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Abstract
In this paper, we attempt to understand and to contrast the impact of problem fea-

tures on the performance of randomized search heuristics for black-box multi-objective
combinatorial optimization problems. At first, we measure the performance of two
conventional dominance-based approaches with unbounded archive on a benchmark
of enumerable binary optimization problems with tunable ruggedness, objective space
dimension, and objective correlation (pMNK-landscapes). Precisely, we investigate the
expected runtime required by a global evolutionary optimization algorithm with an er-
godic variation operator (GSEMO) and by a neighborhood-based local search heuristic
(PLS), to identify a (1 + &) —approximation of the Pareto set. Then, we define a number
of problem features characterizing the fitness landscape, and we study their intercor-
relation and their association with algorithm runtime on the benchmark instances. At
last, with a mixed-effects multi-linear regression we assess the individual and joint ef-
fect of problem features on the performance of both algorithms, within and across the
instance classes defined by benchmark parameters. Our analysis reveals further in-
sights into the importance of ruggedness and multi-modality to characterize instance
hardness for this family of multi-objective optimization problems and algorithms.

Keywords Co N o
Evolutionary multi-objective optimization, black-box 0-1 multi-objective problems,

feature-based analysis, fitness landscape and problem difficulty, empirical perfor-
mance modeling, multi-level multi-variate analysis, random-effects mixed models.

1 Introduction

1.1 Motivation

Many optimization problems arising in real-world applications are characterized by a
discrete solution space, and by multiple objective functions, such as cost, profit, or risk,
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that are ill-defined, computationally expensive, or for which an analytical form is not
available (Coello and Lamont, 2004). A difficult task is then to identify or approximate
a set of solutions, known as the Pareto set, representing the possible optimal trade-offs
among the objectives. But these black-box multi-objective combinatorial optimization
problems severely limit the number of evaluations an optimizer can perform. Despite
the increasing number of available general-purpose heuristics for evolutionary multi-
objective optimization (EMO), see e.g., Deb (2001); Coello et al. (2007), we argue that
their design and configuration is still mainly based on intuition, and that the under-
standing of their performance and design principles is still in its infancy and com-
paratively less advanced than in the single-objective case. A challenging issue is to
identify a number of general-purpose features characterizing problem hardness, and
to understand which problem features have an influence on the performance of EMO
algorithms, as well as the differences and the similarities across different algorithm and
problem classes.

1.2 Related Work

In single-objective combinatorial optimization, research on fitness landscape analysis
aims at characterizing the fitness landscape associated with the optimization problem
where the algorithm operates (Merz, 2004; Richter and Engelbrecht, 2014). Contrary
to a complexity-theoretical perspective of convergence properties and runtime anal-
ysis, a fitness landscape analysis rather relies on a mathematical model that helps to
understand the relation between the geometry of an optimization problem and the dy-
namics of a randomized search heuristic. Tools from graph theory, feature-based anal-
ysis, or correlation and regression analysis, are means to investigate the difficulties that
an algorithm faces when solving a particular problem. This paradigm is particularly
relevant for black-box optimization, for which problem-specific expert knowledge is
usually difficult to obtain. More recently, benchmark parameters as well as problem
and fitness landscape features have been used as input variables in statistical regres-
sion analysis in order to estimate, and then understand, their relationship with the per-
formance of randomized search heuristics for single-objective optimization problems
of continuous and combinatorial nature; see e.g., Mersmann et al. (2011); Bischl et al.
(2012); Daolio et al. (2012); Mersmann et al. (2012). In particular, although they only
consider benchmark parameters in their analysis, it is worth noticing that Chiarandini
and Goegebeur (2010) investigate mixed models in order to separate the effects of algo-
rithm components and problem characteristics when analyzing local search algorithms
for the 2-edge-connectivity augmentation problem.

In multi-objective combinatorial optimization, few attempts have been made at
designing and analyzing problem and fitness landscape features, whereas there is a
strong evidence that problem-related properties are known to largely affect the prop-
erties of the Pareto set (Mote et al., 1991) and the behavior of multi-objective optimiza-
tion algorithms (Paquete and Stiitzle, 2006). One of the first studies on the distribution
of local optima for the multi-objective traveling salesman problem is due to Borges
and Hansen (1998), which shows the existence of a global convexity under a common
neighborhood structure while covering the whole Pareto front by varying the scalariz-
ing function parameters. Similarly, Paquete and Stiitzle (2009) have shown that non-
dominated solutions are strongly clustered with respect to the same neighborhood for
the same problem class, while the degree of clustering highly depends on the instance
structure for the multi-objective quadratic assignment problem. Knowles and Corne
(2003) have proposed and investigated multiple fitness landscape features in order
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to distinguish the degree of difficulty of multi-objective quadratic assignment prob-
lems. As well, tools from fitness landscape analysis have been reviewed and adapted
to multi-objective optimization by Garrett and Dasgupta (2007) in terms of scalarizing
local optima. In another study, Garrett and Dasgupta (2009) have proposed to visualize
a multi-objective fitness landscape as a neutral landscape divided into different fronts
containing solutions within the same dominance rank. Aguirre and Tanaka (2007) have
defined several problem features such as the number of fronts, the number of solutions
within each front, the probability to pass from one front to another, and the hypervol-
ume of the (exact) Pareto set, and related them with the design of EMO algorithms on
enumerable multi-objective NK-landscapes. At last, the impact of the problem dimen-
sion, the degree of non-linearity, the number of objectives, and the objective correlation
of multi-objective NK-landscapes has been related to the structure of the Pareto set and
to the number of Pareto local optima by Verel et al. (2013).

Overall, previous work on multi-objective fitness landscapes has often investi-
gated one characteristic at a time, and rarely related problem and fitness landscape
features to algorithm performance. Furthermore, we are not aware of any research on
feature-based statistical or machine learning modeling aiming at estimating and ana-
lyzing the performance of EMO algorithms.

1.3 Contributions

This paper attempts to bridge the gap between a fully theoretical work on runtime
analysis and a more practical work on the performance analysis of multi-objective ran-
domized search heuristics. By introducing new features, by explicitly defining fea-
tures from the literature on multi-objective fitness landscape analysis, and by consid-
ering multiple problem and fitness landscape features simultaneously, a fundamental
general-purpose statistical framework is proposed to better understand the difficulties
that EMO algorithms might have to face. To the best of our knowledge, such a feature-
based performance analysis is novel in the context of multi-objective optimization, in
particular in that is uses a multi-level mixed-effects linear regression to model the per-
formance of EMO algorithms. It is our hope that a systematic and thorough empirical
study could bring valuable meta-knowledge to the practitioner and to the algorithm
designer. The research questions motivating and guiding the paper are as follows:

Question #1: What features might characterize multi-objective combinatorial landscapes?

Question #2: How do features relate to benchmark parameters? How do they relate to one
another? Are they linearly dependent?

Question #3: Which features are ordinally associated with algorithm performance?
Question #4: How much of algorithm performance variance can features explain?

Question #5: What is the conditional impact of each feature on algorithm performance? What
are the significant common trends across instance groups?

Question #6: Which features are relevant predictors of algorithm performance?
Question #7: Does the impact of features on algorithm performance change with landscape
ruggedness? Can ruggedness be used to explain changes across instance groups?

In order to address these issues, we first identify a substantial number of existing
and original problem properties and fitness landscape features for black-box multi-
objective combinatorial optimization. They include benchmark instance parameters,
such as variable correlation, objective correlation, and objective space dimension, as
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well as problem features from the Pareto set, the Pareto graph and the ruggedness
and multi-modality of the fitness landscape. We report all these measures, together
with a correlation analysis between them, on a large number of enumerable multi-
objective NK-landscapes with objective correlation, i.e. PMNK-landscapes (Verel et al.,
2013). As in the single-objective case, the model of NK-landscapes allows one to de-
scribe and generalize a large family of unconstrained multi-modal 0-1 optimization
problems (Heckendorn and Whitley, 1997).

Next, we propose a general methodology to investigate the impact of problem fea-
tures on the performance of multi-objective randomized search heuristics. More partic-
ularly, we analyze how strongly those proposed features are associated with algorithm
performance, how the algorithm performance changes when varying each problem fea-
ture, and what is the relative importance of features in explaining the performance vari-
ance. To this end, we conduct an experimental analysis on the performance of two pro-
totypical dominance-based EMO algorithms, namely the global simple EMO optimizer
(GSEMO) (Laumanns et al., 2004) and the Pareto local search (PLS) algorithm (Paquete
etal., 2004), of which we measure the estimated runtime to find a (1+¢)—approximation
of the Pareto set. Overall, the runtime of both approaches is impacted by each of the
identified multi-objective problem features, and particularly by the ruggedness and the
multi-modality of the fitness landscape, and by the hypervolume value of the optimal
Pareto set. Our study shows the relative influence of problem features on algorithm
efficiency as well as the differences and similarities between both algorithms. As such,
the emphasis of the present paper is more on making inferences, see e.g., Chiarandini
and Goegebeur (2010), rather than making predictions, see e.g., Hutter et al. (2014).
That is, we are concerned with modeling the empirical data to test hypothesis in the
context of an appropriate statistical model. Hence, we value model interpretability
over predictive power as long as model assumptions are acceptable. On these lines,
we attempt to provide both insightful understandings and methodological suggestions
about the performance analysis of multi-objective optimization algorithms.

