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Estimation of linear operators from scattered impulse responses

Jérémie Bigot∗ Paul Escande† Pierre Weiss‡

October 13, 2016

Abstract

We provide a new estimator of integral operators with smooth kernels, obtained from a
set of scattered and noisy impulse responses. The proposed approach relies on the formalism
of smoothing in reproducing kernel Hilbert spaces and on the choice of an appropriate reg-
ularization term that takes the smoothness of the operator into account. It is numerically
tractable in very large dimensions. We study the estimator’s robustness to noise and analyze
its approximation properties with respect to the size and the geometry of the dataset. In
addition, we show minimax optimality of the proposed estimator.

Keywords: Integral operator, scattered approximation, estimator, convergence rate, numerical
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1 Introduction

Let Ω denote a subset of Rd and H : L2(Ω) → L2(Ω) denote a linear integral operator defined
for all u ∈ L2(Ω) by:

Hu(x) =

∫
Ω
K(x, y)u(y)dy, (1.1)
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where K : Ω× Ω→ R, is the operator’s kernel. Given a set of functions (ui)1≤i≤n, the problem
of operator identification consists of recovering H from the knowledge of fi = Hui + εi, where
εi is an unknown perturbation.

This problem arises in many fields of science and engineering such as mobile communication
[13], imaging [11] and geophysics [3]. Many different reconstruction approaches have been devel-
oped, depending on the operator’s regularity and the set of test functions (ui). Assuming that
H has a bandlimited Kohn-Nirenberg symbol and that its action on a dirac comb is known, a
few authors proposed extensions of Shannon’s sampling theorem [13, 14, 19]. Another recent
trend is to assume that H can be decomposed as a linear combination of a small number of
elementary operators. When the operators are known, recovering H amounts to solving a linear
system. The work [7] analyzes the conditioning of this linear system when H is a matrix applied
to a random Gaussian vector. When the operator can be sparsely represented in a dictionary of
elementary matrices, compressed sensing theories can be developed [20]. Finally, in astrophysics,
a few authors considered interpolating the coefficients of a few known impulse responses (also
called Point Spread Functions, PSF) in a well chosen basis [11, 16, 6]. This strategy corresponds
to assuming that ui = δyi and it is often used when the PSFs are compactly supported and have
smooth variations. Notice that in this setting, each PSFs is known independently of the others,
contrarily to the work [19].

This last approach is particularly effective in large scale imaging applications due to two use-
ful facts. First, representing the impulse responses in a small dimensional basis allows reducing
the number of parameters to identify. Second, there now exist efficient interpolation schemes
based on radial basis functions. Despite its empirical success, this method still lacks of solid
mathematical foundations and many practical questions remain open:

• Under what hypotheses on the operator H can this method be applied?

• What is the influence of the geometry of the set (yi)1≤i≤n?

• Is the reconstruction stable to the pertubations (εi)1≤i≤n? If not, how to make robust
reconstructions, tractable in very large scale problems?

• What theoretical guarantees can be provided in this challenging setting?

The objective of this work is to address the above mentioned questions. We design a robust
algorithm applicable in large scale applications. It yields a finite dimensional operator estimator
of H allowing for fast matrix-vector products, which are essential for further processing. The
theoretical convergence rate of the estimator as the number of observations increases is studied
thoroughly. An illustration of the problem and the output of the proposed algorithm is provided
in Figure 1.

The outline of this paper is as follows. We first specify the problem setting precisely in
Section 2. We then describe the main outcomes of our study in Section 3. We provide a detailed
explanation of the numerical algorithm in Section 4. Finally, the proofs of the main results are
given in Section 5.
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(a) Exact operator (b) The data set (c) Reconstructed operator

(d) Sharp image
256× 256

(e) Degraded image
pSNR = 19.17dB

(f) Restored image
pSNR = 21.20dB

Figure 1: Top: Reconstruction of a 2D spatially varying blur operator. (a): The
exact operator applied to a 2D dirac comb. (b): 64 impulse responses corrupted by
additive white Gaussian noise. (c): reconstructed operator. Bottom: a deconvolution
experiment. (d): original image. (e): blurry and noisy image. (f): deblurred im-
age using the operator reconstructed in Figure (c). The operator’s impulse responses
are Gaussians with covariance matrices Σ(y1, y2) = diag

(
σ2(y1, y2), σ2(y1, y2)

)
where

σ(y1, y2) = 1 + 2 max (1− y1, y1) for (y1, y2) ∈ [0, 1]2.
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2 Problem setting

In this section, we precisely describe the problem setting. We assume that Ω ⊂ Rd is a bounded,
open, and connected set, with Lipschitz continuous boundary. The value of a function f at x is
denoted f(x), while the i-th value of a vector v ∈ RN is denoted v[i]. The (i, j)-th element of a
matrix A is denoted A[i, j]. The Sobolev space Hs(Ω) is defined for s ∈ N by

Hs(Ω) =

{
u ∈ L2(Ω), ∂αu ∈ L2(Ω), for all multi-index α ∈ Nd s.t. |α| =

d∑
i=1

α[i] ≤ s

}
. (2.1)

The space Hs(Ω) can be endowed with a norm ‖u‖Hs(Ω) =
(∑

|α|≤s ‖∂αu‖2L2(Ω)

)1/2
and the semi-

norm |u|Hs(Ω) =
(∑

|α|=s ‖∂αu‖2L2(Ω)

)1/2
. In addition, we will use the equivalent Beppo-Levi

semi-norm defined by |u|2BLs(Ω) =
∑
|α|=s

s!
α1!α2!...αd!‖∂

αu‖2L2(Ω) and the Beppo-Levi semi-inner
product defined by

〈f, g〉BLs(Ω) =
∑
|α|=s

s!

α1!α2! . . . αd!
〈∂αf, ∂αg〉L2(Ω). (2.2)

2.1 Space varying impulse response regularity

An integral operator can be represented in many different ways. A key representation in this
paper is the Space Varying Impulse Response (SVIR) S : Ω× Ω→ R defined by:

S(x, y) = K(x+ y, y). (2.3)

The impulse response or Point Spread Function (PSF) at location y ∈ Ω is defined by S(·, y).
The SVIR encodes the impulse response variations in the y direction, instead of the (x − y)
direction for the kernel representation, see Figure 2 for a 1D example. It is convenient, since
in many applications, the smoothness of S in the x and y directions is driven by completely
different physical phenomena. For instance, in astrophysics, the regularity of S(·, y) depends on
the optical system, while the regularity of S(x, ·) may depend on exteriors factors such a weak
gravitational lensing [6]. This property will be expressed through specific regularity assumptions
of S defined hereafter.

Let (φk)k∈N denote a Hilbert basis of L2(Ω) and Er(Ω) denote the following Hilbert space.

Definition 2.1. The space Er(Ω) is defined, for all r ∈ R and r > d
2 , as the set of functions

u ∈ L2(Ω) such that:

‖u‖2Er(Ω) =
∑
k∈N

w[k]|〈u, φk〉|2 < +∞, (2.4)

where w : N→ R∗+ is a weight function satisfying w[k] & (1 + k2)r/d.
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Figure 2: Two representations of an integral operator H acting on L2([0, 1]).

The kernel is defined by K(x, y) = 1√
2πσ(y)

exp
(
− 1

2σ(y)2 |x− y|
2
)

, where σ(y) =

0.05 (1 + 2 min(y, 1− y)). Left: kernel representation (see equation (1.1)). Right:
SVIR representation (see equation (2.3)).

This definition is introduced in reference to the Sobolev spaces Hm(Ω) on the torus Ω = Td,
which can be defined - alternatively to equation (2.1) - by:

Hm(Ω) =

{
u ∈ L2(Ω),

∑
k∈N

(1 + k2)m/d|〈u, φk〉|2 < +∞

}
, (2.5)

where the basis (φk) is either the Fourier basis or a wavelet basis with at least m+ 1 vanishing
moments (see e.g. [15, Chapter 9]). Definition 2.1 encompasses many other spaces. For instance,
it allows choosing a basis (φk)k∈N that is best adapted to the impulse responses at hand, by
using principal component analysis, as was proposed in a few applied papers [12, 4].

