(t)

Rλ(t)2
(3)

where

RL(t) =
U(t)L(t)

ν
, Rλ(t) =

√
15

U(t)4

νϵ(t)
, (4)

where it can be noted that Cϵ is independent of the vis-
cosity ν.
Recent experimental studies at Imperial College Lon-

don, considering decaying wind-tunnel turbulence behind
different types of turbulence-generating grids [8–11], have
focused on both the regions of the flow near the grid, and
farther away from it. Their results seem to show that
far away from the grid, if the initial Reynolds number
is large enough, the classic result (2) is obtained. How-
ever, in an adjacent region, closer to the grid, another
seemingly universal law is observed,

Cϵ ∼
√

RL(0)

Rλ(t)
(5)

where RL(0) is determined by the initial conditions.
Other research groups confirmed the results in indepen-
dent grid-turbulence experiments [12–14] and direct nu-
merical simulations [15]. The scaling observed in these
experiments seems more general than the case of freely
decaying grid-turbulence only, since experiments and
simulations of the wakes generated by plates with both
regular and irregular edges show the same tendency [16–
18]. Recently, it was shown that in yet another different
type of turbulent flow, where the kinetic energy is main-
tained at a certain level through an external forcing, the
fluctuations of kinetic energy and dissipation around the
long-time-averaged state can be described by the same
law [19].
It is noted that expression (5) is radically different from

(3), since expression (5) depends on the initial conditions
and the local flow properties, whereas (3) only involves
local quantities. Since, as stated before, Cϵ can be re-
lated to Kolmogorov’s energy spectrum (1), (5) might
suggest a departure from (1) during the transient, but
this is not observed. Our analysis explains these puz-
zling results. In particular it is shown that the obser-
vation of (5) is related to a sub-dominant correction to
Kolmogorov’s energy spectrum first proposed in [20]. In
the next section we reproduce a simple derivation of this
non-equilibrium correction. In section III, the correction
to the dissipation rate estimate is determined. In section
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IV, the derived relations are compared to existing exper-
imental and numerical results. Section V concludes this
paper.

II. DERIVATION OF THE NON-EQUILIBRIUM
ENERGY SPECTRUM

We reproduce here the simplest possible derivation of
the non-equilibrium correction to the energy spectrum.
The same results were obtained by [21, 22] using similar-
ity arguments, using Kovaznay’s closure in [23] and using
more sophisticated closures in [20, 24].

We start from the evolution equation for the kinetic en-
ergy spectrum at high Reynolds numbers at scales where
both production and dissipation mechanisms can be ne-
glected,

∂tE(κ, t) = −∂κΠ(κ, t), (6)

where Π(κ, t) is a flux of energy which should vanish at
κ = 0 and κ = ∞. This relation states that in a steady
state, where the LHS vanishes, in the inertial range, the
flux is conserved (and thus independent of κ), so that the
RHS also vanishes.

We make the assumption that we can decompose the
energy spectrum into its equilibrium and non-equilibrium
parts,

E(κ, t) = E(κ, t) + Ẽ(κ, t). (7)

It is extremely important for the following to note that
both parts are a function of time and that this is not
a separation of the energy distribution in a steady and
an unsteady part. The determination of the equilibrium
part of the flow will be discussed in section IVA. For the
moment we will content ourselves by defining the equi-
librium part of the turbulence as the part for which the
flux is not a function of scale Π̄(κ, t) = ϵ(t) and there-

fore ∂κ(Π + Π̃) = ∂κΠ̃, yielding for the evolution of the
spectrum,

∂tE(κ, t) = −∂κΠ̃(κ, t), (8)

where we focus on the analytically tractable case of small

nonequilibrium, |∂tẼ(κ, t)| ≪ |∂tE(κ, t)|. It is at this
point that we need the introduction of an assumption on
the functional form of the flux. In the present derivation,
we consider Kovaznay’s model [25] for the flux,

Π(κ, t) = C
−3/2
K κ5/2E(κ, t)3/2. (9)

The choice of this model will limit our considerations
to the inertial-range interval of the energy distribution.
More complicated closures would be needed to take into
account a realistic infrared range for small κ, or more
complex situations where anisotropy or inhomogeneity
are present. Expression (9) immediately yields, when
Π(κ, t) = ϵ(t), that E(κ, t) is given by,

