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Drop generation from an axially vibrating nozzle exhibits t@sition in drop
diameter when varying the vibration amplitude. Below ‘@, threshold amplitude,
forcing has essentially no effect on drop size and drops M ping mode.
Above the threshold, drop size is controlled by forcingt drops detach at resonance,
i.e., when the first eigenfrequency of the growing drop ‘egificides.with the forcing
frequency. We experimentally study the impactfof the zle inside diameter,
dispersed phase flow rate, interfacial tension and dispersed,phase viscosity on this
transition. Drop diameter is well correlated tosthe m 1 eigenfrequency of Strani
and Sabetta for a drop in partial contact viith a-spherical bowl. We propose a
transient model to describe drop dynamics unti eta&ment. The drop is modelled
as a linearly forced harmonic oscillator, with thé.€igenfrequency of Strani and
Sabetta. Since the dispersed phase s not wet the nozzle tip, an additional
damping coefficient is introduced toﬁqld forthe viscous dissipation in the film

of continuous phase between th drgp\amiozzle surface. The model adequately
reproduces the effect of the diffew rs on the threshold amplitude.

| INTRODUCTION .

Inducing vibration to jets or d camybe used to control breakup, thus drop size. Vibration is
applied for example in ink, jet DX%I;, spray coating or vibrating cross-flow membrane
emulsification, the latter havi tivated“our research. We focus on transversal vibrations, where
drops undergo axial oscillations.mohﬁmembrane with a mean pore diameter of 0.8 pm, Arnaud'
found a decrease in the peak of the volume-weighted drop size distribution (from 30 pm to 10 pm) at
a forcing frequency of IS5 to Hz compared to without vibration. Thus, vibrating the membrane in
this process impacts drop'size but mechanisms for drop detachment were not explained."” To obtain a
fine control on dropfsize, understanding the physics of drop vibration and detachment is necessary.

Oscillation?f uid drops have been extensively studied since the pioneering work of Lord
1

Rayleigh’. He &£alculated, thé eigenmodes of a free inviscid, incompressible drop in a vacuum, in
absence of gra Mo small-amplitude oscillations. The eigenmodes are characterized by two
integers: o'lhnwave mber n > 2 and an azimuthal wavenumber m € [—n;n]. In this study, we
1 etric modes (m = 0). Rayleigh® showed that the eigenfrequencies depend on n, the
rfacial tension and drop size. Drop eigenfrequencies scale as D, 3/ 2, with D, the
. Jamb® generalized this theory by calculating the eigenpulsation of a drop in a
sirrounding flifid and found the same relationship f ~D, 32,
odot & al’ and Bisch et al.® investigated drops partially bound to a rod, submitted to controlled
“vibratign. The drop was immersed in immiscible liquids of equal density, with its contact line pinned
on tl§ rod edge. A large range of liquid couples were examined and the first eigenfrequency was
ound/to depend on the support diameter, drop diameter, drop density and surface tension. The first

B resonance frequency scales as D72 and not as D, 3/2 such as for the free drop. Then, Strani and
Sabetta’ (hereafter denoted S&S) studied linear oscillations of a liquid drop in an outer fluid, in partial
contact with a spherical bowl under inviscid and zero-gravity assumptions. The presence of the
support increases the eigenfrequencies for modes n > 2, but an additional low-frequency mode
appears. This is the n = 1 eigenmode, associated with the displacement of the bound drop center of
mass. When the support reduces to a single point, the n = 1 mode degenerates to a zero-frequency
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rigid motion of the drop. S&S’ noted that the mode 1 eigenfrequency may be approximated over
intervals by D with & varying between -2.9 and -1.75 for drop to support diameter ratios of 1.3 to 7,
respectively. This is consistent with @ = -2 proposed by Bisch et al.® Also, S&S’ computed
frequencies were in agreement with Bisch ef al.° data, but resonance frequencies were overpredicted
by 20% (reduced to 10% by accounting for viscous effects®). However, both models (inviscid’ and
viscous®) overpredicted resonance frequencies for large support to drop diameter ratios, attributed to
nonlinear effects, not taken into account in the models. Smithwick and Boulet’ studied the first
resonance frequency of mercury drops on glass (pinned contact line) 12((61‘ partial vacuum and
compared their data to the calculations of S&S.” A maximum error of 3.3% ound.

Bostwick and Steen'” and Vejrazka et al.'' studied linear oscillations of (?rxo;&qg‘ported on a ring.
Bostwick and Steen'’ noted that the center of mass motion is partitioded among all'the eigenmodes
but the n = 1 mode is its main carrier. Vejrazka ez al."' found that foi small support to drop diameter
ratios, the frequency response of the drop is independent of the constraimt (bowl or ring). Abi Chebel
et al."* and Vejrazka et al."' examined drop oscillations driven byfimpesed periodic volume variations.
The frequency response is independent of the forcing type as leng As<the support to drop diameter
ratio is small.'' Lastly, Noblin et al." studied bound drop oSeillations with mobile instead of pinned
contact lines: a decrease in resonance frequency was found. The transition from a pinned to mobile
contact line occurred above a critical forcing amplitude, In that case, the variation of the contact angle
exceeds the contact angle hysteresis. a

Previous studies explored linear oscillations. Wilkeswand B'z?aran14 (hereafter denoted W&B) used
computational fluid dynamics (CFD) to study large- litu@ xisymmetric oscillations of a viscous

bound drop on a rod (pinned contact line). Tw’m that the drop resonance frequency varies
m
e rati

slightly with amplitude at high Ohnesorge bers, (Ohy expressed in section V.B.) but decreases
significantly with amplitude at low Oh, Oh:bein of a viscocapillary to an inertial-capillary
timescale. Resonance frequency also decreases as<the Bond number (Bo, expressed in section II.C.)
increases. Bo compares the gravity to gapillaryforces. The maximum drop deformation, observed at
resonance, increases with forcing amplitu a,%ih o and decreases with Oh and n. DePaoli et al.”

