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Drop generation from an axially vibrating nozzle exhibits a transition in drop 
diameter when varying the vibration amplitude. Below a threshold amplitude, 
forcing has essentially no effect on drop size and drops form in dripping mode. 
Above the threshold, drop size is controlled by forcing: drops detach at resonance, 
i.e., when the first eigenfrequency of the growing drop coincides with the forcing 
frequency. We experimentally study the impact of the nozzle inside diameter, 
dispersed phase flow rate, interfacial tension and dispersed phase viscosity on this 
transition. Drop diameter is well correlated to the mode 1 eigenfrequency of Strani 
and Sabetta for a drop in partial contact with a spherical bowl. We propose a 
transient model to describe drop dynamics until detachment. The drop is modelled 
as a linearly forced harmonic oscillator, with the eigenfrequency of Strani and 
Sabetta. Since the dispersed phase does not wet the nozzle tip, an additional 
damping coefficient is introduced to account for the viscous dissipation in the film 
of continuous phase between the drop and nozzle surface. The model adequately 
reproduces the effect of the different parameters on the threshold amplitude.  

 
I. INTRODUCTION 

Inducing vibration to jets or drops can be used to control breakup, thus drop size. Vibration is 
applied for example in ink jet printing, spray coating or vibrating cross-flow membrane 
emulsification, the latter having motivated our research. We focus on transversal vibrations, where 
drops undergo axial oscillations. For a membrane with a mean pore diameter of 0.8 µm, Arnaud1 
found a decrease in the peak of the volume-weighted drop size distribution (from 30 µm to 10 µm) at 
a forcing frequency of 15 to 20 kHz compared to without vibration. Thus, vibrating the membrane in 
this process impacts drop size but mechanisms for drop detachment were not explained.1,2 To obtain a 
fine control on drop size, understanding the physics of drop vibration and detachment is necessary.  

Oscillations of liquid drops have been extensively studied since the pioneering work of Lord 
Rayleigh3. He calculated the eigenmodes of a free inviscid, incompressible drop in a vacuum, in 
absence of gravity and for small-amplitude oscillations. The eigenmodes are characterized by two 
integers: a polar wavenumber 2 and an azimuthal wavenumber ∈ ; . In this study, we 
focus on axisymmetric modes ( 0). Rayleigh3 showed that the eigenfrequencies depend on , the 

liquid density, interfacial tension and drop size. Drop eigenfrequencies scale as / , with  the 
drop diameter. Lamb4 generalized this theory by calculating the eigenpulsation of a drop in a 

surrounding fluid and found the same relationship ~ / .  
Rodot et al.5 and Bisch et al.6 investigated drops partially bound to a rod, submitted to controlled 

vibration. The drop was immersed in immiscible liquids of equal density, with its contact line pinned 
on the rod edge. A large range of liquid couples were examined and the first eigenfrequency was 
found to depend on the support diameter, drop diameter, drop density and surface tension. The first 

resonance frequency scales as  and not as /  such as for the free drop. Then, Strani and 
Sabetta7 (hereafter denoted S&S) studied linear oscillations of a liquid drop in an outer fluid, in partial 
contact with a spherical bowl under inviscid and zero-gravity assumptions. The presence of the 
support increases the eigenfrequencies for modes 2 , but an additional low-frequency mode 
appears. This is the 1 eigenmode, associated with the displacement of the bound drop center of 
mass. When the support reduces to a single point, the 1 mode degenerates to a zero-frequency 
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rigid motion of the drop. S&S7 noted that the mode 1 eigenfrequency may be approximated over 
intervals by  with  varying between -2.9 and -1.75 for drop to support diameter ratios of 1.3 to 7, 
respectively. This is consistent with  -2 proposed by Bisch et al.6 Also, S&S7 computed 
frequencies were in agreement with Bisch et al.6 data, but resonance frequencies were overpredicted 
by 20% (reduced to 10% by accounting for viscous effects8). However, both models (inviscid7 and 
viscous8) overpredicted resonance frequencies for large support to drop diameter ratios, attributed to 
nonlinear effects, not taken into account in the models. Smithwick and Boulet9 studied the first 
resonance frequency of mercury drops on glass (pinned contact line) under partial vacuum and 
compared their data to the calculations of S&S.7 A maximum error of 3.3% was found.  

Bostwick and Steen10 and Vejrazka et al.11 studied linear oscillations of a drop supported on a ring. 
Bostwick and Steen10 noted that the center of mass motion is partitioned among all the eigenmodes 
but the 1 mode is its main carrier. Vejrazka et al.11 found that for small support to drop diameter 
ratios, the frequency response of the drop is independent of the constraint (bowl or ring). Abi Chebel 
et al.12 and Vejrazka et al.11 examined drop oscillations driven by imposed periodic volume variations. 
The frequency response is independent of the forcing type as long as the support to drop diameter 
ratio is small.11 Lastly, Noblin et al.13 studied bound drop oscillations with mobile instead of pinned 
contact lines: a decrease in resonance frequency was found. The transition from a pinned to mobile 
contact line occurred above a critical forcing amplitude. In that case, the variation of the contact angle 
exceeds the contact angle hysteresis.  

