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science, core science and engineering disciplines . . . We regard CDS&E as explicitly recognizing the importance of data-enabled, data-intensive, and data centric science. CDS&E broadly interpreted now aects virtually every area of science and technology, revolutionizing the way science and engineering are done. Theory and experimentation have for centuries been regarded as two fundamental pillars of science. It is now widely recognized that computational and data-enabled science forms a critical third pillar.

The big target of the data-enabled, data-intensive, and data centric science new philosophy is science itself. The scientic method is built around hypotheses derived from observations and insight. It actually started when humans looking at the stars and the moon tried to understand the sky by myth and theory, an endeavour which gave us not only knowledge, but also human sense to our biological life. Theories are then constructed while new objects of knowledge, such as electromagnetic waves or quanta, are proposed and studied. Experiments help to falsify hypotheses or their theoretical consequences and, when this is possible, suggest mathematical models.

The position pioneered by Anderson and his followers explicitly announces the End of Science. Why? Because, according to them, science founded on models is relatively arbitrary and often wrong as it is based on adductive and deductive praxis, as well as excessive critical thinking that leaves room even for aesthetic judgements (for example, appreciations of symmetries in the broadest sense, from Euclid to H. Weyl and R. Feynman, to modern biology, see [START_REF] Longo | Perspectives on Organisms: Biological Time, Symmetries and Singularities[END_REF]).

The conclusion is that science as we know it will be replaced by robust correlations in immense databases. [START_REF] Ahn | The party problem[END_REF] The power and limits of correlations In general, co-relation denotes phenomena that relate covariantly, that is, they vary while preserving proximity of values according to a pre-given measure. Co-relation is essentially co-incidence, that is, things that occur together.

For example, a correlation can be a relationship between two variables taking (numeric) values. If one variable value increases, then the other one also increases (or decreases) in the same way. For example, as the temperature goes up, ice cream sales also go up or as the temperature decreases, the speed at which molecules move decreases or as attendance at school drops, so does achievement or as weather gets colder, air conditioning costs decrease.

Correlations can be useful because of their potential predictive power: use or act on the value of one variable to predict or modify the value of the other.

From about the 10th century BC onwards, in the region from Korea and China to Morocco, early astronomers detected various regularities, from which they were able to compute future observations of astronomical bodies. The observations and computational methods were gradually improved over the millennia, so that by about 1200 some astronomers could make reliable predictions of solar eclipses [START_REF] Montelle | Chasing Shadows: Mathematics, Astronomy, and the Early History of Eclipse Reckoning[END_REF]. In the 10th century AC, Chinese doctors remarked that mild smallpox infection could prevent more severe illnesses. They were later able to conrm this correlation by successfully experimenting with smallpox inoculation on large numbers of individuals [35, pp. 114174].

We must acknowledge the extraordinary insights of these very early observations of nonobvious correlations and their practical relevance. More scientic knowledge has been added to them: a) Clairaut's mathematical derivation of the orbit of Halley's comet, and its delays, on the grounds of Newton's laws and equations, in the 18th century, b) the understanding of microbial infections and vaccines in the 19th century. These works could frame the original correlations into relatively robust theories that gave them scientic meaning. This scientic method, which allows unication and generalisation, can also detect correlations that may be considered spurious like the relation between the orientation of a comet's tail and the Emperor's chances of a military victory.

In a 1992 study at the University of Illinois [START_REF]Correlation and prediction[END_REF] 56,000 students were asked about their drinking habits and grades. The results indicate a correlation between these two variables: the more a student drinks, the more her/his GPA goes down. Based on the established correlation one could predict that a student who drinks a bottle of wine every day would be likely to unk out of school.

Pitfalls of exaggerating the value of prediction based on correlated observables have been discussed in the literature for many years. For example, the conclusion of Ferber's 1956 analysis [START_REF] Ferber | Are correlations any guide to predictive value?[END_REF] is:

Clearly the coecient of correlation is not a reliable measure for [the practical problem of selecting functions (hypotheses) for predictive purposes], nor does there appear to be at the present time any alternative single statistic adequate in this respect relating to the period of observation. Unsettling as it may seem, there does not appear to be any statistical substitute for a priori consideration of the adequacy of the basic hypothesis underlying a particular function.

Even more importantly, it is well-known that correlation does not imply causation. In the analysis of the Illinois survey referred above, one notes [START_REF]Correlation and prediction[END_REF]: However, a correlation does not tell us about the underlying cause of a relationship.

We do not know from the Illinois data whether drinking was correlated with lower grades because (1) alcohol makes people stupid, or (2) the students who tend to drink tend to be poorer students to begin with, or (3) people who are hung-over from a drinking binge tend to skip class, or (4) students in academic trouble drink in order to drown their sorrows, or some other reason. There can be hundreds of possible explanations for a correlation: the number is limited only by your imagination and ingenuity in thinking up possible reasons for a relationship between two variables.