experimentally studied pendant d in aif under high-amplitude forcing and observed hysteresis,
eneies

characteristic of soft nonlinearities. setyforcing amplitude (resp. frequency), a larger response
amplitude appeared at lower esp. amplitudes) when a downwards frequency (resp.
amplitude) sweep was performe fW%Na.pwards sweep. W&B'® numerically gave the critical forcing
amplitude for the onset of hysteresis*for different Oh. This value could be as low as 3% of the rod

forcing frequency and the deformation at resonance is higher.
For high enou, re‘{ng amplitudes, drops detach from the support. W&B'” used CFD to simulate
drop ejection f{dﬁ aro ixgelzd contact line). Above a critical amplitude, the bound drop ruptures: a
primary drop is ejceted from the liquid remaining on the rod. The variations of the critical amplitude
i the ing pulsation has a V-shape (the minimum corresponds to drop resonance).
diameter, the critical amplitude increases when Oh decreases or when the bound drop
s. Critical amplitudes range from 25% to 80% of the rod radius. Kim'®
entdlly studied the detachment of a pendant drop from a smooth vibrating plate in air (mobile
. T}{e variations of the critical amplitude as a function of the forcing frequency has a W-
und that the minima concord well with the n = 1 and n = 2 modes of the bound drop

by S&S.” Again, the minima correspond to drop resonance. The agreement between data
ations of S&S’ is remarkable as the contact line mobility is different and experimental
oscilbtion amplitudes are beyond the linear regime.

Resonance also triggered drop detachment in previous work of the authors, where different pore
diameters were studied for one system (dodecane-water without surfactant)."” Drops were formed
ﬁﬁough a vibrating nozzle continuously fed with dodecane, immersed in the stationary immiscible
water phase. This enabled to gain insight into transversally vibrating membrane emulsification in a
simplified configuration. We found that at a set forcing frequency, smaller drops were generated
above a threshold forcing amplitude: a growing drop detached prematurely when its first resonance
frequency (as given by Bisch et al.) and the forcing frequency coincided. However, the threshold was
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higher than expected, attributed to the fact that the bound drop did not spend enough time in the
resonance range to reach steady-state resonance. The generation mode forming the smaller drops was
named the “stretching mode”. Below the threshold, larger drops were formed in dripping mode.

The aim of this work is to study the mutual effect of forcing parameters and system properties on
drop generation from a vibrating nozzle. We also aim to further model drop generation modes by
accounting for drop growth and motion as a function of time. We emphasize that studies on vibrated
growing drops are rare'’ compared to those on constant-volume drops®'® and that previous work
concerned only one system and parameter.'® In the following, we first describ€ our setup. We present
the dripping to stretching transition and propose a simple framework to ap it. Then, we discuss
the effect of nozzle inside diameter, dispersed phase flow rate, interfacialet s&&dispersed phase
viscosity on the transition. We examine the effect of these parametersn (i) jthe threshold amplitude
for the stretching mode and (ii) the resulting drop diameters. We further analyze our results by
comparing them to S&S calculations.” Finally, we propose a simple tramsient'model to describe drop
dynamics until detachment and compare the model predictions t ex‘;’jime

T—

Il EXPERIMENTAL —

A. MATERIALS

The reference continuous and dispersed phases are distilled wéter and dodecane (99%, Fisher
Scientific), respectively. To study the impact of intexfacial tension, a surfactant (SDS, 85%, Acros
Organics) is added to the continuous phase at 0.1 wt% ‘or 2°wt%, (systems 1 and 2, resp.). To study the
impact of dispersed phase viscosity, paraffin (FishenScientific)'is added to the dispersed phase at 25

wt% or 50 wt% (systems 3 and 4, resp.). A system withsan 1ficreased continuous phase viscosity was
also tested (supplementary material D). The r eM and system 1 to 4 properties are given in
table 1. The viscosities 77 and densities p of the tu ere measured in triplicate, the former with a
Ubbelohde type viscosimeter (AVS310, 6 rade) at 25.1°C. The interfacial tension y was
measured in triplicate by the rising drop met! with a tensiometer (Tracker, I.T. Concept, Teclis).
For systems 1 and 2, y is determined b ethod explained in the supplementary material A. Table
I values report an intermediate platgau intétfacial'tension. We consider that the plateau value gives an

adequate estimation of the interfaci Tbsi\(ik‘when drops form (see supplementary material B).

Tald&l-%ﬁes the different systems investigated.

System  Dispersed phaie ‘-(-1-1.)... ([?;a} (kg .‘::’l_ ) Contml‘lcolll,s phase (migg.s) (kg;fl_3) ¥ (mN.m™)
Reference Dodecafe 1.34 750 Distilled water 0.89 997 50.7+3.5%
1 D & \ 1.34 750 Disfggeg)f’lva‘% /(";‘;’d 0.89 919.471 T 19.0+06%

2 / il 134 750 Disstggd(zw j‘vttiz);‘nd gy OLE sawose

3 Dﬁf:gfl’n o SWV‘;/;’/?)) 0% 1T Distilled water 0.89 997 53.5+24°

ane (50 wt%) 324+ 790+

/and p/ar fin (50 Wi%) 042° 11° Distilled water 0.89 997 50.0+1.2

t & tabulatedwalu€ is measured experimentally.
e tabulategva e corresponds to the dynamic interfacial tension measured at the intermediate plateau.

