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Hyperelasticity of soft tissues and related
inverse problems

Stéphane Avril

Inserm U1059, Mines Saint–Étienne, University of Lyon, Saint–Étienne, France

Abstract In this chapter, we are interested in the constitutive equa-
tions used to model macroscopically the mechanical function of soft
tissues. After reviewing some basics about nonlinear finite–strain
constitutive relations, we present recent developments of experimen-
tal biomechanics and inverse methods aimed at quantifying consti-
tutive parameters of soft tissues. A focus is given to in vitro char-
acterization of hyperelastic parameters based on full-field data that
can be collected with digital image correlation systems during the
experimental tests. The specific use of these data for membrane-
like tissues is first illustrated through the example of bulge inflation
tests carried out onto pieces of aortic aneurysms. Then an inverse
method, based on the principle of virtual power, is introduced to
estimate regional variations of material parameters for more general
applications.
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1 Introduction

A better understanding of many issues of human health, disease, injury,
and their treatment thereof necessitates a detailed quantification of how
biological cells, tissues, and organs respond to applied loads. Thus, exper-
imental and computational mechanics can, and must, play a fundamental
role in cell biology, physiology, pathophysiology, and clinical intervention.
The goal of this chapter is to discuss some of the recent developments of
experimental biomechanics based on the use of digital image correlation and
inverse methods for quantifying the finite–strain behaviour of biological soft
tissues in terms of nonlinear constitutive relations. After a brief review of
these constitutive relations, two recent developments of the author’s expe-
rience are presented to illustrate the potential of digital image correlation
and inverse methods in experimental biomechanics of soft tissues.

2 Basic constitutive equations of soft tissues

This section presents the theoretical background for understanding the foun-
dations of constitutive models in soft tissues. This background is essential
for the following sections and for the other chapters of this book. The pre-
sentation of this background follows the approach of a seminal paper from
Millard F Beatty [1].

2.1 Kinematics of finite deformation

Since the early 1940’s there has been enormous progress in the develop-
ment of a theory of elastic materials subjected to large deformations. Sig-
nificant theoretical results, many confirmed by experiments, have projected
considerable light on the physical behaviour of rubberlike materials such as
synthetic elastomers, polymers and biological tissue, in addition to natural
rubber. The mathematical theory of elasticity of materials subjected to
large deformations is inherently nonlinear. The theory of elasticity of ma-
terials for which there exists an elastic potential energy function is known
as hyperelasticity. Before presenting the constitutive equations for a hyper-
elastic solid, we begin with a sketch of the principal kinematical relations
used to describe the finite deformation of a continuum and with the Cauchy
stress principle and equations of kinetics. A body B = {Pk} is a set of
material points Pk called particles. A reference frame is a set Υ = {O, e}
consisting of an origin point O and an orthonormal vector basis e. The
motion of a particle P relative to Υ is described by the time locus of its
position vector x(P, t) relative to Υ. This locus is the trajectory or path
of P in Υ. A typical particle P may be identified by its position vector
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X(P ) in Υ at some reference time t0. The domain κ0 of X, the region in
Euclidian space occupied by B at time t0 is called a reference configuration
of B. Then, relative to Υ the motion of a particle P from κ0 is described
by the vector function

x = χ(X, t) (0.1)

The domain κ of x, the region in Euclidian space occupied by B at time t0 is
called a current configuration of B. Hence, x denotes the place at time t in
the current configuration κ which is occupied by the particle P whose place
was X in the reference configuration of B. The velocity and acceleration of
a particle P relative to Υ are define by:

v(X, t) = ẋ(X, t) (0.2)

γ(X, t) = v̇(X, t) = ẍ(X, t) (0.3)

We shall assume henceforward that the nody is a contiguous collection
of particles, we call this body a continuum. It is assumed that χ is a smooth
one-to-one map of every material point of κ0 → κ with:

J = det F > 0, (0.4)

in which
F = ∂x/∂X = Grad x (0.5)

is called the deformation gradient. This tensor transforms the tangent el-
ement dX of a material line L0 in κ0 into the tangent element dx of its
deformed image line L in κ. Hence,

dx = FdX (0.6)

Let ‖dx‖ = dl and ‖dX‖ = dL, where l and L are the arc length parameters
for L and L0 respectively. Then Eq. 0.6 may be written:

λe = FE (0.7)

in which e = dx/dl and E = dX/dL are unit vectors tangent to L and L0

at x and X as shown in Figure and

λ = dl/dL (0.8)

is named the stretch, the ratio of the current length ds to the reference
length dS of the material element. These lengths are commonly called the
deformed and undeformed lengths, respectively. However it is not essential
that the reference configuration be an undistorted reference configuration,
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nor one that the body need actually occupy at any time during its motion.
It is seen that Eq. 0.7 expresses the physical result that F rotates E into the
direction e and stretches it by an amount 0 < λ < ∞. This is essentially
the substance of the more general and physically useful polar decomposition
theorem of linear algebra applied pointwise to the nonsingular tensor F:

F = RU = VR (0.9)

The proper orthogonal tensor R characterizes the local rigid body rotation
of a material element. The positive symmetric tensors U and V describe
the local deformation of the element. They are called the right and the
left stretch tensors, respectively. The decomposition of the deformation
gradient F into a pure stretch U at X followed by a rigid body rotation
R, or by the same rigid body rotation followed by a pure stretch V at x is
unique. Because U and V usually are tedious to compute, it is customary
to use their squares:

C = FTF = U2 and B = FFT = V2 (0.10)

The corresponding positive symmetric tensors are respectively known as
the right and the left Cauchy-Green deformation tensors. It follows that U
and V (C and B) have the same principal values λk (λ2

k) and respective
principal directions µ and ν are related by the rotation R:

ν = R.µ (0.11)

The λk are the stretches of the three principal material lines, they are called
the principal stretches.

Formulae relating the respective material surface area and volume ele-
ments da and dv in κ to their respective reference images dA and dV in κ0

may be easily derived by application of:

nda = J F−T .NdA and dv = JdV (0.12)

where n is the exterior unit normal vector to ∂P in κ and N is the
exterior unit normal vector to ∂P in κR.

The previous relation shows that det F is the ratio of the current (de-
formed) volume to the reference (undeformed) volume of a material element.
Therefore the deformation is isochoric if J = 1. It is evident on physical
grounds that 0 < det F <∞. The material time rate of the deformation of
a continuum is described by the velocity gradient tensor L:

L = Grad ẋ = ḞF−1 (0.13)

The symmetric part D and antisymmetric part W of L are the stretching
and spin tensors respectively.
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2.2 The Cauchy stress principle and the equations of motion

The forces that act on any part P ⊂ B of a continuum B are of two
kinds: a distribution of contact force tn per unit area of the boundary ∂P
of P in κ, and a distribution of body force b per unit volume of P in
κ. The total force F (P, t) and the total torque T (P, t) acting on the
part P are related to the momentum and the moment of momentum of the
material points of B in an inertial frame Φ in accordance with Euler’s laws
of motion:

F (P, t) =

∫
∂P

tn da+

∫
P

b dv =
d

dt

∫
P

v dm (0.14)

T (P, t) =

∫
∂P

x× tn da+

∫
P

x× b dv =
d

dt

∫
P

x× v dm (0.15)

The moments in Eq. 0.15 are to be computed with respect to the origin
in Φ. Note that dm = ρ dv is the material element of mass with density ρ
per unit volume in κ.