Then the purely syntactic/relational perspective, with no understanding, is lucidly spelled out in [START_REF]Correlation and prediction[END_REF]:

For purposes of making a prediction, the underlying reason for a correlation may not matter. As long as the correlation is stable lasting into the future one can use it to make predictions. One does not need an accurate cause-eect explanation to make a prediction. As long as a pattern (correlation) continues into the future, we can use it to make a prediction, whether or not we understand it. What a correlation does not tell you is why two things tend to go together. Maybe alcohol consumption is not the root cause of bad grades, in the Illinois study. Perhaps the students who drank never opened their books and never studied, and that is why they got bad grades. We do not know. The study did not seek to explore underlying causes of the correlation.

The following example quoted from [START_REF] Grady | Louder vowels won't get you laid, and other tales of spurious correlation[END_REF] is worrying: 4 A 2010 study [START_REF] Reinhart | Growth in a time of debt[END_REF] conducted by Harvard economists Carmen Reinhart and Kenneth Rogo reported a correlation between a country's economic growth and its debtto-GDP ratio. In countries where public debt is over 90 percent of GDP, economic growth is slower, they found. The study gathered a lot of attention. Google Scholar listed 1218 citations at the time of writing, and the statistic was used in US economic policy debates in 2011 and 2012, [START_REF] Sessions | The case for growth: Sessions lists benets of discretionary cuts[END_REF] 5 .

The study isn't conclusive, though in fact, it's far from it. As noted by John Irons and Josh Bivens of the Economic Policy Institute, it's possible that the eect runs the other way round, with slow growth leading to high debt. Even more worryingly, the research didn't hold up on replication [START_REF] Thomas Herndon | Does high public debt consistently stie economic growth? A critique of Reinhart and Rogo[END_REF]. But by the time that became clear, the original study had already attracted widespread attention and aected policy decisions.

As a last example in Figure 1 we present a hilarious high correlation.

Figure 1: A correlation with r = 0.952407 [START_REF]Spurious correlations[END_REF].

In spite of long-known facts pointing to the contrary, the core of the recent argumentation is that because of the possibility of mining huge databases, correlation supersedes causation.

Shortcomings of this position have been discussed in the literature. For example, Poppelaar's blog from 5 April 2015 titled Do numbers really speak for themselves with big data? [START_REF] Poppelars | OR at Work[END_REF] concludes that With data, enough computing power and statistical algorithms patterns will be found. But are these patterns of any interest? Not many of them will be, as spurious patterns vastly outnumber the meaningful ones. 6 Anderson's recipe for analysis lacks the scientic rigour required to nd meaningful insights that can change our decision making for the better. Data will never speak for itself, we give numbers their meaning, the Volume, Variety or Velocity of data cannot change that.

The nomothetic studies that seek relationships between demographic variables and cultural traits by mining very large, cross-cultural datasets [START_REF] Roberts | Linguistic diversity and trac accidents: Lessons from statistical studies of cultural traits[END_REF] is another example among many discussed in the literature, see [START_REF] Floridi | Big data and their epistemological challenge[END_REF][START_REF] Frické | Big data and its epistemology[END_REF][START_REF] Kitchin | Big data, new epistemologies and paradigm shifts[END_REF][START_REF] Calude | Does big data equal big problems?[END_REF].

Our analysis of the big data-driven philosophy will be presented in mathematical terms.

Specically, we will use a) ergodic theory to show that one cannot reliably predict by analogy with the past, even in deterministic systems, chaotic or not, and b) Ramsey theory to prove that, given any arbitrary correlation on sets of data, there exists a large enough number (size) such that any data set larger than that size realises that type of correlation. Since this largeenough data set is arbitrary, it could have been obtained by a random number generator (series of coin tosses or measurements of quantum uctuations of the vacuum), 7 which, by design, excludes any underlying structure or rule [START_REF] Calude | Information and RandomnessAn Algorithmic Perspective[END_REF][START_REF] Calude | Classical, quantum and biological randomness as relative[END_REF] that could justify action through possible future extensions. Note that it is exactly the size of the data that allows our result: the more data, the more arbitrary, meaningless and useless (for future action) correlations will be found in them.

Thus, paradoxically, the more information we have, the more dicult is to extract meaning from it. Too much information tends to behave like very little information. [START_REF] Andrews | Drowning in the data deluge[END_REF] The goal of the paper Our goal is not to criticise the elds of data science, data mining or data analytics per se. As discussed in the previous section, the correlational method is a scientic praxis with roots going far back in human history. It is also clear that learning how to analyse extremely large data sets correctly and eciently will play a critical role in the science of the future, and even today.

Rather, our aim is to document the danger of allowing the search of correlations in big data to subsume and replace the scientic approach.

Our analysis will rst use an argument from dynamical systems in [START_REF] Cecconi | Predicting the future from the past: An old problem from a modern perspective[END_REF], then employ results from Ramsey theory [START_REF] Graham | Ramsey Theory[END_REF] and algorithmic information theory [START_REF] Calude | Information and RandomnessAn Algorithmic Perspective[END_REF][START_REF] Downey | Algorithmic Randomness and Complexity[END_REF], theories 8 which provide the foundations of the behaviour power and limits of the algorithms, in particular of those dealing with large sets of numbers.

