Analyse Relationnelle de Concepts: Une approche pour fouiller des ensembles de données multi-relationnels Séminaire MIAD - 3 juillet 2015

Marianne Huchard

July 2, 2015

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Motivation

Observation

- Relational datasets, multi-dimensional data
- A few approaches
 - Data warehouse (OLAP) cube (Gray et al. 2008)
 - Inductive Logic Programming (Dzeroski, 2003)
 - Propositionalization (Kuzelka, O., Zelezný, 2008)

うして ふゆう ふほう ふほう うらつ

More specific objective

- extract patterns from data and relations
- interconnected classification of entities
- classification of extracted patterns

Outline

Outline

- Formal Concept Analysis
- Relational Concept Analysis
- Applications
 - Class model refactoring

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

A methodology for:

- data analysis, data mining, clustering
- knowledge representation (ontology construction)
- classification, indexation (information retrieval)
- unsupervised learning (example description)
- supervised learning (adding classes in description)
 Roots:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- lattice theory, Galois connections (Birkhoff, 1940; Barbut & Monjardet, 1970)
- concept lattices (Wille, 1982)

Formal Context

Simplest form: entities with characteristics

	Photo	PhysKeyboard	SquareScreen	FullHDScreen	4Gcapable	LowSAR	HighAutonomy	NFC
BlackberryPassport	×	×	×		×		×	×
BlackberryLeap	×				×		×	×
BlackberryQ5	×	×	×		×			×
iphone6plus	×			X	X		X	X
iphone6	×				×		×	X
NokiaLumia735	×				×		×	X
NokiaLumia930	×			×	×			×
SonyXperiaZ1	×			×	×		×	×
GoogleNexus5	×			×	×	×		×
AsusZE500CL	×				×			×
WikoHighway	×					×		
LGGFlex	×				×	×	×	×

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Formal context

Formal Context (O, A, R)

- two finite sets O et A
- binary relation $R \subseteq 0 \times A$.

Mappings associated with R

► Attribute shared by an object set

$$f : \mathcal{P}(O) \rightarrow \mathcal{P}(A)$$

 $X \longmapsto f(X) = \{y \in A \mid \forall x \in X, (x, y) \in R\} = X'$

▶ Objects sharing an attribute set $g: \mathcal{P}(A) \to \mathcal{P}(O)$ $Y \longmapsto g(Y) = \{x \in O \mid \forall y \in Y, (x, y) \in R\} = Y'$

Alternative notation '

 $f \circ g$ (resp. $g \circ f$) is a closure operator on attributes (resp. objects)

op closure operator on a poset (P, \leq_P)

- isotone: $X \leq_P Y \Rightarrow op(X) \leq_P op(Y)$
- extensive: $X \leq_P op(X)$
- idempotent: op(op(X)) = op(X)

X is a closed set iff op(X) = X

 $f \circ g$ is a closure operator on $(2^A, \subseteq)$ $g \circ f$ is a closure operator on $(2^O, \subseteq)$

Concept

A formal concept C is a pair (E, I) such that f(E) = I (or equivalently) E = g(I)

 $E = \{ e \in O \mid \forall i \in I, (e, i) \in R \}$ is the *extent* (covered objects)

 $I = \{ i \in A \mid \forall e \in E, (e, i) \in R \}$ is the *intent* (shared attributes)

E is a closed set for $g \circ f$ *I* is a closed set for $f \circ g$

(ロ) (型) (E) (E) (E) (O)

Concept

A maximal group of objects (object closed set, extent) sharing a maximal group of attributes (attribute closed set, intent)

	Photo	PhysKeyboard	SquareScreen	FullHDScreen	4Gcapable	LowSAR	HighAutonomy	NFC
BlackberryPassport	×	×	×		×		×	×
BlackberryLeap	×				×		×	×
BlackberryQ5	×	×	×		×			×
iphone6plus	×			×	×		×	×
iphone6	×				×		×	×
NokiaLumia735	×				×		×	×
NokiaLumia930	×			×	×			×
SonyXperiaZ1	×			×	×		×	×
GoogleNexus5	×			×	×	×		×
AsusZE500CL	×				×			×
WikoHighway	×					×		
LGGFlex	×				×	×	×	×

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Concept lattice

The concept set C provided with: $(E_1, I_1) \leq_{\mathcal{L}} (E_2, I_2) \Leftrightarrow E_1 \subseteq E_2$ (or equivalently $I_2 \subseteq I_1$) has a lattice structure