1.4 Outline

The remainder of the paper is organized as follows. In Section 2, we detail the back-
ground information about fitness landscape analysis, multi-objective optimization,
pMNK-landscapes, EMO algorithms and their rating of performance. In Section 3,
we analyze the empirical impact of pMNK-landscape benchmark parameters on the
performance of GSEMO and PLS. In Section 4, we identify relevant problem features,
and report quantitative results and a correlation analysis for pMNK-landscapes (Ques-
tions #1-2). In Section 5, we conduct an association and regression analysis in order to
point out how problem features influence the performance of EMO algorithms (Ques-
tions #3-7). In Section 6, we conclude and suggest further research into feature-based
performance analysis in EMO.

2 Preliminaries

In this section, we give a brief methodological context and the relevant definitions
about the multi-objective combinatorial optimization problem under study, the EMO
algorithms applied to it, and our performance measure of choice.

2.1 Fitness Landscape Analysis

In single-objective optimization, fitness landscape analysis allows one to study the
topology of a combinatorial optimization problem by gathering important informa-
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tion such as ruggedness or multi-modality (Weinberger, 1990; Merz, 2004). A fitness
landscape is defined by a triplet (X, N, ¢), where X is a set of admissible solutions (the
solution space), N : X — 2% is a neighborhood relation, and ¢ : X — R is a (scalar)
black-box fitness function, here assumed to be maximized. A walk over the fitness land-
scape is an ordered sequence (xg,z1, ..., x¢) of solutions from the solution space such
that 7o € X, and x; € N'(zy_1) forallt € {1,...,¢}.

An adaptive walk is a walk such that for all ¢t € {1,....¢}, ¢(z;) > ¢(xi—1), as
performed by a conventional hill-climbing algorithm. The number of iterations, or
steps, of the hill-climbing algorithm defines the length of the adaptive walk. This length
is an estimator of the diameter of local optima’s basins of attraction, characterizing
a problem instance multi-modality. Roughly speaking and assuming isotropy in the
search space, the longer the length of adaptive walks, the larger the basins size, the
lower the number of local optima. This allows us to estimate their number when the
whole solution space cannot be enumerated exhaustively.

Let (zg, 1, ...) be an infinite random walk over the solution space. The autocorre-
lation function and the correlation length of such a random walk allow one to measure
the ruggedness of a fitness landscape (Weinberger, 1990). The random walk autocorre-
lation function r : N — IR of a (scalar) fitness function ¢ is defined as follows:

Elg(z) - d(zir)] — El¢(z)] - Elo(weih)]
Var(¢(z))

where E[¢(z;)] and Var(¢(x;)) are the expected value and the variance of ¢(z;), respec-
tively. The autocorrelation coefficients r(k) can be estimated within a finite random
walk (zg, x1,...,x) of length ¢£:

(k) = Zim1 (@(ae) = 8) - (Harn) = 6)
et (9lan) = 6)2

where ¢ = 13°/_ ¢(x;), and £ > 0. The longer the length of the random walk /,
the better the estimation. The correlation length 7 measures how the autocorrelation
function decreases. This characterizes the ruggedness of the landscape: the larger the
correlation length, the smoother the landscape. Following Weinberger (1990), we de-
fine the correlation length by 7 = —m. This is based on the assumption that the
autocorrelation function decreases exponentially.

r(k) =

2.2 Multi-objective Optimization

We are interested in maximizing a black-box objective function vector f : X — Z,
which maps any solution from the solution space # € X to a vector in the objective
space z € Z, with Z C RM, such that z = f(x). We assume that the solution space
is a discrete set X = {0, 1}N, where N is the problem size, i.e. the number of binary
(zero-one) variables. An objective vector z € Z is dominated by an objective vector
z € Z,denoted by z < 2/, iff Vi € {1,...,M} z; < 2}, and thereisa j € {1,..., M}
such that z; < 2/. Similarly, a solution z € X is dominated by a solution 2’ € X iff
f(z) < f(2"). An objective vector z* € Z is non-dominated if there does not exist any
objective vector z € Z such that z* < z. A solution z* € X is non-dominated, or Pareto-
optimal, if f(z) is non-dominated. The set of Pareto-optimal solutions is the Pareto
set (PS) ; its mapping in the objective space is the Pareto front (PF). The goal of multi-
objective optimization is to identify the Pareto set/front, or a good approximation of it
for large-size and difficult problems.



2.3 pMNK-Landscapes

The family of pMNK-landscapes constitutes a synthetic problem model used for
constructing tunable multi-objective multi-modal landscapes with objective correla-
tion (Verel et al., 2013). They extend single-objective NK-landscapes (Kauffman, 1993)
and multi-objective NK-landscapes with independent objective functions (Aguirre and
Tanaka, 2007). Candidate solutions are binary strings of size N, i.e. the solution space
is X = {0, 1}N. The objective function vector f = (fi,..., fi,..., fa) is defined as
£ {0,1}Y — [0,1]™ such that each objective function f; is to be maximized. As
in the single-objective case, each separate objective function value f;(x) of a solu-
tion z = (z1,...,%j,...,2n) is an average value of the individual contributions as-
sociated with each variable z;. Indeed, for each objective f;, i € {1,...,M}, and each
variable z;, j € {1,...,N}, a component function fi; : {0,1}**! — [0,1] assigns
a real-valued contribution to every combination of x; and its K epistatic interactions
{zj,,..., 2 }. These f;j-values are uniformly distributed in the range [0, 1]. Thus,
the individual contribution of a variable z; depends on its value and on the values of
K < N other variables {z;,,...,z;, }. The problem can be formalized as follows:

N
1 .
max fi(x):Nz.fij(mjalea"'axjx) ZG{L...,M}
i=1
st x;€{0,1} jefl,...,N}.

In this work, the epistatic interactions, i.e. the K variables that influence the con-
tribution of z,, are set uniformly at random among the (N — 1) variables other than z;,
following the random neighborhood model from Kauffman (1993). By increasing the
number of epistatic interactions K from 0 to (N — 1), problem instances can be grad-
ually tuned from smooth to rugged. In pMNK-landscapes, f;;-values additionally
follow a multi-variate uniform distribution of dimension M, defined by an M x M
positive-definite symmetric covariance matrix (c,,) such that ¢,, = 1 and ¢, = p for
all p,q € {1,..., M} with p # ¢, where p > ﬁ defines the correlation among the
objectives; see Verel et al. (2013) for details. The positive (respectively, negative) objec-
tives correlation p decreases (respectively, increases) the degree of conflict between the
different objective function values. The correlation coefficient p is the same between all
pairs of objectives, and the same epistatic degree K and epistatic interactions are set for
all the objectives.

2.4 Multi-objective Randomized Search Heuristics

In this paper, we consider two randomized search heuristics: (i) Global SEMO
(GSEMO) proposed by Laumanns et al. (2004), a simple elitist steady-state global
EMO algorithm (see Algorithm 1); and (ii) Pareto local search (PLS) proposed by Pa-
quete et al. (2004), a multi-objective local search (Algorithm 2). These algorithms
extend to the multi-objective case two conventional search heuristics, namely the
(14 1)—evolutionary algorithm and the hill-climbing local search algorithm, which are
often investigated in the theoretical literature on single-objective optimization. Though
their design is guided by simple heuristic rules, these algorithms are components of
many state-of-the-art multi-objective combinatorial optimization approaches (Ander-
sen et al., 1996; Paquete et al., 2004; Paquete and Sttitzle, 2006; Liefooghe et al., 2013a),
and their search dynamics typically reveal the complex behavior that we aim to further
understand in this paper. Both algorithms maintain an unbounded archive A of mu-
tually non-dominated solutions. This archive is initialized with one random solution
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Algorithm 1: GSEMO

1 Choose an initial solution z uniformly from X;

2 A+ {xo};

3 repeat

s | Select an element 2 out of A uniformly;

5 | Create 2’ by flipping each bit of « with probability 1/N;
6 A < non-dominated solutions from A U {z'};

7 until success V maxeval,

Algorithm 2: PLS

1 Choose an initial solution zy uniformly from X;

2 A+ {x()},'

3 repeat

4 Select a non-visited element = out of A uniformly;
5 | Create N (x) by flipping each bit of x in turns;

6 Flag x as visited;

7 A + non-dominated solutions from A U N (z);

s until all-visited \V success V maxeval;

from the solution space. Then, at each iteration, one solution is selected at random from
the archive, € A. In GSEMO, each binary variable from z is independently flipped
with rate - in order to produce an offspring solution z’. The archive is then updated
by keeping the non-dominated solutions from A U {z’}. In PLS, the solutions located
in the neighborhood of z are evaluated. Let A'(x) denote the set of solutions located at
a Hamming distance 1. The non-dominated solutions from A U N/ (z) are stored in the
archive, and the current solution z is then tagged as visited in order to avoid a useless
revaluation of its neighborhood. This process is iterated until a stopping condition is
satisfied. While for GSEMO there does not exist any explicit stopping rule (Laumanns
et al., 2004), PLS has a natural stopping condition which is satisfied when all the solu-
tions in the archive are tagged as visited.