The principle of balance of mass requires also that dm = ρR dV where
ρR is the density of mass per unit volume V in κR. Therefore one finds that
the respective mass densities are related by the local equation of continuity:

ρR = Jρ (0.16)

Application of the first law of Euler to an arbitrary tetrahedral element
leads to Cauchy’s stress principle:

tn = σ.n (0.17)

Hence the traction or stress vector tn is a linear transformation of the
unit normal n by the Cauchy stress tensor σ. Use of previous equations
and the divergence theorem yields Cauchy first law of motion:

divσ + b = ργ (0.18)

The second law of Eq. 0.15 together with Eq. 0.17 and Eq. 0.18 yields
the equivalent local moment balance condition restricting the Cauchy stress
σ to the space of symmetric tensors

σ = σT (0.19)

The Cauchy stress characterizes the contact force distribution tn in κ
per unit current area in κ. But this is often inconvenient in solid me-
chanics because the deformed configuration generally is not known a priori.
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Therefore, the engineering stress tensor TR, also known as the first Piola-
Kirchhoff stress tensor, is introduced to define the contact force distribution
tn ≡ TR.N in κ per unit reference area in κR. Then for the same contact
force dF (P, t), we must have:

dF (P, t) ≡ tn da = σ.n da = TR.N dA = tN dA (0.20)

The vector tN is named the engineering stress tensor. We thus obtain
the rule:

TR = J σF−T (0.21)

relating the engineering and Cauchy stress tensors.

The corresponding stress principle and balance laws become:

tN = TR.N (0.22)

Div TR + bR = ρR γR (0.23)

TRFT = FTT
R (0.24)

Hence the engineering stress TR generally is not symmetric. Equation
bR ≡ Jb identifies the body force per unit volume in κR, and Div denotes
the divergence operator with respect to X in κR, whereas div is with respect
to x in κ.

Another stress tensor that will be usefull is the second Piola-Kirchhoff
stress defined as:

π = F−1TR = J F−1σF−T (0.25)

Thus far, the deformation of a continuum and the actions that produce
it have been treated separately without mention of any special material
characteristics the body may possess. Of course the inherent constitutive
nature of the material dictates its deformation response to action by forces
and torques. For a specific class of materials, the specific relationship be-
tween the deformation gradient F, the rate of deformation Ḟ and the stress
σ, TR or π is described by an equation known as a constitutive equation.
In the next section, the principle of balance of mechanical energy will be
applied to derive the constitutive equation for a special class of perfectly
elastic materials called hyperelastic solids.
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2.3 Hyperelasticity

Thermodynamics foundation The first law of thermodynamics tells
that the time rate of change of the internal energy E(P, t) for any part
P ⊂ B of a body B is balanced by the total mechanical power W (P, t)
and the total heat flux Q(P, t).

Ė(P, t) = W (P, t) +Q(P, t) (0.26)

The second law of thermodynamics tells that the time rate of change
of entropy Ṡ(P, t) for any part P ⊂ B of a body B can be decomposed
into exchanges of entropy and production of entropy and that the latter can
only be positive, or zero if the transformation is reversible (no dissipation).
If Θ denotes temperature, exchanges of entropy at constant temperature
(isotherm transformations will be assumed further) may be written such as:
Q/Θ. Finally, the second law of thermodynamics tells:

Ṡ(P, t) ≥ Q(P, t)

Θ
(0.27)

Ė(P, t)−ΘṠ(P, t) ≤W (P, t) (0.28)

P being an arbitrary tetrahedral element, and σ : D being the mechan-
ical power per unit volume, it may be written at any time t:

ρ(ė−Θṡ) ≤ σ : D (0.29)

where e denotes the local specific internal energy and s denotes the
local specific entropy. This equation points out that the work done by the
stress would induce either an increase of the specific internal energy or a
decrease of the specific entropy. In the case of elasticity, the transformation
is reversible and it may be written:

ρ(ė−Θṡ) = σ : D (0.30)

When the work done by the stress induces mostly an increase of the
specific internal energy (|Θṡ| << ė), we speak of enthalpic elasticity (in an
isotherm transformation, ė = ḣ where h would be the specific enthalpy).
Enthalpic elasticity is the elasticity of cristals where the deformation comes
mostly from a change of distances between atoms. Elastic response of the
crystalline solids is due to the change of the equilibrium interatomic dis-
tances under stress and therefore, the change in the internal energy of the
crystal.

7



When the work done by the stress induces mostly a decrease of entropy
(ė << |Θṡ|), we speak of entropic elasticity. Elasticity of soft biological
tissues is composed from the elastic responses of the chains crosslinked in
the network sample. External stress changes the equilibrium end-to-end
distance of a chain, and it thus adopts a less probable conformation, its en-
tropy therefore decreases. Therefore, the elasticity of soft biological tissues
is of purely entropic nature.

Introducing the specific free energy φ = e + Θs, and still assuming
isotherm transformations (Θ̇ = 0), it may be written:

ρφ̇ = σ : D (0.31)

It is now the time to define what a hyperelastic solid is. A hyperleastic
solid is a material whose specific free energy depends only on the strain. It
may be written:

φ(X, t) = φ(F(X, t),X) (0.32)

The ψ = ρφ function is a strain energy density function. Then the
constitutive equation for a hyperelastic solid can be written:

π =
∂ψ

∂E
= 2

∂ψ

∂C
(0.33)

TR =
∂ψ

∂F
= F

∂ψ

∂E
= 2F

∂ψ

∂C
(0.34)

σ = J−1 ∂ψ

∂F
FT = J−1F

∂ψ

∂E
FT = 2J−1F

∂ψ

∂C
FT (0.35)

Isotropic compressible hyperelastic solids For an isotropic solid, the
strain energy function must be an isotropic scalar valued function of the
principal invariants alone:

ψ = ψ(C) = ψ(B) = ψ(I1, I2, I3) (0.36)

wherein, specifically,

I1 = tr(B) (0.37)

I2 =
1

2

[
I2
1 − tr(B2)

]
(0.38)

I3 = det(B) (0.39)
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Note that Eq. 0.35 may be rewritten such as:

σ = 2J−1 ∂ψ

∂B
B (0.40)

Then, introducing the principal invariants:

σ =

(
∂ψ

∂J
+ 2J−1 ∂ψ

∂I2
I2

)
1 + 2J−1 ∂ψ

∂I1
B− 2J−1 ∂ψ

∂I−1
B−1 (0.41)

where I−1 = I2/I3 = tr(B−1).

Isotropic hyperelastic incompressible solids The Cauchy stress on
an incompressible, hyperelastic material, is determined by F only to within
an arbitrary stress which is proportional to the identity tensor. Then the
constitutive equation for an incompressible, isotropic, hyperelastic material
is given by:

σ = −p1 + 2
∂ψ

∂I1
B− 2

∂ψ

∂I2
B−1 (0.42)

where p is an undetermined scalar of x. Note that I2 = I−1 for an incom-
pressible solid.