PERIMENTAL SETUP

setup, illustrated in prior work'®, is summarized in fig. 1. A single glass capillary (nozzle) of
1d diameter D,, emerges into a tank with the stationary continuous phase. Two pore diameters are
p{esently tested: D =0.32 mm and D, = 0 11 mm. The dispersed phase is supplied through the pore
at a flow rate ¢ = 1 1uLs'to 14.4 uL s" (PHD Ultra Syringe Pump, Harvard Apparatus), leading to
mean flow velocities vy, = 4 q/ (nDZ) Reynolds numbers for the flow in the nozzle are of Rec,, =
3.0 to 32.8 (Recap = PapVapDPp/Nap) (laminar flow). The nozzle is fixed on a vibrating exciter (Bruel
& Kjaer 4810) which induces a sinusoidal motion Xy, in time t: X.q, = Asin(2nft). A is the
forcing amplitude measured by a laser sensor (M5L/2, Bullier Automation) with a precision in the


http://dx.doi.org/10.1063/1.4964378

AllP

Publishing

| This manuscript was accepted by Phys. Fluids. Click here to see the version of record.

order of 10 pm. f is the forcing frequency set on the signal generator (33512B Arbitrary Waveform
Generator, Agilent). Vibrations are parallel to the nozzle axis, so drops undergo axial oscillations.

phase drop; 5, flexible seal; 6, central element fixed on the vibrating exciter; 7, axi ting motion; 8, windows; 9,
dispersed phase supply system; 10, light source; 11, high-speed camera with macgo lens.

In the moving non-inertial frame of reference where the nozzle i€ still (axes in fig. 2), the forces
exerted on the drop due to nozzle motion are the inertial forée and assqciated Archimedes’ thrust. We
note that the continuous phase above the nozzle and suppott is accslera ed by the exciter, shown by
Faraday waves at the free surface. The resulting excitag;)z:fo is:

ap ‘) (€Y)
with D; the bound drop diameter and ac,p xA’aéhvm(a‘R' + 1) the nozzle acceleration in the
pulsatio

laboratory inertial frame (w = 2xf is the for@g\E . Drop formation is recorded with a high-

T
Foxc (,0 cp — Pdp ) ic

speed camera (v310, Phantom) and macrogens -Micro Nikkor 70-180mm f/4.5-5.6D ED,
Nikon). The acquisition frequency is ten times the.forcing frequency or 100 fps for trials without
vibration. The resolution is 800 x 600 px2. We extract data with ImageJ® including average detached
drop diameters D, axial drop elongatio the position of the drop center of mass X; compared
to the nozzle surface. Images were{ calibrated (36 px/mm) using the outer diameter (7.86 £ 0.01 mm
for D,, = 0.32 mm) of the nozzle. Th tput data are resumed in fig. 2.

Dy D

- Q.9

t+7ms t+10ms t+20ms

0.5mm

FIG. 2. Visual sumi ry 0 e outpit data. Drop detaching in stretching mode in time ¢ for the reference system, D,, = 0.32
mm, q = 3.6 uL 100 = 0.209 mm.

PROTOCOL
ed with the continuous phase and the tube and syringe with the dispersed phase. The
ctivated and drop diameters are measured without vibration. Drops are formed in
¢ calculate Bond numbers Bo and Weber numbers We as Clanet and Lasheras®': we

1
- pdp) gD/ 2)/] /2 (with g the gravitational acceleration) from 1. 7X10'2 to 1.5x10™!

0 jetting (at the given Bo), conﬁrming the setup operates in dripping mode. From the drop
dlamﬁjers obtained without vibration, we calculate the in situ interfacial tensions by Tate’s law**:

s
S ~ (Pep — pdp)ngg = FupmDpy (2)

Drop detachment occurs when buoyancy (left-hand side of Eq. (2)) exceeds the maximum capillary
force FJ"** = D,y that the drop neck can resist without breaking. Dy is the detached drop diameter.
Fyp is the Harkins Brown correction factor”: it accounts for the fraction of liquid volume which stays
attached to the nozzle after drop detachment. We use the Fyp factor of Mori.** The in situ interfacial
tension is then compared to the measured one (table I), to ensure the setup is adequately cleaned.

4
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Then, vibration is applied. A forcing frequency is set and an upwards amplitude sweep is
performed. Measurements are made at different amplitudes, ensuring one is always made at the
threshold where a transition in drop generation occurs (see II1.). This is repeated for frequencies from
30 to 150 Hz. From 30 to 100 Hz, 10 Hz intervals are applied. Above 100 Hz, intervals vary
depending on the pore diameter. The vibrating exciter limitations do not enable us to observe the
stretching mode above 150 Hz for D, = 0.32 mm and 110 Hz for D, = 0.11 mm. After trials, a
cleaning agent at 3 vol% (Mucasol, Merz) fills the setup for 24h and 1t is rinsed with distilled water
leading to a hydrophilic glass surface. Then, the organic dispersed phase do not wet the nozzle and
the outer nozzle diameter does not influence drop detachment.