Assumption 2.1 (Impulse response regularity). In all the paper, we will assume the following
regularity condition.

sup
y∈Ω
‖S(·, y)‖Er(Ω) < +∞. (2.6)

When (φk)k∈N is a Fourier or a wavelet basis, condition (2.6) simplifies to S(·, y) ∈ Hr(Ω)
for all y ∈ Ω.

2.2 Smooth variations of the impulse responses

In addition to the impulse responses regularity Assumption 2.1, we need to state a regularity
condition for the impulse responses variations. In order to use fine approximation results based
on radial basis functions [2], we will use the following regularity condition.

Assumption 2.2 (Smooth variations). Throughout the paper, we assume that

∂βy S(x, ·) ∈ L2(Ω), ∀x ∈ Ω and for all multi-index β s.t. |β| ≤ s with s > d/2. (2.7)
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The condition s > d/2 ensures existence of a continuous representant of S(x, ·) for all x, by
Sobolev embedding theorems [21, Thm.2, p.124].

In the particular case Er(Ω) = Hr(Ω), the two assumptions 2.2 and 2.1 imply that S belongs
to the mixed-Sobolev space Hr,s(Ω × Ω) consisting of functions with ∂αxS ∈ L2(Ω × Ω) for all

multi-index |α| ≤ r and ∂βy S ∈ L2(Ω× Ω) for all multi-index |β| ≤ s.

2.3 Sampling model

The main purpose of this paper is the reconstruction of the SVIR of an operator from the
observation of a few impulse responses S(·, yi) at scattered (but known) locations (yi)1≤i≤n in
Ω. In applications, the PSFs S(·, yi) can only be observed through a projection onto an N
dimensional linear subspace VN . In this paper, we assume that the linear subspace VN reads

VN = span (φk, 1 ≤ k ≤ N) . (2.8)

In addition, the data is often corrupted by noise and we therefore observe a set of N dimensional
vectors (F εi )1≤i≤n defined for all k ∈ {1, . . . , N} by

F εi [k] = 〈S(·, yi), φk〉+ εi[k], 1 ≤ i ≤ n, (2.9)

where εi is a random vector with independent and identically distributed (iid) components with
zero mean and variance σ2.

The assumption that VN is defined using basis (φk) simplifies the analysis, since the repre-
sentation and observation bases coincide. It would be interesting for applications to consider
cases where VN is defined using another Hilbert basis, but we would then need to use the theory
of generalized sampling, which is significantly more involved (see e.g. [1]). We therefore leave
this question aside in this paper.

Finally, we will show that the approximation efficiency of our method depends on the geom-
etry of the set of data locations, and - in particular - on the fill and separation distances defined
below.

Definition 2.2 (Fill distance). The fill distance of Y = {y1, . . . , yn} ⊂ Ω is defined as:

hY,Ω = sup
y∈Ω

min
1≤j≤n

‖y − yj‖2. (2.10)

This is the distance for which any y ∈ Ω is at most at a distance hY,Ω of Y . It can also
be interpreted as the radius of the largest ball which is completely contained in Ω without
intersecting Y .

Definition 2.3 (Separation distance). The separation distance of Y = {y1, . . . , yn} ⊂ Ω is
defined as:

qY,Ω =
1

2
min
i 6=j
‖yi − yj‖2. (2.11)

This quantity gives the maximal radius r > 0 such that all balls {y ∈ Rd : ‖y − yj‖2} are
disjoints.
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Finally, the following condition will be shown to play a key role in our analysis.

Definition 2.4 (Quasi-uniformity condition). A set of data locations Y = {y1, . . . , yn} ⊂ Ω is
said to be quasi-uniform with respect to a constant B > 0 if

qY,Ω ≤ hY,Ω ≤ BqY,Ω. (2.12)

3 Main results

3.1 Construction of an estimator

Let F : Ω→ RN denote the vector-valued function representing the impulse responses coefficients
(IRC) in basis (φk)k∈N:

F (y)[k] = 〈S(·, y), φk〉. (3.1)

Based on the observation model (2.9), a natural approach to estimate the SVIR, consists in
constructing an estimate F̂ : Ω→ RN of F . The estimated SVIR is then defined as

Ŝ(x, y) =
N∑
k=1

F̂ (y)[k]φk(x), for (x, y) ∈ Ω× Ω. (3.2)

The two assumptions 2.1 and 2.2, motivate the introduction of the following space.

Definition 3.1 (Space H of IRC). The space H(Ω) of admissible IRC is defined as the set of
vector-valued functions G : Ω→ RN such that

‖G‖2H(Ω) = α

∫
y∈Ω

N∑
k=1

w[k] |G(y)[k]|2 dy + (1− α)

N∑
k=1

|G(·)[k]|2BLs(Ω) < +∞, (3.3)

where α ∈ [0, 1) allows to balance the smoothness in each direction.

Quite obviously, we can state the following result.

Lemma 3.1. The SVIRs satisfying assumptions 2.1 and 2.2 have an IRC belonging to H(Ω).

To construct an estimator of F , we propose to define F̂µ as the minimizer of the following
optimization problem:

F̂µ = arg min
F∈H(Rd)

1

n

n∑
i=1

‖F εi − F (yi)‖2RN + µ‖F‖2H(Rd), (3.4)

where µ > 0 is a regularization parameter. Notice that the optimization is performed on H(Rd)
and not H(Ω), for technical reasons related to the use of radial basis functions.

Remark 3.1. The proposed formulation can be interpreted with the formalism of regression and
smoothing in vector-valued Reproducing Kernel Hilbert Spaces (RKHS) [17, 18]. The space
H(Rd) can be shown to be a vector-valued Reproducing Kernel Hilbert Space (RKHS). The
formalism of vector-valued RKHS has been developed for the purpose of multi-task learning,
and its application to operator estimation appears to be novel.
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3.2 Mixed-Sobolev space interpretation

In the specific case where (φk)k∈N is a wavelet or a Fourier basis and N = +∞, the proposed
methodology can be interpreted in terms of SVIR instead of IRC.

Lemma 3.2. The cost function in problem 3.4 is equivalent to

1

n

n∑
i=1

∥∥∥F εi − (〈S(·, yi), φk〉)1≤k≤N

∥∥∥2

2
+µ

(
α

∫
Rd
|S(·, y)|2Hr(Rd)dy + (1− α)

∫
Rd
|S(x, ·)|2BLs(Rd)dx

)
.

(3.5)

In this formulation, the data fidelity term allows finding a TVIR that is close to the observed
data, the first regularization term allows smoothing the additive noise on the acquired PSFs and
the second interpolates the missing data.

3.3 Numerical complexity

Thanks to the results in [18], computing F̂µ amounts to solving a finite-dimensional system of
linear equations. However, for an arbitrary orthonormal basis (φλ)λ∈Λ, and without any further
assumptions on the kernel of the RKHS H(Rd), evaluating F̂µ leads to the resolution of a full
nN × nN linear system, which is untractable for large N and n.

With the specific choice of norm introduced in Definition 3.1, the problem simplifies to the
resolution of N systems of equations of size n× n. This yields the following proposition:

Proposition 3.1. The solution of (3.4) can be computed in no more than O(Nn3) operations.

In addition, if the weight function w is piecewise constant, some n×n matrices are identical,
allowing to compute an LU factorization once for all and using it to solve many systems. In the
specific case where (φk)k∈N is a wavelet basis, it is natural to set function w as a constant over
each wavelet subband [15, Thm. 9.4]. This yields the following result.

Proposition 3.2. If w is set as constant over each subband of a wavelet basis, the solution of

(3.4) can be computed in no more than O
(

log(N)
d n3 +Nn2

)
operations.