Every concept pair has a lower bound and an upper bound

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

୬ ବର

Association rule - approximate rule

For A_1 and A_2 two attribute sets (itemsets) $A_1 \Rightarrow A_2$ iff a (significant) part of objects that own A_1 also own A_2 Confidence = $|f(A_1) \cup f(A_2)|/|f(A_1)|$

Implication rule - exact rule

For A_1 and A_2 two attribute sets (itemsets) $A_1 \Rightarrow A_2$ iff $f(A_1) \subseteq f(A_2)$ Confidence = 1

Implication rules

Duquenne-Guigues implication basis

A minimal (in the number of implications) implication set

<12> {} \Rightarrow Photo <11> Photo NFC \Rightarrow 4Gcapable <2> Photo PhysKeyboard \Rightarrow SquareScreen 4Gcapable NFC <2> Photo SquareScreen \Rightarrow PhysKeyboard 4Gcapable NFC <4> Photo FullHDScreen \Rightarrow 4Gcapable NFC <11> Photo 4Gcapable \Rightarrow NFC <7> Photo HighAutonomy \Rightarrow 4Gcapable NFC <0> Photo PhysKeyboard SquareScreen FullHDScreen 4Gcapable NFC \Rightarrow LowSAR HighAutonomy <0> Photo PhysKeyboard SquareScreen LowSAR 4Gcapable NFC \Rightarrow FullHDScreen HighAutonomy <0> Photo FullHDScreen HighAutonomy LowSAR 4Gcapable NFC \Rightarrow PhysKeyboard SquareScreen

Conexp (http://conexp.sourceforge.net/)

AOC-poset

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

AOC-poset

Complexity of conceptual structures

Formal context (O, A, R)

- two finite sets O et A
- binary relation $R \subseteq 0 \times A$

Concept lattice #concepts < $2^{min(|A|,|O|)}$ Reached with the lattice of all subsets of *E*, where *E* is *O* if |O| = min(|A|, |O|) (otherwise, *E* is *A*)

AOC-poset

#concepts < |A| + |O|

Reached if |A| = |O| and every attribute is shared by several distinct objects (a bipartite crown graph for ex.)

Generalization: Galois connection

The mapping pair (f,g) associated with a $R \subseteq A \times B$ binary relation is a (monotone) Galois connection between $(2^A, \subseteq)$ and $(2^O, \subseteq)$

This is a particular case of a more general theory

Galois connection

For two posets (A, \leq_A) and (B, \leq_B) , and two mappings $f : A \to B$ et $g : B \to A$ The pair (f, g) is a Galois connection if: $\forall a \in A$ and $\forall b \in B$, $a \leq_A g(b) \Leftrightarrow b \leq_B f(a)$.

Property

If (f,g) is a Galois connection between (A, \leq_A) and (B, \leq_B) $h_A = g \circ f$ et $h_B = f \circ g$ are closure operators The corresponding closed sets can be provided with a lattice structure

They can be associated by f and g

Pattern structures, Ganter and Kuznetsov 2001 In the following framework:

- ▶ a set of objects G
- ▶ a set of descriptions (D, \sqcap) which is a semilattice
- ▶ a partial order on D: $a \sqsubseteq b$ iff $a \sqcap b = a$ (a is subsumed by b)

うして ふゆう ふほう ふほう うらつ

- ▶ a map δ : $G \to D$
- A Galois connection (f, g) can be defined:
 - $\flat \ \forall X \subseteq G, f(X) = \sqcap_{g \in X} \delta(g)$
 - $\blacktriangleright \ \forall d \in D, g(d) = \{g \in G | d \sqsubseteq \delta(g)\}$

By transforming multi-valued contexts into binary contexts (scaling) or by using a general Galois connection,

- many-valued contexts (integers, floats, terms, structures, symbolic objects, etc.) (Ganter et Wille, Polaillon, ...)
- fuzzy descriptions (Yahia et al., Belohlavek, ...)
- hierarchies on values (Godin et al., Carpineto et Romano, ...)
- logical description (Chaudron et al., Ferré et al., ...)
- graphs (Liquière, Prediger and Wille, Ganter and Kuznetsov, ...)

etc.

> A unique classification centered on a unique object set

Relational Concept Analysis (RCA)

- Extends the purpose of FCA for taking into account object categories and links between objects
- Main principles:
 - a relational model based on the entity-relationship model
 - integrate relations between objects as relational attributes
 - iterative process
- RCA provides a set of interconnected lattices
- Produced structures can be represented as ontology concepts within a knowledge representation formalism such as description logics (DLs).