For each test condition (i.e., physicochemical system, pore diameter, rse a
forcing frequency), three trials are carried out to determine the transition threshold. For each trial, six
detached drops are studied. For each drop, ten images are analyzed. /e checked that the accuracy of
the diameter measurement from ten different snapshots of a given drop™i ixel. For a given trial,
we noted variations up to 2 px at most in diameter from one dro to n the figures displaying
drop diameters, the error bars correspond to the relative stan deug‘lon in drop diameters: it
ranges between 1% to 7% depending on the test conditions.

se flow rate and

. TRANSITION FROM DRIPPING TO STRETCHI MOD

Figure 3 shows typical variations of the drop d1a ter as a 1ion of the forcing amplitude at a
set forcing frequency f. The drop diameter falls %) at'a threshold amplitude A;y,. The same
behavior occurs for all systems. For the reference sy m, a L_ ive decrease in drop diameter of 45%
to 76% was found at A;;, compared to without ¥ibrationdepending on f, for all pore diameters. For
system 2, similar values were found: 29% to“/3%.“Lhis fall at A, corresponds to a transition in the
drop generation regime. For A < Ay, drop detqad\' ipping mode and their diameter is close to the
diameter of the drop formed without vibra ent is buoyancy-controlled. For A > A, the
drop detaches when its mode 1 eigenfreque coincides with f and when it reaches a critical
elongation ratio: detachment is controlle the excitation force. Figure 2 shows how a drop
elongates at resonance (characteri§tic mode 1 resonance shape) and detaches. We named this the
“stretching mode™."® It should be HM ere is an amplitude interval where both modes coexist.
The threshold amplitude 4., fin the upper bound of that interval, when all drops are
generated in stretching mode.

\300

2.00

Dripping Am Stretching

0 0.10 0.20 0.30

A (mm)
&ransifion from dripping to stretching mode: generated drop diameter as a function of the forcing amplitude for the
tem, =0.32 mm, f = 100 Hz, ¢ = 3.6 uL.s". (0) Experimental data; experimental threshold (dashed line);

op size without vibration from Eq. (2); simulation results of section V.C., Eq. (14) (dotted line); of section

posed a simple model' to describe the main features of stretching mode. Below, we recall
its main arguments and derive scaling laws to provide a framework to analyze our experimental

ults in section IV. The vibrating bound drop is considered as a linearly forced harmonic oscillator
LFHO) with moderate damping.” Drop growth is considered slow enough for oscillations to reach
steady state. We are aware that these assumptions are strong since the system is probably no longer
linear when oscillations are such that the drop detaches and the process remains transient. However
they are required to develop the following scaling laws.

A simple analytical expression of the mode 1 eigenfrequency f; of a bound drop has been
empirically established by Bisch et al.® for Dy /Dy, of 1.3 to 7 and fluids of equal densities:
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h 3)

K is a constant that should depend on the fluid density ratio, with K = 9 for fluids of equal densities.
Dy is the resonating bound drop diameter, which we assimilate to the detached drop diameter.
Bisch et al.® also propose an empirical expression for the damping coefficient /3

ﬁ/fl = a(ndp/pdp) + b(ncp/pcp) (4)

with a = 4.5 x 103and b = 2.32 X 10° if 14,/Pap > Nep/Pep and a 7 X 1Q°% and b = 4.5 x
10% if Nap/Pap < Nep/ Pep- We assume Eq. (3) and (4) can be reasona szlied to our trials as the
density ratio pc,/pgp is in the order of 1 (it ranges from 1.26 to 1.33), Alsoygve neglect the effect of
buoyancy on f; and S.
From Eq. (2) and (3), omitting F5, we deduce the mini acing quency above which a
growing drop may detach in stretching mode (if A > A;p): — -
1/2 _ 2/3 2/
_ K |pcp pd(’ 9 { 5
fl,min T 2% 6l/673/2 Vi 6@; 1/2 )} %)

The minimum forcing frequency is around 8 Hz fo = 0:32 mm for the reference system and 14
Hz for D, = 0.11 mm for system 2. This is smalleg than the/lower bound of the frequency range
investigated. Consequently, drops may detach ilﬁt\r:%hlcx—‘mode.

Whatever the mode (dripping or stretching), thesdrop detaches when the restoring capillary force

F, exceeds the maximum capillary force F*%* er O assumption, F, reads:

B =" D3t aa(® ©)
Y 67

with w; the eigenpulsation of the Bound \drép without damping. x, is the displacement of the drop
center of mass with respect to its re ition (absence of buoyancy and excitation forces). The force-
based detachment criterion cangbe easily réeast into an elongation-based criterion:

Ny

6D,y
1)z —=—— @)
D 3:01111(‘)12
The displacement e dropjcenter of mass x; is made up of a stationary part due to buoyancy
and an oscillatory pafrt d}e tosthekxcitation force. Assuming quasi steady state, x; reads:
/ L= %hﬁld sin(wt + &) 8)
1
cp

with ¢ = @%dp, 6 the phase shift and A; the amplitude given by the well-known

expression
£ w?p A
A; = 9
&/ d \/(0)12 — (1)2)2 +Q_2(l)]2_0)2 ( )
Q' the gl

the quality factor given by Q = w,/(28). Since B is given by Eq. (4), Q depends only on the

“phase ities and viscosities. A, is maximum when w;(Dg) = w(1 — 1/(2Q2)Y2, e, w (D) =
W foﬁ;loderate damping. In that case, A, simplifies to A; = Q¢A.

In/dripping mode, the drop has left the resonance range and its eigenfrequency is much lower than

S the forcing frequency. Then, buoyancy dominates: Eq. (7) and (8) reduce to Eq. (2) (omitting Fyg). In

s}etching mode, the drop detaches at resonance (w; = w). Its diameter is thus:

/4

6Kpr>1 1

Dy = — (10)
a < T[pdp \/5
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Publishin g . An estimate of the threshold amplitude may be derived from the above equations neglecting

oyancy and assuming that the detachment criterion is satisfied at an oscillation peak:

3/4 (6D, y\/* 1
=@ (0 o b

pdp

As a result, Dy and Ay, should both scale as w™/2, j.e., f~1/2,

IV. IMPACT OF PROCESS PARAMETERS AND SYSTEM PROPE{IES

In this section, we study the effect of process parameters (pore diam eh'%‘rsed phase flow
rate) and system properties (interfacial tension, dispersed phase vi C(?X) onthe dripping to
stretching transition. Threshold amplitudes A, are determined from a litude sweep and drop
diameters at A, from image analysis. Error bars are generally largefor threshold amplitudes partly
due to measurement errors and partly due to the difficulty to repe ed.g estimate the threshold.