Previous studies explored linear oscillations. Wilkes and Basaran14 (hereafter denoted W&B) used 
computational fluid dynamics (CFD) to study large-amplitude axisymmetric oscillations of a viscous 
bound drop on a rod (pinned contact line). They found that the drop resonance frequency varies 
slightly with amplitude at high Ohnesorge numbers (Oh, expressed in section V.B.) but decreases 
significantly with amplitude at low Oh, Oh being the ratio of a viscocapillary to an inertial-capillary 
timescale. Resonance frequency also decreases as the Bond number (Bo, expressed in section II.C.) 
increases. Bo compares the gravity to capillary forces. The maximum drop deformation, observed at 
resonance, increases with forcing amplitude and Bo and decreases with Oh and . DePaoli et al.15 
experimentally studied pendant drops in air under high-amplitude forcing and observed hysteresis, 
characteristic of soft nonlinearities. At a set forcing amplitude (resp. frequency), a larger response 
amplitude appeared at lower frequencies (resp. amplitudes) when a downwards frequency (resp. 
amplitude) sweep was performed vs. an upwards sweep. W&B16 numerically gave the critical forcing 
amplitude for the onset of hysteresis for different Oh. This value could be as low as 3% of the rod 
radius (drop and rod radii of the same order). Calculations were also performed for drops hanging 
from a tube: the first resonance frequency is slightly higher when the support is a tube, the hysteresis 
range is shifted to higher values of forcing frequency and the deformation at resonance is higher.  

For high enough forcing amplitudes, drops detach from the support. W&B17 used CFD to simulate 
drop ejection from a rod (pinned contact line). Above a critical amplitude, the bound drop ruptures: a 
primary drop is ejected from the liquid remaining on the rod. The variations of the critical amplitude 
as a function of the forcing pulsation has a V-shape (the minimum corresponds to drop resonance). 
For a set rod diameter, the critical amplitude increases when Oh decreases or when the bound drop 
volume decreases. Critical amplitudes range from 25% to 80% of the rod radius. Kim18 
experimentally studied the detachment of a pendant drop from a smooth vibrating plate in air (mobile 
contact line). The variations of the critical amplitude as a function of the forcing frequency has a W-
shape. Kim18 found that the minima concord well with the 1 and 2 modes of the bound drop 
as calculated by S&S.7 Again, the minima correspond to drop resonance. The agreement between data 
and calculations of S&S7 is remarkable as the contact line mobility is different and experimental 
oscillation amplitudes are beyond the linear regime. 

Resonance also triggered drop detachment in previous work of the authors, where different pore 
diameters were studied for one system (dodecane-water without surfactant).19 Drops were formed 
through a vibrating nozzle continuously fed with dodecane, immersed in the stationary immiscible 
water phase. This enabled to gain insight into transversally vibrating membrane emulsification in a 
simplified configuration. We found that at a set forcing frequency, smaller drops were generated 
above a threshold forcing amplitude: a growing drop detached prematurely when its first resonance 
frequency (as given by Bisch et al.) and the forcing frequency coincided. However, the threshold was 
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higher than expected, attributed to the fact that the bound drop did not spend enough time in the 
resonance range to reach steady-state resonance. The generation mode forming the smaller drops was 
named the “stretching mode”. Below the threshold, larger drops were formed in dripping mode.  

The aim of this work is to study the mutual effect of forcing parameters and system properties on 
drop generation from a vibrating nozzle. We also aim to further model drop generation modes by 
accounting for drop growth and motion as a function of time. We emphasize that studies on vibrated 
growing drops are rare19 compared to those on constant-volume drops5–18 and that previous work 
concerned only one system and parameter.19 In the following, we first describe our setup. We present 
the dripping to stretching transition and propose a simple framework to approach it. Then, we discuss 
the effect of nozzle inside diameter, dispersed phase flow rate, interfacial tension and dispersed phase 
viscosity on the transition. We examine the effect of these parameters on (i) the threshold amplitude 
for the stretching mode and (ii) the resulting drop diameters. We further analyze our results by 
comparing them to S&S calculations.7 Finally, we propose a simple transient model to describe drop 
dynamics until detachment and compare the model predictions to experiments. 

 
II. EXPERIMENTAL 
A. MATERIALS 

The reference continuous and dispersed phases are distilled water and dodecane (99%, Fisher 
Scientific), respectively. To study the impact of interfacial tension, a surfactant (SDS, 85%, Acros 
Organics) is added to the continuous phase at 0.1 wt% or 2 wt% (systems 1 and 2, resp.). To study the 
impact of dispersed phase viscosity, paraffin (Fisher Scientific) is added to the dispersed phase at 25 
wt% or 50 wt% (systems 3 and 4, resp.). A system with an increased continuous phase viscosity was 
also tested (supplementary material D). The reference system and system 1 to 4 properties are given in 
table I. The viscosities  and densities  of the mixtures were measured in triplicate, the former with a 
Ubbelohde type viscosimeter (AVS310, Schött-Gerade) at 25.1°C. The interfacial tension  was 
measured in triplicate by the rising drop method with a tensiometer (Tracker, I.T. Concept, Teclis). 
For systems 1 and 2,  is determined by the method explained in the supplementary material A. Table 
I values report an intermediate plateau interfacial tension. We consider that the plateau value gives an 
adequate estimation of the interfacial tension when drops form (see supplementary material B). 

Table I. Properties of the different systems investigated. 

System Dispersed phase ‘dp’ 
 

(mPa.s) 
 

(kg.m-3) 
Continuous phase 

‘cp’ 
 

(mPa.s) 
 

(kg.m-3) 
 (mN.m-1) 

Reference Dodecane 1.34 750 Distilled water 0.89 997 50.7 ± 3.5 a 

1 Dodecane 1.34 750 
Distilled water and 

SDS (0.1 wt%) 
0.89 

997 ± 
1.4 a 

19.0 ± 0.6 a,b 

2 Dodecane 1.34 750 
Distilled water and 

SDS (2 wt%) 
0.89 

1001 ± 
1.2 a 

5.4 ± 0.5 a,b 

3 
Dodecane (75 wt%) 

and paraffin (25 wt%) 
1.79 ± 
0.23  a 

772 ± 
1.4 a 

Distilled water 0.89 997 53.5 ± 2.4 a 

4 
Dodecane (50 wt%) 

and paraffin (50 wt%) 
3.24 ± 
0.42 a 

790 ± 
1.1 a 

Distilled water 0.89 997 50.0 ± 1.2 a 

a the tabulated value is measured experimentally. 
b the tabulated value corresponds to the dynamic interfacial tension measured at the intermediate plateau. 
 