Finally for well chosen bases (φk)k∈N - including wavelets - the impulse responses can be
well approximated using a small number N of atoms, making the method tractable even in very
large scale applications.

The proposed ideas are illustrated on Figure 3. As can be seen on Figure 3 (e), computing
the IRC in a wavelet basis allows expressing most of the information contained in the SVIR on
a few lines only. Given the noisy dataset, the proposed algorithm simultaneously interpolates
along lines and denoises along rows to obtain the results in Figure 3 (c) and (f).

To conclude this paragraph, let us mention that the representation of an operator of type
(3.2) can be used to evaluate matrix-vector products rapidly. We refer the interested reader to
[10] for more details.
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(a) Exact SVIR (b) Exact IRC (c) The data set (d) Observed data

(e) Interpolated
SVIR – without
denoising (α = 0)

(f) Interpolated IRC
– without denoising
(α = 0)

(g) Interpolated
SVIR – with denois-
ing (α = 0.3)

(h) Interpolated
IRC – with denois-
ing (α = 0.3)

Figure 3: Illustration of the methodology on a 1D estimation problem. (a) Exact
SVIR: Gaussian PSFs with standard deviation σ(t) = 0.05 (1 + 2 min(t, 1− t)) for t ∈
[0, 1]. (b) Exact Impulse Response Coefficients (IRC) in a wavelet basis. (c) 7 PSFs
are extracted and corrupted by an additive iid Gaussian noise of standard deviation
5.10−3. (d) We observe only a few noisy impulse response coefficients. (e) and (g)
show the estimation result. Notice how the regularization in the vertical direction
allows improving the estimator: the result is very similar to (a). (f) and (h) similar
experiment and conclusions on the IRC.

9



3.4 Convergence rates

Before stating the main results, let us introduce the following definition.

Definition 3.2. Let A1, A2 be positive constants. Set r > d
2 and s > d

2 . The ball Er,s(Ω, A1, A2)
is defined as the set of linear integral operators H with SVIR S belonging to L2(Ω×Ω), satisfying

sup
y∈Ω
‖S(·, y)‖2Er(Ω) ≤ A1 and sup

x∈Ω
‖S(x, ·)‖2Hs(Ω) ≤ A2.

The convergence of the proposed estimator with respect to the number n of observations is
captured by the following theorem.

Theorem 3.1. Assume that S satisfies Assumptions 2.1 and 2.2 and that it is sampled using
model (2.9) under the quasi-uniformity condition given in Definition 2.4. Then the estimating
operator Ĥ with SVIR Ŝ defined in equation (3.2) satisfies the following inequality

E
(
‖H − Ĥ‖2HS

)
. N−

2r
d + (Nσ2n−1)

2s
2s+d , (3.6)

for µ ∝ (Nσ2n−1)
2s

2s+d . This inequality holds uniformly on the ball Er,s(Ω, A1, A2).

In applications where the user can choose the number of observations N (e.g. if it is suffi-
ciently large), the upper-bound (3.6) can be optimized with respect to N .

Corollary 3.1. Assume that S satisfies Assumptions 2.1 and 2.2 and that it is sampled using
model (2.9) under the quasi-uniformity condition given in Definition 2.4. Then the estimator Ĥ
with SVIR Ŝ defined in equation (3.2) satisfies the following inequality

E
(
‖H − Ĥ‖2HS

)
. (σ2n−1)

2q
2q+d , (3.7)

with the relation 1/q = 1/r+1/s, for µ ∝ (σ2n−1)
2q

2q+d and N ∝ (σ2n−1)
− dq
r(2q+d) . This inequality

holds uniformly on the ball Er,s(Ω, A1, A2).

Corollary 3.1 gives some insights on the estimator behavior. In particular:

• It provides an explicit way of choosing the value of the regularization parameter µ: it
should decrease as the number of observations increases.

• If the number of observations n is small, it is unnecessary to project the impulse responses
on a high dimensional basis (i.e. N large). The basic reason is that not enough information
has been collected to reconstruct the fine details of the kernel.

Finally, to conclude this section on convergence rates, it is shown that, under mild assump-

tions on the basis (φk)k≥1, the rate of convergence (σ2n−1)
2q

2q+d in inequality (3.7) is optimal in
the case of Gaussian noise and for the expected Hilbert-Schmidt norm

E
∥∥∥H − Ĥ∥∥∥2

HS
= E

∥∥∥Ŝ − S∥∥∥2

L2(Ω×Ω)
.
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Optimality of the rate of converge (3.7) has to be understood in the minimax sense as classically
done in the literature on nonparametric statistics (we refer to [22] for a detailed introduction
to this topic). For simplicity, this optimality result is stated in the case where the domain
Ω = [0, 1]d is the d-dimensional hypercube.

Theorem 3.2. Let H be a linear operator with SVIR belonging to Er,s(Ω, A1, A2). Define q
by 1/q = 1/r + 1/s. Suppose that Ω = [0, 1]d and that the weights in Definition 2.1 satisfy
w[k] ≤ c1(1+k2)r/d for all k ∈ N and some constant c1 > 0. Assume that there exists a constant
Cφ such that for any integer k1 ≥ 1

sup
x∈Ω

{
k1∑
k=1

|φk(x)|

}
≤ C1/2

φ k
1/2
1 . (3.8)

Assume that the PSF locations y1, . . . , yn satisfy the quasi-uniformity condition given in Def-
inition 2.4. Assume that the random values (εi[k])i,k in the observation model (2.9) are iid
Gaussian with zero mean and variance σ2.

Then, there exists a constant c0 > 0 such that

inf
Ĥ

sup
H∈Er,s(Ω,A1,A2)

E
∥∥∥Ĥ −H∥∥∥2

HS
≥ c0(σ2n−1)

2q
2q+d , (3.9)

where the above infimum is taken over all possible estimators Ĥ (linear integral operators) with
SVIR Ŝ ∈ L2(Ω× Ω) defined as a measurable function.

We do not know whether condition (3.8) in Theorem (3.2) is necessary or not. Compactly
supported wavelet bases are a particular instance of functions satisfying this condition.

4 Radial basis functions implementation

The objective of this section is to provide a fast algorithm to solve problem (3.4) and to prove
Propositions 3.1 and 3.2. A few tools related to radial basis functions and useful for the subse-
quent proofs are also introduced.

A key observation is provided below.

Lemma 4.1. For k ∈ {1, . . . , N}, function F̂ (·)[k] is the solution of the following variational
problem:

min
f∈Hs(Rd)

1

n

n∑
i=1

(F εi [k]− f(yi))
2 + µ

(
αw[k]‖f‖2L2(Rd) + (1− α)|f |2BLs(Rd)

)
. (4.1)

Proof. It suffices to remark that problem (3.4) consists of solving N independent sub-problems.

We now focus on the resolution of sub-problem (4.1) which completely fits the framework of
radial basis function approximation.
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4.1 Standard approximation results in RKHS

Let us begin with a few results about RKHS. Most of the results can be found in the book of
Wendland [26].

Definition 4.1 (Positive definite function). A continuous function Φ : Rd → C is called positive
semi-definite if, for all n ∈ N, all sets of pairwise distinct centers Y = {y1, . . . , yn} ⊂ Rd, and all
α ∈ Cn, the quadratic form

n∑
j=1

n∑
k=1

αjᾱkΦ(xj − xk) (4.2)

is nonnegative. Function Φ is called positive definite if the quadratic form is positive for all
α ∈ Cn\{0}.

Definition 4.2 (Reproducing kernel). Let G denote a Hilbert space of real-valued functions
f : Rd → R endowed with a scalar product 〈·, ·〉G . A function Φ : Rd × Rd → R is called
reproducing kernel for G if

1. Φ(·, y) ∈ G, ∀y ∈ Rd,

2. f(y) = 〈f,Φ(·, y)〉G , for all f ∈ G and all y ∈ Rd.