E(κ, t) = CKϵ(t)2/3κ−5/3. (10)

Introducing (7) into (9) yields for small perturbations,

Π(κ, t) = C
−3/2
K κ5/2E(κ, t)3/2

(
1 +

3

2

Ẽ(κ, t)

E(κ, t)

)
,

= ϵ(t)

(
1 +

3

2

Ẽ(κ, t)

E(κ, t)

)
. (11)

Substituting this into expression (8) gives upon integra-
tion

Ẽ(κ, t) = CKΩϵ(t)ϵ(t)
1/3κ−7/3, (12)

with

Ωϵ(t) =
2CK

3

ϵ̇(t)

ϵ(t)
. (13)

It is this new frequency Ωϵ in the dynamics which allows
to find the k−7/3 scaling in (12) as a first linear correc-
tion to classical scaling, as for the shear-stress spectrum
in homogeneous shearflow, where the mean-velocity gra-
dient is introduced as typical frequency [26]. The small

parameter in our derivation is Ẽ(κ, t)/E(κ, t). Combin-
ing the Kolmogorov scaling with (12), one finds that

Ẽ(κ, t)

E(κ, t)
= Ωϵ(t)ϵ(t)

−1/3κ−2/3, (14)

showing that the validity of the approximation should
improve as the wavenumber increases.
Both spectra (10) and (12) are a function of time. The

equilibrium part describes thus not necessarily a steady
state, and temporal fluctuations are therefore not purely
described by (12), since if they are slow enough, they will
have time to adapt to the equilibrium distribution (10).
The observation of the non-equilibrium scaling (12) is
not straightforward, since it is subdominant with respect
to the Kolmogorov spectrum (10). Conditional averag-
ing allows however to extract the unsteady energy spec-
trum, as was illustrated in reference [23], where a clear
κ−7/3 wavenumber spectrum was observed in a statis-
tically steady turbulent flow simulation. The difference

in wavenumber scaling between E(κ, t) and Ẽ(κ, t) is the
origin of the observations of a non-classical, but universal
transient scaling of the dissipation rate. We will elabo-
rate on that in the following. We note that the possible
relevance of the spectrum suggested by Yoshizawa (12)
to estimate the dissipation rate in unsteady turbulence
was already mentioned in reference [27].

III. DERIVATION OF THE NEW DISSIPATION
SCALING

To simplify the considerations we assume the two scal-
ings (10) and (12) to hold in the wavenumber interval
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between κ0, the forcing scale and κη, the Kolmogorov
scale, given by

κη ∼ ϵ(t)1/4

ν3/4
. (15)

Outside this interval the kinetic energy is assumed to be
zero, for analytical convenience. We have also considered
more complicated spectra adding a more realistic infrared
energy range (as in [7]) and the results hereafter were
shown to be robust. All quantities will be decomposed
into their equilibrium part, indicated by a bar and their
non-equilibrium part, indicated by a tilde. For instance

Cϵ = Cϵ + C̃ϵ, ϵ = ϵ + ϵ̃, etc. The equilibrium kinetic
energy is computed by integrating expression (10),

k(t) =

∫
E(κ, t)dκ = (3/2)U(t)2, (16)

and, similarly the non-equilibrium energy is obtained
from equation (12). The integral lengthscale is defined
by

L(t) =
3π

4

∫
κ−1E(κ, t)dκ∫
E(κ, t)dκ

≡ 3π

4

I(t)
k(t)

. (17)

where we introduced I(t) ≡
∫
κ−1E(κ, t)dκ for later con-

venience. The dissipation can be computed from the en-
ergy spectrum by

ϵ(t) = 2ν

∫
κ2E(κ, t)dκ, (18)

where all integrals are evaluated on the interval [κ0, κη].

Carrying out these integrals using (10) to evaluate U and
L (expressions (16) and (17)), and substituting these ex-
pressions in Kolmogorov’s and Taylor’s expressions (1)
and (2), it is immediately found that the equilibrium
value of the normalized dissipation rate is

Cϵ =
3π

10
C

−3/2
K ≈ 0.51. (19)

This value is thus the inertial range estimate of Cϵ, as-
suming a spectrum given by (1) on the interval [κ0, κη].
Despite such gross assumptions on the shape of the en-
ergy spectrum, its value is actually close to the value
observed in direct numerical simulations of forced high
Reynolds numbers turbulence where values around 0.5
are observed [5]. In the following we will omit the
time-dependence of the different quantities to lighten the
notation. It should however be kept in mind, as we
stressed before, that both the equilibrium and the non-
equilibrium quantities can depend on time.