In other words, while PLS is based on the exploration of the whole 1-bit-flip neigh-
borhood from z, GSEMO rather uses an ergodic operator, i.e. an independent bit-flip
mutation. This means that there is a non-zero probability of reaching any solution from
the solution space at every GSEMO iteration. This makes GSEMO a global optimizer
rather than a local optimizer as PLS. In this paper, we are interested in the runtime, in
terms of a number of function evaluations, until a (1 + ¢)—approximation of the Pareto
set is identified and is contained in the internal memory A of the algorithm, subject to
a maximum budget of function evaluations.

2.5 Estimated Runtime (ert)

Let € be a constant value such that € > 0. The (multiplicative) e-dominance relation (<)
can be defined as follows (Laumanns et al., 2002). For z,2’ € X, x is e-dominated
by 2’ (x <. ) iff fi(z) < (1 +¢)- fi(z'), Vi € {1,...,M}. The e-value then stands
for a relative tolerance that we allow within objective values. A set X¢* C X is a
(1 4+ e)—approximation of the Pareto set if for any solution z € X, there is one solu-
tion 2’ € X° such that + <. z/. This is equivalent to finding an approximation set
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whose multiplicative epsilon quality indicator value with respect to the (exact) Pareto
set is lower than (1 + ¢), see e.g., (Zitzler et al., 2003). Interestingly, under some gen-
eral assumptions, there always exists a (1 + ¢)-approximation, for any given ¢ > 0,
whose cardinality is both polynomial in the problem size and in 1 (Papadimitriou and
Yannakakis, 2000).

Following a conventional methodology from single-objective continuous black-
box optimization (Auger and Hansen, 2005), we measure algorithm performance in the
expected number of function evaluations to identify a (1 4 ¢)—approximation. How-
ever, as any heuristic, GSEMO or PLS can either succeed or fail to reach an accuracy of
in a single run. In case of success, we record the number of function evaluations until a
(1+¢)—approximation was found. In case of failure, we simply restart the algorithm at
random. Thus we obtain a “simulated runtime” (Auger and Hansen, 2005) from a set of
independent trials on each instance. Such performance measure allows us to take into
account both the success rate p, € (0,1] and the convergence speed of the algorithm
with restarts. Precisely, after (¢ — 1) failures, each one requiring T’y evaluations, and the
final successful run of T, evaluations, the total runtime is 7' = >"'_| T + T&. By taking
the expectation and by considering independent trials as a Bernoulli process stopping
at the first success, we have:

Bir] = (*22 ) £lry] + BT

In our case, the success rate p, is estimated with the ratio of successful runs over the
total number of executions (p;), the expected runtime for unsuccessful runs E[T}] is set
as a constant limit on the number of function evaluation calls T},,,5, and the expected
runtime for successful runs E[T}] is estimated with the average number of function
evaluations performed by successful runs:

t
1—ﬁs> 1 &
ert = - Toae + — T;
( Ds ts ;

where t, is the number of successful runs, and 7} is the number of evaluations for
successful run i. For more details, we refer to Auger and Hansen (2005).

3 Experimental Analysis

In this section, we examine the performance of GSEMO and PLS depending on the epis-
tatis, the objective space dimension, and the objective correlation of pPMNK-landscapes.

3.1 Experimental Setup

As problem instances, we consider pMNK-landscapes with an epistatic degree K €
{2,4,6,8,10}, an objective space dimension M € {2,3,5}, and an objective correla-
tion p € {-0.9,-0.7,—0.4,—0.2,0.0,0.2,0.4,0.7,0.9}, such that p > ﬁ This restric-
tion on p-values comes from the fact that the contributions of objective components
fij + {0,115+ — [0, 1] (see section 2.3), are sampled from a multi-variate normal distri-
bution whose covariance matrix has to be symmetric and positive-definite (Verel et al.,
2013). The problem size is set to NV = 18 in order to enumerate the solution space ex-
haustively. The solution space size is then | X | = 2'8. A set of 30 different landscapes are
independently generated at random for each parameter combination p, M, and K, for
a total of 3300 instances. They are made available at http: //mocobench.sf.net.
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Figure 1: Distribution of the estimated runtime ert (y-axis, fixed log-scale) w.r.t. objec-
tive correlation p (x-axis) for both algorithms (see right labels). Results are grouped by
problem non-linearity K (see top labels) and by number of objectives M (see legend).
Box-and-whisker plots give median and inter-quantile range; LOESS smooth curves
show trends.

The target tolerance is set at ¢ = 0.1. The time limit is set to Tynq, = 2V - 107! <
26 215 function evaluations without identifying a (1 + ¢)—approximation. Each algo-
rithm is executed 100 times per instance. From these 100 repetitions, the success rate and
the expected number of evaluations for successful runs, hence the estimated runtime
on the given instance, are computed. For the comparative analysis, we only consider
pairwise-complete cases, i.e. instances that have been solved by both algorithms. This
brings the total number of available observations to 2 874 per algorithm.

The algorithms have been implemented in C++ within the Paradiseo software
framework (Liefooghe et al., 2011), and the statistical analysis has been performed
with R (R Core Team, 2015).

3.2 Exploratory Analysis

The estimated runtime (ert) distribution across the experimental blocks that are de-
fined by each combination of benchmark parameters is presented in Figure 1. For both
algorithms, the ert clearly increases with the non-linearity (/) and the number of
objectives (M), whereas the trend w.r.t. the objective correlation (p) is a bit more com-
plex. Indeed, for a small K and a large M, the ert decreases when p increases. On
the contrary, for large K, problem instances seem to get harder when the objectives are
independent (p ~ 0) rather than anti-correlated (p < 0). This shows in the inverted
u-shape observed on the right side of the figure, which is particularly pronounced for
PLS. This is surprising because the cardinality of the Pareto set increases when ob-
jectives are conflicting (Verel et al., 2013). However, we observed that the e-value of
random approximation sets follows a similar u-shaped trend w.r.t. objective correla-
tion. Also, this e-value tends to increase with K. This holds for approximation sets
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Figure 2: Interaction plots between the average estimated runtime ert (y-axis, log-scale)
and the benchmark parameters, i.e. the objective correlation p (left), the number of
objectives M (center), and the problem non-linearity K (right, see titles). Results are
grouped by algorithm (see legend). The average value (lines) and the 0.95 confidence
interval (shaded areas) are evaluated through bootstrapping.

containing a constant number of randomly generated solutions. Moreover, we know
from Verel et al. (2013) that the number of Pareto local optimal solutions increases with
K and decreases with p. This could explain the relative advantage of PLS on problem
instances with positively correlated objectives. Notice also that the opposite is true for
the connectedness of the Pareto set: the smaller K and the larger p, the more clustered
Pareto optimal solutions are in the solution space.

Figure 2 displays the runtime aggregated over all the instance parameters (p, M, K)
but one. We clearly see that PLS is significantly outperforming GSEMO overall, and in
particular for positively correlated objectives. In fact, the runtime of PLS is shorter than
that of GSEMO in 88% of the instances. Compared against PLS, GSEMO requires more
than 17 000 additional function evaluations on average to identify a 1.1—approximation
of the Pareto set. The performance difference between the two algorithms seems to be
constant, except for large p and w.r.t. K. Notably, the ruggedness of the underlying
single-objective objective functions appears to have the highest impact on the search
performance. In particular, the ruggedness seems to have more impact on the per-
formance of GSEMO than PLS. In general, finding a (1 4 ¢)—approximation becomes
harder as the number of objectives grows and much harder for highly-rugged instances,
whereas the trend w.r.t. objective correlation is less clear, more algorithm-dependent.