Theorem 4.1 (RKHS). Suppose that G is a Hilbert space of functions f : Rd → R. Then the
following statements are equivalent:

1. the point evaluations functionals are continuous for all y ∈ Rd.

2. G has a reproducing kernel.

A Hilbert space satisfying the properties above is called a Reproducing Kernel Hilbert Space
(RKHS).

The Fourier transform of a function f ∈ L1(Rd) is defined by

f̂(ξ) = F [f ](ξ) =

∫
x∈Rd

f(x)e−i〈x,ξ〉dx, (4.3)

and the inverse transform by

F−1[f̂ ](x) =

∫
ξ∈Rd

f̂(ξ)ei〈x,ξ〉dξ. (4.4)

The Fourier transform can be extended to L2(Rd) and to S ′(Rd) the space of tempered distri-
butions.

Theorem 4.2 ([26, Theorem 10.12]). Suppose that Φ ∈ C(Rd)∩L1(Rd) is a real-valued positive

definite function. Define G =
{
f ∈ L2(Rd) ∩ C(Rd) : f̂/

√
Φ̂ ∈ L2(Rd)

}
equipped with

〈f, g〉G = (2π)−d/2
∫
Rd

f̂(ξ)ĝ(ξ)

Φ̂(ξ)
dξ. (4.5)

Then G is a real Hilbert space with inner-product 〈·, ·〉G and reproducing kernel Φ(· − ·).
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Theorem 4.3. Let G be an RKHS with positive definite reproducing kernel Φ. Let (y1, . . . , yn)
denote a set of points in Rd and z ∈ Rn denote a set of altitudes. The solution of the following
approximation problem

min
u∈G

1

n

n∑
i=1

(u(yi)− z[i])2 +
µ

2
‖u‖2G (4.6)

can be written as:

u(x) =
n∑
i=1

c[i]Φ(x− yi), (4.7)

where vector c ∈ Rn is the unique solution of the following linear system of equations

(G+ nµId)c = z with G[i, j] = Φ(yi − yj). (4.8)

It is shown in [26], that the conditioning number of G depends on the ratio hY,Ω/qY,Ω. For
numerical reasons it might therefore be useful to discard locations that are too close to each
other.

4.2 Application to our problem

Let us now show how the above results help solving problem (4.1).

Proposition 4.1. Let G be the Hilbert space of functions f : Rd → R such that |f |2
BLs(Rd)

+

‖f‖2L2(Ω) < +∞, equipped with the inner product:

〈f, g〉G = (1− α) 〈f, g〉BLs(Rd) + αw[k]〈f, g〉2L2(Rd). (4.9)

Then G is an RKHS and its scalar product reads

〈f, g〉G = (2π)−d/2
∫
Rd

f̂(ξ)ĝ(ξ)

Φ̂(ξ)
dξ, (4.10)

where the reproducing kernel Φ, is defined by:

Φ̂k(ξ) =
(
(1− α)‖ξ‖2s + αw[k]

)−1
. (4.11)

Proof. The proof is a direct application of the different results stated previously.

The Fourier transform Φ̂k is radial, so that Φk is radial too and the resolution of (4.1) fits
the formalism of radial basis functions interpolation/approximation [5].

Remark 4.1. For some applications, it makes sense to set w[k] = 0 for some values of k. For
instance, if (φk)k∈N is a wavelet basis, then it is usually good to set w[k] = 0 when k is the index
of a scaling wavelet. In that case, the theory of conditionally positive definite kernels should be
used instead of the one above. We do not detail this aspect since it is well described in standard
textbooks [26, 5].
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Algorithm 1

1: Input: Weight vector w ∈ RN
2: Regularity s ∈ N
3: PSF locations Y = {y1, . . . , yn} ∈ Rd×n
4: Observed data (F εi )1≤i≤n, where F εi ∈ RN .
5: Identify the m ≤ N weights of identical values in vector w ∈ RN . . O(N log(N))
6: for Each unique weight ω do . O(mn3)
7: Compute matrix G from formula (4.8) with Φ defined in (4.11).
8: Compute an LU decomposition of Mω = (G+ nµId) = LωUω.
9: end for

10: for k = 1 to N do . O(Nn2)
11: Identify the value ω such that w[k] = ω.
12: Set z = (F εi [k])1≤i≤n.
13: Solve the linear system LωUωck = z.
14: Possibly reconstruct F̂ by (see equation (4.7))

F̂ (x)[k] =
n∑
i=1

ck[i]Φ(x− yi).

15: end for

5 Proofs of the main results

In this section, we prove Theorem 3.1 about the convergence rate of the quadratic risk E‖S −
Ŝ‖2HS .

5.1 Operator norm risk

To analyse the theoretical properties of a given estimator of the operator H, we introduce the
quadratic risk defined as:

R(Ĥ,H) = E
∥∥∥Ĥ −H∥∥∥2

HS
, (5.1)

where Ĥ is the operator associated to the SVIR Ŝ defined in (3.2). The above expectation
is taken with respect to the distribution of the observations in (2.9). Notice that ‖H‖HS =
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‖K‖L2(Ω×Ω) = ‖S‖L2(Ω×Ω). From this observation we get that:

R(Ĥ,H) = E
∥∥∥Ĥ −H∥∥∥2

HS

≤ 2

(
‖H −HN‖2HS + E

∥∥∥HN − Ĥ
∥∥∥2

HS

)

= 2

‖S − SN‖2L2(Ω×Ω)︸ ︷︷ ︸
εd(N)

+E
∥∥∥SN − Ŝ∥∥∥2

L2(Ω×Ω)︸ ︷︷ ︸
εe(n)

 , (5.2)

where HN is the operator associated to the SVIR SN defined by SN (x, y) =
∑N

k=1 F (y)[k]φk(x)

and Ĥ the estimating operator associated to the SVIR Ŝ as in (3.2).
In equation (5.2), the risk is decomposed as the sum of two terms εe(n) and εd(N) (standard

bias/variance decomposition in statistics). The first one εd(N) is the error introduced by the
discretization step. The second term εe(N) is the quadratic risk between SN and the estimator
Ŝ In the next sections, we provide upper-bounds for εd(N) and εe(n).

5.2 Discretization error εd

The discretization error εd(N) can be controlled using the standard approximation result below
(see e.g. [15, Theorem 9.1, p. 437]).

Theorem 5.1. Let f ∈ Er(Ω) and let fN =
∑N

k=1〈f, φk〉φk. Then

‖f − fN‖22 ≤ c‖f‖2Er(Ω)N
−2r/d, (5.3)

where c is a universal constant.

Corollary 5.1. Under assumptions 2.1 and 2.2, the discretization error satisfies:

εd(N) . N−2r/d. (5.4)

Proof. By assumption 2.1, S(·, y) ∈ Er(Ω) for all y ∈ Ω. Therefore, by Theorem 5.1:

‖S(·, y)− SN (·, y)‖2L2(Ω) ≤ cN
−2r/d. (5.5)

Finally:

‖S − SN‖2L2(Ω×Ω) =

∫
y∈Ω
‖S(·, y)− SN (·, y)‖2L2(Ω) dy

≤ |Ω|c

(
sup
y∈Ω
‖S(·, y)‖2Er(Ω)

)
N−2r/d.
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5.3 Estimation error εe

This section provides an upper-bound on the estimation error

εe(n) = E
∥∥∥SN − Ŝ∥∥∥2

L2(Ω×Ω)
. (5.6)

This part is significantly harder than the rest of the paper. Let us begin with a simple remark.