Since Cϵ ∼ ϵI/k5/2, we can write without any approx-
imations

Cϵ

Cϵ

=

(
1 + ϵ̃

ϵ

) (
1 + Ĩ

I

)
(
1 + k̃

k

)5/2 . (20)

The different quantities in this expression are obtained
by integrating the expressions (16), (17) and (18) over
the interval [κ0, κη], using the spectra (10) and (12) for
the equilibrium and nonequilibrium contributions, re-
spectively. For instance, it is found that

ϵ̃

ϵ
=

2Ωϵ

ϵ1/3κ
2/3
η

and
k̃

k
=

Ωϵ

2ϵ1/3κ
2/3
0

, (21)

where we have assumed κ0 ≪ κη. Since in the equilib-

rium state κ0/κη ∼ R
−3/2
λ , we find that

ϵ̃

ϵ
∼ R−1

λ

k̃

k
, (22)

which is a direct consequence of the k−7/3 scaling of

Ẽ(k). This shows that the ϵ̃/ϵ term in (20) is negligi-
ble. This indicates also that the temporal dissipation
rate fluctuations observed in [19, 27] are mainly related
to the equilibrium distribution E(k, t) of the flow and
negligibly contribute to the non-equilibrium part of the

dissipation rate. We further find that Ĩ/I = (10/7)k̃/k.
The expression for large Reynolds numbers is therefore

Cϵ

Cϵ

≈

(
1 + 10

7
k̃
k

)
(
1 + k̃

k

)5/2 . (23)

Evaluating the Reynolds number one finds analogously,

Rλ

Rλ

≈

(
1 +

k̃

k

)
. (24)

where Rλ is given by (4) using the equilibrium values
U and ϵ. To obtain these two expressions we have thus
only assumed that the Reynolds number is high and that
the energy spectrum can be represented by (10) and (12)

between κ0 and κη. We consider the case where k̃/k
is small, for which the non-equilibrium scaling (12) was
derived, so that we can use a Taylor-expansion to rewrite
(23) as

Cϵ

Cϵ

≈

(
1 +

k̃

k

)−15/14

=

(
Rλ

Rλ

)−15/14

. (25)

and this is our prediction for the Reynolds number depen-
dence of the normalized dissipation rate. To appreciate
the similarity with the experimentally observed powerlaw
(5) one needs to realize that

√
RL(0) ∼ Rλ (combining

expressions (2) and (4)) and that Cϵ is a constant, so
that this expression can be rewritten as

Cϵ ∼

(√
RL(0)

Rλ(t)

)15/14

, (26)

and we find to a good approximation expression (5). In-
deed, the difference between (5) and (26) will in most
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cases be small enough to fall into experimental error-bars
or the convergence of statistical averages in simulations.
We further mention here also that in the experimental
and numerical investigations reported in [3] the possib-
lity was left open that the exponents are not exactly, but
only close to the ones in expression (5).

IV. COMPARISON WITH EXISTING RESULTS

A. Determining the equilibrium state

At this point we will compare to existing results from
literature. A subtle point is how one can identify the
equilibrium part of a flow. The quantities that we need
to determine first are the equilibrium values U , L and ϵ.
We have considered here isotropic turbulence. For such
flows the equilibrium state is the Kolmogorov constant
flux state, where

Π̄(κ, t) = ϵ(t). (27)