B. EXPERIMENTAL SETUP 

The setup, illustrated in prior work19, is summarized in fig. 1. A single glass capillary (nozzle) of 
inside diameter  emerges into a tank with the stationary continuous phase. Two pore diameters are 
presently tested:  0.32 mm and  0.11 mm. The dispersed phase is supplied through the pore 
at a flow rate   1.1 µL.s-1 to 14.4 µL.s-1 (PHD Ultra Syringe Pump, Harvard Apparatus), leading to 
mean flow velocities 4	 / . Reynolds numbers for the flow in the nozzle are of Re  
3.0 to 32.8 (Re 	 / ) (laminar flow). The nozzle is fixed on a vibrating exciter (Bruel 
& Kjaer 4810) which induces a sinusoidal motion  in time : sin 2 .  is the 
forcing amplitude measured by a laser sensor (M5L/2, Bullier Automation) with a precision in the 
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order of 10 µm.  is the forcing frequency set on the signal generator (33512B Arbitrary Waveform 
Generator, Agilent). Vibrations are parallel to the nozzle axis, so drops undergo axial oscillations. 

 
FIG. 1. Cross-section side view of the setup by CAD: 1, tank; 2, continuous phase; 3, glass capillary (nozzle); 4, dispersed 
phase drop; 5, flexible seal; 6, central element fixed on the vibrating exciter; 7, axial, vibrating motion; 8, windows; 9, 
dispersed phase supply system; 10, light source; 11, high-speed camera with macro lens.  
 

In the moving non-inertial frame of reference where the nozzle is still (axes in fig. 2), the forces 
exerted on the drop due to nozzle motion are the inertial force and associated Archimedes’ thrust. We 
note that the continuous phase above the nozzle and support is accelerated by the exciter, shown by 
Faraday waves at the free surface. The resulting excitation force is: 

6 cap																																																																					 1  

with  the bound drop diameter and cap sin  the nozzle acceleration in the 
laboratory inertial frame ( 2  is the forcing pulsation). Drop formation is recorded with a high-
speed camera (v310, Phantom) and macro lens (AF Zoom-Micro Nikkor 70-180mm f/4.5-5.6D ED, 
Nikon). The acquisition frequency is ten times the forcing frequency or 100 fps for trials without 
vibration. The resolution is 800 x 600 px². We extract data with ImageJ20 including average detached 
drop diameters , axial drop elongations  and the position of the drop center of mass  compared 
to the nozzle surface. Images were calibrated (36 px/mm) using the outer diameter (7.86  0.01 mm 
for  0.32 mm) of the nozzle. The main output data are resumed in fig. 2. 

 
FIG. 2. Visual summary of the output data. Drop detaching in stretching mode in time t for the reference system,  0.32 
mm,  3.6 µL.s-1,	  100 Hz,  0.209 mm. 

C. EXPERIMENTAL PROTOCOL 

The tank is filled with the continuous phase and the tube and syringe with the dispersed phase. The 
syringe pump is activated and drop diameters are measured without vibration. Drops are formed in 
dripping mode. We calculate Bond numbers Bo and Weber numbers We as Clanet and Lasheras21: we 

find Bo 2⁄  (with  the gravitational acceleration) from 1.7×10-2 to 1.5×10-1 
and We /  from 4.5×10-3 to 2.8×10-1. These values are below the critical We for the 
transition to jetting (at the given Bo), confirming the setup operates in dripping mode. From the drop 
diameters obtained without vibration, we calculate the in situ interfacial tensions by Tate’s law22: 

6
																																																															 2 		 

Drop detachment occurs when buoyancy (left-hand side of Eq. (2)) exceeds the maximum capillary 
force  that the drop neck can resist without breaking.  is the detached drop diameter. 

	is the Harkins Brown correction factor23: it accounts for the fraction of liquid volume which stays 
attached to the nozzle after drop detachment. We use the 	factor of Mori.24 The in situ interfacial 
tension is then compared to the measured one (table I), to ensure the setup is adequately cleaned. 
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Then, vibration is applied. A forcing frequency is set and an upwards amplitude sweep is 
performed. Measurements are made at different amplitudes, ensuring one is always made at the 
threshold where a transition in drop generation occurs (see III.). This is repeated for frequencies from 
30 to 150 Hz. From 30 to 100 Hz, 10 Hz intervals are applied. Above 100 Hz, intervals vary 
depending on the pore diameter. The vibrating exciter limitations do not enable us to observe the 
stretching mode above 150 Hz for  0.32 mm and 110 Hz for  0.11 mm. After trials, a 
cleaning agent at 3 vol% (Mucasol, Merz) fills the setup for 24h and it is rinsed with distilled water 
leading to a hydrophilic glass surface. Then, the organic dispersed phase does not wet the nozzle and 
the outer nozzle diameter does not influence drop detachment. 

For each test condition (i.e., physicochemical system, pore diameter, dispersed phase flow rate and 
forcing frequency), three trials are carried out to determine the transition threshold. For each trial, six 
detached drops are studied. For each drop, ten images are analyzed. We checked that the accuracy of 
the diameter measurement from ten different snapshots of a given drop is sub-pixel. For a given trial, 
we noted variations up to 2 px at most in diameter from one drop to another. In the figures displaying 
drop diameters, the error bars correspond to the relative standard deviation in drop diameters: it 
ranges between 1%  to 7% depending on the test conditions. 
 