A. INFLUENCE OF PORE DIAMETER -

Fig. 4 reports the variations of the threshold amplitude dnd generated drop diameter as a function
of the forcing frequency for two pore diameters, i.e., Dyy= 0.11ymm and 0.32 mm (more pore
diameters were tested in another paper in the case offthe re cé system'”). Threshold amplitude
variations with forcing frequency are monotonous (fig. 4(2))«and do not exhibit the V- or W-shape

reported by W&B'" or Kim', respectively. I%w\latte cases, bound drop volume (thus
the'eo

eigenfrequencies) are fixed, independently of f.,On nﬂ'ary, in our setup, the drop grows until its

eigenfrequency coincides with f.
The threshold amplitude decreases as the ing“frequency increases (fig. 4(a)), in accordance
our data scale differently: f~071£007 for D, =

with Eq. (11). Eq. (11) predicts a f ~1/2 deal
0.11 mm and f~105%013 for D) = 0.32%mm. , thresholds are twice higher for D,, = 0.11 mm than
for D,, = 0.32 mm. This contradicts, the }ytegLDp /4 scaling (Eq. (11)). We return to this in section
v

The drop diameter decreasgs v\ reasing forcing frequency (fig. 4(b)). The f~1/2 scaling
predicted by Eq. (10) was ve 'thfg;‘:u pore diameters ranging from 0.11mm to 0.75mm'": we
specifically find f~048£003 for D% 0711 mm and f~%48%£00% for D, = 0.32 mm. The larger the
pore diameter, the large \hﬁfs produced. However, from experimental data", it is difficult to

conclude on the releyance of the predicted D;/ * scaling as the deviation of the data to the D;/ *

o f(Hz) f (Hz)

FIG. 4, Impact of pore size on (a) threshold amplitude A,y and (b) drop diameter at A, for the reference system. (o) Dp, =
,q=22pLs"; (0) D, =032 mm, q =6.1 pL.s. Simulations from Eq. (14) of V.C. (dashed line); Eq. (17) of

S V.D(solid line): D, = 0.11 mm (thick); D, = 0.32 mm (thin).
.

B. INFLUENCE OF DISPERSED PHASE FLOW RATE
Four dispersed phase flow rates q were applied to the reference system, for D, = 0.32 mm: q =
25uLs', 43 uL.s?, 6.5 pL.s” and 14.4 pL.s”. Threshold amplitudes and drop diameters do not vary
significantly with these flow rates according to the error bars (see supplementary material C). This is
consistent with Eq. (10) and (11). For higher flow rates, this parameter could become significant. A
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drop may no longer have time to reach large-amplitude oscillations at resonance for stretching mode.
Also, a transition to jetting would occur’***’ (out of the scope of this paper).

When q increases from 2.5 to 14.4 uL.s™, the mean number of oscillations between two drops at
f =100 Hz decreases from 28 to 4. As the threshold is little affected by g in the investigation range,
we infer that the steady-state oscillation regime is reached in just a few oscillations.

C. INFLUENCE OF INTERFACIAL TENSION
Experiments were carried out for the reference system and systems 1 and 24y = 50.7 mN.m™, 19.0
mN.m" and 5.4 mN.m", resp.) for D,, = 0.32 mm. The threshold amplitudegt ing is not significantly
affected by y: f70951008 for system 1 and f 0951926 for system 2 co M'OSJ—FO'B for the
reference system (fig. 5(a)). However, it is not in accordance with th&predicted f~1/2 scaling (Eq.

(11)). Higher SDS concentrations result in lower interfacial tens&\s,xiing to lower threshold
quali

amplitudes for a drop to detach in stretching mode (fig. 5(a)). This is tive agreement with
Eq. (11) but it is difficult to conclude on the relevance of the p di‘ch y1/%scaling, as the deviation
of the data to this scaling is large (8% to 32%, depending on f). T—

The f~1/2 scaling of the drop diameter is maintained fvheni the faterfacial tension is decreased
from 50.7 mN.m" to 5.4 mN.m" (fig. 5(b)): we find f~%¢5+0-01 §or system 1 and f 0494002 for
s.“The drop diameter roughly scales

system 2. Smaller drops are generated for lower interfagial tensi
as yl/ % in accordance with Eq. (10) (deviations of 1%@8%,—%epending on f).
(a) 10° N -

)

P
_ _ 4 I
&%
E % Q \'\.\ ¢ eeg%
<5 AR f--.f.'ﬁ\'\.\. QQ"% 22
10 |41 \.\.\ QQ .

L
10’ \\?‘\\ 10 10°
f( f(Hz)

FIG. 5. Impact of interfacial tension on (a)%threshold amplitude Ay, and (b) drop diameter at A, for D, = 0.32 mm, q =
3.6 uL.s™. (0) Reference system system 1;(#) system 2.

f | Dﬁ%

D. INFLUENCE ISPERSED PHASE VISCOSITY

Experiments were carrie for the reference system and systems 3 and 4 (74, =1.34 mPa.s,
1.79 mPa.s and 3. a.s, gesp.) for D, = 0.32 mm. Threshold amplitudes Ay, increase when 74,
increases (fig. ), as™ &B calculations.'” When changing the reference system for system 3
(resp. 4), Ngyrincreases by 34% (resp. 142%) and A,y increases by 28% to 79% (resp. 62% to 133%).
The effectfof ngy is stronger than expected. Indeed, when the reference system is changed for system
actor Q decreases from 14.6 to 13.9 (Eq. (4)), leading to a theoretical 5% increase in
- (11). ddition, the f~1 scaling with the reference system is not conserved for systems 3
ind f7 1254097 for system 3 and f~%73%012 for system 4. Thus, these results do not agree
icted f -1/2 scaling (Eq. (11)). ngp does not significantly impact drop diameter (fig.
, in aé"eement with Eq. (10) (valid for moderate damping).
ntioned above, a system with a greater continuous phase viscosity was also studied: results
and aSalysis are reported in supplementary material D.
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FIG. 6. Impact of dispersed phase viscosity on (a) threshold amplitude A,y and (b)
q = 6.1 pL.s™'. (0) Reference system; (<) system 3; (=) system 4.
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eter at Azp, for Dy = 0.32 mm,