In the following, we list the problem features that intuitively impact the perfor-
mance of randomized search heuristics for the class of pMNK-landscapes, and we ex-
plicitly assess their separate and joint effect on the runtime of PLS and GSEMO.

4 Features Characterizing Problem Difficulty

Question #1: What features might characterize multi-objective combinatorial landscapes?

In this section, we identify a number of general-purpose features, either directly ex-
tracted from the problem instance, or computed from the fitness landscape. Then, we
conduct a correlation analysis of feature pairs, showing how features relate to bench-
mark parameters and anticipating the interplay of those features in capturing the diffi-
culties of a problem instance.
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4.1 Benchmark Parameters

First, we consider the following parameters related to the definition of pMNK-
landscapes. Recall that in this analysis the problem size is kept constant to N = 18.

e Number of variable interactions (X): This gives the number of variable correla-
tions in the construction of p®MNK-landscapes. As it will be detailed later, although
the value of K cannot be retrieved directly from a black-box instance, it can be pre-
cisely estimated by some of the problem features described below.

e Number of objective functions (}/): This parameter represents the dimension of
the objective space in the definition of pPMNK-landscapes.

¢ Correlation between the objective function values (p): This parameter allows us
to tune the correlation between the objective function values in pPMNK-landscapes.
In our analysis, the objective correlation is the same between all pairs of objectives.

4.2 Problem Features from the Pareto Set

The fitness landscape features considered in our analysis are described below. We start
with some general features related to the Pareto set.

e Number of Pareto optimal solutions (npo): The number of Pareto optimal solu-
tions enumerated in the instance under consideration simply corresponds to the
cardinality of the (exact) Pareto set, i.e. npo = |PS|. The approximation set ma-
nipulated by any EMO algorithm is directly related to the cardinality of the Pareto
optimal set. For pMNK-landscapes, the number of Pareto optimal solutions typ-
ically grows exponentially with the problem size, the number of objectives and
with the degree of conflict between the objectives (Verel et al., 2013).

¢ Hypervolume of the Pareto set (hv): The hypervolume value gives the portion of
the objective space that is dominated by the Pareto set (Zitzler et al., 2003). We take
the origin as a reference point z* = (0.0, ...,0.0).

e Average distance between Pareto optimal solutions (avgd): This metric corre-
sponds to the average distance, in terms of Hamming distance, between any pair
of Pareto optimal solutions.

¢ Maximum distance between Pareto optimal solutions (maxd): This metric is the
maximum distance between two Pareto optimal solutions in terms of Hamming
distance. This feature is denoted as the diameter of the Pareto set by Knowles and
Corne (2003).

e Proportion of supported solutions (supp): Supported solutions are Pareto opti-
mal solutions whose corresponding objective vectors are located on the convex
hull of the Pareto front. Notably, non-supported solutions are not optimal with
respect to a weighted-sum aggregation of the objective functions, whatever the
setting of the (positive) weighting coefficient vector. As a consequence, the pro-
portion of supported solutions on the Pareto set has a direct impact on the ability
of scalar approaches to find a proper Pareto set approximation. However, this
feature is expected to have a low impact on the performance of dominance-based
EMO approaches like GSEMO and PLS.
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4.3 Problem Features from the Pareto Graph

In the following, we describe some problem features related to the connectedness of the
Pareto set (Ehrgott and Klamroth, 1997; Gorski et al., 2011). If all Pareto optimal so-
lutions are connected with respect to a given neighborhood structure, the Pareto set is
said to be connected, and local search algorithms would be able to identify all Pareto
optimal solutions by starting with at least one of them; see e.g., Andersen et al. (1996);
Paquete et al. (2008); Paquete and Sttitzle (2009); Liefooghe et al. (2013a). We follow
the definition of d-Pareto graph from Paquete et al. (2008). The d-Pareto graph is de-
fined as a graph PGy = (V, E), where the set of vertices ' contains all Pareto optimal
solutions, and there is an edge e;; € I between two nodes ¢ and j if and only if the
shortest distance between solutions z; and z; € X is below a bound d, i.e. d(x;, ;) < d.
The distance d(x;,x;) is taken as the Hamming distance for pMNK-landscapes. This
corresponds to the bit-flip neighborhood operator. The connectedness-related problem
features under investigation are given below.

e Relative number of connected components (ncomp): This metric is the number of
connected components in the 1-Pareto graph (PG 4=1), normalized by the number
of Pareto optimal solutions.

e Proportional size of the largest connected component (1comp): This corresponds
to the proportion of Pareto optimal solutions that belong to the largest connected
component in the 1-Pareto graph PGg—;.

e Minimum distance to connect the Pareto graph (dconn): This measure corre-
sponds to the smallest distance d such that the d-Pareto graph is connected, i.e. for
all pairs of vertices (z;, ;) € V2 in PG, there exists a path between z; and zj.

4.4 Problem Features from Ruggedness and Multi-modality

At last, we consider problem features related to the number of local optima, the length
of adaptive walks, and the autocorrelation functions.

e Number of Pareto local optima (nplo): A solution x € X is a Pareto local optimum
with respect to a neighborhood structure N if there does not exist any neighboring
solution 2’ € N (z) such that < z’; see e.g., Paquete et al. (2007). For pMNK-
landscapes, the neighborhood structure is taken as the 1-bit-flip, which is directly
related to a Hamming distance of 1. This metric reports the number of Pareto local
optima enumerated on the pMNK-landscape under consideration.

e Length of a Pareto-based adaptive walk (1adapt): We compute here the length
of adaptive walks by means of a very basic single solution-based Pareto-based Hill-
Climbing (PHC) algorithm. The PHC algorithm is initialized with a random solu-
tion. At each iteration, the current solution is replaced by a random dominating
neighboring solution. As a consequence, PHC stops on a Pareto local optimum.
The number of iterations, or steps, of the PHC algorithm is the length of the Pareto-
based adaptive walk. As in the single-objective case, the number of Pareto local
optima is expected to increase exponentially when the adaptive length decreases
for pMNK-landscapes (Verel et al., 2013).

e First autocorrelation coefficient of solution hypervolume (corhv): The rugged-
ness is measured here in terms of the autocorrelation of the hypervolume along a
random walk. As explained in Section 2.1, the correlation length 7 measures how
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Table 1: Summary of pMNK-landscape benchmark parameters and problem instance
features investigated in the paper.

Benchmark parameters (3)

p Correlation between the objective function values
M Number of objective functions
K Number of variable interactions (epistatis)

Problem features (12)

npo Number of Pareto optimal solutions (Knowles and Corne, 2003)
hv  Hypervolume (Zitzler et al., 2003) of the Pareto set (Aguirre and Tanaka, 2007)
avgd Average distance between Pareto optimal solutions (Liefooghe et al., 2013b)
maxd Maximum distance between Pareto optimal solutions (Knowles and Corne, 2003)
supp Proportion of supported solutions in the Pareto set (Knowles and Corne, 2003)
nplo Number of Pareto local optima (Paquete et al., 2007)
ladapt Length of a Pareto-based adaptive walk (Verel et al., 2013)
ncomp Relative number of connected components (Paquete and Stiitzle, 2009)
lcomp Proportional size of the largest connected component (Verel et al., 2011)
dconn  Minimal distance to connect the Pareto graph (Paquete and Stiitzle, 2009)
corhv  First autocorrelation coefficient of solution hypervolume (Liefooghe et al., 2013b)
corlhv First autocorrelation coefficient of local hypervolume (Liefooghe et al., 2013b)

the autocorrelation function, estimated with a random walk, decreases. The auto-
correlation coefficients are computed here with the following scalar fitness func-
tion ¢ : X — R: ¢(z) = hv({z}), where hv({z}) is the hypervolume of solution
x € X, the reference point being set to the origin. The random walk length is set
to ¢ = 10%, and the neighborhood operator is the 1-bit-flip.

o First autocorrelation coefficient of local hypervolume (corlhv): This metric is
similar to the previous one, except that the fitness function is based here on a
local hypervolume measure. The local hypervolume is the portion of the objec-
tive space covered by non-dominated neighboring solutions, i.e. for all # € X,
¢(x) = hv(N(z) U {z}). Similarly to corhv, the random walk length is set to
¢ = 10%, and the neighborhood operator N is the 1-bit-flip.

The benchmark parameters defining pMNK-landscapes and a total of twelve general-
purpose problem features are summarized in Table 1. Notice that most of those features
require the solution space to be enumerated exhaustively, with the exception of bench-
mark parameters as well as 1adapt, corhv and corlhv. For this reason, they are not
practical for a performance prediction purpose. However, we decided to include them
because our aim is to examine their impact on the algorithm performance.