Ergodic theory

One of the main ideas supporting data analytics is that a series of correlations will continue or iterate similarly along the chosen parameter (recurrence). If, for example, time is the main parameter (as in Figure 1), then the correlation will extend into the future by iterating a similar distance, typically, between the chosen observables. The recurrence of correlation is a rather natural phenomenon which applies to many familiar events, like diurnal and seasonal cycles and their observables consequences. This idea and the belief in determinism from the same antecedents follow the same consequents more or less implicitly justify the prediction methods based on the recurrence of regularities.

The debate on recurring (time) series has a long history, going back to the end of the 19th century studies in the geometry of dynamical systems (Poincaré) and statistical physics (Boltzmann). Poincaré proved the unpredictability of deterministic non-linear systems: physical dynamics (orbits) where minor uctuations (i.e. below measurement) could yield measurable but unpredictable evolutions (the origin of chaos theory, see [START_REF] Devaney | An Introduction to Chaotic Dynamical Systems[END_REF][START_REF] Calude | Classical, quantum and biological randomness as relative[END_REF]). Moreover, he also proved the fundamental recurrence theorem in ergodic theory. 9 This theorem roughly states that in any deterministic system, including chaotic systems, the future, soon or late, will be analogous to the past (will somehow iterate). More precisely, for every subset A of non-null measure and for every probability-preserving transformation (dynamics) T , almost every point of A will return again to A, after a suciently long but nite number of iterations of T called Poincaré recurrence time. Probabilities are special types of measures, so we can formally state the result using the framework of probability theory: Poincaré recurrence theorem. Let T : X → X be a measure-preserving transformation of the probability space (X, B, µ) and let A be a set in B with measure µ(A) > 0. 10 Then with µ-probability equal to one, the orbit {T n (x)} ∞ n=0 of an element x ∈ A returns to A innitely often. This is a stability or predictability result, as it guaranties that almost any orbit will eventually iterate in a similar way (and this for ever, again and again). In other words, every orbit will come close to a previous value, with probability one (almost certainty), even in the presence of chaos. This mathematical result seems to conrm the data science approach: if the system is believed to be deterministic, one can avoid the mathematical analysis and just follow the (implicit) rule or regularity: by recurrence, it will dictate the future. As a consequence, in large databases, whose data come from an underlying (though unknown) deterministic dynamics, one expects that a regularity will show up again and again, hence allowing prediction and action.

A more subtle detail comes from the following classical result proved in [START_REF] Kac | On the notion of recurrence in discrete stochastic processes[END_REF]:

Kac's lemma. The average recurrence time to a subset A in Poincaré recurrence theorem is the inverse of the probability of A.

This means that the smaller A is, the lower are its probabilities to be hit by the orbit or the longer it takes to get back to it.

Consider now a relational orbit in a database, that is, a series of values v 1 , v 2 , . . . , v p relating p observables. The analyst does not know or does not want to know the possible law that determines the underlying dynamics, yet she cannot exclude the possibility that there is a law (to be given, for example, as a system of equations or an evolution function). In this case, the probabilities to nd again values close to the v i 's in a small set A containing v i 's 9 A branch of mathematics which studies dynamical systems with an invariant measure and related problems. 10 The measure of A, µ(A), is the probability of A.

are very small and, thus, the recurrence time is very long.

11 Moreover, recent developments of Kac's lemma in [START_REF] Cecconi | Predicting the future from the past: An old problem from a modern perspective[END_REF] show that in any deterministic system as above, these probabilities decrease exponentially also with the size (dimension) of the phase space (observables and parameters) and the recurrence time increases exponentially with that size. Similarly, if the (underlying) equations or evolution function are non-linear, in particular chaotic and presenting attractors, then the probability referred above decreases exponentially also with the dimension of the attractors. [START_REF] Cecconi | Predicting the future from the past: An old problem from a modern perspective[END_REF] 12 Actually, the paper [START_REF] Cecconi | Predicting the future from the past: An old problem from a modern perspective[END_REF] proves that the dimension of the phase space is at least as important as chaos for the unpredictability of deterministic dynamics and concludes:

When the number of eective degrees of freedom underlying a dynamical process is even moderately large, predictions based solely on observational data soon become problematic, as in the case of weather forecasting.

13

In real life problems, both dimensions of the phase space and attractors are large. Thus it is very unlikely or it takes a long recurrence time for an orbit (thus a regularity, a pattern) to iterate again. Furthermore, in databases one may decide to correlate only a few observables (for example, n = 2 in Figure 1), yet one cannot exclude that these observables depend on many more parameters indeed this happens in cases where (causal) dependence is far from unique.

In conclusion, there is no way to reliably predict and act by analogy with the past, not even in deterministic systems, chaotic or not, specically if they model real life phenomena.