V. FURTHER ANALYSIS ~
In this section, we synthesize drop diameter data of section IV<lhen, we analyze the elongation
ratio for detachment. Finally, we propose a LFHO model that better § ts the A,y data.

A. MODE 1 RESONANCE -

Drop diameters at the threshold are consistent with,the detachment at resonance when the bound
drop mode 1 eigenfrequency coincides with the e;‘Quency. To quantify the discrepancy
between our data and Eq. (3) of Bisch ef al.®, ensionless forcing pulsation (our data)
and dimensionless drop eigenpulsation (Eq. (3)) drop to pore diameter, for different pore

phase viscosities (fig. 7(b)). Pulsations are

ed with a * exponent.

12
\“4uq
TICHE,
* ~iy
08 %@TE‘@MW—
0.6 ~4—
0.4
2 3 5 6

4
LT o
FIG. 7. Dimensio forcing pulSation depending on the drop to pore diameter. (a) For different interfacial tensions and
pore diameters: reference system (white); system 1 (grey); system 2 (black). (o) D, = 0.11 mm; (0) D, = 0.32 mm. (b) For
different disp; seﬁj;ase visegsities, D, = 0.32 mm: (<) system 3; (&) system 4. Curve of the dimensionless eigenpulsation
from: Eq. (3)%ef Bis¢h et al.® (dashed line); Eq. (12) of S&S’ for the reference system (solid line), system 3 (dash-dotted line)

r data are markedly above the Bisch ez al.® curve. As stated, Eq. (3) was validated until
p = ‘b As the validity of the Bisch ez al.® law is restricted, we consider the theoretical results of
blished for any D, /D), and density ratio. They analyzed the axisymmetric vibrations of a

liquidydrop in an outer fluid, in partial contact with a spherical bowl (see fig. 8) under the assumptions
zero gravity, negligible viscous effects and small surface deformations. Their calculated

\ %enfrequency f of mode n is:

_1
T2

fa (12)

8y
Dgpdp/ln
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with 4,, the eigenvalue for mode n, function of the support angle ® and phase density ratio. Assuming
fig. 8 is a reasonable simplification of our drop, we estimate © = arcsin(Dz[J / Dd). We calculate 1,
with Smithwick and Boulet’s method’ derived from the work of S&S’, using densities and interfacial
tensions of table I. Our data are better fitted by the model of S&S’ than by the law of Bisch et al.® (fig.
7(a) and (b)), notably for Dy/Dp, = 7. As in Kim’s' work, agreement between our data and S&S’
calculations is remarkable as the binding constraint is different.

—
FIG. 8. Analogy between the present drop bound to a nozzle (left) and|a drop in partial contact with a solid spherical cap
(right) as defined by S&S™®. %

B. CRITICAL ELONGATION RATIO (%-d

A critical elongation ratio L,,q,/Dg function of t rof))o pore diameter ratio leads to drop
detachment'”". We measured Ly, /D, for all para rs tested (fig. 9), Ly being taken from the
nozzle tip to the drop apex. The points lie rou on the'same curve (fig. 9), confirming that a drop
detaches in stretching mode once a critical elgngation-is reached. Also, we see that the critical

elongation ratio is essentially a function of%&r\

1.6

FIG. 9. Drop elongati
(black). (o) Dy, = 04T mms(0) D/: 0.32 mm; (<) system 3, D;, = 0.32 mm; (&) system 4, D, = 0.32 mm. Curve from
Eq. (13) (dashed

lid line
We remiind that physicochemical properties vary for systems 1 to 4 compared to the reference

1
//rpdpy o/ 2)] /2. The viscosity ratios we tested ({ = 1.5 to 4.1) may not vary enough to
act’on L,,q,/D4. For a free drop submitted to shear, Stone e al.”® found that breakup
occurs abave a critical elongation ratio, function of ¢ but for { = 0.1 to 1, the critical elongation ratio
did*not Va(br significantly. Similarly, we find Oh from 1.7x10 to 5.3x10™. These values may be too

serve a difference in L,,,, /Dy, although for a free drop submitted to shear, these values are

’aose t
suff\';c)ently different to obtain a twofold increase in aspect ratio.*’
¢ return to the elongation-based criterion for stretching mode (Eq. (7)). Let us note xJ*** the

\J

d,'Qplacement of the drop center of mass when the drop axial elongation is L,,,,. In the limit D; >

D,,, we may consider that drop deformation is entirely localized in the neck. In that case, an estimation
of x[J*** is given by (Lyax — Dg) and Ly, 4, /Dy roughly reads:
-1
Lmax 3 Dd
—=14+-4 | = 13
Dy Tt D, (13)

10
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Publishin g dlaThe curve from Eq. (13) (solid line) is plotted against our data (fig. 9). For high drop to pore

iameter ratios, critical elongation ratios are well estimated by Eq. (13), in accordance with S&S’ or
Bostwick and Steen'’: for large D,/ D,, the bound drop essentially experiences a rigid motion with
deformation localized at the neck. For low D;/D,,, Eq. (13) is no longer valid (dashed line) and drop
deformation is rather uniform. From fig. 9, we deduce that the transition from the uniform
deformation regime to the localized deformation regime occurs around Dg/D,, = 3. In our setup, the
neck of the bound drop preexists (without vibration) contrary to in the configuration of S&S.” Thus,
deformation is more quickly localized (they find values for the transition in ?z order of 10).