Such a state needs an energy input at large-scales which
is in equilibrium with the dissipation ϵ(t) at small scales.
Probably the best approximation of a constant flux state
can be obtained in Direct Numerical Simulations with
an external forcing term. In practice, due to the finite
size of the simulated domain, fluctuations of the energy
input and the dissipation rate will always lead to a certain
amount of imbalance. The time-average of the energy-
injection will however balance the time-averaged energy
dissipation, so that for such flows the equilibrium values
of U , L and ϵ are obtained by time-averaging.
The comparison of our prediction with existing exper-

imental results on grid-generated turbulence in a wind-
tunnel is not straightforward since in the vicinity of the
grid the turbulence is not statistically homogeneous, nor
isotropic. It is in this production zone where the kinetic
energy is injected into the flow by the shear layers gen-
erated by the wakes of the grid-bars. The constant flux
state, where the dissipation is in equilibrium with the
production, corresponds to the point in the flow where
the kinetic energy attains its maximum. At short dis-
tances beyond this point the equilibrium spectrum can
be considered constant in time, compared to the non-
equilibrium part. For larger times the equilibrium spec-
trum will evolve. We do not have access to experimental
results for the equilibrium energy distribution at later
times and we will therefore use the flow at the energy
peak to estimate the equilibrium values of the different
quantities in our comparison with experiment.

B. The dissipation scaling

As mentioned above, for a forced DNS in a statistically
steady state the equilibrium is straightforwardly identi-
fied by time-averaging. Furthermore in a periodic do-
main, an instantaneous space average will tend to the

0.5

1

2

0.5 1

Rλ

-15/14

C
ε
/C-

ε
 

Rλ/R
-

λ

DNS
Exp.

FIG. 1. The prediction of the normalized dissipation rate as
a function of the Reynolds number ratio Rλ/Rλ, expressions
(25) and (29), compared to numerical [19] and experimental
[10] results.

same, ensemble average, if the volume over which is av-
eraged contains a sufficient number of flow structures.
In practice this is never the case and temporal fluc-
tuations will be observed around a long-time averaged
flow [19]. These box-averaged fluctuations are not nec-
essarily in equilibrium and will thereby give rise to an
evolution of Cϵ. We have plotted in Figure 1 the re-
sults of reference [19] Figure 3, for the fluctuations of
Cϵ around its average value for their highest Reynolds
number (700 < Rλ < 1000) as a function of the ratio
of the Reynolds number to its time-averaged value which
we call Rλ. It is observed that those results are in perfect
agreement with our prediction.

We have also attempted a comparison with the experi-
mental results reported in [10]. We have replotted in Fig.
1 the data from their Fig. 6, where the Reynolds number
varies in the range 290 > Rλ > 111. As argued above, we
have considered their first data-point, corresponding to
the peak-value of the kinetic energy, as the equilibrium
state determining Rλ. At this point a value of Cϵ ≈ 0.5
is found for the equilibrium value of the normalized dissi-
pation rate. It is observed that the experimental results,
like the simulation, reproduce the theoretical prediction
(25) exactly.

At this point, an open question is whether our analysis
is relevant for decaying turbulence at long times, where
Cϵ settles to a constant value, different from its equilib-
rium value. We will consider the case where the kinetic
energy decays following a powerlaw k = k0(t/t0)

−n. The
precise values of the reference quantities k0 and t0 are
not important in the following. Deriving this expres-
sion for k twice to obtain expressions for ϵ and ϵ̇ gives
ϵ̇/ϵ = −(n + 1)/t and ϵ/k = n/t. Using these relations,
integrating equations (10) and (12) and eliminating κ0
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from the expressions, it is immediately found that

k̃

k
= −2

9

n+ 1

n
, (28)

and therefore, we find for the dissipation rate constant
using (25),

Cϵ

Cϵ

≈
(

9n

7n− 2

)15/14

. (29)

The value of n is in general contained in the range
1 ≤ n ≤ 2, leading to the ratio 1.8 ≥ Cϵ/Cϵ ≥ 1.54,
which is a rather realistic range of values when compared
to experiments and simulations [7]. In Fig. 1 we have
added the asymptotic value Cϵ/Cϵ = 1.75 correspond-
ing to a decay-exponent n = 1.2, typical for decaying
grid-generated turbulence, which fits the long-time data
accurately. Self-similar decay is therefore, in our frame-
work, not an equilibrium, but a state where the desequi-
librium is a constant fraction of the total kinetic energy,

k̃(t)/k̄(t) ̸= f(t).
These ideas explain why in the experimental and nu-

merical results in [3] the Reynolds number decays before
Taylor’s expression is observed. Indeed, the imbalance is
not a low-Reynolds number effect and in the experiments
and simulations the Reynolds number is in principle high
enough to observe both Taylor’s and Kolmogorov’s scal-
ing. However, the evolution of both Rλ and Cϵ is a func-

tion of k̃/k. In turbulent flows in which the kinetic energy
at long times decays following a power law, this latter
quantity evolves from zero to a constant value, given by
expression (28). The Reynolds number decays thus dur-
ing the non-equilibrium transient from its initial value to
a value

Rλ

Rλ

≈ 7n− 2

9n
. (30)

When this phase is attained and both Rλ and Rλ decay
following power laws, this ratio remains constant.