A particular type of strain energy functions may be written such as
polynomials:

ψ =

Nj∑
j=0

Ni∑
i=0

Cij(I1 − 3)i(I2 − 3)j (0.43)

when Ni = 3 and Nj = 0 it is referred to as Yeoh strain energy function,
when Ni = 1 and Nj = 1 but C11 = 0, we have the Mooney-Rivlin material.
The special case when Ni = 1 and Nj = 0 is the Neo-Hookean material.

Another particular type which is meaningful for biological tissues may
be written:

ψ =
µ0

2γ

[
eγ(I1−3) − 1

]
(0.44)

Isotropic hyperelastic nearly incompressible solids It is common
for nearly incompressible hyperelastic solids to assume a perfect decoupling
between purely volumetric and purely isochoric effects, and then to decom-
pose the strain energy density function additively in two components: one
depending only on volume changes and the second one independent of vol-
ume changes:
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ψ = U(J) + ψ̄(Ī1, Ī2) (0.45)

σ =

(
∂ψ

∂J
+ 2J−1 ∂ψ

∂I2
I2

)
1

+ 2J−1 1

J2/3

∂ψ̄

∂Ī1
B− 2J−1 1

J4/3/J2

∂ψ̄

∂Ī2
B−1 (0.46)

where Ī1 = tr(B̄), Ī2 = 1
2

[
Ī2
1 − tr(B̄2)

]
= tr(B̄−1), B̄ = F̄F̄T and F̄ =

J−1/3F.

σ =

[(
∂ψ

∂J
+ 2J−1 ∂ψ

∂I2
I2

)
+
∂ψ̄

∂Ī1

∂Ī1
∂J

+
∂ψ̄

∂Ī2

∂Ī2
∂J

]
1

+ 2J−1 ∂ψ̄

∂Ī1
B̄− 2J−1 ∂ψ̄

∂Ī2
B̄−1 (0.47)

σ =

[(
∂ψ

∂J
+ 2J−1 ∂ψ

∂I2
I2

)
− 2

3
J−1 ∂ψ̄

∂Ī1
Ī1 −

4

3
J−1 ∂ψ̄

∂Ī2
Ī2

]
1

+ 2J−1 ∂ψ̄

∂Ī1
B̄− 2J−1 ∂ψ̄

∂Ī2
B̄−1 (0.48)

σ =

[(
∂ψ

∂J
+ 2J−1 ∂ψ

∂I2
I2

)
− 2J−1 ∂ψ̄

∂Ī2
Ī2 −

2

3
J−1 ∂ψ̄

∂Ī1
Ī1 +

2

3
J−1 ∂ψ̄

∂Ī2
Ī2

]
1

+ 2J−1 ∂ψ̄

∂Ī1
B̄− 2J−1 ∂ψ̄

∂Ī2
B̄−1 (0.49)

Finally,

σ =

[
∂ψ

∂J
− 2

3
J−1 ∂ψ̄

∂Ī1
Ī1 +

2

3
J−1 ∂ψ̄

∂Ī2
Ī2

]
1 + 2J−1 ∂ψ̄

∂Ī1
B̄− 2J−1 ∂ψ̄

∂Ī2
B̄−1

=
∂ψ

∂J
1 + 2J−1Dev

(
∂ψ̄

∂Ī1
B̄− ∂ψ̄

∂Ī2
B̄−1

)
(0.50)

where Dev denotes the deviatoric tensor.
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The Cauchy stress is then decomposed additively into a hydrostatic com-
ponent related to J and into a deviatoric component related to Ī1 and Ī2.

σ = −p1 + s (0.51)

where p = −∂U/∂J and

s = 2J−1Dev

(
∂ψ̄

∂Ī1
B̄− ∂ψ̄

∂Ī2
B̄−1

)
(0.52)

Common models of isotropic hyperelastic nearly incompressible
solids The compressible version of a Neo-Hookean material may be writ-
ten:

ψ = C10(Ī1 − 3) +
1

D
(J − 1)2 (0.53)

The compressible version of a Yeoh material may be written:

ψ =
3∑
i=0

Ci0(Ī1 − 3)i +

3∑
i=0

1

Di
(J − 1)2i (0.54)

Another common model in compressible hyperelasticity is the Arruda
Boyce model. Although its formulation is based on a thermondynamical
background, it is not often used for biological tissues. The strain energy
density may be written:

ψ = µ

5∑
i=0

Ci

λ2i−2
m

(Īi1 − 3i) +
1

D

[
(J2 − 1)

2
− ln(J)

]
(0.55)

where: C1 = 1
2 , C2 = 1

20 , C3 = 11
1050 , C4 = 19

7050 , C5 = 51
673750 .

A more common model is the Ogden model, which may be written:

ψ =
2µ

α2
(λ2α

1 + λ2α
2 + λ2α

3 ) +
1

D
(J2 − 1) (0.56)

where λ1, λ2 and λ3 are the principal stretches.

2.4 More sophisticated constitutive models

The aim of this section is to introduce the basics for the following sec-
tions of this chapter but also for the following chapters of this book. It is
not rare that soft tissues are modeled with constitutive equations including
other features than the ones of isotropic hyperelasticity. The main ones are
summarized hereafter.
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Anisotropic hyperelastic models Soft tissues may often present anisotropic
effects. The most common effect is a different stress–stretch curve when they
are subjected to uniaxial tension in two different directions. Very common
models permitting to represent these effects may describe the material such
as a composite made of a Neo-Hookean matrix in which fiber families are
embedded:

ψ = C10(Ī1 − 3) +

N∑
i=1

k1i

2k2i

[
ek2i(λ̄

2
i−1) − 1

]
+

1

D
(J2 − 1) (0.57)

where λ̄2
i = C̄ : (Mi⊗Mi) = C̄Mi.Mi.

Mi are vectors defining orientations of a fiber family in the reference
configuration. Although motivated by microstructural information, this
type of models were developed primarily to capture phenomenologically
the anisotropic response of soft tissues subjected to multi-directional tensile
tests, which ultimately depends on constituent fractions, fiber orientations,
cross-linking, physical entanglements, and so forth.

Irreversible effects When subjected to cycled uniaxial tensile tests (or
other types of testing), the loading unloading profile of biological tissues
often presents an hysteresis on the first cycle. With repeated loading cycles
the load-deformation curves shift to the right in a load-elongation diagram
and the hysteretic effects diminish. In a load-time diagram the load-time
curves shift upwards with increasing repetition number. By repeated cy-
cling, eventually a steady state is reached at which no further change will
occur unless the cycling routine is changed. In this state the tissue is said
to be preconditioned. Any change of the lower or upper limits of the cy-
cling process requires new preconditioning of the tissue. Preconditioning
occurs due to internal changes in the structure of the tissue. Hysteresis,
non-linearity, relaxation and preconditioning are common properties of all
soft tissues, although their observed degrees vary.

The difference between the loading and unloading response can be sim-
ulated using an isotropic damage formulation. It consists in writing the
strain energy in the form of:

ψ = (1− d)ψ̄ +
1

D
(J2 − 1) (0.58)

where 1−d is a reduction factor and d is a scalar damage variable defined
in 0 ≤ d ≤ 1. When d = 0 the material is undamaged. The value d = 1 is an
upper limit in which the material is completely damaged and failure occurs.
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The evolution of damage may be described by a function of a maximum
equivalent strain defined such as ζm = maxt∈]−∞,t]

√
2ψ̄(E(t) where E(t) is

the Green–Lagrange strain tensor for the pseudo time t of the deformation
process. The evolution of damage can be described with an exponential
form:

1− d(ζm) = β + (1− β)
1− e−ζm/α

ζm/α
(0.59)

where α and β are material parameters.

