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Software architectures are subject to several types of change during the software lifecycle (e.g. adding requirements, correcting
bugs, enhancing performance). The variety of these changes makes architecture evolution management complex because all
architecture descriptions must remain consistent after change. To do so, whatever part of the architectural description
they affect, the effects of change have to be propagated to the other parts. The goal of this paper is to provide support for
evolving component-based architectures at multiple abstraction levels. Architecture descriptions follow an architectural model
named Dedal, the three description levels of which correspond to the three main development steps – specification,
implementation and deployment. This paper formalizes an evolution management model that generates evolution plans
according to a given architecture change request, thus preserving consistency of architecture descriptions and coherence
between them. The approach is implemented as an Eclipse-based tool and validated with three evolution scenarios of a Home
Automation Software example.

1. Introduction

Component-based software development (Cbsd) promotes a reuse-based approach to defining, implementing and com-
posing loosely coupled independent software components into whole software systems [1]. While component reuse is crucial 
to shorten large-scale software systems development time, handling evolution in such processes is a significant issue [2]. 
Indeed, software systems have to evolve to extend their functionalities, correct bugs, improve performance and quality, or 
adapt to their environment. While unavoidable, software changes may engender several inconsistencies and system dysfunc-
tion if not analyzed and handled carefully. In turn, an ill-mastered evolution engenders software degradation, the loss of its 
evolvability and then its phase-out [3].

A famous problem of software evolution is software architecture erosion [4,5]. It arises when modifications of the soft-
ware implementation violate the design principles captured by its architecture. To increase confidence in reuse-centered, 
component-based software systems, all architecture descriptions must remain consistent and coherent with each other after 
every change.

* Corresponding authors.
E-mail addresses: Abderrahman.Mokni@mines-ales.fr (A. Mokni), Christelle.Urtado@mines-ales.fr (C. Urtado), Sylvain.Vauttier@mines-ales.fr (S. Vauttier),

Marianne.Huchard@lirmm.fr (M. Huchard), yulin.zhang@u-picardie.fr (H.Y. 

Zhang).

mailto:Abderrahman.Mokni@mines-ales.fr
mailto:Christelle.Urtado@mines-ales.fr
mailto:Sylvain.Vauttier@mines-ales.fr
mailto:Marianne.Huchard@lirmm.fr
mailto:yulin.zhang@u-picardie.fr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2016.03.003&domain=pdf


While a lot of work has been dedicated to architectural modeling and evolution, there still is a lack of means and 
techniques to tackle architectural inconsistencies, and erosion in particular. Indeed, most existing approaches to architecture 
evolution hardly support the whole life-cycle of component-based software and only enable evolution of early stage models 
by propagating change impact to runtime models while evolution of runtime models are not fully dealt with, thus increasing 
the risks of architecture erosion.

This paper proposes an approach and its implementation to automatically manage component-based architecture evolu-
tion at multiple abstraction levels in a manner that preserves architecture consistency and coherence all along the software 
lifecycle. The approach is based on the Dedal [6,7] architectural model that explicitly models architectures at three abstrac-
tion levels, each corresponding to one of the three major steps of Cbsd – specification, implementation and deployment, thus 
granting a full evolution management process. Given a change request at any abstraction level, it transforms Dedal models 
into B formal models to analyze the requested change and generates an evolution plan that guarantees the consistency of 
architecture descriptions and the coherence between them. The proposed approach is centered on a formal evolution man-
agement model that includes the generated B models, the architecture properties to preserve and a set of evolution rules. 
It is implemented as an Eclipse-based tool that generates B models from diagrammatic Dedal models and uses our specific 
solver to resolve architecture evolution. The overall approach is illustrated with a Home Automation Software case-study.

The remainder of this paper outlines as follows: Section 2 presents the background of this work. Section 3 presents 
our proposal to tackle multi-level architecture evolution (i.e. the evolution of architecture definitions composed of multiple 
description levels) while Section 4 presents the implemented tool and experiments on three evolution scenarios. Section 5
discusses related work and finally, Section 6 concludes the paper and discusses future work.