Joint work with:

A. Napoli, C. Roume, M. Rouane-Hacène, P. Valtchev

A simple entity-relationship model to introduce RCA

Relational Context Family

object-attribute contexts

- Pizza
- Ingredient
- object-object context
 - has-topping \subseteq Pizza \times Ingredient

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

A RCF \mathcal{F} is a pair (K, R) with:

- K is a set of object-attribute contexts $K_i = (O_i, A_i, I_i)$
- ▶ *R* is a set of object-object contexts $R_j = (O_k, O_l, I_j)$,
 - (O_k, O_l) are the object sets of formal contexts $(K_k, K_l) \in K^2$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- $I_j \subseteq O_k \times O_l$
- K_k is the source/domain context
- ► *K_I* is the *target/range context*.
- we may have $K_k = K_l$.

RCF / object-attributes contexts

Pizza	thin	thick	calzone
okonomi			×
alberginia		×	
margherita	×		
languedoc	×		
four-cheeses	×		
three-cheeses	×		
frutti-di-mare	×		
quebec		×	
regina	×		
hawai		×	
lorraine	×		
kebab			×

Ingredient	fruit-vegetable	meat	fish	dairy	cereal-leguminous	veg-oil
tomato-sauce	×					
cream				×		
tomato	×					
basilic	×					
olive	×					
olive oil						×
soy	×					
mushroom	×					
eggplant	×					
onion	×					
pepper	×					
ananas	×					
mozza				×		
goat-cheese				×		
emmental				×		
fourme-ambert				×		
squid			×			
shrimp			×			
mussels			×			
ham		×				
bacon		×				
chicken		×	-			
maple-sirup	×					
corn			. √ A		×	
					_	_

haa tamaina dhamata sawaa damama damata daalii aliya didaa ai daay damahaama da

RCF / object-object context / part 1

has-topping	tomato-sauce	cream	tomato	basilic	olive	olive oil	soy	mushroom	eggplant	onion	pepper	ananas
okonomi	×					×	×	×				
alberginia	×					×	×		×	×		
margherita	×		×	×	×	×						
languedoc	×		×	×	×	×				×	×	
four-cheeses		×										
three-cheeses		×										
frutti-di-mare	×				×	×						
quebec	×											
regina	×							×				
hawai	×											×
lorraine		×								×		
kebab	×		×		×					×		

RCF / object-object context / part 2

has-topping	mozza	goat-cheese	emmental	fourme-ambert	squid	shrimp	mussels	ham	bacon	chicken	maple-sirup	corn
okonomi												
alberginia												
margherita	×											
languedoc	×											
four-cheeses	×	×	×	×								
three-cheeses	×	×	×									
frutti-di-mare	×				×	×	×					
quebec	×							×			×	×
regina	×								×			
hawai	×							×				
lorraine			×						×			
kebab			×							×		

RCA - Initial Lattice building

At the beginning, only the object-attribute contexts are used to build the foundation of the concept lattice family

Given an object-object context $R_j = (O_k, O_l, I_j)$, There are different notable schemas between an object of domain O_k and concepts formed on O_l .

E. g.

- ▶ Existential: an object is linked (by *R_j*) to at least one object of the extent of a concept
- ► Universal: an object is linked (by R_j) only to objects of the extent of a concept

うして ふゆう ふほう ふほう うらつ

RCA - Existential relational attributes

margherita has one topping in Concept_10 extent: **mozza**. It has other links to other concept extents.

∃has-topping.Concept_10 is assigned to margherita

RCA - Existential relational attributes

Scaled relations with domain O_i are concatenated to K_i , the object-attribute context on O_i

		×	one		Concept_7	Concept_5	Concept_6	Concept_8	Concept_9	Concept_10	Concept_11	Concept_12
Pizza	thi	thic	calz		ë.	ie.	ing.	Bu	ing.	ie.	ie.	ing.
okonomi			X		dd	dd	ddo	ddo	ddo	dd	dd	dd
alberginia		×		1	Ft	Ft	s-to	-to	s-to	-te	-te	s-to
margherita	×				has	has	has	has	has	has	has	has
languedoc	×			has-topping	т	Ш	Ш	Ш	Ш	т	т	m
four-cheeses	×			okonomi		×	×					×
three-cheeses	×			alberginia		x	x					×
frutti-di-mare	×			margherita		x	×			×		×
quebec		×		languedoc		×	×			×		×
regina	×			four-cheeses		х				×		
hawai		×		three-cheeses		x				×		
lorraine	×			frutti-di-mare		×	x		x	×		×
kebab			×	quebec		х	х	×		×	×	
				regina		×	×	×		×		
				hawai		х	х	×		×		
				lorraine		×	×	×		×		
				kebab		×	×	×		×		