The data miner may believe that if a regularity shows up, it could have some eective role in prediction and action, in particular if the database is big as to reach the above recurrence limits.

14 No, this is of no use, as we will show in the following sections: big databases have regularities, but they are mostly spurious, a notion that we will dene using algorithmic randomness. Mathematically, we will show that spurious correlations largely prevail, that is, their measure tends to one with the size of the database. The proof of this result uses a dierent approach which does not need the hypothesis of determinism and is complementary to the one adopted in this section. [START_REF] Calude | Information and RandomnessAn Algorithmic Perspective[END_REF] 

Ramsey theory

This theory, named after the British mathematician and philosopher Frank P. Ramsey, studies the conditions under which order must appear. Typical problems in Ramsey theory are (see more in [START_REF] Graham | Ramsey theory[END_REF][START_REF] Graham | Ramsey Theory[END_REF]):

Are there binary (nite) strings with no patterns/correlations? 11 Ehrenfest's example [START_REF] Walkden | Magic post-graduate lectures: Magic010 ergodic theory lecture 5[END_REF] is a simple illustration. Let an urn U 1 contain 100 numbered balls and U 2 be an empty urn. Each second, one ball is moved from one urn to the other, according to the measurement of events that produce numbers from 1 to 100. By Kac's lemma, the expected return time to (almost) all balls in U 1 is of (nearly) 2 100 seconds, which is about 3 × 10 12 times the age of the Universe. Boltzmann already had an intuition of this phenomenon, in the study of the recurrence time in ergodic dynamics, of gas particles for example, see [START_REF] Cecconi | Predicting the future from the past: An old problem from a modern perspective[END_REF].

12 The dimension of an attractor is the number of eective degrees of freedom. [START_REF] Ellis | Scientic method: Defend the integrity of physics[END_REF] Our footnote: see [START_REF] Lynch | The origins of computer weather prediction and climate modeling[END_REF][START_REF] Chibbaro | Reductionism, Emergence and Levels of Reality[END_REF]. [START_REF] Ferber | Are correlations any guide to predictive value?[END_REF] For example, with one dimension far exceeding the age of the Universe in seconds, yotta of yottabytes.

How many elements of some structure must there be to guarantee that a given regularity holds? Ramsey theory answers the rst question in the negative by providing a precise answer to the second. Signicantly, Graham and Spencer subtitled their Scientic American presentation of Ramsey theory [START_REF] Graham | Ramsey theory[END_REF] with the following sentence:

Complete disorder is an impossibility. Every large set of numbers, points or objects necessarily contains a highly regular pattern.

Our analysis will use two Ramsey-type results. In both cases correlations let us call them Ramsey-type of correlations appear only because of the size of the data.

Let s 1 . . . s n be a binary string. A monochromatic arithmetic progression of length k is a substring s i s i+t s i+2t . . . s i+(k-1)t , for 1 ≤ i and i + (k -1)t ≤ n with all characters equal for some t > 0. The string 01100110 contains no arithmetic progression of length 3 because the positions 1, 4, 5, 8 (for 0) and 2, 3, 6, 7 (for 1) do not contain an arithmetic progression of length 3. However, both strings 011001100, and 011001101 do: 1, 5, 9 for 0 and 3, 6, 9 for 1 and this change was obtained by adding just one bit. In fact, all 512 binary strings of length 9 have a monochromatic arithmetic progression of length 3.

The theorem below states that all suciently long strings of digits/colours, taken from a nite set, have long enough arithmetic progressions of the same digit, i.e. a sequence of equidistributed positions of the same digit/colour (monochromatic) of a pre-given length [START_REF] Graham | Ramsey Theory[END_REF]. The importance of the theorem lies in the fact that all strings display one of the simplest types of correlation: a sequence of equi-distributed positions of the same value.

Finite Van der Waerden theorem. For any positive integers k and c there is a positive integer γ such that every string, made out of c digits or colours, of length more than γ contains an arithmetic progression with k occurrences of the same digit or colour, i.e. a monochromatic arithmetic progression of length k.

The Van der Waerden number W (k, c) is the smallest γ such that every string, made out of c digits or colours, of length γ + 1 contains a monochromatic arithmetic progression of length k. How big is W (k, c)? For binary strings, one has W (3, 2)=9. In [START_REF] Gowers | A new proof of Szemerédi's theorem[END_REF] it was proved that

W (k, 2) < 2 2 2 2 2 k+9
, but conjectured to be much smaller in [START_REF] Graham | Some of my favorite problems in Ramsey Theory[END_REF]:

W (k, 2) < 2 k 2 .
In the examples above, for the sake of simplicity, only binary relations (n = 2) have been considered, such as smallpox inoculation and resistance to infection in a large set of individuals, or the number of marriages and the number of drowned people, over many years. In what follows we will use the nite Ramsey theorem [START_REF] Paris | A mathematical incompleteness in Peano Arithmetic[END_REF] to study the more general case of n-ary relations. Ramsey theorem deals with arbitrary correlation functions over n-ary relations, as, in principle, in a database one can correlate sets of n elements, for any xed n ≥ 2.