2. Background

Our approach combines the use of Dedal to model software architectures and B to support automated analysis and 
verification. This section briefly introduces these languages.

2.1. The Dedal architecture model

2.1.1. Component-based software development by reuse
Cbsd follows the reuse-in-the-large principle. Reusing existing (off-the-shelf) software components [8] therefore becomes 

the central concern during development. Traditional software development processes cannot be used as is and must be 
adapted to component reuse [1]. Fig. 1 illustrates our vision of such a development process which is classically divided in 
two:

• the component development process (referred to as software component development for reuse), which will not be
detailed in the sequel. This development process produces components that are stored in repositories for later use by
the software development process.

• the software development process (referred to as software development by component reuse) that describes how pre-
viously developed software components can be used for software development (and how this reuse impacts the way
software is built).

Dedal is a novel architectural model and Adl [6,7] that targets reuse-centered development. It covers the whole soft-
ware development by component reuse life-cycle. The main idea of Dedal is to build a concrete architecture composed 
of stored and indexed components that are found in a component repository as candidates to satisfy the design decisions 
specified in an intended architecture specification. The resulting concrete architecture can then be instantiated and deployed 
in multiple contexts. Therefore, Dedal proposes a three-step approach for specifying, implementing and deploying software 
architectures.

2.1.2. Dedal abstraction levels
To illustrate the concepts of Dedal, we propose to model a home automation software (Has) that manages comfort 

scenarios, which automatically controls buildings’ lighting and heating depending on time and ambient temperature. For 
this purpose, we propose an architecture with an orchestrator component that interacts with the appropriate devices to 
implement the desired scenario.

The abstract architecture specification is the first level of software architecture descriptions. It is abstract: it represents the 
architecture as imagined by the architect to meet the requirements of the future software. In Dedal, the architecture speci-
fication is composed of component roles, their connections and the expected global behavior. Component roles are abstract 
and partial component type specifications. Consequently, the provided interfaces of each role are to be connected to com-
patible required interfaces. Component roles are identified by the architect in order to search for and select corresponding 
concrete components in the next step. Fig. 2-a shows a possible Has architecture specification. In this specification, five 
component roles are identified. A component playing the HomeOrchestrator role controls four components playing the Light, 
Time, Thermometer and CoolerHeater roles.



Fig. 1. Dedal reuse-centered development process [7].

Fig. 2. Architecture specification, configuration and assembly of the HAS.

The concrete architecture configuration is an implementation view of software architectures. It results from the selection 
of existing component classes in component repositories. Thus, an architecture configuration lists and connects the concrete 
component classes that compose a specific version of the software. In Dedal, component classes can either be primitive 
or composite. A primitive component class encapsulates executable code. A composite component class encapsulates an inner 
architecture configuration (i.e. a set of connected component classes which may, in turn, be primitive or composite). A com-
posite component class exposes a set of interfaces corresponding to the unconnected interfaces of its inner components. 
Fig. 2-b shows a possible architecture configuration for the Has example as well as an example of an AirConditioner com-
posite component and its inner configuration. As illustrated in this example, a single component class may realize several 



MACHINE
name and eventually parameters

INCLUDES (optional)
imported specifications

(Static/declarative part)
SETS

declaration of abstract / enumerated sets
CONSTANTS

declaration of constants
PROPERTIES

constraints on constants
VARIABLES

declaration of variables (the machine state)
INVARIANT

declaration of invariant properties of the machine
DEFINITIONS (optional)

construction of formulas / sets using the variables of the machine
(Dynamic part)
INITIALISATION

initialization of the state of the machine (all declared variables)
OPERATIONS

definition of operations that modify the state of the machine

Fig. 3. Structure of an abstract B machine.

roles from the architecture specification as with the AirConditioner component class, which realizes both the Thermometer
and CoolerHeater roles. Conversely, a component class may provide more services than those listed in (its role in) the ar-
chitecture specification as with the Lamp component class which provides an extra service to control the intensity of light. 
These extra interfaces may be left unconnected.