Damage can also be modeled with the concept of softening hyperelas-
ticity. In this concept, instead of having a strain energy tending to infinity
when the norm of the stretch tensor tends to infinity, the stored energy is
bounded [2].

More details about damage models are given in Chapter 4 of this book.

Time dependent effects The hysteresis in the stress–strain relationship
may also show the viscoelastic behaviour of soft biological tissue. The sim-
plest model of viscoelasticity is the Kelvin model combining a linear spring
and a dashpot. In analogy to linear viscoelasticity in small strain, we can
assume an additive free energy potential with the form ψ = ψ0 + ψv where
ψ0 measures the energy stored in the elastic branch (equilibrium) and ψv
measured the energy stored in the viscous branch, which progressively dis-
appears during relaxation.

In a viscoelastic material the history of strain affects the actually ob-
served stress. As well, loading and unloading occur on different stress-strain
paths. The hysteresis of most biological tisssues is assumed to show only
little dependence on the strain rate within several decades of strain rate
variation. This insensitivity to strain rate over several decades is not com-
patible with simple viscoelastic models consisting for instance of a single
spring and dashpot element. With such a simple viscoelasticity approach
the material model will show a maximum hysteresis loop at a certain strain
rate whereas all other strain rates will show a smaller hysteresis loop. A
model consisting of a discrete number of spring-dashpot elements there-
fore produces a discrete hysteresis spectrum with maximum dissipation at
discrete strain rates. It may be written such:

ψ̄ =

∫ t

0

[(
1−

N∑
k=1

gk(1− e−
t−τ
τk )

)
× dψ0

dτ

]
dτ (0.60)

where τk are the relaxation times and gk are the relaxation coefficients.
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It is widely accepted that soft connective tissues are multiphasic ma-
terials. They are sometimes modeled as a mixture of two immiscible con-
stituents: an solid hyperelastic matrix and an interstitial incompressible
fluid. This type of models, sometimes called poroelastic models, can par-
ticularly describe both the stress distribution and interstitial fluid motion
within the cartilage tissue under various loading conditions. Moreover the
interaction between the solid and the fluid phases has been identified to be
responsible for the apparent viscoelastic properties in the compression of
hydrated soft tissues.

Active models It is often assumed that in the presence of an actin-myosin
complex in the soft tissue, the total Cauchy stress can be split into two
parts: σ = σp + σa, where σp and σa denote passive and active stress
respectively. The passive stress results from the elastic deformation of the
tissue and can be derived from the theory of hyperelasticity. The active
stress is generated in myofibrils or in smooth muscle cells by activation and
is directed parallel to the fibre orientation. Hence: σa = σaε⊗ ε where ε is
the unit vector identifying the orientation. The mechanism for generating
σa involves internal variables.

2.5 Growth and remodelling models

Many experiments have shown that the stress field dictates, at least
in part, the way in which the microstructure of soft tissues is organized.
This observation leads to the concept of functional adaptation wherein it
is thought that soft tissues functionally adapt so as to maintain particular
mechanical metrics (e.g., stress) near target values. To accomplish this,
tissues often develop regionally varying stiffness, strength and anisotropy.

Models of growth and remodelling necessarily involve equations of re-
actiondiffusion. There has been a trend to embed the reactiondiffusion
framework within tissue mechanics [3, 4]. The primary assumption is that
one models volumetric growth through a growth tensor Fg, which describes
changes between two fictitious stress-free configurations: the original body
is imagined to be fictitiously cut into small stress-free pieces, each of which
is allowed to grow separately via Fg, with det(Fg) 6= 1. Because these
growths need not be compatible, internal forces are often needed to assem-
ble the grown pieces, via Fa, into a continuous configuration. This, in gen-
eral, produces residual stresses, which are now known to exist in many soft
tissues. The formulation is completed by considering elastic deformations,
via Fa, from the intact but residually stressed traction-free configuration
to a current configuration that is induced by external mechanical loads.
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The initialboundary value problem is solved by introducing a constitutive
relation for the stress response to the deformation FeFa, which is often as-
sumed to be incompressible hyperelastic, plus a relation for the evolution
of the stress-free configuration via Fg. Thus, growth is assumed to occur in
stress-free configurations and typically not to affect material properties.

Although the previous theory called the theory of kinematic growth
yields many reasonable predictions, Humphrey and coworkers have sug-
gested that it models consequences of growth and remodelling, not the pro-
cesses by which they occur. Growth and remodelling necessarily occur in
stressed, not fictitious stress-free, configurations, and they occur via the
production, removal, and organization of different constituents; moreover,
growth and remodelling need not restore stresses exactly to homeostatic val-
ues. Hence, Humphrey and coworkers introduced a conceptually different
approach to model growth and remodelling, one that is based on track-
ing the turnover of individual constituents in stressed configurations (the
constrained mixture model [5, 6])

3 Characterization of hyperelastic properties using a
bulge inflation test

After the introduction of basics about nonlinear finite–strain constitutive
relations, we now introduce approaches of experimental biomechanics and
inverse methods aimed at quantifying constitutive parameters of soft tissues.

3.1 Introduction

Traditional characterization of material constants in hyperelastic
solids The hyperelastic constants in the strain energy density function
of a material determine its mechanical response. For identifying these hy-
perelastic materials, simple deformation tests (consisting of six deformation
models - see Figure 0.1) can be used. It is always recommended to take the
data from several modes of deformation over a wide range of strain values.

Even though the superposition of tensile or compressive hydrostatic
stresses on a loaded incompressible body results in different stresses, it
does not alter deformation of a material. Upon the addition of hydro-
static stresses, the following modes of deformation are found to be identi-
cal: uniaxial tension and equibiaxial compression, uniaxial compression and
equiaxial tension, and planar tension and planar compression. It reduces
to 3 independent deformation states for which we can obtain experimental
data.

For each of the three independent tests, the resultant force F can be
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expressed analytically with respect to the applied stretch λ using the fol-
lowing formulas of incompresssible hyperelasticity which are derived from
the equations introduced above:

1. in uniaxial tension:

F = 2S0(λ− λ−3)

(
∂ψ

∂I1
+
∂ψ

∂I2

)
(0.61)

2. in planar tension:

F = 2S0(λ− λ−3)

(
λ
∂ψ

∂I1
+
∂ψ

∂I2

)
(0.62)

3. in equibiaxial tension:

F = 2S0(λ− λ−5)

(
∂ψ

∂I1
+ λ2 ∂ψ

∂I2

)
(0.63)

where S0 is the initial cross sectional area of the sample.
The identification of the material constants is achieved by a least-squares

fit analysis which consists in minimizing the sum of squared discrepancies
between the experimental values (if any) of F and the values predicted by
the models. This yields a set of simultaneous equations which are solved
for the material constants.

The identification of material constants is seldom achieved on cylindrical
specimens where analytical formulas can also be derived to perform again
least-squares fit analysis [7].