C. OSCILLATOR MODEL WITH THE TRANSIENT )

The effect of process parameters and system properties on drop diameter £oncord with the scaling
laws of section III but threshold amplitude variations are not well ‘predicted. Thus we developed a
finer model which describes drop growth and motion as a functio i We'still consider the drop
as a LFHO as it probably provides the most simple framework £0 s?t%y growing drop oscillations. In
the moving non-inertial frame of reference where the nozzle isysfill,“the differential equation of

motion of the drop center of mass reads: o
¥q + 2B%g + wixg = pw?Asin(wt + m) + <;bg§ (14)
Drop mode 1 eigenpulsation w; is given by Eq. (12) of S&S’ and calculated using Smithwick and
Boulet’s method.” The damping coefficient S is esti from!the empirical Eq. (4) of Bisch ef al.®
We suppose drop growth is slow enough for Eq. (14)o held at every moment. The drop diameter
increases in time t according to: \
D4(t) = (15)
w4 and S depend on Dy, so vary with Equatlon (14) is solved numerically by the fourth

order Runge-Kutta method. The integrati Trme step is 0.01f~1. We begin calculations with
Dg(0) = 1.01 X Dy, as w, is not defiped for'D,; /D, < 1. We fix initial conditions of x4(0) = bg/w?
and x4(0) = 0. Figure 3 repo imkresults (dotted line) with A ranging from 0 to 0.325 mm
(increment of 0.005 mm) for o et on the reference system (a typical drop center of mass
simulated motion close to the threshold is shown in supplementary material E). Drop size at the
transition is well predicte t it is overestimated far from the transition. Moreover, the threshold
amplitude is underesti e%is example, the predicted value is twice lower than experimentally.
In the example
below experimentdl ones’ Sincesthe present model accounts for the transient (contrary to the mode
briefly reportzs/ﬂl sectiQn II]/f these d1screpan01es cannot be attributed to the time spent by the bound
drop in its re ¢ range, as advanced earlier'”’. This is consistent with the experimental results of
ich shew that the dispersed phase flow rate little affects the threshold amplitude. The
f‘:;ﬁlency on the amplitude variations is also not well predicted. Finally, the effect of the
pore digmeter«on the threshold amplitude is opposite to experimentally. We infer that damping is
is model and the effect of Dy /D,, is not well described.

e see that threshold values from the model (dashed lines) are well
119

section IV.

highet than expected, even for amplitudes of the drop excitation force as low as 0.015 mm (9% of the
rop radius, well below Agp). Q is constant below the threshold amplitude A;p, so we assume that at
Aty and below, nonlinear effects are weak and do not explain the higher damping.

““Our system undergoes additional friction compared to configurations in the literature.>”'" As the
dispersed phase does not wet the nozzle tip, there is a wedge between the drop and nozzle surface,
containing continuous liquid phase (fig. 8). Assuming x,4(t)/Dg < D,/Dy < 1, an estimate of the
wedge angle 0 is given by D, /D4. When the drop oscillates, 8 oscillates. The continuous phase in the
wedge is driven outwards (inwards, resp.) when 6 decreases (increases) with time. The viscous

11
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friction associated with the film flow leads to an extra friction term in the LFHO model of the

oscillating drop. We note Sy, the damping coefficient associated with the friction in the film and
propose the following expression (see Appendix for details):
Nep Dy
=C— 16
Bﬁlm Pap Dg+2 ( )

deformation regime (“uniform” or “localized”). The differential equation of shotion of the drop center
of mass now reads:

¥q + 2(B + Brum) Xq + w3x; = pw?Asin(wt + (17)
We solve Eq. (17) by the same procedure as for Eq. (14). @ and C Sgilg‘:ied from experimental
a
sum

C is dimensionless. We infer C depends only on the viscosity ratio 74,/ }CZ and a depends on the

threshold amplitudes since the slope of the curve A, (f) is relate the“curve is translated up
or down by increasing or decreasing C, respectively. a and C values a rized in table II.

a was determined by fitting simulation results to the data A;;(f) for“the reference system with
D, =0.32 mm and D, =0.11 mm. We needed to introd e two distinct values of @ depending on
Dq/D,. For Dy/D,, < 5, the data (obtained with D,, = 0.32 mam) areyell represented with ¢ = —1.9.
For Dy/Dy, > 5, the data (D, = 0.11 mm) are better representedwith a = —1.4.

Table II. Identified values ofcqf 1eients o and C for By,-

Dq/Dy <5 - =5
a \\ -1.4
Nap/Nep L5 T Y 15

164 4.4 <\~Wru- 7.4 8.2
Y

When a = —1.9 (resp. @ = —1.4), theyis€ous.force per length unit of pore circumference that acts

contact line scales as 81, Inde edge angle is constant and the wedge translates parallel to the
surface whereas in this case, the wedge angle varies, inducing the liquid flow in the wedge.
The dispersed to continugus phase ‘viscosity ratio is of 1.5, 2 and 3.6 for the reference system,
systems 3 and 4, respe 'vzln% determined C for the different ratios by fitting simulation results to
vio

ly identified). C increases monotonously from 4.4 to 7.4 when
.6. We logically expect that at a set 7)., the viscous friction in the