Relational Concept Family / exists

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Relational Concept Family / exists

Concept_21: pizzas with at least one topping in dairy Concept_18: pizzas with at least one topping in meat have at least one meat topping \Rightarrow have at least one dairy topping

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

three-cheese has topping in and only in Concept_10 extent.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 $\forall \exists has-topping.Concept_10 \text{ is assigned to three-cheese}$

RCA - Universal relational attributes

Scaled relations with domain O_i are concatenated to K_i , the object-attribute context on O_i

					oncept_7	oncept_5	oncept_6	oncept_8	oncept_9	oncept_10	oncept_11	oncept_12
Pizza	thin	thick	calzone		ping. C	ping. C	ping. Co	ping. Co	ping. C	ping. C	ping. C	ping. C
okonomi			×	I	to d	to b	top	top	to	to l	to	to b
alberginia		\times			-se	-se	-SE	-SE	-se	-se	-se	-se
margherita	×				Ë.	Ë	Ë	Ϋ́	Ë	Ë.	l Ř	Ë
languedoc	×			has-topping	\geq	\geq	\geq	\geq	\geq	⊳		\geq
four-cheeses	×			okonomi		×						
three-cheeses	×			alberginia		х						
frutti-di-mare	×			margherita		х						
quebec		\times		languedoc		×						
regina	×			four-cheeses		x				×		
hawai		\times		three-cheeses		х				×		
lorraine	×			frutti-di-mare		x						
kebab			×	quebec		х			İ			
				regina		х						
				hawai		×						
				lorraine		х			İ			
				kebab		х						

Relational Concept Family / forall

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Relational Concept Family / forall

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Concept_13: pizzas with only dairy topping Concept_1: thin pizzas have only dairy topping \Rightarrow thin

Operator	Attribute form	Condition
Universal (narrow)	∀ <i>r</i> . <i>c</i>	$r(o) \subseteq Ext(c)$
Universal strict	∀∃ <i>r</i> . <i>c</i>	$r(o) \subseteq Ext(c)$ and $r(o) eq \emptyset$
Universal-percent	$\forall \exists \geq n\% r.c$	$ r(o) \cap Extent(C) \ge n r(o) /100)$
Covers	\supseteq r.c	$r(o) \supseteq Ext(c)$
Covers-percent	\supseteq \geq <i>n</i> % <i>r</i> . <i>c</i>	$ r(o) \cap Extent(C) \ge n Extent(C) /100)$
Existential (wide)	∃ r.c	$r(o) \cap Ext(c) eq \emptyset$
Universal strict	∀∃ <i>r</i> . <i>c</i>	$r(o)\subseteq Ext(c)$ and $r(o) eq \emptyset$
Qualif. card.	\geq n r.c	$r(o) \subseteq Ext(c)$ and $ r(o) \ge n$
restriction		
Card. restriction	$\geq n r. \top_{\mathcal{L}}$	$ r(o) \ge n$

General Entity-Relationship diagram

General ER diagram may present cycle/circuits between classes/objects \exists prefers $\forall \exists$ has-topping $\forall \exists$ has-category $\forall \exists$ is-produced-by

RCA schema

(ロ)、

Credit X. Dolques

Interconnected lattices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Ontology construction (R. Bendaoud, M. Rouane Hacene, Y. Toussaint, B. Delecroix, A. Napoli)
- Ontology restructuring (M. Rouane-Hacene, R. Nkambou and P. Valtchev)
- Discovering hidden user profiles in a semantic actors-activities network (Z. Azmeh, I. Mirbel)
- Information retrieval in legal document collections (queries) (N. Mimouni, A. Nazarenko, S. Salotti)

FRESQUEAU project (ANR11_MONU14)

Joint work with: A. Braud, X. Dolques, C. Grac, F. Le Ber, C. Nica http://engees-fresqueau.unistra.fr

- Develop new methods to study, compare and exploit the whole set of available parameters describing the state of watercourses
- Extraction of implication rules (with premise of size 1)
 Presence of taxons of size from 0 to 2 cm and with a lifetime of 1 month implies presence of SO4
- ▶ 4 OA-contexts (49 sites, 197 macro-invertebrates, 27 Physico-Chemical parameters, 18 life traits (116 modalities)), 5+6+3 00-contexts
- variants on scaling operators
- Lattices: > 10 000 concepts
- ► AOC-posets: from ~600 to ~1500 concepts, ~130 to ~300 rules