Lemma 5.1. The estimation error satisfies

εe(n) = ‖F − F̂‖2RN×L2(Ω). (5.7)

Proof. Since (φk)1≤k≤N is an orthonormal basis, Parseval’s theorem gives

‖SN − Ŝ‖2L2(Ω×Ω) =

∫
Ω

∫
Ω

(
SN (x, y)− Ŝ(x, y)

)2
dxdy

=

∫
Ω

∫
Ω

(
N∑
k=1

(F (y)[k]− F̂ (y)[k])φk(x)

)2

dxdy

=

∫
Ω

N∑
k=1

(F (y)[k]− F̂ (y)[k])2dy

=
N∑
k=1

‖F (·)[k]− F̂ (·)[k]‖2L2(Ω) =: ‖F − F̂‖2RN×L2(Ω). (5.8)

By Lemma 4.1 the estimator defined in (3.4) can be decomposed as N independent estima-
tors. Lemma 5.2 below provides a convergence rate for each of them. This result is strongly
related to the work in [24] on smoothing splines. Unfortunately, we cannot directly apply the re-
sults in [24] to our setting since the kernel defined in (4.11) is not that of a thin-plate smoothing
spline.

Lemma 5.2. Suppose that Ω ⊂ Rd is a bounded connected open set in Rd with Lipschitz continu-
ous boundary and that the set Y = {y1, . . . , yn} ⊂ Ω of PSF locations satisfies a quasi-uniformity
condition in the sense of Definition 2.4. Then, each function F̂ (·)[k] solution of problem (4.1)
satisfies:

E‖F̂ (·)[k]− F (·)[k]‖2L2(Ω) . µ‖F (·)[k]‖2Hs(Ω) + n−1σ2µ−
d
2s , (5.9)

provided that nµd/2s ≥ 1.

Proof. In order to prove the upper-bound (5.9), we first decompose the expected squared error
E‖F̂ (·)[k]− F (·)[k]‖2L2(Ω) into bias and variance terms:

E‖F̂ (·)[k]−F (·)[k]‖2L2(Ω) ≤ 2

‖F̂ 0(·)[k]− F (·)[k]‖2L2(Ω)︸ ︷︷ ︸
Bias term

+E‖F̂ 0(·)[k]− F̂ (·)[k]‖2L2(Ω)︸ ︷︷ ︸
Variance term

 , (5.10)
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where F̂ 0(·)[k] is the solution of the noise-free problem

F̂ 0(·)[k] = arg min
f∈Hs(Rd)

1

n

n∑
i=1

(F (yi)[k]−f(yi))
2 +µ

(
αw[k]‖f‖2L2(Rd) + (1− α)|f |2BLs(Rd)

)
. (5.11)

We then treat the bias and variance terms separately.

Control of the bias The bias control relies on sampling inequalities in Sobolev spaces. They
first appeared in [9] to control the norm of functions in Sobolev spaces with scattered zeros.
They have been generalized in different ways, see e.g. [27] and [2]. In this paper, we will use the
following result from [2].

Theorem 5.2 ([2, Theorem 4.1]). Let Ω ⊂ Rd be a bounded connected open set with Lipschitz
continuous boundary.

Let p, q, x ∈ [1,+∞]. Let s be a real number such that s ≤ d if p = 1, s > d/p if 1 < p <∞
or s ∈ N∗ if p = ∞. Furthermore, let l0 = s − d(1/p − 1/q)+ and γ = max(p, q, x) where
(·)+ = max(0, ·).

Then, there exist two positive constants ηs (depending on Ω and s) and C (depending on Ω,
n, s, p, q and x) satisfying the following property: for any finite set Y ⊂ Ω̄ (or Y ⊂ Ω if p = 1
and s = d) such that hY,Ω ≤ ηs, for any u ∈W s,p(Ω) and for any l = 0, . . . , dl0e − 1, we have

‖u‖W l,q(Ω) ≤ C
(
h
s−l−d(1/p−1/q)+

Y,Ω |u|W s,p(Ω) + h
d/γ−l
Y,Ω ‖u|Y ‖x

)
, (5.12)

where ‖u|Y ‖x = (
∑n

i=1 u(yi)
x)1/x. If s ∈ N∗ this bound also holds with l = l0 when either

p < q <∞ and l0 ∈ N or (p, q) = (1,∞) or p ≥ q.

The above theorem is the key to obtain Proposition 5.1 below.

Proposition 5.1. Set a > 0 and let G(Ω) be the RKHS with norm defined by ‖ · ‖2G(Ω) =

| · |2BLs(Ω) +a‖ · ‖2L2(Ω). Let u ∈ Hs(Ω) denote a target function and Y = {y1, . . . , yn} ⊂ Ω a data
site set. Let fµ denote the solution of the following variational problem

fµ = arg min
f∈G(Rd)

1

n

n∑
i=1

(u(yj)− f(yj))
2 + µ‖f‖2G(Rd). (5.13)

Then

‖fµ − u‖L2(Ω) ≤ C
(
hsY,Ω + h

d/2
Y,Ω

√
nµ
)
‖u‖Hs(Ω), (5.14)

where C is a constant depending only on Ω and s and hY,Ω is the fill distance defined in 2.2.

Proof. By applying the Sobolev sampling inequality of Theorem 5.2 for p = q = x = 2, l = 0,
we get

‖v‖L2(Ω) ≤ C

hsY,Ω|v|Hs(Ω) + h
d/2
Y,Ω

(
n∑
i=1

v(yi)
2

)1/2
 , (5.15)
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for all v ∈ Hs. This inequality applied to function v = fµ − u yields

‖fµ − u‖L2(Ω) ≤ C

hsY,Ω|fµ − u|Hs(Ω) + h
d/2
Y,Ω

(
n∑
i=1

(fµ(yi)− u(yi)
2

)1/2
 , (5.16)

The remaining task is to bound |fµ − u|Hs(Ω) and
(∑n

i=1(fµ(yi)− u(yi))
2
)1/2

by ‖u‖Hs(Ω).
One part of the difficulty lies in the fact that fµ minimizes the semi-norm over Rn and that
we wish a control over the domain Ω. This motivates the introduction of an extension operator
P : Hs(Ω)→ Hs(Rd) defined by

Pu = arg min
f∈Hs(Rd)
f|Ω=u

‖f‖2Hs(Rd). (5.17)

By [9, Lemma 3.1], this operator is continuous, i.e. there exists a constant K > 0 (depending
on Ω and s) such that for all u ∈ Hs(Ω), ‖Pu‖Hs(Rd) ≤ K‖u‖Hs(Ω). Now, let f0 : Ω→ R denote
the solution of

f0 = arg min
f∈G(Rd)

f(yj)=u(yj)

‖f‖2G(Rd), (5.18)

By strict convexity of the squared norm ‖ ·‖2G(Rd)
, function f0 is uniquely determined. Moreover,

it satisfies ‖f0‖G(Ω) ≤ ‖f0‖G(Rd) ≤ ‖Pu‖G(Rd) ≤ ‖Pu‖Hs(Rd) ≤ K‖u‖Hs(Ω). Now, let us define

two functionals f 7→ E(f) = 1
n

∑n
i=1(u(yj)− f(yj))

2 and f 7→ J(f) = ‖f‖2G(Rd)
. Since fµ is the

minimizer of (5.13), it satisfies

E(fµ) + µJ(fµ) ≤ E(f0) + µJ(f0). (5.19)

In addition E(f0) = 0 and J(f0) ≤ ‖Pu‖2G(Rd)
≤ ‖Pu‖2

Hs(Rd)
≤ K2‖u‖2Hs(Ω). Hence,

E(fµ) + µJ(fµ) ≤ Kµ‖u‖2Hs(Ω) (5.20)

which yields

E(fµ) =
1

n

n∑
i=1

(u(yj)− fµ(yj))
2 ≤ K2µ‖u‖2Hs(Ω). (5.21)

To finish, the triangle inequality yields |fµ−u|Hs(Ω) ≤ |fµ|Hs(Ω) + |u|Hs(Ω). Then, |u|Hs(Ω) ≤
‖u‖Hs(Ω) and bound (5.20) leads to:

|fµ|Hs(Ω) ≤ ‖fµ‖G(Rd) ≤ ‖f0‖G(Rd) ≤ K‖u‖Hs(Ω). (5.22)

Therefore

|fµ − u|Hs(Ω) ≤ (K + 1)‖u‖Hs(Ω). (5.23)

Replacing bounds (5.23) and (5.21) in the sampling inequality (5.16) completes the proof of
Proposition 5.1.
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Applying Proposition 5.1 to F̂ 0(·)[k], we get

‖F̂ 0(·)[k]− F (·)[k]‖2L2(Ω) ≤ C
(
hsY,Ω +

√
µnh

d/2
Y,Ω

)2
‖F (·)[k]‖2Hs(Ω). (5.24)

The trick is now to use the quasi-uniformity condition given in Definition 2.4 to control hsY,Ω

and
√
µnh

d/2
Y,Ω. This is achieved using the following proposition.