III. TRANSITION FROM DRIPPING TO STRETCHING MODE 
Figure 3 shows typical variations of the drop diameter as a function of the forcing amplitude at a 

set forcing frequency . The drop diameter falls (by 63%) at a threshold amplitude . The same 
behavior occurs for all systems. For the reference system, a relative decrease in drop diameter of 45% 
to 76% was found at 	compared to without vibration depending on , for all pore diameters. For 
system 2, similar values were found: 29% to 73%. This fall at  corresponds to a transition in the 
drop generation regime. For , drops detach in dripping mode and their diameter is close to the 
diameter of the drop formed without vibration: detachment is buoyancy-controlled. For , the 
drop detaches when its mode 1 eigenfrequency coincides with  and when it reaches a critical 
elongation ratio: detachment is controlled by the excitation force. Figure 2 shows how a drop 
elongates at resonance (characteristic mode 1 resonance shape) and detaches. We named this the 
“stretching mode”.19 It should be noted that there is an amplitude interval where both modes coexist. 
The threshold amplitude  is defined as the upper bound of that interval, when all drops are 
generated in stretching mode. 

 
FIG. 3. Transition from dripping to stretching mode: generated drop diameter as a function of the forcing amplitude for the 
reference system,  0.32 mm,  100 Hz,  3.6 µL.s-1. (◊) Experimental data; experimental threshold (dashed line); 
(O) theoretical drop size without vibration from Eq. (2); simulation results of section V.C., Eq. (14) (dotted line); of section 
V.D., Eq. (17) with  -1.9,  4.4 (solid line). 

We proposed a simple model19 to describe the main features of stretching mode. Below, we recall 
its main arguments and derive scaling laws to provide a framework to analyze our experimental 
results in section IV. The vibrating bound drop is considered as a linearly forced harmonic oscillator 
(LFHO) with moderate damping.25 Drop growth is considered slow enough for oscillations to reach 
steady state. We are aware that these assumptions are strong since the system is probably no longer 
linear when oscillations are such that the drop detaches and the process remains transient. However 
they are required to develop the following scaling laws.  

A simple analytical expression of the mode 1 eigenfrequency  of a bound drop has been 
empirically established by Bisch et al.6 for /  of 1.3 to 7 and fluids of equal densities: 
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1
2

6
																																																																															 3  

 is a constant that should depend on the fluid density ratio, with  9 for fluids of equal densities. 
 is the resonating bound drop diameter, which we assimilate to the detached drop diameter.  
Bisch et al.6 also propose an empirical expression for the damping coefficient : 

⁄ ⁄ ⁄ 																																																														 4  

with 4.5 10 and 2.32 10 if ⁄ ⁄  and 1.57 10 and 4.5
10  if ⁄ ⁄ . We assume Eq. (3) and (4) can be reasonably applied to our trials as the 
density ratio ⁄  is in the order of 1 (it ranges from 1.26 to 1.33). Also, we neglect the effect of 
buoyancy on  and .  

From Eq. (2) and (3), omitting , we deduce the minimum forcing frequency above which a 
growing drop may detach in stretching mode (if ): 

,

⁄

2 6 ⁄ ⁄

⁄ ⁄

⁄ ⁄ ⁄ 																																																				 5  

The minimum forcing frequency is around 8 Hz for  0.32 mm for the reference system and 14 
Hz for  0.11 mm for system 2. This is smaller than the lower bound of the frequency range 
investigated. Consequently, drops may detach in stretching mode. 

Whatever the mode (dripping or stretching), the drop detaches when the restoring capillary force 
 exceeds the maximum capillary force . Under LFHO assumption,  reads: 

6
	 																																																																									 6  

with  the eigenpulsation of the bound drop without damping.  is the displacement of the drop 
center of mass with respect to its rest position (absence of buoyancy and excitation forces). The force-
based detachment criterion can be easily recast into an elongation-based criterion: 

6
																																																																															 7  

The displacement of the drop center of mass  is made up of a stationary part due to buoyancy 
and an oscillatory part due to the excitation force. Assuming quasi steady state,  reads: 

sin 																																																																	 8  

with ,  the phase shift and  the amplitude given by the well-known 
expression25: 

	 		 	

	 ²
																																																													 9  

 is the quality factor given by 2⁄ . Since  is given by Eq. (4),  depends only on the 
phase densities and viscosities.  is maximum when 1 1 2⁄ ⁄ , i.e., ≅

 for moderate damping. In that case,  simplifies to ≅ .  
In dripping mode, the drop has left the resonance range and its eigenfrequency is much lower than 

the forcing frequency. Then, buoyancy dominates: Eq. (7) and (8) reduce to Eq. (2) (omitting ). In 
stretching mode, the drop detaches at resonance ( ≅ ). Its diameter is thus:  

≅
6 ⁄

1

√
																																																																				 10  
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An estimate of the threshold amplitude may be derived from the above equations neglecting 
buoyancy and assuming that the detachment criterion is satisfied at an oscillation peak: 

≅
⁄ 6 ⁄

1

√
																																																										 11  

As a result,  and  should both scale as ⁄ , i.e., ⁄ . 
 
IV. IMPACT OF PROCESS PARAMETERS AND SYSTEM PROPERTIES 
In this section, we study the effect of process parameters (pore diameter, dispersed phase flow 

rate) and system properties (interfacial tension, dispersed phase viscosity) on the dripping to 
stretching transition. Threshold amplitudes  are determined from an amplitude sweep and drop 
diameters at  from image analysis. Error bars are generally large for threshold amplitudes partly 
due to measurement errors and partly due to the difficulty to repeatedly estimate the threshold.  