First we illustrate the Ramsey theorem with the classic party problem. The answer is armative. To prove we just need to choose any vertex in Figure 2, say A, and note that there are ve edges leaving A, each coloured red or blue. Then the pigeonhole principle says that at least three of them must have the same colour, hence a monochromatic triangle will appear. In Figure 3 the edges are AF, AE, AD, AC, AB, coloured in order with blue, red, red, red, red, blue: the triangle AEC is monochromatic as is coloured in red. We do not know whether in the party there is a group of three people who are pairwise mutual strangers or a group of three people who are pairwise mutual acquaintances, but we know that a group of three people with the same type of pairwise acquaintanceship always exists. Clearly, this result is true for any party with more than six people.

We continue with a piece of notation. If A is a nite set then [A] n is the set of all subsets of A containing exactly n elements (n-ary relations or n-sets on A). In order to guide intuition, the number c may also be viewed as a number of colours partitioning a set. For example, if A = {x, y, z, u} and n = 2 then [A] 2 = {{x, y}, {x, z}, {x, u}, {y, z}, {y, u}, {z, u}};

16 This is a Ramsey type problem: the aim is to nd out how large the party needs to be to guarantee similar pairwise acquaintanceship in (at least) one group of three people.

an example of partition of [A] 2 with c = 3 colours, red, blue and yellow, is {{{x, y}, {x, z}, {z, u}}, {{y, z}, {y, u}}, {{x, u}}} (if {x, y}, {x, z}, {z, u} are coloured with red and {y, z}, {y, u} are coloured with blue, then {x, u} is coloured with yellow). Any of the six permutations of the colours red, blue and yellow produces a valid colouring. Finite Ramsey theorem. For all positive integers b, n, c there is a positive integer γ such that for every nite set A containing more than γ elements and for every partition P : [A] n → {1, 2, . . . , c} there exists a subset B of A containing b elements whose n-sets are monochromatic, i.e. P (x) has the same value (colour) for every x in [B] n .

We note the general framework and the strength of both theorems: the rst deals with arbitrary, long enough well-orderings, the second with n-ary relations on arbitrary, large enough sets. In particular, given any positive integers b, n, c, the nite Ramsey theorem is valid for all sets A containing more than γ elements, and for every partition P of the set of subsets of n elements of A into c colours. In all cases we do not know in advance what colour will be given to the elements of interest; however, due to the niteness of both theorems, in every particular instance we can algorithmically nd all the monochromatic elements and their colourings.

Correlations everywhere

We will rst use the regularity of arithmetic progressions in the total order analysed by Van der Waerden theorem, then the colouring of arbitrary sets of arbitrary objects studied by the nite Ramsey theorem.

The Van der Waerden theorem shows that in any coding of an arbitrary database of a large enough size into a string of digits, there will be correlations of a pre-determined arbitrary length: the same digit sitting on a long sequence of equi-distributed positions. These equi-distributed positions of the same digit are not due to the specic information coded in the data nor to a particular encoding: they are determined only by the large size of the data. Yet, the regular occurrence, for a pre-chosen number of times, of an event may be considered by the data miner as a law or as sucient information to replace a law.

For correlations, assume that the database associates one digit or colour, out of c possible ones, according to a xed correlation function (for example, 7 or red is produced for shermen the month when marriages and drownings are correlated, 3 or green for cheese producers as it correlates quarterly cheese consumption with some other statistical data). Then the data miner can consider the correlation relevant if it occurs at a regular pace (an arithmetic progression) for at least k times. Of course, the string of length γ, where the arithmetic progression appears, may be given in time or space or in any countable order. Thus, by Van der Waerden theorem, for any k and c, the required length k for one of these occurrences or correlations will be surely obtained in any string of length greater than γ, whatever (possibly spurious) criteria are chosen for correlating events. Moreover, and this is very important, as the string of length greater than γ is arbitrary, its values, out of the c possible colours, may be chosen in any random way: by throwing a dice or measuring a quantum observable. Yet, at least one correlation, as a monochromatic arithmetic progression of the desired length, will be found in the string. We will discuss later the chances of stepping on an algorithmic random string.

Next we use the nite Ramsey theorem to look in more general terms into this phenomenon.

Instead of dealing with a well-ordering of a pre-given coding by numbers, we search for large enough regularities in sets of n elements taken from arbitrary, but large enough, sets. So, it is no more the regularity of appearance in a well-ordering of an arbitrary string that is searched for, but the structuring, according to an arbitrary partition, of n-ary relations of elements from an arbitrary set.