The bulge inflation test combined with digital image correlation
As introduced previously, traditional characterization of material constants
in hyperelastic solids is based on a least-squares fit analysis of F versus λ
curves. In the tests, λ is usually measured using traditional extensometry
techniques being either based on tracking the motion of the grips in the
machine used to apply the deformation on the tissue, sometimes based on
tracking the motion of markers or dots drawn on the tissue itself.

Recently, it has become a common practice to combine video based full-
field displacement measurements experienced by tissue samples in vitro,
with custom inverse methods to infer (using nonlinear regression) the best-fit
material parameters and the rupture stresses and strains. These approaches
offer important possibilities for fundamental mechanobiology research as
they permit to quantify regional variations in properties in situ.

Here we present an illustrative example of the author’s experience where
bulge inflation tests are carried out on aneurysm samples for characterzing
the regional variations of hyperelastic constants across them.
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Figure 0.1: Schematic representation of independent testing modes for hy-
perelastic materials.

3.2 Materials and methods

Experimental arrangements The study deals with the characterization
of aortic tissues collected on patients having an ascending thoracic aortic
aneurysm (ATAA). In this reported example, an unruptured ATAA section
was collected from a patient undergoing elective surgery to replace his ATAA
with a graft in accordance with a protocol approved by the Institutional
Review Board of the University Hospital Center of Saint–Etienne. After
retrieval, the specimen was placed in saline solution and stored at 4◦C until
testing, which occurred within 48 hours of the surgery. Immediately prior
to testing, the ATAA was cut into a square specimen approximately 45 ×
45 mm. Any fatty deposits were removed from the surface of the tissue to
ensure that during mechanical testing the tissue did not slip in the clamps.
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Figure 0.2: Experimental setup and test sample (a) before testing and (b)
after rupture.

An average thickness was found for the sample by measuring the thickness
of the tissue at a minimum of 5 locations.

The specimen was clamped in the bulge inflation device, Figure 0.2, so
that the luminal side of the tissue faced outward. Then a speckle pattern
was applied to the luminal surface using black spray paint. The sample was

18



inflated using a piston driven at 15 mm/min to infuse water into the cavity
behind the sample. During the test, the pressure was measured using a
digital manometer (WIKA, DG-10). Images of the inflating specimen were
collected using a commercial DIC system (GOM, 5M LT) composed of two
8-bit CCD cameras equipped with 50 mm lenses (resolution: 1624 × 1236
px). The cameras were positioned 50 cm apart at an angle of 30◦ with an
aperture of f/11. This produced a depth of field of 15.4 mm which was
sufficient to capture the deformation of the tissue up to failure. Images of
the deforming sample were collected every 3 kPa until the sample ruptured.

After rupture, the collected images were analyzed using the commercial
correlation software ARAMIS (GOM, v. 6.2.0) to determine the three di-
mensional displacement of the tissue surface. For the image analysis, a facet
size of 21 px and a facet step of 5 px were chosen based on the speckle pat-
tern dot size, distribution, and contrast. The selected parameters produced
a cloud of approximately 15,000 points where the three displacement values
were calculated. Details about the error quantification of the method may
be found in the original paper [8].

Geometric Reconstruction A deforming NURBS mesh was extracted
by morphing a NURBS template to the DIC point clouds. The template was
a circular domain with a diameter slightly less than that of the point cloud in
the first pressure state. The NURBS surface was parameterized as a single
patch containing clamped knots of 20 divisions in each parametric direction,
with 22×22 control points. Since NURBS control points, in general, do not
fall on the surface they describe, they cannot be directly derived from the
DIC clouds. Instead, the positions of the Gauss points were obtained first
using the moving least square method [9]. For each Gauss point, a set of
nearest image points in the DIC point cloud were identified based on their
distance to the Gauss point in the first pressure state. The radius of the
neighboring region was automatically adjusted to that it contained at least
6 image points. The position of each Gauss point, yg, was computed using
an affine interpolation

yg =

∑
y∈Ωg

wjyj∑
y∈Ωg

wj
(0.64)

where yj is the position vector for each image point in the neighborhood,
Ωg, and wi is the weighting function taken to be the inverse of the distance
from yj to the Gauss point. Using the same weights calculated in the first
stage, the Gauss points in every pressure stage were identified.

A global least squares problem was then formulated to compute the best-
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fit positions of the control points. The NURBS surface was represented as

x =
∑
i

Ni(u1, u2)Qi (0.65)

where Ni are the NURBS basis functions, Qi are the control points, and
the pair of knot variables, (u1, u2), represent a material point. The position
of a modeled Gauss point is then given by xg =

∑
iNi(u1g, u2g)Qi. The

position of the control points were obtained by minimizing a weighted sum
of ‖xg − yg‖2 over all Gauss points. This procedure was applied to each
pressure state.

The accuracy of this reconstruction method was previously assessed and
showed by [10].

Strain reconstruction Surface strains were computed in the local NURBS
curvilinear coordinate system. The surface coordinates, uα, (α, β = 1, 2) in-
duce a set of convected basis vectors (a1,a2) where aα = ∂x

∂uα
and x(u1, u2)

is the NURBS representation given in Eq. 0.65. The reciprocal basis
(
a1,a2

)
are computed such that aα · aβ = δαβ . In the reference configuration, the
basis vectors are denoted by (A1,A2) and

(
A1,A2

)
.

The surface deformation gradient tensor is

F = aα ⊗Aα . (0.66)

It then follows that the surface Cauchy-Green deformation tensor, C, and
the Green-Lagrangian strain tensor, E, are given by

C = (aα · aβ) Aα ⊗Aβ (0.67)

E =
1

2
(aα · aβ − δαβ) Aα ⊗Aβ . (0.68)

The physical components of C and E are computed by identifying a local
orthonormal basis (G1,G2) that is constructed in the tangent plane spanned
by (A1,A2). The physical components of the Cauchy-Green deformation
tensor, Cαβ , and Green-Lagrangian strain tensor, Eαβ , are Cαβ = G ·C G
and Eαβ = G · E G, respectively.

Wall stress reconstruction For an inverse membrane boundary value
problem the deformed configurations and boundary conditions are given
as inputs to the FE model and the wall stress is calculated. The balance
equation that governs static equilibrium is [11, 12]

1√
a

(√
atαβaα

)
,β

+ pn = 0 (0.69)
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where a is det (aα aβ), t is the Cauchy wall tension, p is the applied internal
pressure, n is an outward facing unit normal, and ( ),β indicates ∂

∂ uβ
. Note

that the Cauchy wall tension t is directly related to the Cauchy stress, σ,
through the current thickness of the membrane, h, via tαβ = hσαβ = tβα.

The weak form of the boundary value problem reads∫
Ω

tαβaα.δx,β da−
∫

Ω

pn.δx da = 0, (0.70)

where δx is any admissible variation to the current configuration Ω. The
details of the FE procedure for solving Eq. 0.70 were presented in [13].
Briefly, the Cauchy wall tension is regarded as a function of the inverse
deformation gradient. The weak form subsequently yields a set of nonlin-
ear algebraic equations for the positions of control points in the reference
configuration. At the same time, the tension field in the current state is
determined. An auxiliary material model is needed to perform the inverse
analysis. The material model influences the predicted undeformed configu-
ration; however, due to the static determinacy of Eq. 0.69, the influence is
weak [13, 14, 15, 16]. As in a previous study [17], a neo-Hookean model was
implemented. For computational efficiency, the stiffness parameter of the
model was set to unrealistically high values to ensure a robust convergence.