 
A. INFLUENCE OF PORE DIAMETER 

Fig. 4 reports the variations of the threshold amplitude and generated drop diameter as a function 
of the forcing frequency for two pore diameters, i.e.,  0.11 mm and 0.32 mm (more pore 
diameters were tested in another paper in the case of the reference system19). Threshold amplitude 
variations with forcing frequency are monotonous (fig. 4(a)) and do not exhibit the V- or W-shape 
reported by W&B17 or Kim18, respectively. In the latter cases, bound drop volume (thus 
eigenfrequencies) are fixed, independently of . On the contrary, in our setup, the drop grows until its 
eigenfrequency coincides with .  

The threshold amplitude decreases as the forcing frequency increases (fig. 4(a)), in accordance 
with Eq. (11). Eq. (11) predicts a ⁄  scaling but our data scale differently: . .  for  
0.11 mm and . .  for  0.32 mm. Also, thresholds are twice higher for  0.11 mm than 

for  0.32 mm. This contradicts the expected ⁄  scaling (Eq. (11)). We return to this in section 
V. 

The drop diameter decreases with increasing forcing frequency (fig. 4(b)). The /  scaling 
predicted by Eq. (10) was verified for four pore diameters ranging from 0.11mm to 0.75mm19: we 
specifically find . .  for   0.11 mm and . .  for  0.32 mm. The larger the 
pore diameter, the larger the drops produced. However, from experimental data19, it is difficult to 

conclude on the relevance of the predicted ⁄  scaling as the deviation of the data to the ⁄  
scaling is large (0% to 31%, depending on ).  

 
FIG. 4. Impact of pore size on (a) threshold amplitude  and (b) drop diameter at , for the reference system. (□)  
0.11 mm,  2.2 µL.s-1; (◊)  0.32 mm,  6.1 µL.s-1. Simulations from Eq. (14) of V.C. (dashed line); Eq. (17) of 
V.D. (solid line):  0.11 mm (thick);  0.32 mm (thin). 
 

B. INFLUENCE OF DISPERSED PHASE FLOW RATE 
Four dispersed phase flow rates  were applied to the reference system, for 	0.32 mm: 

	2.5 µL.s-1, 4.3 µL.s-1, 6.5 µL.s-1 and 14.4 µL.s-1. Threshold amplitudes and drop diameters do not vary 
significantly with these flow rates according to the error bars (see supplementary material C). This is 
consistent with Eq. (10) and (11). For higher flow rates, this parameter could become significant. A 
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drop may no longer have time to reach large-amplitude oscillations at resonance for stretching mode. 
Also, a transition to jetting would occur21,26,27 (out of the scope of this paper). 

When  increases from 2.5 to 14.4 µL.s-1, the mean number of oscillations between two drops at 
	100 Hz decreases from 28 to 4. As the threshold is little affected by  in the investigation range, 

we infer that the steady-state oscillation regime is reached in just a few oscillations.  
 

C. INFLUENCE OF INTERFACIAL TENSION 
Experiments were carried out for the reference system and systems 1 and 2 (  50.7 mN.m-1, 19.0 

mN.m-1 and 5.4 mN.m-1, resp.) for  0.32 mm. The threshold amplitude scaling is not significantly 
affected by : . .  for system 1 and . .  for system 2 compared to . .  for the 
reference system (fig. 5(a)). However, it is not in accordance with the predicted ⁄  scaling (Eq. 
(11)). Higher SDS concentrations result in lower interfacial tensions, leading to lower threshold 
amplitudes for a drop to detach in stretching mode (fig. 5(a)). This is in qualitative agreement with 
Eq. (11) but it is difficult to conclude on the relevance of the predicted ⁄  scaling, as the deviation 
of the data to this scaling is large (8% to 32%, depending on ).  

The /  scaling of the drop diameter is maintained when the interfacial tension is decreased 
from 50.7 mN.m-1 to 5.4 mN.m-1 (fig. 5(b)): we find . .  for system 1 and . .  for 
system 2. Smaller drops are generated for lower interfacial tensions. The drop diameter roughly scales 
as ⁄  in accordance with Eq. (10) (deviations of 1% to 18%, depending on ).  

 
FIG. 5. Impact of interfacial tension on (a) threshold amplitude  and (b) drop diameter at , for  0.32 mm,  
3.6 µL.s-1. (◊) Reference system; ( ) system 1; (♦) system 2.  

D. INFLUENCE OF DISPERSED PHASE VISCOSITY 
Experiments were carried out for the reference system and systems 3 and 4 ( 1.34 mPa.s, 

1.79 mPa.s and 3.24 mPa.s, resp.) for  0.32 mm. Threshold amplitudes  increase when  
increases (fig. 6(a)), as in W&B calculations.17 When changing the reference system for system 3 
(resp. 4),  increases by 34% (resp. 142%) and  increases by 28% to 79% (resp. 62% to 133%). 
The effect of  is stronger than expected. Indeed, when the reference system is changed for system 
4, the quality factor  decreases from 14.6 to 13.9 (Eq. (4)), leading to a theoretical 5% increase in 

 (Eq. (11)). In addition, the  scaling with the reference system is not conserved for systems 3 
and 4: we find . .  for system 3 and  . .  for system 4. Thus, these results do not agree 
with the predicted ⁄  scaling (Eq. (11)).  does not significantly impact drop diameter (fig. 
6(b)), in agreement with Eq. (10) (valid for moderate damping).  

As mentioned above, a system with a greater continuous phase viscosity was also studied: results 
and analysis are reported in supplementary material D. 
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FIG. 6. Impact of dispersed phase viscosity on (a) threshold amplitude  and (b) drop diameter at , for  0.32 mm, 

 6.1 µL.s-1. (◊) Reference system; (⊲) system 3; (⊳) system 4.  
 