Let D be a relational database. In full generality, we may consider that a correlation of variables in D is a set B of size b whose sets of n elements form the correlation (the set of n-ary relations on B, or n values that are considered to be correlated, or monochromatic using the language of colours). In other words, when a correlation function dened according to some given criteria (proximity or, conversely, apartness of some observable values or whatever) selects a set of n-sets, whose elements form a set of cardinality b, then they become correlated. Thus, the process of selection may be viewed as a colouring of the chosen set of b elements with the same colour out of c possible ones. We insist that the criterion of selection the correlation function has no relevance here, it is arbitrary: it only matters that, for some reason which may be spurious, all n-sets of a set with b elements have the same colour, that is, turn out to be correlated. Then Ramsey theorem shows that, given any correlation function and any b, n and c, there always exists a large enough number γ such that any set A of size greater than γ contains a set B of size b whose subsets of n elements are all correlated that is, monochromatic. In other words: Do we want a size b set of values that are correlated by sets of n elements out of c possibilities, for whatever b, n and c you choose? Ramsey theorem gives us a large enough number γ such that in any set with more elements than γ if we choose in any way a partition of n-sets into c classes, we are guaranteed to nd a correlation of size b and arity n. We do not know a priori what will be the colour of the monochromatic set, in the same way as the data miner does not know in advance which correlation will pop out from the data. However, in every particular instance we can algorithmically nd all the monochromatic elements and their colourings.

The analysis above, as well as the one in the following section, are independent of any possible (or not) law-like origin (determination) of the processes modelled in the database, as it is only based on cardinality (number of elements in the database). This analysis complements the one in Section 5. Moreover, the arguments also reinforce each other, as the search for regularities require, by the previous results on the low probabilities of recurrences in deterministic systems, very large databases.

The deluge of spurious correlations

In the previous section we have showed how Ramsey-type of correlations appear in all large enough databases. How large is the set of spurious correlations? First and foremost, the notion of spurious correlation was not (yet) dened: how can one answer then the above questions?

According to Oxford Dictionary [START_REF]Spurious[END_REF], the adjective spurious means Not being what it purports to be; false or fake. False, although seeming to be genuine. Based on false ideas or ways of thinking. This (dictionary) denition is semantic, hence it depends on an assumed theory: one correlation can be spurious according to one theory, but meaningful with respect to another one. To answer the question posed in the beginning of section in the strongest form, we need a denition of spurious which is independent of any theory (using formal deductions, mathematical calculations, computer algorithms, etc.).

In order to satisfy the above broad constraint we dene a spurious correlation in a very restrictive way: a correlation is spurious if it appears in a randomly generated database.

A spurious correlation in the above sense is also spurious according to any possible denition because, by construction, its values are chosen at random, as all data in the database. As a consequence, such a correlation cannot provide reliable information on future developments of any type of behaviour. Of course, there are other reasons making a correlation spurious, even within a non-random database. However, to answer the question posed in this section it will be enough to show that most correlations are spurious even according to our restricted denition, when dealing with large enough sets of numbers (big data). Clearly, this is a fortiori true if one broadens the denition of spurious correlation.

As any database can be seen as a string in Van der Waerden theorem or a set in Ramsey theorem, our analysis will be based on algorithmic information theory, a mathematical theory studying (algorithmic) randomness for individual objects, in particular, strings and (nite) sets of numbers [START_REF] Calude | Information and RandomnessAn Algorithmic Perspective[END_REF][START_REF] Downey | Algorithmic Randomness and Complexity[END_REF]. This theory is based on classical computability, that is the general theory of algorithms, the foundation of todays computing [START_REF] Cooper | Computability Theory[END_REF]. As hinted above and discussed at length in [START_REF] Calude | Classical, quantum and biological randomness as relative[END_REF], randomness is dened as unpredictability relative to an intended theory. Since theories predict by computing from their formal frames (axioms, equations, evolution functions, . . . ), algorithmic randomness provides a general notion of randomness which works for any theory.

Using this approach we will answer the question: How large is the set of spurious correlations, in the above sense? Surprisingly, spurious correlations form the majority, in fact a quantiable majority of correlations.

As the notion of algorithmically randomness is given in terms of incompressibility, we start with a familiar example of compressibility. We use compressing/decompressing programs such as zip, gzip, compress, etc., to obtain a compressed version of a given (arbitrary) le. These programs have two tasks: a) to try to obtain via compression a shorter variant of the original le, and b) to be lossless, that is, to guarantee that no information is lost during both processes of compression and decompression. How do they work? The answer is important for our discussion: a compression program searches for regularities in the input le and uses them to compute a shorter description of the le and the decompression program reconstructs the original le from its description.

The algorithmic complexity evaluates the size of the compressed le. For this it is enough to work only with decompression programs for nite strings. Here is an axiomatic framework to introduce this type of complexity. A function K from binary strings to binary strings satisfying the following three conditions is called an algorithmic complexity.

1. Conservation of information: For every computable function f there exists a constant c depending only on f such that for every string x we have K(f (x)) ≤ K(x) + c.