To simulate the experimental boundary conditions the outermost edge
of the specimen was fixed. This boundary condition was applied directly
to the control points on the outer boundary of the mesh. Applying any
displacement based constraint in the inverse membrane analysis creates a
boundary region in the solution where the stresses are inaccurate [13]. To
minimize the influence of boundary effect, the outer ring of elements was
excluded from further analyses. Since the influence region of each control
point spans three elements in each of the two parametric directions, the
outer three rings of elements were deemed to be the boundary region. By a
retrospective comparison with the forward analysis reported the size of the
boundary region was confirmed [18].

Material Property Identification Using inverse membrane analysis,
the stress was calculated at every Gauss point. Combining the stress data
with the local surface strains calculated from Eqs. 0.66 - 0.68, the stress-
strain response at every Gauss point in the mesh is known. The local mate-
rial properties at each Gauss point were then identified by fitting the local
stress-strain response to a hyperelastic surface energy density. A anisotropic
strain energy function was used, this anisotropy being implemented on the
principle of Eq. 0.57. More specifically here, we used a modified form of
the strain energy density proposed by Gasser, Ogden, and Holzapfel (GOH)
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[19] which may be written such as:

w =
µ1

2
(I1 − ln (I2)− 2) +

µ2

4γ

(
eγ(Ik−1)2 − 1

)
(0.71)

where I1 = tr C and I2 = det C are the principal invariants of the Cauchy–
Green deformation tensor and Iκ = C : (κ1 + (1− 2κ) M⊗M) is a com-
pound invariant consisting of isotropic and anisotropic contributions.

Litteraly, Eq. 0.71 models a composite material made a matrix reinforced
with fibers. In the compound invariant Iκ, the unit vector M = cos θG1 +
sin θG2 defines the orientation along which the tissue is stiffest while κ
characterizes the degree of anisotropy, varying from 0 to 1. When κ = 0 it
would model a composite with all the fibers perfectly aligned in the direction
M and at κ = 1 the fibers would be perfectly aligned in the perpendicular
direction, M⊥. Finally, κ = 1

2 models the case where fibers would have
no preferential direction (isotropic). The parameters µ1 and µ2 are the
effective stiffnesses of the matrix and fiber phases, respectively, both having
dimensions of force per unit length. The parameter γ is a non-dimensional
parameter that governs the tissue’s strain stiffening response.

The second Piola–Kirchhoff wall tension, S, is written as

S = 2
∂w

∂I1
1 + 2

∂w

∂I2
I2C

−1 + 2
∂w

∂Iκ
(κ1 + (1− 2κ) M⊗M) . (0.72)

Substituting Eq. 0.71 into Eq. 0.72 one finds

S = µ1

(
1−C−1

)
+ µ2 eγ(Iκ−1)2 (Iκ − 1) (κ1 + (1− 2κ) M⊗M) (0.73)

noting that the second Piola-Kirchoff wall tension is related to the Cauchy
wall tension via t = 1√

I2
F S FT.

The values of the model parameters µ1, µ2, γ, κ, and θ were deter-
mined by minimizing the sum of the squared difference between the stress
computed from the inverse membrane analysis and those computed using
Eq. 0.73. The nonlinear minimization was solved in Matlab (MathWorks,
v. 7.14) where the model parameters were constrained such that: µ1, µ2,
γ > 0, 0 ≤ θ ≤ π

2 , and 0 ≤ κ ≤ 1. Due to the boundary effect in the stress
analysis the perimeter ring of elements were excluded from the material
parameter identification.

3.3 Results

Geometric Reconstruction A bulge inflation test to failure was per-
formed on a ATAA collected from a male patient who was 55 years old.
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Figure 0.3: Contours of the magnitude of the (a) wall tension (N/m) and
(b) Green-Lagrange strain at a pressure of 117 kPa. Adapted from [8].

The diameter of the aneurysm as determined by pre-surgical CT scan was
55 mm. The mean thickness of the sample was 2.35 mm. The pressure and
DIC data during the bulge inflation tests were used to generate a deforming
NURBS mesh and identify the local stress-strain response during the bulge
inflation test. Using the pointwise stress-strain data, the spatial distribution
of the mechanical properties was identified.

Using the experimental DIC point cloud a deforming NURBS mesh was
generated of the ATAA sample.

Local Stress and Strain Response Figure 0.3 shows the distributions
of the magnitude of the Cauchy wall tension, t, and Green-Lagrangian
strain, E, at an applied pressure of 117 kPa for a given ATAA sample.
The distribution of wall tension and strain remained similar throughout the
inflation of the specimen. In general, at each Gauss point both the normal
strains and the planar shear strains were non-zero. To facilitate plotting of
the local stress-strain response, the axes of principal strain were identified
and the local stresses and strains were rotated into the principal strain axes.
In [8], the three components of the wall tension in the principal strain axes,
t̃11, t̃12, and t̃22 were plotted against the principal stretches λ1 and λ2. As
expected, the local stress-strain response showed the non-linear stiffening
behaviour that is common in arteries. The shear stresses, t̃12, were much
smaller than the normal stresses, t̃11 and t̃22. In a small region where rup-
ture eventually occurred, the ATAA appeared to yield. The locations of
this localized yielding correspond to strain concentrations in zones where
rupture initiates (Figure 0.3b).

Material Property Identification The proposed model for the elastic
behaviour of the ATAA was able to fit the bulge inflation data well (0.81 <
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Figure 0.4: Distribution of the identified material parameters over the
ATAA. Adapted from [8].

R2 < 0.99). Lower values of the correlation coefficient were located in the
small zone where rupture eventually occurred. Excluding this region the
minimum value of R2 was 0.96. The experimental data (points) and model
fits (lines) for three Gauss points were shown in [8].

The distributions of the material parameters are plotted in Figure 0.4.
Clearly the material parameters display a heterogeneous distribution. The
parameter µ1 displayed the sharpest changes in value while the parameters
µ2, κ, and γ changed more gradually. Not surprisingly, the values of µ2 are
an order of magnitude larger than µ1 reflecting the difference in stiffness
between the collagen fibers and matrix. The values of κ are approximately
0.5 in the center suggesting an isotropic organization of the collagen fibers.
Towards the edges of the specimen the collagen fibers become more aligned
signaling that the sample is regionally anisotropic. In Figure 0.4e, the angle
θ that defines the stiffest direction is plotted. Note that θ is defined locally
relative to the horizontal meshlines. Keep in mind that when the value of
κ is approximately 0.5, there is no stiffest direction.

This pointwise method was used to identify the distribution of mate-
rial properties of 10 human ATAA samples [18]. Our method was able to
capture the varying levels of heterogeneity in the ATAA from regional to
local. The distributions of the material properties for each patient were ex-
amined to study the inter- and intra-patient variability. Future studies on
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the heterogeneous properties of the ATAA would benefit from some form
of local structural analysis such as histology or multi-photon microscopy.
The structural data and knowledge of the spatial trends should provide
the information necessary to move from merely measuring the local mate-
rial properties to uncovering the links that exist between the underlying
microstructure and local properties.