V. FURTHER ANALYSIS 
In this section, we synthesize drop diameter data of section IV. Then, we analyze the elongation 

ratio for detachment. Finally, we propose a LFHO model that better reflects the  data. 
 

A. MODE 1 RESONANCE 
Drop diameters at the threshold are consistent with the detachment at resonance when the bound 

drop mode 1 eigenfrequency coincides with the forcing frequency. To quantify the discrepancy 
between our data and Eq. (3) of Bisch et al.6, we plot the dimensionless forcing pulsation (our data) 
and dimensionless drop eigenpulsation (Eq. (3)) against the drop to pore diameter, for different pore 
diameters and interfacial tensions (fig. 7(a)) and dispersed phase viscosities (fig. 7(b)). Pulsations are 

made dimensionless by 8 ⁄
⁄

 and are labeled with a * exponent.  

 
FIG. 7. Dimensionless forcing pulsation depending on the drop to pore diameter. (a) For different interfacial tensions and 
pore diameters: reference system (white); system 1 (grey); system 2 (black). (□)  0.11 mm; (◊)  0.32 mm. (b) For 
different dispersed phase viscosities,  0.32 mm: (⊲) system 3; (⊳) system 4. Curve of the dimensionless eigenpulsation 
from: Eq. (3) of Bisch et al.6 (dashed line); Eq. (12) of S&S7 for the reference system (solid line), system 3 (dash-dotted line) 
and system 4 (dotted line). 
 

Our data are well represented by Eq. (3) of Bisch et al.6 (dashed line) until /  5. For 
/ 5, our data are markedly above the Bisch et al.6 curve. As stated, Eq. (3) was validated until 
/  7. As the validity of the Bisch et al.6 law is restricted, we consider the theoretical results of 

S&S7,8 established for any /  and density ratio. They analyzed the axisymmetric vibrations of a 
liquid drop in an outer fluid, in partial contact with a spherical bowl (see fig. 8) under the assumptions 
of zero gravity, negligible viscous effects and small surface deformations. Their calculated 
eigenfrequency  of mode  is: 

1
2

8
																																																																									 12  

http://dx.doi.org/10.1063/1.4964378


10 
 

with  the eigenvalue for mode , function of the support angle Θ and phase density ratio. Assuming 
fig. 8 is a reasonable simplification of our drop, we estimate Θ arcsin ⁄ . We calculate  
with Smithwick and Boulet’s method9 derived from the work of S&S7, using densities and interfacial 
tensions of table I. Our data are better fitted by the model of S&S7 than by the law of Bisch et al.6 (fig. 
7(a) and (b)), notably for / 7. As in Kim’s18 work, agreement between our data and S&S7 
calculations is remarkable as the binding constraint is different. 

 
FIG. 8. Analogy between the present drop bound to a nozzle (left) and a drop in partial contact with a solid spherical cap 
(right) as defined by S&S7,8. 
 

B. CRITICAL ELONGATION RATIO 
A critical elongation ratio ⁄  function of the drop to pore diameter ratio leads to drop 

detachment17,19. We measured ⁄  for all parameters tested (fig. 9),  being taken from the 
nozzle tip to the drop apex. The points lie roughly on the same curve (fig. 9), confirming that a drop 
detaches in stretching mode once a critical elongation is reached. Also, we see that the critical 
elongation ratio is essentially a function of ⁄ .  

 
FIG. 9. Drop elongation ratio function of the drop to pore diameter. Reference system (white); system 1 (grey); system 2 
(black). (□)  0.11 mm; (◊)  0.32 mm; (⊲) system 3,  0.32 mm; (⊳) system 4,  0.32 mm. Curve from 
Eq. (13) (dashed and solid lines). 

 
We remind that physicochemical properties vary for systems 1 to 4 compared to the reference 

system. ⁄  should depend on the viscosity ratio ⁄  and on the Ohnesorge number 

Oh 2⁄⁄ . The viscosity ratios we tested (  1.5 to 4.1) may not vary enough to 
have an impact on ⁄ . For a free drop submitted to shear, Stone et al.28 found that breakup 
occurs above a critical elongation ratio, function of  but for  0.1 to 1, the critical elongation ratio 
did not vary significantly. Similarly, we find Oh from 1.7×10-2 to 5.3×10-2. These values may be too 
close to observe a difference in ⁄ , although for a free drop submitted to shear, these values are 
sufficiently different to obtain a twofold increase in aspect ratio.29 

We return to the elongation-based criterion for stretching mode (Eq. (7)). Let us note  the 
displacement of the drop center of mass when the drop axial elongation is . In the limit ≫

, we may consider that drop deformation is entirely localized in the neck. In that case, an estimation 
of   is given by  and ⁄  roughly reads: 

≅ 1
3
4

																																																																											 13  
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The curve from Eq. (13) (solid line) is plotted against our data (fig. 9). For high drop to pore 
diameter ratios, critical elongation ratios are well estimated by Eq. (13), in accordance with S&S7 or 
Bostwick and Steen10: for large ⁄ , the bound drop essentially experiences a rigid motion with 
deformation localized at the neck. For low ⁄ , Eq. (13) is no longer valid (dashed line) and drop 
deformation is rather uniform. From fig. 9, we deduce that the transition from the uniform 
deformation regime to the localized deformation regime occurs around ⁄  ≅ 3. In our setup, the 
neck of the bound drop preexists (without vibration) contrary to in the configuration of S&S.7 Thus, 
deformation is more quickly localized (they find values for the transition in the order of 10). 
 