Reengineering of existing software, by building new software artefacts

- UML class diagram refactoring (M. Dao, M. Huchard, M. Rouane Hacene, C. Roume, P. Valtchev, G. ArÃlvalo, J.-R. Falleri, C. Nebut)
- UML Use case diagram refactoring (X. Dolques, M. Huchard, C. Nebut, P. Reitz)
- Blob design defect correction (N. Moha, M. Rouane Hacene, P. Valtchev, Y.-G. GuÃl'hÃl'neuc)
- Extracting architectures in object-oriented software (A.-E. El Hamdouni, A. Seriai, M. Huchard)

Learning from model transformation examples, and inferring transformation rules

 Learning model Transformation patterns in MDE (H. Saada, X. Dolques, M. Huchard, C. Nebut, H. A. Sahraoui)

Classification of software artefacts

 Classification of web services (Z. Azmeh, M. Driss, F. Hamoui, M. Huchard, N. Moha, C. Tibermacine)

Software analysis

 Analysis of the evolution of class diagrams (A. Osman-Guédi, A. Miralles, B. Amar, M. Huchard, T. Libourel and C. Nebut) Environment and Territory domains

- Development of Information System involves many actors and scientists: EIS-Pesticides
- Meeting after meeting, the designer has to merge various viewpoints in a global UML that evolves progressively
- During the analysis phase, models are archived after each major change

Joint work with B. Amar, X. Dolques, F. Le Ber, T. Libourel, A. Miralles, C. Nebut, A. Osman-Guédi

うして ふゆう ふほう ふほう うらつ

SQC

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Strong properties of the resulting class model

- No redundancy
- All abstractions are created
- All specialization links are present

Approach

Develop methods using the class model normal form obtained with RCA for class model construction and evolution:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- monitoring
- assisting

Classical RCA approach

lssue

The final model contains many merged or new elements, this is difficult to analyze to keep the relevant part

(日) (四) (日) (日)

э

Exploration path

Fighting against possible high number of concepts to be analyzed by choosing good configurations by bringing concepts step by step

Auto path: all contexts are considered, but the process stops at each step and presents the concepts to the designer

Fighting against possible high number of concepts to be analyzed by using parts of the RCF

(日) (四) (日) (日)

Path 1: each step considers a specific part of the RCF

Fighting against possible high number of concepts to be analyzed by using parts of the RCF - cumulative

Path 2: Begin by class/attributes, add roles, add associations Path 3: A variant that begins by class/roles

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Quantitative analysis: ex. with class concepts to be analyzed at each step

RCA application on Pesticides: 171 classes, 265 class concepts

step tr.	Auto	Path 1	Path 2	Path 3	step tr.	Auto	Path 1	Path 2	Path 3
$0 \rightarrow 1$	32	20	20	12	$10 \rightarrow 11$	4		4	4
$1 \rightarrow 2$	13	-20	0	0	$11 \rightarrow 11$	0		0	1
$2 \rightarrow 3$	12	32	32	20	$12 \rightarrow 13$	2		2	3
$3 \rightarrow 4$	6		0	18	$13 \rightarrow 14$	0		0	1
$4 \rightarrow 5$	7		15	7	$14 \rightarrow 15$	1		1	1
$5 \rightarrow 6$	4		0	9	15 ightarrow 16	0		0	1
$6 \rightarrow 7$	5		11	4	$16 \rightarrow 17$	Auto		1	0
$7 \rightarrow 8$	3		0	5	$17 \rightarrow 18$	Auto		0	
8 →9	5		8	4					
$9 \rightarrow 10$	0		0	4					

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Class concept number evolution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Exploration divides the burden of the analysis
- The process is controlled by the expert
- Paths cannot be chosen by chance, cumulative paths ensure completeness

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Perspectives: define a complete methodology and tools

General Conclusion

- RCA: an opportunity for analyzing more deeply datasets composed of objects and relations
- Can be mixed with other FCA extension (to numerical data for example)
- Exploratory RCA allows us step-by-step analysis, considering a subset of the dataset and changing structures (lattices, AOC-posets, iceberg)

うして ふゆう ふほう ふほう うらつ

, Queries, metrics to guide exploration

Tools

- Galicia: http://galicia.sourceforge.net/
- eRCA: http://code.google.com/p/erca/
- RCAexplore: http://dolques.free.fr/rcaexplore/

Questions?

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○