C. Time evolution of turbulent lengthscales

Following the above arguments, we can also predict
how the ratio of the integral to Taylor lengthscale evolves
during the non-equilibrium phase. The Taylor scale is
given by

λ =

√
10νk

ϵ
. (31)

Combining this relation with the definition (17) for L, we
find using the same arguments as for Cϵ, that

λ/L

λ/L
=

(
Rλ

Rλ

)1/14

. (32)

0.8

1

0.5 1

Rλ

1/14
Rλ

-1

(λ
/L

)/
(λ- /L- )

Rλ/R
-

λ

FIG. 2. The prediction of the ratio of the Taylor-scale to the
integral scale on the Reynolds number ratioRλ/Rλ, compared
to experimental results [10]. Also shown is a comparison to
the classical Reynolds number dependence of λ/L, Eq. (33).

This small value of the exponent explains why it was
observed that the lengthscale ratio in the experiments
remained approximately constant in the region of the
flows where the non-equilibrium scaling was observed.
In Figure 2 it is observed that this powerlaw accurately
describes the data.
When the Reynolds number drops to the value cor-

responding to expression (30), one should retrieve the
classical Reynolds number dependence. In this regime,
the ratio Rλ/Rλ remains constant, and the experimental
data corresponds then to [λ(t)/L(t)]/[λ(t = 0)/L(t = 0)]
as a function of Rλ(t)/Rλ(t = 0), where t = 0 corre-
sponds to the first (most upstream) data-point. The data
should then exhibit the scaling,

λ

L
∼ R−1

λ . (33)

V. CONCLUSION

We have presented a simple framework which allows to
interpret the non-equilibrium scaling observed in practi-
cally all the experiments and simulations mentioned in
[3]. The present analysis is important for the model-
ing and understanding of turbulent flows since the non-
equilibrium transient can be long and in many situations
a self-similar decay might not even be reached before the
flow is perturbed by the influence of boundaries, or be-
cause the Reynolds number has decayed too much for
(1) and (2) to be valid. Given the agreement with exper-
iments and simulations, the analytical results from the
present investigation suggest that the normalized dissi-
pation in a wide class of unsteady turbulent flows can be
described by the same, fairly simple, relations.
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Expression (25) constitutes the main result of the
present work. However, it is not the exact value of the ex-
ponent, which is close to the experimental observations,
that is of interest. Indeed, its precise value can change
slightly as a function of the detailed shape of the energy
spectrum. We have checked this by assuming more realis-
tic shapes for the energy containing range, and the results
are robust, but the powerlaw exponent can somewhat
change. What is of greater importance is that the fore-
going analysis gives a firm theoretical basis for the tran-
sient behaviour of turbulent flows. The only non-trivial
ingredient in the derivation is the shape of the unsteady
energy-spectrum E(κ, t) (expression (12)). The present
analysis complements thereby recent investigations sug-
gesting that spectral imbalance [27, 28] and large scale
coherence [29] are behind the universal scaling of Cϵ in
non-equilibrium turbulence.

Since this, rather simple, framework for unsteady tur-
bulence allows to explain practically all the experimental
observations in the transient, unsteady phase of devel-

oping turbulent flows [3], it is plausible that engineering
models can be improved by taking these ideas into ac-
count. We further think that the understanding of more
complicated flows can greatly benefit from the insights
obtained in this letter. For this to be successful, the
ideas, here developed for isotropic turbulence, should be
extended to other configurations such as shearflows and
turbulent boundary layers. Defining an equilibrium flow
for anisotropic and inhomogeneous flows is more delicate,
but since the non-equilibrium scaling for the dissipation
also describes the turbulent wakes of plates [16–18], we
think that at least part of the present ideas can be trans-
posed to more complicated flows.
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