4.5 Correlation between Problem Features

Question #2: How do features relate to benchmark parameters? How do they relate to one
another? Are they linearly dependent?

The correlation matrix between each pair of features is reported in Figure 3. In view of
fitting linear models in the next stage of our analysis, we use here the Pearson linear

13



*kk *kk *kk *kk *kk *kk *kk *kk Kkk *kk *kk *kk *kk

0.13 | 0.14 |-0.97 | 0.14 | -0.29 | -0.59 | -0.58 | -0.01 | -0.36 | 0.38 |-0.73| 0.58 | -0.5 | 0.98 |corlhv

*kk *kk *kk *kk *kk *kk *kk *kk *kk *kk *kk

0 0.03 | -0.99| 0.15 | -0.23 |-0.59 | -0.6 | -0.08 | -0.33 | 0.36 | -0.75| 0.59 |-0.51 | corhv

S

*kk *kk *kk *kk *kk *kk *kk *kk Kkk *kk *kk *kk

0.2 |-0.22| 052 |-0.48| 0.42 | 0.58 | 0.91 | 0.33 |-0.14 | 0.12 | 0.65 |-0.49 |dconn

=
H
|
-

o ] 8

*kk *kk *kk *kk *kk *kk *kk *kk *kk *kk

0.21 | 0.11 | -0.6 0 -0.19 | -0.66 | -0.48 | 0.17 |-0.26 | 0.28 | -0.54 |lcomp |\ .-

*kk *kk Fkk Fkk Fkk Fkk *kk *kk *kk Kkk

0.26 | -0.28| 0.77 |-0.64| 053 | 0.34 | 0.68 | 0.43 |-0.22| 0.2

*kk *kk Fkk Fkk Fkk Fkk *kk *kk

ncomp
0.65 | -0.22|-0.34|-0.78 | 0.33 |-0.58| 0 | 0.69 |-0.99 |ladapt o
*kk *kk *kk *kk Fokke Fokke Hkk P
-0.69| 0.18 | 0.31 | 0.79 | -0.29 | 0.56 | -0.02 | -0.73 log.nplg

e
0.86 | 0.22 | 0.09 |-0.75| 0.05 | -0.26 | 0.28 | SuPP \//

4
s

o ST
A%

£ |7

3
‘
s Jis
i
3
'
e o

b
o
o

iy .
I
agpbmpisns
[ ST
o

*kk *kk *kk *kk *kk

0.15 | -0.17| 0.61 | -0.39| 0.38

Fl

-0.24| 0.07 | 0.59 | 0.28 | 0.01

R I I P o 7 Pt BN s e g e
ok N ' ] 28 . £ oonsat
0.01 /2 J 7 ol = \
*kk S — — ; e
oee ﬁi& e e
P = \‘:;_.J 3

i
A i

Figure 3: Correlation matrix between all pairs of features. The feature names are re-
ported on the diagonal. For each pair of features, scatter plots and smoothing splines
are displayed below the diagonal, and the corresponding linear correlation coefficients
are reported above the diagonal. In the upper panel, the correlation coefficient is tested
against the null hypothesis of zero correlation. The resulting Bonferroni-corrected
p—value is symbolically encoded at the levels 0.05 (*), 0.01 (**), and 0.001 (***).

correlation coefficient. First, the number of objectives M is moderately correlated with
the cardinality of the Pareto set log(npo). So is the objective correlation p (the absolute
correlation coefficient is around 0.5 in both cases). Surprisingly, none of these features
alone (M or p) can explain the number of non-dominated solutions. This means that the
objective space dimension does not justify by itself the large amount of non-dominated
solutions found in many-objective optimization problems (Wagner et al., 2007). As
pointed out by Verel et al. (2013), the degree of conflict between the objective function
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values has also to be taken into account. In fact, a multi-linear regression to predict
log(npo) based on both M and p can explain 70% of the log(npo) variance, with a high
correlation coefficient (0.84) between measured and fitted values. The regression coef-
ficients show that the number of Pareto optimal solutions increases with the number
of objectives and decreases with the objective correlation. As the combination of M
and p allows one to predict a large part of the (log-transformed) Pareto set cardinality
variance, we believe that, more generally, the impact of many-objective fitness land-
scapes on the search process cannot be analyzed properly without taking the objective
correlation into account. Furthermore, the number of objectives M is also highly corre-
lated with the hypervolume hv of the Pareto set (the absolute correlation coefficient is
0.89), whereas the features having the highest absolute correlation with p are the frac-
tion of supported solutions supp and the number of Pareto local optima log(nplo) (the
correlation coefficients are 0.86 and —0.69, respectively).

Problem features from the Pareto graph aim to characterize the topology of Pareto
optimal solutions. The relative number of connected components ncomp is positively
correlated with the minimal distance to connect all the components dconn (the corre-
lation coefficient is 0.65), whereas the relative size of the largest component 1comp is
negatively correlated with the number of components (—0.54). The minimal distance
is also highly correlated with the maximal Hamming distance between Pareto optimal
solutions maxd (over 0.9). Connectedness metrics appear to be mostly more correlated
with benchmark parameter K. For instance, the correlation coefficient between the rel-
ative number of components and K is 0.77. The number of Pareto optimal solutions
or the hypervolume of the Pareto front are not clearly correlated with Pareto graph
features. Indeed, the logarithm of the Pareto set size is negatively correlated with the
relative number of connected components (—0.64), but it is not correlated with the size
of the largest component.

Several features relate to and can characterize the ruggedness and the multi-
modality of the fitness landscape. For instance, the number of Pareto optimal solutions
npo and of Pareto local optima nplo are highly correlated (the correlation coefficient
of their log-transformed values is 0.79). Not surprisingly, the number of local optima
increases with the number of non-dominated solutions. Unfortunately, the number of
Pareto local optima cannot be computed without the full enumeration of the set of fea-
sible solutions. Nevertheless, its log-transformed value is highly linearly correlated to
the length of a Pareto-based adaptive walk 1adapt (the absolute correlation coefficient
is 0.99). This potentially allows one to estimate the number of Pareto local optima for
large-size problem instances; see Verel et al. (2013). On the contrary, the correlation
between the number of variable interactions (epistatis) K and the number of Pareto
global or local optima is low. Although those important features certainly depend on
the benchmark parameter K, that is not a direct linear relation. Other features are re-
quired to fully explain the number of optima. On these benchmark instances, the num-
ber of epistatic interactions K can be estimated by hypervolume-based autocorrelation
measures from random walks corhv and corlhv (the absolute correlation coefficients
are close to 1.0). Indeed, the autocorrelation coefficient is higher when the number of
epistatic interactions is low, as in the single-objective case (Weinberger, 1991).

This correlation matrix gives a “big picture” of some of the features that can de-
scribe the search space structure of a multi-objective combinatorial optimization prob-
lem. In the next section, we relate the value of those features for enumerable pMNK-
landscapes to the performance of both GSEMO and PLS on the same landscapes.
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Figure 4: Interaction plots between the average estimated runtime ert (y-axis, fixed log-
scale) and the instance features (x-axis, see titles). Results are grouped by algorithm (see
legend). Lines represent a locally-fitted polynomial function (LOESS).

5 Feature-based Analysis

In this section we link problem features to the estimated runtime of EMO algorithms.
First, we measure how strongly each individual feature is associated to performance
via a correlation analysis. Then, aiming to disentangle features contributions and their
importance in explaining search performance, we assess their conditional impact on
algorithm runtime by means of a multi-level, multi-linear regression model.

5.1 Correlation between Problem Features and Algorithm Performance

Question #3: Which features are ordinally associated with algorithm performance?

A first assessment of the dependency of the search performance on instance features
can be done through visual inspection of scatter plots, supported by a correlation anal-
ysis. Naturally, correlation does not imply causation and we do not draw any direct link
between each considered feature and the algorithm runtime, even if in our case the
eventual link could only go in one direction. Instead, we restrict ourself to measure the
association of each feature to the performance metric (ert). We quantify the strength
of this dependency via the Kendall’s 7 statistic (McLeod, 2011), since we want to assess
the accordance between the variation in algorithm performance and the variation in
problem features. This non-linear rank-correlation measure is based on the ordering of
all possible pairs, and its value is proportional to the difference between the number
of concordant and discordant pairs among all possible pairwise comparisons. As such,
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Figure 5: Performance-feature association. Points give Kendall’s 7 statistic for the
correlation between runtime and instance feature, evaluated on the whole set of in-
stances (red) or within instance groups (black, see legend). Group average values,
0.95 confidence intervals, and significance, are estimated with a ¢-test considering only
statistics that were significant at the group level. Group and overall significance are
based on Kendall’s test p—value at the 0.05 level (Hy : 7; = 0); see McLeod (2011).

when the null hypothesis of mutual independence (Hy : 7 = 0) is rejected, 7 can be
directly interpreted as the probability of observing agreement (7 > 0) or disagreement
(T < 0) between the ranks of paired values.