C. OSCILLATOR MODEL WITH THE TRANSIENT 
The effect of process parameters and system properties on drop diameter concord with the scaling 

laws of section III but threshold amplitude variations are not well predicted. Thus we developed a 
finer model which describes drop growth and motion as a function of time.  We still consider the drop 
as a LFHO as it probably provides the most simple framework to study growing drop oscillations. In 
the moving non-inertial frame of reference where the nozzle is still, the differential equation of 
motion of the drop center of mass reads: 

2 sin 																																																			 14  

Drop mode 1 eigenpulsation  is given by Eq. (12) of S&S7 and calculated using Smithwick and 
Boulet’s method.9 The damping coefficient  is estimated from the empirical Eq. (4) of Bisch et al.6 
We suppose drop growth is slow enough for Eq. (14) to hold at every moment. The drop diameter 
increases in time  according to: 

0
6 ⁄

																																																																		 15  

 and  depend on , so vary with time as well. Equation (14) is solved numerically by the fourth 
order Runge-Kutta method. The integration time step is 0.01 . We begin calculations with 

0 1.01  as  is not defined for 1⁄ . We fix initial conditions of 0 ⁄  
and 0 0. Figure 3 reports simulation results (dotted line) with  ranging from 0 to 0.325 mm 
(increment of 0.005 mm) for one dataset on the reference system (a typical drop center of mass 
simulated motion close to the threshold is shown in supplementary material E). Drop size at the 
transition is well predicted but it is overestimated far from the transition. Moreover, the threshold 
amplitude is underestimated: in this example, the predicted value is twice lower than experimentally.  

In the example of fig. 4(a), we see that threshold values from the model (dashed lines) are well 
below experimental ones. Since the present model accounts for the transient (contrary to the model19 
briefly reported in section III), these discrepancies cannot be attributed to the time spent by the bound 
drop in its resonance range as advanced earlier19. This is consistent with the experimental results of 
section IV.B which show that the dispersed phase flow rate little affects the threshold amplitude. The 
effect of the frequency on the amplitude variations is also not well predicted. Finally, the effect of the 
pore diameter on the threshold amplitude is opposite to experimentally. We infer that damping is 
underestimated in this model and the effect of ⁄  is not well described.  

 
D. OSCILLATOR MODEL WITH ADDITIONAL FRICTION TERM  
We estimate the quality factor  by /  for bound drops at different amplitudes at 
 100 Hz (reference system). We find lower values than from Eq. (4) (around 3 times). Damping is 

higher than expected, even for amplitudes of the drop excitation force as low as 0.015 mm (9% of the 
drop radius, well below ).  is constant below the threshold amplitude , so we assume that at 

 and below, nonlinear effects are weak and do not explain the higher damping.  
Our system undergoes additional friction compared to configurations in the literature.6,7,11 As the 

dispersed phase does not wet the nozzle tip, there is a wedge between the drop and nozzle surface, 
containing continuous liquid phase (fig. 8). Assuming ≪⁄ ⁄ ≪ 1, an estimate of the 
wedge angle  is given by ⁄ . When the drop oscillates,  oscillates. The continuous phase in the 
wedge is driven outwards (inwards, resp.) when  decreases (increases) with time. The viscous 
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friction associated with the film flow leads to an extra friction term in the LFHO model of the 
oscillating drop. We note film the damping coefficient associated with the friction in the film and 
propose the following expression (see Appendix for details): 

film 	 																																																																															 16  

 is dimensionless. We infer  depends only on the viscosity ratio ⁄  and  depends on the 
deformation regime (“uniform” or “localized”). The differential equation of motion of the drop center 
of mass now reads: 

2 	 sin 																																	 17  

We solve Eq. (17) by the same procedure as for Eq. (14).  and  are identified from experimental 
threshold amplitudes since the slope of the curve ( ) is related to  and the curve is translated up 
or down by increasing or decreasing , respectively.  and  values are summarized in table II.  

 was determined by fitting simulation results to the data  for the reference system with 
 0.32 mm and  0.11 mm. We needed to introduce two distinct values of  depending on 

⁄ . For 5⁄ , the data (obtained with  0.32 mm) are well represented with 1.9. 
For 5⁄ , the data (  0.11 mm) are better represented with 1.4. 

Table II. Identified values of coefficients  and  for film. 

⁄  5 5 

 -1.9 -1.4 

⁄  1.5 2 3.6 1.5 

 4.4 6.0 7.4 8.2 

 
When 1.9 (resp. 1.4), the viscous force per length unit of pore circumference that acts 

against the drop oscillations scales as .  (resp. . ). In the case where a viscous force opposes a 
contact line movement, the dependence on the wedge angle is weaker: the force per length unit of the 
contact line scales as . Indeed, the wedge angle is constant and the wedge translates parallel to the 
surface whereas in this case, the wedge angle varies, inducing the liquid flow in the wedge. 

The dispersed to continuous phase viscosity ratio is of 1.5, 2 and 3.6 for the reference system, 
systems 3 and 4, respectively. We determined  for the different ratios by fitting simulation results to 
the data  (with  previously identified).  increases monotonously from 4.4 to 7.4 when 

⁄  increases from 1.5 to 3.6. We logically expect that at a set , the viscous friction in the 
film increases with ⁄  (drop interface becomes less and less mobile).  

Figure 3 shows that the threshold amplitude is well reproduced by adding film (solid line). Drop 
diameter at the transition is also well predicted. However, drop diameters are still overestimated far 
from the transition. Above , this may be due to nonlinear effects. A downwards shift in resonance 
frequency occurs when increasing  for soft nonlinear oscillators.15,16 Therefore, at the set forcing 
frequency, smaller drops which would usually resonate at higher frequencies resonate and detach in 
stretching mode.19 Below , overestimation is attributed to the excitation of a higher resonance 
mode than mode 1. This is not taken into account in Eq. (14) or (17). 