Weak computability:

There is a program enumerating all pairs strings and positive integers (x, n) such that K(x) ≤ n. 17 3. Localisation: There exist two constants c and C such that the number of strings x with K(x) < n is greater than c • 2 n and smaller than C • 2 n .

Fix U a universal Turing machine and denote by K U (x) = min{y | U (y) = x}. Then K U satises the above three axioms 18 and, conversely, if K satises the above three axioms, then there exists a constant M depending only on U and K such that for all x, |K(x) -

K U (x)| ≤ M . Let K = K U . A string x is m-compressible if K(x) ≤ |x| -m.
This means that there is an input y of length y| ≤ |x| -m such that U (y) = x. In other words, U was able to nd patterns in x to compress it to a shorter description y. It is not dicult to see that for all non-negative integers m ≤ n, the number of strings x of length n having K(x) < n -m is less or equal to 2 n-m -1. Taking m = 0 we get the following interesting fact: for every non-negative integer n there exists a string x of length n such that K(x) ≥ n. 19 Such a string is incompressible by U : there is no y shorter than x such that U (y) = x. One can prove see [START_REF] Calude | Information and RandomnessAn Algorithmic Perspective[END_REF][START_REF] Downey | Algorithmic Randomness and Complexity[END_REF] that the incompressible strings have most properties associated with randomness, hence they are called algorithmic random. 20 The compressibility power of a universal Turing machine U is much higher than that of any practical algorithm -gzip, compress, etc. , but by Ramsey theory, still limited: there are correlations U cannot detect. This is the surprising meaning of Ramsey type theorems, such as those used in this paper: no matter how one algorithmically denes randomness for strings or nite sets of numbers, they always contain regularities since any long/large enough string/set contains regularities.

Algorithmically random nite sets can be dened naturally [START_REF] Vereshchagin | Kolmogorov complexity of enumerating nite sets[END_REF]. These sets have intriguing regularities. Here is an illustration for Boolean matrices which are relevant for databases. With the exception of a nite set, the rank of every algorithmically random Boolean matrix of size n × n thought over the eld F 2 = {0, 1} is greater than n/2. Otherwise we could select n/2 columns of the matrix such that all other columns are linear combinations of the selected ones. Further, based on this observation we could compress the original matrix to a string of 3/4 • n 2 + O(n log n) bits instead of n 2 required by algorithmic randomness (see [START_REF] Shen | Around Kolmogorov complexity: basic notions and results[END_REF] for a proof and [START_REF] Khoussainov | Algorithmically random universal algebras[END_REF][START_REF] Manin | Cognition and complexity[END_REF] for other relevant results).

Fix a real number α in the open interval (0, 1). A string x of length n can be compressed by αn bits if its complexity K(x) ≤ n -αn. The number of strings x of length n which are compressible by αn bits is smaller than 2 (1-α)n -1, hence the probability that a string x of length n has K(x) < n -αn is smaller than 2 -αn , a quantity which converges exponentially to zero when n → ∞. In other words, for large n, very few strings of length n are compressible or, dually, most strings are algorithmically random.

Here is a simple illustration of this phenomenon. According to [START_REF] Homan | Benchmarked: What's the best le compression format[END_REF] the best average rate of algorithmic compressibility is about 86.4% (i.e. a string x is compressed into a le Zip(x) 21 which has about 86.4% of the length of x). The probability that a binary string x of (relatively short) length 2048 is reduced by 13.6% is smaller than 2 -136 1000 •2048 < 10 -82 , a very small number. 22 18 Traditionally, K U is called Kolmogorov complexity associated to U . 19 The number of strings x of length n having K(x) ≥ n -m is greater or equal to 2 n -2 n-m + 1.

20 In view of results discussed in Section 6, they cannot have all properties associated with randomness. 21 For every x, Zip(x) is an incompressible string for Zip, but for some x, Zip(x) is compressible by U . 22 10 82 is approximately the number of hydrogen atoms in the observable Universe.

Conclusions

The analysis presented in this paper suggests that the slogan or philosophy declaring that correlation supersedes causation and theorising is mathematically wrong. Scientists and philosophers have always worried about fallacies one commits by looking at correlations only: Cum hoc ergo propter hoc 23 and the related Post hoc ergo propter hoc 24 fallacies are illustrative. For example, economists are wary of uncritically using correlations: that's why they perform further statistical tests, e.g. the Granger causality test, knowing well that even this is not enough to yield knowledge of genuine causality.

Our work conrms the intuition that the bigger the database which one mines for correlations, the higher is the chance to nd recurrent regularities and the higher is the risk of committing such fallacies. We rst showed that if the world modelled in a big database is somehow law-like in the multi-dimensional universe of events it describes, then the probability that a series of related observable values (regularity) iterates again is non zero, but extremely low: recurrence may occur, but only for immense values of the intended parameters and, thus, an immense database.