Figure 3 s hat thesthreshold amplitude is well reproduced by adding S5, (solid line). Drop
diameter a ransitiQn is also well predicted. However, drop diameters are still overestimated far
mn. Above Ay, this may be due to nonlinear effects. A downwards shift in resonance

frequen€y occurs when increasing A for soft nonlinear oscillators.''® Therefore, at the set forcing

de than mode 1. This is not taken into account in Eq. (14) or (17).
en Sy, 1s included, the effect of the frequency on amplitude variations is well described (fig.
idlines). The effect of the pore diameter on the threshold is also well accounted for (fig. 4(a)).
Below 60 Hz, no clear threshold appeared in simulations for D, = 0.11 mm. (fig. 4(a)). We expect the
op-behaves as an overdamped oscillator. Experimentally, the threshold is less sharp however exists.
e note that simulations for systems 1 and 2 were performed with C and « identified on the
reference system, since the viscosity ratios are the same. Threshold amplitudes and drop diameters are
relatively well predicted for these systems from the model (grey and black points, fig. 10).
Overall, the theoretical threshold amplitudes from the modified LFHO model well reproduce
experimental ones (fig. 10 (a)) and drop diameters are also well accounted for (fig. 10 (b)).

12
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VI. CONCLUSIONS

Studies on vibrated growing drops are rare'’ compared t hose)n constant volume drops.” "® In
addition, few studies focus on vibrated drops where ctachment-oecurs from the surface.'” In the
present work, we studied drop growth and detachmentuftom an axially vibrating nozzle. We studied
the impact of forcing parameters as well as nozzZlg_inside diameter, dispersed phase flow rate,
interfacial tension and dispersed phase viscositywAt a setiforcing frequency, we observed a transition
in drop diameter when increasing the forcing M ve a threshold, drops detach at resonance,
i.e., when the first eigenfrequency of the ro&ro oincides with the forcing frequency. Below
the threshold, larger drops detach in dripping mode,.driven by buoyancy. The diameter of the drops
formed above the threshold is very well correlated to the mode 1 eigenfrequency calculated by S&S’.
We remind that the eigenfrequency de }y)n the support and drop diameters, phase densities and
interfacial tension. The agreement Q}V:e dur results and calculations of S&S™ is remarkable as the

binding constraint is different.

We examined the critical tion ratig for drop detachment, which depends on the drop to pore
diameter. We discerned two deforma egimes: for low Dy /D, a uniform deformation regime and
for larger Dy /D, a localized deformiation regime (limited to the neck). The neck preexists, so the
latter regime appears ¢ rlieﬁ'ﬁs§in the configuration of S&S.”* We proposed a transient model to

amplitude variations. To our knowledge, critical amplitudes for drop
ejection have not ted for before. We modelled the growing drop as a LFHO, with the
eigenfrequency . Since the dispersed phase does not wet the nozzle, we introduced an extra
damping coeffg nt to OtZtc for the viscous dissipation in the film of continuous phase between the
drop and nozz ]§N?\ce; e friction force is described as a power law of the pore to drop diameter
ratio. The €xponent depends on the deformation regime and the multiplier constant on the viscosity
el'well reproduces the experimental threshold amplitudes and resulting drop diameters.

SURPLEMENTARY MATERIAL
See s mentary material for insight on: A, the interfacial tension at the intermediate plateau; B, the
charagteristic time to reach this plateau; C, the figures for the influence of dispersed phase flow rate;
the figures and analysis for the influence of the continuous phase viscosity and E, the drop center
9{ mass motion with respect to the nozzle surface.
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We consider a drop attached to the nozzle inner edge (fig. 11). We suppose that the drop diameter
is large compared to the nozzle inner diameter and that the drop shape (at rest) can be approached by a
spherical cap of angle (m — ©). © is the angle of the wedge formed between the drop at rest and the
nozzle surface. 0 is given by 0 = arcsin(Dp / Dd) = D,/Dy.

1
FIG. 11. Sketch of an attached drop oscillating between prolate and oblate shaj

When the drop is submitted to vibrations, we conside that it mayebe described by a truncated
ellipsoid of revolution that oscillates between prolate and oblate shages. The wedge angle varies with
time as the drop oscillates. Its instantaneous value is @(t) = %q(t)/Dg) Dp/Dy in the limit of
small drop deformations. The continuous phase in the i@ge i‘ﬁriven outwards (inwards, resp.) when
0 decreases (increases, resp.) with time. The visc friction/associated with the film flow in the
wedge leads to an additional friction term in th¢ LFH odel of the oscillating drop. We note Fg,
the corresponding friction force that acts against drop Jaxial oscillations. Under the assumption
d

xq(t)/Dg < Dp/Dy < 1, we infer that Fyy,, depends ontcy, Nap, Dp, Dg and X4. From dimensional
arguments, we deduce: C —
Na Dp

Fiim ﬁi )
— ) (A1)
7']cp D Xd % D d
In the case of a viscous force that \Qﬂid contact line movement, the vicinity of the contact line
i 1

is usually described as a wed ell*defined dynamic contact angle. The force per length unit
of the contact line is proportional ‘te_the*liquid viscosity and is inversely proportional to the dynamic
contact angle. In analogy to this, we seek a law in the generic form:

%ﬁ _ oM o (Po)”

S\p Xa § < ncp) 8 (Dd) (42)
edge a

const

with D,, /Dy the nglyand G a function of 14, /M¢p. We note that, for a moving contact line,
the wedge angle and the wedge translates parallel to the surface whereas in our case, the

wedge angl iNng to the liquid flow in the wedge. We deduce the expression of the damping
coefficien ﬁ\:&associa ed with Fg,,) appearing in Eq. (17):
DOU+1 D&
4 um=c ("dp) x 12 b= ("‘“’) x 2 P (A3)
Nep Pdp Dd Nep Pap Dd
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