Proposition 5.2 ([26, Proposition 14.1] or [24]). Let Y = {y1, . . . , yn} ⊂ Ω be a quasi-uniform
set with respect to B. Then, there exist constants c > 0 and C > 0 depending only on d, Ω and
B such that,

cn−1 ≤ hdY,Ω ≤ Cn−1. (5.25)

Condition nµd/2s ≥ 1 combined with the right-hand-side of (5.25) yields hdY,Ω ≤ Cµd/2s, so

that hsY,Ω .
√
µ. Similarly, the right-hand-side of (5.25) yields

√
µnh

d/2
Y,Ω .

√
µ. Hence

‖F̂ 0(·)[k]− F (·)[k]‖2L2(Ω) . µ‖F (·)[k]‖2Hs(Ω). (5.26)

Control of the variance The variance term is treated following arguments similar to those
in [24]. However, the change of kernel needs additional treatments. First of all, note that due
to the linearity of the estimators (4.1), we have F̂ 0

µ(·)[k]− F̂µ(·)[k] = fηk with η ∈ Rn defined as
η[i] = εi[k] and

fηk = arg min
f∈Hs(Rd)

1

n

n∑
i=1

(f(yi)− η[i])2 + µ
(
αw[k]‖f‖2L2(Rd) + (1− α)|f |2BLs(Rd)

)
. (5.27)

We therefore need to estimate E‖fηk ‖
2
L2(Ω). From Theorem 5.2 applied with p = q = x = 2 and

l = 0 we obtain that for u ∈ Hs(Ω)

‖u‖L2(Ω) ≤ C
(
hsY,Ω|u|Hs(Ω) + h

d/2
Y,Ω‖u|Y ‖2

)
.

Using the above inequality together with Proposition 5.2, we get that

‖fηk ‖
2
L2(Ω) ≤ 2C

(
h2s
Y,Ω|f

η
k |

2
Hs(Ω) + n−1

n∑
i=1

fηk (yi)
2

)
.

As in [24], let us define the n× n matrix Γ̃ such that

〈Γ̃z, z〉 = min
u∈BLs(Rd)
u(yi)=z[i]

(1− α)|u|2Hs(Rd) + αw[k]‖u‖2L2(Rd). (5.28)

The solution of problem (5.28) is a spline interpolating the data (yi, z[i])
n
i=1. Using this matrix,

we can write (5.27) as:

min
z∈Rn

1

n

n∑
i=1

(z[i]− η[i])2 + µ〈Γ̃z, z〉,
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see [24, 23, 25] for details. Thus, the solution ẑ = (fηk (yi))
n
i=1 is obtained by:

ẑ = (Id + nµΓ̃)−1η.

By letting Eµ = (Id + nµΓ̃)−1, we obtain

n−1
n∑
i=1

fηk (yi)
2 = n−1

n∑
i=1

ẑ[i]2 = n−1ηTE2
µη

and

(1− α)|fηk |
2
Hs(Rd) + αw[k]‖fηk ‖

2
L2(Rd) = ẑT Γ̃ẑ = ηTEµΓ̃Eµη

= (nµ)−1ηTEµ(E−1
µ − Id)Eµη

= (nµ)−1ηT (Eµ − E2
µ)η.

Thus
|fηk |

2
Hs(Ω) ≤ |f

η
k |

2
Hs(Rd) ≤ (nµ)−1ηT (Eµ − E2

µ)η.

Using the fact that η has i.i.d. components with zero mean and variance σ2, we get that,

E

[
n−1

n∑
i=1

fηλ(yi)
2

]
= n−1σ2Tr(E2

µ),

and on the other hand

E|fηk |
2
Hs(Ω) ≤ (nµ)−1σ2(Tr(Eµ)− Tr(E2

µ))

≤ (nµ)−1σ2Tr(Eµ).

We now have to focus on the estimation of both Tr(Eµ) =
∑n

i=1(1+nµλi(Γ̃))−1 and Tr(E2
µ) =∑n

i=1(1+nµλi(Γ̃))−2, where λi(Γ̃) is the i-th eigenvalue of Γ̃. This will be achieved by analyzing
the eigenvalues of the matrix Γ̃. This step is uneasy. Hopefully, Utreras analyzed the eigenvalues
of the matrix Γ associated to thin-plate splines in [24]. Matrix Γ is defined in a similar way as
(5.28):

〈Γz, z〉 = min
u∈BLs(Rd)
u(yi)=z[i]

|u|2Hs(Rd). (5.29)

One therefore has that (1−α)zTΓz ≤ zT Γ̃z for all z ∈ RN . Therefore the matrix Γ̃− (1−α)Γ is
semi-definite positive. By virtue of Weyl’s monotonicity theorem [28], we get that (1−α)λi(Γ) ≤
λi(Γ̃). Hence we can bound the traces of the matrices Eµ and E2

µ as follows

Tr(Eµ) ≤
n∑
i=1

(1 + (1− α)nµλi(Γ))−1,

Tr(E2
µ) ≤

n∑
i=1

(1 + (1− α)nµλi(Γ))−2.
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It is shown in [24], that γ =

(
s− 1 + d
s− 1

)
eigenvalues λi(Γ) are null and the others satisfy

i2m/dn−1 . λi(Γ) . i2m/dn−1 for γ+1 ≤ i ≤ n. Following [24], it can be shown that both traces
are bounded by quantities proportional to µ−d/2s. Thus, one has that

E‖fηk ‖
2
L2(Ω) . σ2(n−1µ−d/2s + n−1h2s

Y,Ωµ
−1µ−d/2s).

Since µd/2sn ≥ 1 and using Proposition 5.2 that gives n . h−dY,Ω we obtain that h2s
Y,Ωµ . 1. Hence

E‖fηk ‖
2
L2(Ω) . σ2n−1µ−d/2s

(
1 + h2s

Y,Ωµ
)
. σ2n−1µ−d/2s,

which completes the proof of Lemma 5.2.

5.4 Proof of the main results

Proof of Theorem 3.1

Proof. By equation (5.2):

E‖Ĥ −H‖2HS ≤ 2(εd(N) + εe(n)). (5.30)

By Corollary (5.1)

εd(N) . N−2r/d. (5.31)

Now, let us control εe. Let FN = F (·)[1 : N ] .