The scatter plots and the regressions (with local polynomial fitting) of the aver-
age runtime of both algorithms as a function of the instance features are provided in
Figure 4. In addition, Kendall’s 7 coefficients are given by the red points in Figure 5.
For both algorithms, the average distance between Pareto optimal solutions (avgd) is
highly positively correlated with ert: the larger this distance, the longer the runtime.
On the contrary, both ruggedness-related features based on measures of hypervolume
autocorrelation (corhv, cor1hv), and one feature related to the connectedness, i.e. the
size of the largest cluster in the Pareto set (Lcomp), are highly negatively correlated.
As expected, ruggedness and connectedness play a major role for both algorithms: the
runtime decreases with corhv and corlhv, and when a large number of Pareto opti-
mal solutions are connected in the solution space.

Some features have a different impact on the two algorithms, possibly highlighting
their respective strengths and weaknesses. In particular, the runtime of PLS increases
with the number of Pareto optimal and locally optimal solutions. Contrastingly, the
scatter plots show that having a high number of Pareto local optima has less impact
on GSEMO than on PLS. Moreover, the runtime of GSEMO is correlated with three
other features related to the distance and the connectedness of Pareto optimal solu-
tions (maxd, ncomp, dconn). Indeed, topological relationships between Pareto optimal
solutions have a large effect on the runtime of GSEMO, especially when the distance
between those solutions is large. Surprisingly, the runtime of PLS does not increase
when non-dominated solutions are disconnected.

However, we have to be careful when drawing conclusions by aggregating data
from different areas of the instance parameters space, since feature values and their
range depend, in turn, on the levels of p, M, and K. This can be visually appreciated
in Figure 4: the autocorrelation measures corhv and corlhv, for example, are clearly
clustered around five levels that actually correspond to the different K-values. Sim-
ilarly, we are able to distinguish three clusters in the hypervolume metric hv, which
actually follow the objective space dimension M.
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Therefore, we deepen the analysis by evaluating the correlation within the instance
groups defined by each possible combination of the (p, M, K)-values under study.
Black points and lines in Figure 5 display the average 7-value within groups, together
with the confidence interval associated with the mean. By comparing them with red
points, we can clearly notice how data aggregation slightly enhances the correlation
statistic in the corhv and corlhv case, leading to the same inference nonetheless. On
the contrary, although hypervolume is very weakly associated with runtime overall,
and that its impact is contradictory between GSEMO and PLS, group results are more
consistent, showing a strong positive association between ert and hv for both algo-
rithms. Unfortunately, as for features related to the connectedness of the Pareto set, our
confidence on the average correlation within groups is too low to make further com-
ments, mainly due to the fact that, in many cases, we could not reject the null hypothe-
sis of mutual independency at the group level. Nevertheless, the previous observations
on instance groups and their possible effect motivate the remainder of our analysis.

5.2 Linear Mixed Model

Question #4: How much of algorithm performance variance can features explain?

In this section, we aim to quantify the impact of instance features, and possibly disen-
tangle their individual contribution to the performance variance, by taking into account
the dependency among measurements that is induced by the experimental plan. Our
goal is precisely to generalize from it as much as possible, in order to make inferences
about the effect and relative importance of features. Let y; be the log-transformed esti-
mated runtime (ert) on the i-th problem instance. We treat y; as an observation from
a random variable Y with expectation E(Y) = p, i.e. y; = p + ¢; where ¢; are taken to
be independent, identically distributed, and zero-mean.

In a classical multi-linear regression, we would model p as a linear combination of
p predictors, notably (a subset of) the p problem instance features that we can measure.
Thus, the performance observation on instance i can be written as:

b
yi=Bo+ Y Brrkit+e & ~N(007)

k=1

where ¢; is the usual random term, i.e. the regression residual. In this model, perfor-
mance observations are supposed to be i.i.d. from a normal distribution y; ~ N (p1, 02).
However, as discussed in the previous sections, our observations are mostly clustered
around the different combinations of benchmark parameters; see Figure 1. In fact, a
simple linear regression on a dummy categorical predictor having a different level for
each combination of p, M, and K, would explain 84.51% and 86.85% of the ert vari-
ance of GSEMO and PLS, respectively.

Since we rather want to investigate the impact of instance features, we need to de-
compose that global performance variance into what is due to the grouping of bench-
mark parameters, from which we would like to generalize, and what is due to the ran-
domness involved in the instance generation process; namely for pMNK-landscapes,
the epistatic interaction links and their contributions to the objective values. That con-
veys the feature variance within the blocks of our experimental design. To this end,
instead of fitting an independent regression model for each instance group, we build a
linear mixed model with random effects for experimental blocks. In such a framework,
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the performance on instance i from group j can then be modeled as:

p
vij = Bo+ > Betwij + oy +ey ey ~N(0,0%)
f=1

where «; are i.i.d random variables, with a; ~ N(0,02) denoting the group effect. By
doing so, we suppose that features have the same impact across groups; in linear terms,
constant (fixed) slopes and random intercepts. Notice that estimates 3 and residuals &
will likely not be the same as in the previous model. Notice also that performance
observations are now i.i.d. conditionally on the grouping factor y;;|a; ~ N (1 + o, 02),
whereas the unconditional model y;; ~ N(u, 0% + 02) carries a dependency between
measurements of the same group. Hereby we also obtain the aforementioned variance
decomposition that shows which part of the observed performance variance can be
ascribed to the grouping of problem instances (Chiarandini and Goegebeur, 2010).

The usual approach to estimate the parameters of the unconditional model is the
restricted maximum likelihood method; see Faraway (2005) and Bates et al. (2014) for
theoretical and implementation details. In the following, we present the results of such
estimation on the full model comprising all instance features and for both algorithms.
In particular, each estimated 3; is tested against the null hypothesis Hy : 8; = 0,
whereas as for the group effect we only need to check Hy : 02 = 0. In the multi-
linear framework, the regression coefficients that are statistically significant allow us to
assess the runtime effect of each feature conditionally on all the others and, given the
random effect formulation, across experimental blocks.

Finally, in order to assess the accuracy of a regression model, the conventional R?
(ratio of variance explained by the regression) can be extended by taking into account
the variance decomposition that is specific to mixed models (Nakagawa and Schielzeth,
2013). We obtain a marginal R? yielding the proportion of variance explained by in-
stance features, and a conditional R*> which, despite its name, gives the proportion of
variance explained by the entire model, i.e. including the random effect of benchmark
parameter combinations. Marginal and conditional R? are respectively 0.617 and 0.919
for the regression modeling GSEMQO's ert, respectively 0.482 and 0.911 for PLS.

A note on multicollinearity. Multi-linear regression modeling rests on few key as-
sumptions, namely the usual normality of residuals and homogeneity of variance, but
also on predictors (linear) independence. In fact, linear correlation between two or
more predictors (collinearity) may produce unstable parameter estimates with high
standard errors. That is all the more problematic when the analysis goal is to determine
the individual contribution of each predictor in explaining the response variable. The
astute reader might have spotted collinearity in Section 4.5 and will be skeptical of the
regression results hereafter. Hence, we need to address this issue before going further.

In order to assess the degree of multi-collinearity, we calculate the widely-used
Variance Inflation Factor (VIF) (Fox and Monette, 1992). Classically, the VIF of a pre-
dictor p; is computed from the R? of the multi-linear model predicting p; from the
remaining covariates. That is to measure its redundancy w.r.t. all other predictors.
However, in the presence of clustered data, this redundancy has to be assessed condi-
tionally on the (random) group effects. Therefore, following Davis et al. (1986) and Har-
rell Jr (2016), we compute the VIFs from the variance-covariance matrix of the regres-
sion coefficients estimates, which in the case of a mixed model does take random ef-
fects into account. Results are reported in Figure 6. It appears that considering group
effects mitigates the consequences of collinearity to a degree that is reasonably accept-
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Figure 6: Variance inflation factor. For both regression strategies (see color legend), bars
show the multiplicative increase in uncertainty around each coefficient estimate w.r.t.
an ideal case in which predictors were linearly unrelated (Harrell Jr, 2016).

able, especially as compared to what would result from fitting a traditional multi-linear
model (O’brien, 2007). As a possible explanation for this, since some of the values of
certain predictors might only be observed in certain groups, what appears as collinear-
ity in multi-linear models might not pose problems in mixed models. Notably, such
has to be the case of the two most problematic predictors, the number of Pareto local
optima (nplo) and the length of adaptive walks (1adapt).