When film is included, the effect of the frequency on amplitude variations is well described (fig. 
4(a), solid lines). The effect of the pore diameter on the threshold is also well accounted for (fig. 4(a)). 
Below 60 Hz, no clear threshold appeared in simulations for  0.11 mm. (fig. 4(a)). We expect the 
drop behaves as an overdamped oscillator. Experimentally, the threshold is less sharp however exists.  

We note that simulations for systems 1 and 2 were performed with  and  identified on the 
reference system, since the viscosity ratios are the same. Threshold amplitudes and drop diameters are 
relatively well predicted for these systems from the model (grey and black points, fig. 10).  

Overall, the theoretical threshold amplitudes from the modified LFHO model well reproduce 
experimental ones (fig. 10 (a)) and drop diameters are also well accounted for (fig. 10 (b)).  
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FIG. 10. Simulation and experimental values for different forcing frequencies for (a) threshold amplitudes  
and (b) drop diameters at . Reference system (white); system 1 (grey); system 2 (black). (□)  0.11 mm; 

(◊)  0.32 mm; (⊲) system 3,  0.32 mm; (⊳) system 4,  0.32 mm. 
 

VI. CONCLUSIONS 
Studies on vibrated growing drops are rare19 compared to those on constant volume drops.5–18 In 

addition, few studies focus on vibrated drops where detachment occurs from the surface.17–19 In the 
present work, we studied drop growth and detachment from an axially vibrating nozzle. We studied 
the impact of forcing parameters as well as nozzle inside diameter, dispersed phase flow rate, 
interfacial tension and dispersed phase viscosity. At a set forcing frequency, we observed a transition 
in drop diameter when increasing the forcing amplitude: above a threshold, drops detach at resonance, 
i.e., when the first eigenfrequency of the growing drop coincides with the forcing frequency. Below 
the threshold, larger drops detach in dripping mode, driven by buoyancy. The diameter of the drops 
formed above the threshold is very well correlated to the mode 1 eigenfrequency calculated by S&S7. 
We remind that the eigenfrequency depends on the support and drop diameters, phase densities and 
interfacial tension. The agreement between our results and calculations of S&S7,8 is remarkable as the 
binding constraint is different. 

We examined the critical elongation ratio for drop detachment, which depends on the drop to pore 
diameter. We discerned two deformation regimes: for low ⁄ , a uniform deformation regime and 
for larger ⁄ , a localized deformation regime (limited to the neck). The neck preexists, so the 
latter regime appears earlier than in the configuration of S&S.7,8 We proposed a transient model to 
account for the threshold amplitude variations. To our knowledge, critical amplitudes for drop 
ejection have not been accounted for before. We modelled the growing drop as a LFHO, with the 
eigenfrequency of S&S7,8. Since the dispersed phase does not wet the nozzle, we introduced an extra 
damping coefficient to account for the viscous dissipation in the film of continuous phase between the 
drop and nozzle surface. The friction force is described as a power law of the pore to drop diameter 
ratio. The exponent depends on the deformation regime and the multiplier constant on the viscosity 
ratio. Our model well reproduces the experimental threshold amplitudes and resulting drop diameters.  

In further work, it would be interesting to study drop generation when axial vibration is coupled 
to the shear stress exerted by a circulating phase, to approach vibrating membrane emulsification 
conditions. 

 
SUPPLEMENTARY MATERIAL 
See supplementary material for insight on: A, the interfacial tension at the intermediate plateau; B, the 
characteristic time to reach this plateau; C, the figures for the influence of dispersed phase flow rate; 
D, the figures and analysis for the influence of the continuous phase viscosity and E, the drop center 
of mass motion with respect to the nozzle surface. 
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We consider a drop attached to the nozzle inner edge (fig. 11). We suppose that the drop diameter 
is large compared to the nozzle inner diameter and that the drop shape (at rest) can be approached by a 
spherical cap of angle Θ . Θ is the angle of the wedge formed between the drop at rest and the 
nozzle surface. Θ is given by Θ arcsin	 ⁄ ≅ ⁄ .  

 
FIG. 11. Sketch of an attached drop oscillating between prolate and oblate shapes. 

 

When the drop is submitted to vibrations, we consider that it may be described by a truncated 
ellipsoid of revolution that oscillates between prolate and oblate shapes. The wedge angle varies with 
time as the drop oscillates. Its instantaneous value is ≅ 1 4 ⁄ ⁄  in the limit of 
small drop deformations. The continuous phase in the wedge is driven outwards (inwards, resp.) when 

 decreases (increases, resp.) with time. The viscous friction associated with the film flow in the 
wedge leads to an additional friction term in the LFHO model of the oscillating drop. We note film 
the corresponding friction force that acts against drop axial oscillations. Under the assumption 

≪⁄ ⁄ ≪ 1, we infer that film depends on , , ,  and . From dimensional 
arguments, we deduce: 

film

	 	 	
, 																																																																										 A1  

In the case of a viscous force that opposes a contact line movement, the vicinity of the contact line 
is usually described as a wedge with a well-defined dynamic contact angle. The force per length unit 
of the contact line is proportional to the liquid viscosity and is inversely proportional to the dynamic 
contact angle. In analogy to this, we seek a law in the generic form: 

film

	 	 	
																																																																			 A2  

with ⁄  the wedge angle and  a function of ⁄ . We note that, for a moving contact line, 
the wedge angle is constant and the wedge translates parallel to the surface whereas in our case, the 
wedge angle varies, leading to the liquid flow in the wedge. We deduce the expression of the damping 
coefficient film (associated with film) appearing in Eq. (17): 

film 	
	 	

	
	 	 																																						 A3  

where ⁄  depends on the dispersed to continuous phase viscosity ratio. 
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