εe(n) = E‖F̂ − FN‖2RN×L2(Ω) (5.32)

=

N∑
k=1

E‖F̂ (·)[k]− FN (·)[k]‖2L2(Ω) (5.33)

(5.9)

.
N∑
k=1

(
µ‖FN (·)[k]‖2Hs(Ω) + n−1σ2µ−d/2s

)
(5.34)

= µ‖FN‖2RN×Hs(Ω) +Nn−1σ2µ−d/2s. (5.35)

This upper-bound allows to set the value of the regularization parameter µ by balancing the
two terms µ‖FN‖2RN×Hs(Ω)

and Nn−1σ2µ−d/2s:

µ‖F‖2RN×Hs(Ω) ∝ Nn
−1σ2µ−d/2s. (5.36)

This yields

µ ∝
(
Nσ2n−1‖F‖−2

RN×Hs(Ω)

) 2s
2s+d

. (5.37)
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Plugging this value in the upper-bound of εe(n) gives

µ‖F‖2RN×Hs(Ω) ∝
(
Nσ2n−1‖F‖−2

RN×Hs(Ω)

) 2s
2s+d ‖F‖2RN×Hs(Ω),

= (Nσ2n−1)
2s

2s+d ‖F‖
2d

2s+d

RN×Hs(Ω)

(5.38)

and

εe(n) . (Nσ2n−1)
2s

2s+d . (5.39)

Proof of Theorem 3.1

Proof. To obtain this bound we use Theorem 3.1 and we balance the two terms so that:

N−2r/d ∝ (Nσ2n−1)
2s

2s+d (5.40)

This gives the choice N ∝ (σ−2n)
2sd

4rs+2rd+2sd . Replacing N by this value in bound (3.6) gives

N−2r/d ∝ (σ2n−1)
4rs

4rs+2rd+2sd ,

= (σ2n−1)
2q

2q+d .
(5.41)

Proof of Theorem 3.2

Proof. In the proof, we first need to define an appropriate wavelet basis to characterize the fact
that a function belongs to the Sobolev ball (for some constant A > 0)

Hs(Ω, A) =
{
u ∈ L2(Ω), ‖u‖2Hs(Ω) ≤ A

}
,

through its wavelet coefficients. We assume that we are given a bi-orthogonal wavelet basis
of L2(Ω) generated by a pair of dual scaling functions with compact supports and by tensor
products. For a detailed description of (bi-orthogonal) wavelet basis construction, we refer to
[8]. The scaling and wavelet functions at scale j (that is at resolution level 2j) will be denoted by
φλ and ψλ, respectively, where the index λ summarizes both the usual scale and space parameters
j and k. In other words, for d = 1, we set λ = (j, k) and denote φj,k(·) = 2j/2φ(2j · −k) and
ψj,k(·) = 2j/2ψ(2j · −k). For d ≥ 2, the notation ψλ stands for the adaptation of scaling and
wavelet functions to Ω = [0, 1]d (see [8], Chapter 2). The notation |λ| = j will be used to denote
a wavelet at scale j, where j0 denotes the coarse level of approximation. In order to simplify
the notation, as it is commonly used, we take j0 = 0, and we write (ψλ)|λ|=−1 for (φλ)|λ|=0.
Finally, |λ| < j1 denotes all wavelets at scales j, with −1 ≤ j < j1, and we use the notation
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ψ̃λ to denote the dual wavelet basis of ψλ. Now, assume that a function u ∈ L2(Ω) admits the
wavelet decomposition

u(y) =
+∞∑
j=−1

∑
|λ|=j

c[λ]ψλ(y)

where the c[λ]’s are real coefficients satisfying c[λ] = 〈u, ψ̃λ〉L2(Ω). It is well known that wavelet
coefficients may be used to characterize the smoothness of functions. For instance, by Theorem
3.10.5 in [8] and using the fact that the Besov space Bs

2,2(Ω) is equal to the Sobolev space Hs(Ω)
(see e.g. Remark 3.2.4 in [8]), it follows that, under appropriate assumptions on the scaling
function φ and its dual version (see e.g. those of Theorem 3.10.5 in [8]),

u ∈ Hs(Ω, A) ⇐⇒
+∞∑
j=−1

∑
|λ|=j

22js|c[λ]|2 ≤ C(A, s,Ω) (5.42)

for some constant C(A, s,Ω) > 0 depending only on A, s and Ω. Throughout the proof, it is
assumed that the bi-orthogonal wavelet basis is chosen such that the wavelet characterization
of Sobolev norms (5.42) is satisfied. In particular, we assume that ψ possesses s vanishing
moments.

The arguments to prove the lower bound (3.9) are based on the standard Assouad’s cube
technique (see, e.g. [22], Chapter 2, Section 2.7.2). Consider the following SVIR test functions

Sv(x, y) = µk1,j1

k1∑
k=1

∑
|λ|<j1

v[k, λ]φk(x)ψλ(y), ∀(x, y) ∈ Ω× Ω,

where v = (v[k, λ])k≤k1,|λ|<j1 ∈ V := {1,−1}k12j1d , and µk1,j1 is a positive sequence of reals
satisfying the condition

µk1,j1 = ck
−1/2
1 2−j1d/2 min(k

−r/d
1 , 2−j1s), (5.43)

for some constant c > 0 not depending on k1 and j1.
Let us first discuss the choice of the constant c in (5.43). For any x ∈ Ω and v ∈ V one has

that

µ2
k1,j1

j1−1∑
j=−1

∑
|λ|=j

22js

(
k1∑
k=1

v[k, λ]φk(x)

)2

≤ µ2
k1,j1

j1−1∑
j=−1

∑
|λ|=j

22js

(
k1∑
k=1

|φk(x)|

)2

≤ µ2
k1,j1

j1−1∑
j=−1

2j(2s+d)Cφk1 ≤ Cφµ2
k1,j1k12j1(2s+d)

where the last inequalities follow from Assumption (3.8) and the fact that the number of wavelets
at scale j is 2jd. Hence, by the wavelet characterization of Sobolev norms (5.42) and the condition
(5.43) on µk1,j1 , it follows that if c2 ≤ C(A2, s,Ω)C−1

φ then

sup
x∈Ω
‖Sv(x, ·)‖2Hs(Ω) ≤ A2,
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for any v ∈ V. Similarly, for any y ∈ Ω and v ∈ V one has that

µ2
k1,j1

k1∑
k=1

w[k]

 j1−1∑
j=−1

∑
|λ|=j

v[k, λ]ψλ(y)

2

≤ c1µ
2
k1,j1

k1∑
k=1

(1+k2)r/d

 j1−1∑
j=−1

∑
|λ|=j

|ψλ(y)|

2

, (5.44)

using the assumption that w[k] ≤ c1(1 + k2)r/d. Let us define the set

Ij(y) = {λ : |λ| = j and ψλ(y) 6= 0}.

Since, the wavelet ψλ is compactly supported, one has that the cardinality of Ij(y) is bounded
by a constant Ds > 0 that is independent of j and y. Thus, using the relation ‖ψλ‖∞ ≤ C∞2jd/2

(for some constant C∞ > 0) for any λ at scale j, we obtain from inequality (5.44) that,

µ2
k1,j1

k1∑
k=1

w[k]

 j1−1∑
j=−1

∑
|λ|=j

v[k, λ]ψλ(y)

2

≤ c1µ
2
k1,j1

k1∑
k=1

(1 + k2)r/d

 j1−1∑
j=−1

∑
λ∈Ij(y)

|ψλ(y)|

2

≤ c1D
2
sC

2
∞µ

2
k1,j1

k1∑
k=1

(1 + k2)r/d

 j1−1∑
j=−1

2jd/2

2

,

≤ c1D
2
sC

2
∞µ

2
k1,j1k

2r/d+1
1 2j1d

Hence, by definition of the space Er(Ω) and the condition (5.43) on µk1,j1 , it follows that if
c2 ≤ A1c

−1
1 D−2

s C−2
∞ then

sup
y∈Ω
‖Sv(·, y)‖2Er(Ω) ≤ A1,

for any v ∈ V. Therefore, we have shown that if the constant c in (5.43) is chosen sufficiently
small, then the operator Hv with SVIR function Sv belongs to the ball Er,s(Ω, A1, A2) for any
v ∈ V. In the rest of the proof, it is thus assumed that the constant c is chosen sufficiently small
to satisfy such property on the Hv’s.

In what follows, we use the notation EHv to denote expectation with respect to the dis-
tribution PHv of the random process F ε = (F ε1 , . . . , F

ε
n) obtained from model (2.9) under the

hypothesis that S = Sv where Sv is the SVIR function of the operator Hv.
The minimax risk

Rσ2,n := inf
Ĥ

sup
H∈Hr,s(Ω,A1,A2)

E
∥∥∥Ĥ −H∥∥∥2

HS

can be bounded from below as follows

Rσ2,n ≥ inf
Ĥ

sup
v∈V

EHv
∥∥∥Ĥ −Hv

∥∥∥2

HS
.