5.3 Predictor Effect Size

Question #5: What is the conditional impact of each feature on algorithm performance? What
are the significant common trends across instance groups?

We report in Figure 7 (Top) the values of the regression coefficients estimated from the
mixed model. In a multi-linear regression, each coefficient /3; predicts the change in
the conditional mean of the response variable after a unitary change of the correspond-
ing covariate x;. Since predictors have values in different ranges, in order to be able
to compare their impact we need to standardize the regression estimates, which are
reported in Figure 7 (Bottom). Standardized §; predict by how many standard devi-
ations the conditional mean of the response variable will change if predictor ¢ shifts
by one standard deviation. As such, higher values correspond to steeper slopes of the
partial regression lines where the given predictor is the only covariate and all other
predictors are held constant at their respective median value. This can be appreciated
on Figure 8. Partial residuals are also added to the plots for a visual assessment of
the model fit (Larsen and McCleary, 1972). For a given covariate z;, the correspond-
ing partial residuals are obtained by adding the vector x;3; to the vector of residuals
from the complete regression, such that the slope of a simple regression of the partial
residuals on z; would equal ;. This simple interpretation motivates the choice of a
multi-linear model.

For both algorithms, the features having the highest individual impact on the run-
time are the hypervolume (hv) and its autocorrelation measures (corhv and corlhv,
in order of importance). For GSEMO, the number of Pareto optimal solutions has a sig-
nificant effect on estimated runtime, the larger npo the shorter ert, whereas we cannot
reject the hypothesis that the number of Pareto local optimal solutions has no effect on
GSEMO'’s ert. Still, the effect of the length of an adaptive walk (1adapt), which is
a good estimator for nplo (see Section 4.5), is significant for GSEMO. Conversely, the
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Figure 7: Conditional impact of instance features on the log,,-transformed estimated
runtime in a mixed-effects multi-linear model. Top: Points and bars give, respectively,
the estimates and 0.95 confidence intervals of model parameters for intercept and fixed
effects 8; (Ho : i = 0); see Bates et al. (2014). Bottom: Bars and error bars give,
respectively, the standardized coefficients and standard errors of features’ effect size.

opposite is true for PLS: its runtime is more impacted by the problem multi-modality
than GSEMO. Indeed, the number of Pareto local optima nplo has one of the largest
effect sizes on PLS runtime (cf. Figure 7 — Bottom). This suggests that GSEMO could
be more appropriate than PLS when tackling highly multi-modal instances. This also
shows that, by taking group effect into account (i.e. conditionally on the problem in-
stance class), mixed models are able to distinguish between the effects of 1adapt and
nplo, which could be taken as surrogates for one another at the aggregate level.

Furthermore, the relative size of the largest connected component of the Pareto
set (Lcomp) impacts the performance of both algorithms. However, when controlling
for all other features (i.e. conditionally on all other predictors), we find that an increase
in the Pareto set connectedness yields a small increase in the estimated runtime. Sur-
prisingly also, the fraction of supported solutions (supp) is a significant predictor for
both algorithms, even if none of them explicitly exploits this feature during the search
process and the impact on runtime is very small indeed. Finally, despite being highly
correlated with ert, the average distance between non-dominated solutions (avgd)
has only a moderate impact on GSEMO and no significant impact on PLS.

5.4 Relative Importance of Predictors

Question #6: Which features are relevant predictors of algorithm performance?

Variable importance is commonly assessed via feature selection. However, stepwise se-
lection can be misleading: intercorrelated predictors have a confounding effect on each
other, but what the multi-linear regression tries to measure is precisely the effect of one
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Figure 8: Partial regression plots, also called conditional plots, displaying the result of
the mixed model fitting for each explanatory variable (Wickham, 2009; Breheny and
Burchett, 2015). The regression models the log-transformed estimated runtime (y-axis)
as a multi-linear function of problem instance features (x-axis, see titles). Lines repre-
sent partial regressions, points represent partial residuals from the multi-linear model
fit. Results are grouped by algorithm (see color legend).

variable controlling for the others (i.e. fixing all the others), which leads to a poor estima-
tion in the presence of collinearity. In an information theoretical framework, the Akaike
Information Criterion (AIC) (Akaike, 1973) measures the relative quality of a model on
a given dataset, not in terms of accuracy, but in terms of likelihood, i.e. the relative
distance to the unknown true mechanism generating the observed data. The difference
in AIC-values between two models can then be used to estimate the strength of evi-
dence for one model against the other. On a set of alternate models, AIC differences
can be transformed into so-called Akaike weights, which can be directly interpreted as
the probability for each model to be the “best” one, conditionally on the considered set
of models (Burnham and Anderson, 2002). In this context, instead of performing fea-
ture selection, variable importance can be better assessed by making inference from all
candidate models (Burnham and Anderson, 2004). We perform an exhaustive search in
the space of all 2 models that can be built with our p predictors. The sum of Akaike
weights of the 2(P~1) models that contain a given predictor can give us an estimation of
the relative importance of that particular variable. Admittedly, intercorrelated predic-
tors can still be confounded depending on the regression model under consideration,
but this methodology avoids the biases of stepwise feature selection.

Results are reported in Figure 9. The hypervolume of the Pareto front (hv), and the
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Figure 9: Relative importance of instance features as performance predictors in a linear
mixed model. Each bar displays, among all 2P possible models, the sum of the Akaike’s
weights of the 2(P~Y) models including the given feature (Barton, 2014).

first autocorrelation coefficient of solution and local hypervolume (corhv, corlhv)
are strong explanatory features for both algorithms, albeit in different order of rela-
tive importance. Indeed, notice that the two autocorrelation mesures of ruggedness
are considered to be both important in the prediction. These two features are highly
correlated with each other (see Figure 3), and we can observe that their respective coef-
ficients in the linear models have nearly the same value (see Figure 7). It is interesting to
highlight that, as in single-objective optimization, the ruggedness of the multi-objective
landscape is an important performance predictor for both algorithms.

More features are relatively important predictors for GSEMO than for PLS. Fea-
tures reflecting the connectedness of the Pareto set are important for GSEMO, which
navigates the search space with an ergodic variation operator. On the contrary, the
same features carry little information about the runtime of PLS, which is constrained
by the exploration of a finite neighborhood. Moreover, the number of Pareto optimal
solutions (npo), the adaptive walk length (1adapt), and the relative size of the largest
component (1comp) can also be considered as important features for GSEMO, whereas
the number of Pareto local optima (nplo) is the second most-important predictor for
PLS. Let us remind that the log-transformed number of Pareto local optima and the
length of an adaptive walk are highly correlated (see Figure 3). In this case, only one
of these two features is preferred by the regression models: the number of Pareto local
optima is more important for PLS, and the length of adaptive walk is more important
for GSEMO. In any case, our results show that, in multi-objective optimization as well,
the problem multi-modality actually gives a good indication of the problem difficulty.

5.5 Hierarchical Linear Models

Question #7: Does the impact of features on algorithm performance change with landscape
ruggedness? Can ruggedness be used to explain changes across instance groups?

So far, we considered a multi-linear model to study the conditional effects of land-
scape features on algorithm runtime, assuming these effects to be fixed across instance
classes or groups, but each group having a different random baseline. Random inter-
cepts allow for variability in baseline algorithm performance across instance classes,
i.e. at the level of instance groups, whereas fixed regression slopes estimate the impact
of features on performance at the instance level. The next logical step is to allow for
variability also in the effect of landscape features across instance groups, and to try to
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explain these variations using class characteristics, such as the degree of epistasis K.
To this purpose, we shall reformulate our model as a multi-level model.

For simplicity, let us focus on a single feature x;. At the instance level (level 1),
algorithm performance y;; on problem instance ¢ from group j can be rewritten as:

Yij = Poj + P1z1ij + €45 gij ~ N(0,0%)

(notice the group-dependent intercept ;). At the group level (level 2), we can write:

Boj = Yoo + uoj ug; ~ N (0, 700)
B1 = Y0

where u; (previously «;) is the group-level random effect describing the deviation of
the intercept of group j from the common mean intercept oo (previously, simply So).
The random intercept variance 9 accounts for the heterogeneity in the baseline per-
formance due to the fact that instance groups are created from different combinations
of benchmark parameter values p, M, and K.

However, we could also allow for slope variability across instance groups (i.e. vari-
ability in the effect of features on performance). In this case the level 1 model becomes:

Yij = PBoj + By + ey ey ~N(0,07%)

(notice the group index j on both intercept and slope), and the level 2 becomes:

Boj = Yoo + uo; |:u0j:| ~ N ({0} {Too T10})
2 5

Brj =10 + u; U1 0" |T10 711
where the additional random effect u;; describes the difference between the slope of
instance-group j and the common mean slope ;9. We assume this difference to be
normally distributed with zero mean and variance 7. Indeed, group effects are treated
here as random variables: the only inferences we can make about them, are relative to
their variance and covariance. What can we say then about instance classes?