4 Characterization of hyperelastic material properties
using a tension-inflation test and the virtual fields
method

In the previous section, it was shown that in some cases which are referred to
as isostatic, it may be possible to derive the stress distribution independently
of the material properties of the tissues. When strain distributions are also
available, stress-strain curves can be derived locally and the inverse problem
turns into a semi-forward problem [20], where the material parameters can
be identified directly by fitting the curves with a model.

In case of hyperstatic situations, it is not possible to derive the stress dis-
tribution independently of the material properties of the tissues. A possible
solution for the identification of local material properties may still be found
using the Virtual Fields Method (VFM). The VFM is one of the techniques
developed to identify the parameters governing constitutive equations, the
experimental data processed for this purpose being displacement or strain
fields. It will be shown in this chapter that one of its main advantages is
the fact that, in several cases, the sought parameters can be directly found
from the measurements, without resorting to a FE software.

The VFM relies on the Principle of Virtual Power (PVP) which is written
with particular virtual fields.

4.1 General Principle

The PVP represents in fact the weak form the local equations of equi-
librium which are classically introduced in mechanics of deformable media.
Assuming a quasi-static transformation (absence of acceleration forces) and
assuming the absence of body forces, the PVP can be written as follows for
any domain defined by its volume ω(t) in the current configuration and by
its external boundary ∂ω(t):

−
∫
ω(t)

σ : (Grad v∗)dω︸ ︷︷ ︸
P∗
int

+

∫
∂ω(t)

tn.v
∗ds︸ ︷︷ ︸

P∗
ext

= 0 (0.74)
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where σ is the Cauchy stress tensor, v∗ is a virtual velocity field defined
across the volume of the solid, Grad v∗ is the gradient of v∗, tn are the
tractions across the boundary (surface denoted ∂ω(t)), P ∗int is the virtual
power of internal forces and P ∗ext is the virtual power of external forces.

A very important property is in fact that the equation above is satisfied
for any kinematically admissible (KA) virtual field v?. By definition, a KA
virtual field must satisfy the boundary conditions of the actual velocity field
in order to cancel the contribution of the resulting forces on the portion of
the boundary along which actual displacement are prescribed. It must be
pointed out that this requirement is not really necessary in all cases, but
this point is not discussed here for the sake of simplicity. KA virtual fields
are also assumed to be C0 functions [21].

4.2 Example of application of the principle of virtual power for
membranes

The PVP may be a powerful tool to derive global or semi local equi-
librium equations which eventually appear useful for the identification of
material parameters. Here we illustrate this for deriving a useful equation
for a hyperelastic membrane. This is purely for the sake of giving an exam-
ple, but an infinity of other equations could be derived.

Let us consider a membrane-like structure made of a hyperelastic pre-
stressed tissue. The membrane is defined by a 3D surface, namely defined
by a set of points M(ξ1, ξ2), where (ξ1, ξ2) are the surface parametric coordi-
nates associated with the local basis (g1,g2). Vector g1 points the direction
of the maximum principal curvature and vector g2 points the direction of
the minimum principal curvature. The thickness of the membrane is named
h(ξ1, ξ2) and we denote κ1(ξ1, ξ2) and κ2(ξ1, ξ2) respectively the maximum
and minimum principal curvatures at (ξ1, ξ2).

There is no particular assumption related to the thickness of the mem-
brane but it is assumed that through-thickness shear is negligible. A third
coordinate ξ3 is introduced along the direction normal to the surface (through-
thickness coordinate), with ξ3 = 0 at the inner surface and ξ3 = 1 at the
outer surface.

Let us consider a quadrilateral patch across the membrane surface. This
patch is denoted n and we will apply the PVP on its volume. For that, the
following virtual field u∗ is defined across the given patch n:

u∗(ξ3) =
(1/κ1

n − h)(1/κ2
n − h)(1/κ1

n + 1/κ2
n − 2h)

(1/κ1
n − (1− ξ)h)(1/κ2

n − (1− ξ)h)
nn (0.75)
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where 1/κ1
n is the average radius of curvature on the outer surface along

the direction of the maximum principal curvature and 1/κ2
n is the average

radius of curvature on the outer surface along the direction of the minimum
principal curvature. The radii of curvature at any position ξ3 between the
inner (ξ3 = 0) and outer (ξ3 = 1) surfaces are then (1/κ1

n − (1− ξ3)h) and
(1/κ2

n − (1− ξ3)h). Vector nn points the direction normal to the surface.
The gradient of u∗ may be written as follows:

Grad u∗(ξ3) =

[
(1/κ1

n − h)(1/κ2
n − h)(1/κ1

n + 1/κ2
n − 2h)

(1/κ1
n − (1− ξ3)h)2(1/κ2

n − (1− ξ3)h)

]
g1
n ⊗ g1

n

+

[
(1/κ1

n − h)(1/κ2
n − h)(1/κ1

n + 1/κ2
n − 2h)

(1/κ1
n − (1− ξ3)h)(1/κ2

n − (1− ξ3)h)2

]
g2
n ⊗ g2

n

−
[

(1/κ1
n − h)(1/κ2

n − h)(1/κ1
n + 1/κ2

n − 2h)

(1/κ1
n − (1− ξ3)h)2(1/κ2

n − (1− ξ3)h)
+

(1/κ1
n − h)(1/κ2

n − h)(1/κ1
n + 1/κ2

n − 2h)

(1/κ1
n − (1− ξ3)h)(1/κ2

n − (1− ξ3)h)2

]
nn⊗nn

(0.76)

Plugging in and evaluating the integral expression for P ∗int (cf. Eq.0.74):

P ∗int(t) = −h(t)(1/κ1
n(t)−h(t))(1/κ2

n(t)−h(t))(1/κ1
n(t)+1/κ2

n(t)−2h(t))∫ 1

0

[
σw11,n(t, ξ3)− σw33,n(t, ξ3)

(1/κ1
n − (1− ξ3)h)2(1/κ2

n − (1− ξ3)h)

+
σw22,n(t, ξ3)− σw33,n(t, ξ3)

(1/κ1
n − (1− ξ3)h)(1/κ2

n − (1− ξ3)h)2

]
An(t, ξ3)dξ3 (0.77)

where An(t, ξ3) is the area of patch n at radial position ξ3 and may be
written:

An(t, ξ3) = (1/κ1
n(t)−(1−ξ3)h(t))(1/κ2

n(t)−(1−ξ3)h(t))Θ1
n(t)Θ2

n(t) (0.78)

where Θ1
n and Θ2

n are two angles defining the angular sector of patch
n along the directions of the maximum and minimum principal curvatures,
respectively. Introducing the expression of An(t, ξ3) into Eq.0.77, we obtain:

P ∗int(t) = −h(t)(1/κ1
n(t)−h(t))(1/κ2

n(t)−h(t))(1/κ1
n(t)+1/κ2

n(t)−2h(t))

Θ1
n(t)Θ2

n(t)

∫ 1

0

[
σw11,n(t, ξ3)− σw33,n(t, ξ3)

(1/κ1
n − (1− ξ3)h)

+
σw22,n(t, ξ3)− σw33,n(t, ξ3)

(1/κ2
n − (1− ξ3)h)

]
dξ3

(0.79)
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Regarding the virtual work on the boundaries, shear stresses are null so
only the virtual work of the internal pressure needs to be considered:

P ∗ext(t) = P (t)(1/κ1
n(t)− h(t))(1/κ2

n(t)− h(t))Θ1
n(t)Θ2

n(t)

(1/κ1
n(t) + 1/κ2

n(t)− 2h(t)) (0.80)

so combining all the equations we have:

P (t) = h(t)

∫ 1

0

[
σw11,n(t, ξ3)− σw33,n(t, ξ3)

(1/κ1
n − (1− ξ3)h)

+
σw22,n(t, ξ3)− σw33,n(t, ξ3)

(1/κ2
n − (1− ξ3)h)

]
dξ3

(0.81)

Finally the obtained equation is a generalized expression of the tradi-
tional Laplace law commonly used in biomechanics of soft tissues [22].