But, then, one steps into the results in the subsequent sections: given k and c (Van der Waerden theorem) or (b, n, c) (Ramsey theorem), there is a (large) γ, such that any data set of size more than γ contains a regularity with the characteristics given by the given parameters independently of any law-like assumption on the underlying phenomena described by the elements of the database. Moreover, as proved in Section 8, the larger is γ, the more probable becomes that the sets larger than γ are randomly generated. Even using a restrictive denition of spurious correlation one that appears in an algorithmically random database we showed that the overwhelming majority of correlations are spurious. In other words, there will be regularities, but, by construction, most of the time (almost always, in the mathematical sense), these regularities cannot be used to reliably predict and act.

[Natural] [S]ciences are essentially an exercise in observing correlations, then proposing explanations for them, [START_REF] Gisin | Quantum Chance: Nonlocality, Teleportation and Other Quantum Marvels[END_REF]. They operate with three types of correlations: two types of local correlations, that can be accounted for in terms of either an inuence of one event on another (if it is rainy, then the ground is wet), or common local causes (gum disease, oral cancer, loss of taste, mouth sores and bad breath are likely to aect youths with smoking habits) and non-local correlations (like quantum correlations of entangled qubits). Non-local correlations have much more complex physico-mathematical explanations than local correlations. But as we showed, there are also the Ramsey-type of correlations, which abound, and cannot be accounted for anything else except size. Even worse, the last type of correlations cannot be algorithmically distinguished from the others. The theory of algorithms, which gave us computers and algorithmic analyses (of databases, in particular), also provides the tools for understanding the limits of a pure algorithmic analysis of big data. Our limiting or negative results, as it often happens [START_REF] Longo | On the relevance of negative results[END_REF], do not destroy data science, but open the way for more reections. Big data correlations do not make causation obsolete nor do they cause Democritus's type of science to die, but they pose the challenge to integrate the new algorithmic tools with the classical ones in an extended scientic method.

The fundamental Greek practice of scientic observation, thinking and debating on dierent theoretical interpretations of phenomena was enriched by the experimental method (since 23 Latin: with this, therefore because of this.

24 Latin: after this, therefore because of this. Galileo) and mathematics (since Descartes and Newton). Suggestions to narrow down the scientic methods to just the collection of empirical evidences or to the use of mathematics in a discipline there is as much science as there is mathematics 25 didn't get much support. The new philosophy proposed by big data is similar. Big data analytics cannot replace science and, symmetrically, no theory can be so good to supplant the need for data and testing. Implicit or, better, explicit and revisable theorising should accompany meaningful measurements of evidences and mathematical modelling, as well as reliable analyses of databases.

26

Despite the looming threat of spurious correlations, there are many examples of successful use of data analytics in robust scientic studies, see [START_REF] Rajaraman | Mining of Massive Datasets[END_REF][START_REF] Stanton | Introduction to Data Science[END_REF][START_REF] Schutt | Doing Data Science[END_REF][START_REF] Reed | Exascale computing and big data[END_REF]. Thus, we interpret Dante's verse in the epigraph of this paper as we cannot rely on computational brute-force (come bruti), but we must pursue scientic commitment and knowledge (virtute e canoscenza).

  mutual acquaintances.[START_REF] Frické | Big data and its epistemology[END_REF] The problem asks whether in every party of six people either: a) at least three of them are (pairwise) mutual strangers or b) at least three of them are (pairwise) mutual acquaintances? The problem is equivalent to the statement that in the complete graph in Figure2which has six vertices and every pair of vertices is joined by an edge every colouring of edges with red and blue necessarily contains either a red triangle or a blue triangle.

Figure 2 :

 2 Figure 2: Party graph [3].

Figure 3 :

 3 Figure 3: Red triangle in the party graph [3].
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  The function K is incomputable.

  

This example points to another important issue: no data collecting is strictly objective see the analysis in[START_REF] Grjebine | La dette publique et comment s'en débarrasser[END_REF] of Reinhart and Rogo 's bias in their collection of data in several countries for 218 years.

European policy makers largely referred to that paper till 2013. For example, O. Rehn, EU Commissioner for Economic Aairs (200913) referred to the Reinhart-Rogo correlation as a key guideline for his past and present economic views ([51], address to ILO, April 9, 2013) and G. Osborne, British Chancellor of the Exchequer (since 2010), claimed in April 2013: As Rogo and Reinhart demonstrate convincingly, all nancial crises ultimately have their origins in one thing [the public debt]. [32].

See also the huge collection of spurious correlations[START_REF]Spurious correlations[END_REF] and the book[START_REF] Vigen | Spurious Correlations[END_REF] based on it, in which the old rule that correlation does not equal causation is illustrated through hilarious graphs.

This was informally observed also in[50, p. 20]: With fast computers and plentiful data, nding statistical relevance is trivial. If you look hard enough, it can even be found in tables of random numbers.

They are branches of nite combinatorics and the theory of algorithms, respectively.

The danger of purely speculative theories in today's physics is discussed in[START_REF] Ellis | Scientic method: Defend the integrity of physics[END_REF].

The big data can be used for scientic testing of hypotheses as well as for testing scientic theories and results.
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