To answer such a question, we need to introduce predictors from the instance class
level in a way that expresses slopes and intercepts as outcomes of benchmark parame-
ters. In other words, we need to explain some of the variability in the impact of land-
scape features on algorithm performance as a function of instance class characteristics,
such as the number of epistatic links K. Hence, we allow for a given landscape feature
to have a varying effect on algorithm performance depending on the instance class,
and at the same time we can predict this effect for each value of the class characteristic
under study. If we indicate this group feature by w, the level 2 model becomes:

Boj = Yoo + Yorw; + uo; |:u0j:| ~ N ([O} [Too TlO])

B1j = Y10 + Y11w; + Uy U1, 0] |10 711

where the random effects uy; and u;; have the same structure as in the previous model,
but hopefully their residual variance will be reduced by taking the level 2 predic-
tor w into account, since part of the heterogeneity in intercepts and slopes will be ex-
plained by the additional w; terms. Essentially, bar the random terms, this model is
expressed as a traditional regression with cross-level interaction between group-level
and individual-level predictors, as it would be clear by substituting level 2 equations
into the level 1 equation. The random terms, for their part, reflect the clustered struc-
ture from the data: the classical regression assumption of mutually independent obser-
vations would be violated otherwise. Moreover, the statistical literature suggests that
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Figure 10: Cross-sectional plots visualizing the effects of hypervolume and problem
non-linearity K on estimated runtime in a hierarchical linear mixed model. Regression
lines and partial residuals are given for each K-value (see titles) and for both algorithms
(see color legend).

mixed models with the maximal random structure justified by the experimental design,
are the ones with the best potential to produce generalizable results (Barr et al., 2013).

5.6 Multi-level Analysis

More concretely, let us focus on problem non-linearity K as instance class characteris-
tic, which we treat as a categorical variable with values in {2, 4, 6,8,10}. As a result of
this choice, the level 2 predictor w is encoded as a series of dummy variables, one for
each K-value in {4, 6, 8,10}. Model fitting would then yield a series of 1/ and 11/ co-
efficients, two for each dummy variable, which we can interpret in the following way:
~Yo1x4 and vy11x4 represent, respectively, the difference in average intercept and aver-
age slope between problem instances with K = 4 and problem instances with K = 2;
7Yo1x6 and v11x6 represent the difference in average intercept and average slope be-
tween problem instances with K = 6 and problem instances with K = 2, and so forth.
These average slopes and average intercepts, i.e. the partial regression lines for a given
value of problem non-linearity K, can be visualized through so-called cross-sectional
plots, as in any regression that includes predictor interactions. Such plots allow us to
see how the relationship between runtime and the feature of interest changes depend-
ing on the degree of epistasis of the problem.

In Sections 5.3 and 5.4, we identified the hypervolume (hv) and its autocorrelation
measures (corhv and corlhv) to have the highest impact on the estimated runtime of
both GSEMO and PLS. We also showed how both algorithms are impacted differently
by the multi-modality of a problem instance, as measured by the number of Pareto lo-
cal optima (nplo) or by the length of a Pareto-based adaptive walk (1adapt). In the
following, we want to see if, and how, the effect of those features changes depend-
ing on K. Indeed, the ruggedness of the objective functions is often overlooked in
the multi-objective optimization literature, but here we are able to exploit the tunable
nature of pPMNK-landscapes.

First, Figure 10 displays the effect of hypervolume on runtime depending on K,
as captured by a multi-level model: a simple regression of runtime on hypervolume
with hypervolume-epistasis interaction and random deviations in slope and intercept
for each instance group. The general trend is the same as in the multi-linear model of
Section 5.3: the larger the hypervolume of the (exact) Pareto set to be approximated,
the longer the runtime required to find a (1 + ¢)-approximation of it. However, we now
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Figure 11: Cross-sectional plots visualizing the effects of adaptive walks’ length and
problem non-linearity K on estimated runtime in a hierarchical linear mixed model.
Regression lines and partial residuals are given for each K-value (see titles) and for
both algorithms (see color legend).

clearly see that this effect is milder on smoother landscapes, while it becomes more
pronounced as the degree of epistasis increases, i.e. as the problem instance gets more
rugged. This trend is similar for both GSEMO and PLS.

Next, Figure 11 displays the effect of the length of a Pareto-based adaptive walk on
the algorithm runtime depending on K. In this case, the two EMO algorithms show a
divergent behavior in the way the ruggedness of the objective functions interacts with
the multi-modality of the multi-objective optimization problem. For both GSEMO and
PLS, the common trend is as follows: the shorter 1adapt, i.e. the larger the expected
number of Pareto local optima, the longer the estimated runtime to find a good ap-
proximation of the exact Pareto set. But while the impact of multi-modality on GSEMO
is rather small and does not seem to depend on K, PLS is comparatively much more
affected by the number of Pareto local optima, as the impact of multi-modality on run-
time increases with the ruggedness parameter K. For both algorithms, the larger the
degree of epistasis, the longer the runtime. However, on more rugged landscapes, the
local EMO algorithm (PLS) appears to be increasingly more effective than its global
counterpart (GSEMO) when the problem under consideration has few Pareto local op-
tima.

At last, let us notice that the data does not support a multi-level analysis consid-
ering K and the autocorrelation measures of hypervolume corhv and corlhv. In-
deed, the values of those predictors are too tightly tied to the ruggedness parameter
K and thus, once we control for K, the residual variance is too low to allow for any
meaningful analysis. For this reason, related figures are not shown in the paper. How-
ever, the observations obtained from our multi-level analysis surely complement those
from Section 5.3, where the focus was on instance features alone, and where reasons
of model-fitting convergence did not allow us to have random slopes and a cross-level
interaction term for each feature.

6 Conclusions

In this paper, we proposed a general-purpose methodology to understand the impact
of problem characteristics and fitness landscape features on the performance of EMO
algorithms. To the best of our knowledge, this is novel in the multi-objective opti-
mization literature. Our statistical investigation, based on correlation and regression
analysis, does stem from the intuitions we may have about problem features and how
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they might relate to algorithm performance. But our conclusions are quantitatively
supported by empirical data, coming from a large set of experiments (albeit on a single
testbed of enumerable instances), and covering a wide range of the structural proper-
ties that EMO algorithms might encounter. In addition, the use of mixed models allows
us to respect the clustered structure of the particular dataset (different instance groups,
defined by the combinations of benchmark parameters), while still aiming to produce
generalizable inferences: instance groups are modeled as random effects, whereas the
interest is on the fixed effects of problem features on algorithm performance at the in-
stance level. Through these mixed models, we assess and contrast the impact of land-
scape characteristics on the runtime of two prototypical EMO algorithms.

In particular, our analysis on pMNK-landscapes emphasizes the importance of
ruggedness and multi-modality as the more impactful characteristics for both local and
global dominance-based EMO algorithms. Although the significance of those features
is certainly recognized in single-objective optimization, this is in our opinion often
overlooked in the multi-objective optimization literature. Indeed, those features in-
teract differently on the runtime of the considered EMO algorithms, with the Pareto
local search algorithm showing a competitive advantage when the landscape is rugged
but Pareto local optima are few. In addition, the hypervolume covered by the optimal
Pareto set is also reported as a key feature to explain the runtime of both EMO algo-
rithms under consideration. We could attribute this to the chosen stopping criterion,
a quality threshold on the approximation set measured in terms of epsilon distance to
the optimal Pareto front.

As for the choice of problem instances, we reckon the family of pMNK-landscapes
as a synthetic benchmark that can generalize other multi-objective combinatorial op-
timization problems, as NK-landscapes do in the single-objective case (Heckendorn
and Whitley, 1997). However, we must acknowledge that the obvious next step is
to consider additional (large-size) problem and algorithm classes, and more impor-
tantly additional (even multiple) stopping conditions and quality assessment indica-
tors, in order to further generalize the current findings. For instance, considering a
(14 ¢)—approximation of the Pareto set as a target is indeed just one way of measuring
performance. In any case, it is our hope that the proposed methodology will be helpful,
not only to the practitioner who wants to gain insights about his/her problem classes,
but also to the algorithm designer. In fact, understanding the performance of EMO
algorithms is a necessary step before improving them, for example by comparing the
impact on algorithm performance of different operators (i.e. different landscapes) or of
different selection mechanisms, depending on the problem characteristics. This might
not only help us to have a better understanding of the respective strengths and weak-
nesses of multi-objective optimization algorithms, but it might also lead us to predict
their expected performance on a black-box problem instance.
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