4.3 Identification of hyperelastic parameters using the VFM

The principle of virtual power (PVP) has been used for the identification
of material properties since 1990 through the virtual fields method (VFM),
which is an inverse method based on the use of full-field deformation data
[23, 24, 21]. The VFM was recently applied to the identification of uniform
material properties in arterial walls [24].

The first step of the VFM consists in introducing the constitutive equa-
tions. In the case of hyperelasticity, Equation 0.74 becomes:

−
∫
ω(t)

(
J−1F

∂ψ

∂E
FT
)

: (Grad v∗)dω +

∫
∂ω(t)

tn.v
∗ds = 0 (0.82)

This equation being satisfied for any KA virtual field, any new KA virtual
field provides a new equation. The VFM relies on this property by writing
Eq. 0.82 above with a set of KA virtual fields chosen a priori [25]. The
number of virtual fields and their type depend on the nature of the strain
energy function. Two different cases can be distinguished.

• Case #1: the strain energy density function depends linearly on the
sought parameters. Writing Eq. 0.82 with as many virtual fields as
unknowns leads to a system of linear equations which provides the
sought parameters after inversion.

• Case #2: the strain energy density function involve nonlinear rela-
tions with respect to the constitutive parameters. In this case, iden-
tification must be performed by minimizing a cost-function derived
from Eq. 0.82.
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Let us illustrate this with the strain energy function of Eq. 0.71. It
provides a membrane constitutive equation, i.e. it yields the tension and
not the Cauchy stress so the integrals will be written across a given surface
ν(t) figuring a portion of the membrane:

− µ1

∫
ν(t)

1√
I2

(
B−

√
I21
)

: (Grad v∗)dν

− µ2κ

∫
ν(t)

1√
I2

eγ(Iκ−1)2 (Iκ − 1) B : (Grad v∗)dν

− µ2(1− 2κ)

∫
ν(t)

1√
I2

eγ(Iκ−1)2 (Iκ − 1)
(
FM⊗MFT

)
: (Grad v∗)dν

+

∫
ν(t)

tn.v
∗dl = 0 (0.83)

The equation may be rewritten such as:

µ1Aij + µ2κBij(γ) + µ2(1− 2κ)Cij(γ, θ) = Lij (0.84)

where Aij , Bij , Cij and Lij can be evaluated directly from the experimental
measurements. Index i is for different possible choices of virtual fields and
index j is for different possible stages of the experiment for which deforma-
tions and loads are measured.

Eq. 0.84 is an equation of the unknown material parameters for each
choice of virtual field i and at every stage j of the test. The equation is
linear in µ1, µ2κ and µ2(1−2κ) but it is nonlinear in γ and θ. The solution
is found by minimizing a cost function defined such as:

∑
i

∑
j

(µ1Aij + µ2κBij(γ) + µ2(1− 2κ)Cij(γ, θ)− Lij)2
(0.85)

This cost function can be minimized by the simplex method or using a
genetic algorithm in case of multiple minima. The chosen virtual fields and
other details about the experiments can be found in [24, 26] for applications
to blood vessels.

A recent extension of the method was proposed for the inverse charac-
terization of regional, nonlinear, anisotropic properties of the murine aorta
[27]. Full-field biaxial data were collected using a panoramic-digital image
correlation system and the VFM was used to estimate values of material pa-
rameters regionally for a microstructurally motivated constitutive relation.
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The experimental-computational approach was validated by comparing re-
sults to those from standard biaxial testing. Results for the non-diseased
suprarenal abdominal aorta from apolipoprotein-E null mice revealed mate-
rial heterogeneities, with significant differences between dorsal and ventral
as well as between proximal and distal locations, which may arise in part due
to differential perivascular support and localized branches. Overall results
were validated for both a membrane and a thick-wall model that delineated
medial and adventitial properties.

Whereas full-field characterization can be useful in the study of normal
arteries, we submit that it will be particularly useful for studying complex
lesions such as aneurysms. Indeed, many vascular disorders, including aor-
tic aneurysms and dissections, are characterized by localized changes in wall
composition and structure. Notwithstanding the importance of histopatho-
logic changes that occur at the microstructural level, macroscopic man-
ifestations ultimately dictate the mechanical functionality and structural
integrity of the aortic wall. Understanding structure–function relationships
locally is thus critical for gaining increased insight into conditions that ren-
der a tissue susceptible to disease or failure.

5 Conclusion

In this chapter, after a brief review of the constitutive relations commonly
used for soft tissues, two recent developments of the author’s experience
were presented to illustrate the potential of digital image correlation and
inverse methods in experimental biomechanics of soft tissues.

The inverse problems, including the semi-forward problems [20], posed
by the identification of material properties in soft biological tissues are not
the simplest due to the complex microstructure of soft biological tissues,
their finite range of deformation, their inter-individual variability, their
anisotropy, their point-dependent non-linear behaviour, and their perma-
nent functional adaptation to the environment. Determining the mechanical
properties of such tissues has nevertheless become a field of intense research
since stress analysis in the tissues has been shown to be meaningful for
medical diagnosis in a number of medical applications as for instance in the
context of vascular medicine, indicating the risk of rupture of an aneurysm
[28] or the risk of stroke [29].

The current chapter has focused on in vitro characterization. The in vivo
identification of soft tissues present other important issues. They suppose
both the existence of reliable experimental facilities for inducing a mechan-
ical stimulus (natural blood pressure variations, local external compression,
shear waves [30]) and the existence of imaging devices for measuring the
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response of tissues (Ultrasound Imaging [31], Magnetic Resonance Imaging
[32] or Optical Coherence Tomography [33]). In all these situations where
some elements of the response of soft tissues subjected to mechanical stimuli
are measured, the access to the mechanical parameters is never direct and
inverse problems have to be posed and solved. The inverse problems posed
by the in vivo identification of soft tissues will be discussed more specifically
in chapter 5 and chapter 6 of this book.
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and Jia Lu. Local mechanical properties of human ascending thoracic
aneurysms. Journal of the Mechanical Behaviour of Biomedical Mate-
rials, 2016. Accepted.

[19] T Christian Gasser, Ray W Ogden, and Gerhard A Holzapfel. Hy-
perelastic modelling of arterial layers with distributed collagen fibre
orientations. Journal of the royal society interface, 3(6):15–35, 2006.
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[21] Fabrice Pierron and Michel Grédiac. The virtual fields method: ex-
tracting constitutive mechanical parameters from full-field deformation
measurements. Springer Science & Business Media, 2012.

[22] Yuan-cheng Fung. Biomechanics: mechanical properties of living tis-
sues. Springer Science & Business Media, 2013.
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