Since
∥∥∥Ĥ −Hv

∥∥∥2

HS
=
∥∥∥Ŝ − Sv∥∥∥2

L2(Ω×Ω)
it follows from orthonormality of the basis (φk)k≥1 and

by the Riesz stability property for bi-orthogonal wavelet bases (see e.g. inequality (7.156) in
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[15]), that there exists a constant cψ > 0 such that

∥∥∥Ĥ −Hv

∥∥∥2

HS
≥ cψ

k1∑
k=1

∑
|λ|<j1

|α̂[k, λ]−µk1,j1v[k, λ]|2 where α̂[k, λ] =

∫
Ω×Ω

Ŝ(x, y)φk(x)ψ̃λ(y)dxdy.

Therefore, the minimax risk satisfies the following inequality

Rσ2,n ≥ inf
Ĥ

sup
v∈V

cψ

k1∑
k=1

∑
|λ|<j1

EHv |α̂[k, λ]− µk1,j1v[k, λ]|2 .

Then, define
v̂[k, λ] := arg min

v∈{−1,1}
|α̂[k, λ]− µk1,j1v| ,

and remark that the triangular inequality and the definition of v̂[k, λ] imply that

µk1,j1 |v̂[k, λ]− v[k, λ]| ≤ 2 |α̂[k, λ]− µk1,j1v[k, λ]| ,

which yields

Rσ2,n ≥ inf
Ĥ

sup
v∈V

cψµ
2
k1,j1

4

k1∑
k=1

∑
|λ|<j1

EHv |v̂[k, λ]− v[k, λ]|2

≥ inf
Ĥ

cψµ
2
k1,j1

4

1

#V
∑
v∈V

k1∑
k=1

∑
|λ|<j1

EHv |v̂[k, λ]− v[k, λ]|2 ,

where #V denotes the cardinality of the finite set V.
For a given pair [k, λ] of indices and any v ∈ V, we define the vector v(k,λ) ∈ V having all its

components equal to v except the [k, λ]-th element. Moreover, to simplify the notation, we let∑
k,λ denote the summation

∑k1
k=1

∑
|λ|<j1 . Then

Rσ2,n ≥ inf
Ĥ

cψµ
2
k1,j1

4

1

#V
∑
k,λ

∑
v∈V : v[k,λ]=1

(
EHv |v̂[k, λ]− v[k, λ]|2 + EH

v(k,λ)

∣∣∣v̂[k, λ]− v(k,λ)[k, λ]
∣∣∣2)

≥ inf
Ĥ

cψµ
2
k1,j1

4

1

#V
∑
k,λ

∑
v∈V : v[k,λ]=1

EHv

(
|v̂[k, λ]− v[k, λ]|2 +

∣∣∣v̂[k, λ]− v(k,λ)[k, λ]
∣∣∣2 dPHv(k,λ)

dPHv
(F ε)

)
.

where
dPH

v(k,λ)

dPHv
(F ε) is the log-likelihood ratio between the hypothesis Hv(k,λ) : S = Sv(k,λ) and

the hypothesis Hv : S = Sv in model (2.9).
Since v(k,λ)[k, λ] = −v[k, λ] and v̂[k, λ] ∈ {−1, 1}, one has that, for any 0 < δ < 1,

Rσ2,n ≥ 4cψµ
2
k1,j1

1

#V
∑
k,λ

∑
v∈V : v[k,λ]=1

EHv

(
min

(
1,
dPH

v(k,λ)

dPHv
(F ε)

))

≥ 4cψδµ
2
k1,j1

1

#V
∑
k,λ

∑
v∈V : v[k,λ]=1

PHv

(
dPH

v(k,λ)

dPHv
(F ε) > δ

)
, (5.45)
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by Markov’s inequality. Thanks to the Girsanov’s formula (see e.g. Lemma A.5 in [22]), one has
that, under the hypothesis that S = Sv in model (2.9):

log

(
dPH

v(k,λ)

dPHv
(F ε)

)
=

n∑
i=1

+∞∑
`=1

(
σ−1〈Sv(k,λ)(·, yi)− Sv(·, yi), φ`〉ηi,` −

σ−2

2
|〈Sv(k,λ)(·, yi)− Sv(·, yi), φl〉|2

)

where the ηi,`’s are iid standard Gaussian variables. By definition of v(k,λ) and for v[k, λ] = 1
one has that, for each 1 ≤ i ≤ n and 1 ≤ k ≤ k1,

〈Sv(k,λ)(·, yi)− Sv(·, yi), φ`〉 =

{
−2µk1,j1ψλ(yi) if ` = k,

0 otherwise.

Therefore, the random variable Zk,λ := log

(
dPH

v(k,λ)

dPHv
(F ε)

)
is Gaussian with mean θλ and

variance γ2
λ satisfying

θλ = −2σ−2µ2
k1,j1

n∑
i=1

ψ2
λ(yi) and γ2

λ = 4σ−2µ2
k1,j1

n∑
i=1

ψ2
λ(yi) = −2θλ,

under the hypothesis that S = Sv in model (2.9). Hence, using that θλ is negative, one has that

PHv (Zk,λ ≥ 3θλ) = PHv

(
Zk,λ − θλ√

2|θλ|
≥ −

√
2|θλ|

)
≥ 1

2
,

by symmetry of the standard Gaussian distribution. Hence, inserting the above inequality into
(5.45) with δ = exp(3θλ), it implies that

Rσ2,n ≥ cψ exp(3θλ)µ2
k1,j1 k12dj1 (5.46)

= cψ exp(3θλ)c2 min(k
−r/d
1 , 2−j1s). (5.47)

By setting k1 = k
(σ2,n)
1 and j1 = j

(σ2,n)
1 with

k
(σ2,n)
1 = b

(
σ2n−1

)− q
(2q+d)r/d c and 2j

(σ2,n)
1 = b

(
σ2n−1

)− q
(2q+d)s c, (5.48)

we get

Rσ2,n ≥ cψ exp(3θλ)c2
(
σ2n−1

) q
2q+d . (5.49)

It now remains to show that the constant θλ is bounded from below, independently of σ and n.
The idea is to remark that 1

n

∑n
i=1 ψ

2
λ(yi) behaves like a Riemann integral of ψλ and should

therefore be bounded by a constant since ‖ψλ‖2 = 1. This statement can be proved using
the following reasoning. Since vector Y = (y1, . . . , yn) of PSFs locations satisfies the quasi-
uniformity condition hY,Ω ≤ BqY,Ω, we get from Proposition 5.2 that the separation distance
qY,Ω satisfies qdY,Ω ≥ B1n

−1 for some constant B1. Now, the support of wavelet ψλ is contained
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in a hypercube of volume proportional to 2−d|λ|. Hence, the number of locations yi in supp(ψλ)
is bounded above by 2−d|λ|/qdY,Ω ≤ B2n2−d|λ| for some constant B2. To conclude, remark that

‖ψλ‖∞ = 2d|λ|/2‖ψλ‖∞, hence:

1

n

n∑
i=1

ψλ(yi)
2 =

1

n

∑
yi∈supp(ψλ)

ψλ(yi)
2

≤ 1

n
B2n2−d|λ|‖ψλ‖2∞

≤ B2‖ψ‖2∞ =: B3.

This implies that

θλ ≥ −2B3c1, for all λ < j
(σ2,n)
1 .

Hence, inserting the above inequality into (5.47), it implies that

Rσ2,n ≥ cψ exp(−6B3c1)µ2

k
(σ2,n)
1 ,j

(σ2,n)
1

k
(σ2,n)
1 2dj

(σ2,n)
1 .

Using the expressions of j
(σ2,n)
1 and k

(σ2,n)
1 given in (5.48), together with (5.43), we finally obtain

that there exists a constant c0 > 0, that does not depend on σ2

n , such that

Rσ2,n ≥ c0

(
σ2n−1

) 2q
2q+d ,

completing the proof of the theorem.
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