The instantiated architecture assembly describes software at runtime and holds information about its internal state. The 
architecture assembly models an instantiation of its architecture configuration. It lists the instances of the component and 
connector classes that compose the deployed architecture at runtime and their assembly constraints (such as the maximum 
number of connected instances). Component instances document how the component classes from an architecture configura-
tion are instantiated in the deployed software. Each component instance has an initial and a current state defined by a list 
of valued attributes. Fig. 2-c shows an instantiated architecture assembly for the Has example.

2.2. The B modeling language

B [9,10] is a formal modeling language and a proof-based development method for software systems. The principle of 
such method is to start from a very abstract model of the system and then gradually refine it. Initially designed by Abrial 
in 1985 to specify critical systems, B was rapidly adopted by industry and used in many case studies such as the Meteor

project [11] for controlling train traffic and the Pci protocol [12]. B is also widely used and studied in academia, mainly as 
a formal modeling language for verification, validation and model-checking.

2.2.1. Expressiveness and semantics
B is based on Zermelo–Fraenkel (ZF) set theory and first order logic language. The B notation is very similar to mathe-

matical language and includes all standard logical connectors (e.g. ∧, ∨, ⇒), set-theoretic operations (e.g. ∈, ∪), closure and 
specific relations like injective ( � ), surjective ( � ) and bijective ( �� ) functions. B also supports sequences and the basic 
boolean (BOOL), integer (INTEGER) and natural (NAT) types.

B specifications are composed of abstract machines similar to modules (cf. Fig. 3). They are defined independently and 
can be reused as modules and refined to obtain more concrete models. An abstract machine is divided into a declara-
tive part and a dynamic part. The declarative part contains the declaration of sets (SETS), constants (CONSTANTS), variables 
(VARIABLES) which represent the state of the machine and invariant properties (INVARIANT) related to variables. Option-
ally, it is also possible to set definitions (DEFINITIONS) (like macros). Definitions are useful to define extensive sets and 
parametrized predicates and can be reused by invariants and operations. The dynamic part contains the initialization (INI-
TIALISATION) of the machine as well as operations (OPERATIONS) over the state (variables) of the machine. The behavior 
of operations is explicitly defined in B using various constructs such as preconditions (PRE P THEN S END), bounded choice 
(CHOICE S1 OR S2) or non-determinism (ANY v WHERE P THEN S END). Post-conditions are expressed by substitutions that 
state the new assignments of the involved variables. Output variables may also be defined as values returned by opera-
tions.

2.2.2. Tool support for B
B is supported by powerful tools like AtelierB [13], BToolkit [14] and the more recent Bware platform [15]. These tools 

focus on theorem-proving but they do not enable model-checking. ProB [16] was designed for this purpose. It is a model 
checker and animator for B models. It automatically generates counterexamples for given assertions by exhaustively explor-
ing the model (using state space exploration techniques). It also simulates the execution of operations on a given subset 



of the model and generates traces leading to some desired state. An API is also provided for developers to integrate the 
features of ProB in their tools.

2.3. Motivation and contribution

Component reuse helps decrease large-scale software systems time-to-market. Handling the evolution in such
component-based software prevents architecture erosion and has long been identified and still remains an important thus 
difficult task [17,18]. To tackle this issue, this paper proposes an approach to manage the evolution of component-based 
software architectures based on the three-level Dedal architecture model.

Dedal is tailored for reuse [6,7] and provides as an original feature its three architecture definition levels. Indeed, spec-
ifications are the cornerstone of the concrete component search that is performed on component repositories to design, by 
reuse, the implementation of architectures. Along with Dedal configurations and assemblies, Dedal architecture definitions 
keep track of all the design decisions taken during the development process. This information is very useful to control evo-
lution and evaluate its impact on the intentions of the architects. This is why Dedal is a choice Adl for architecture-based 
software evolution management.

The evolution process proposed here is driven by an evolution management model that captures changes initiated at 
any abstraction level, controls their impact to preserve / restore consistency and propagates them to other levels to maintain 
global coherence. This model is based on the B formal language which provides a rich and rigorous notation to formalize 
the architectural concepts and express properties over them. It supports automated analysis and model-checking thanks to 
the ProB tool.

In previous work [19,20], we specified Dedal models using the B modeling language and proposed an evolution man-
agement model to enable the simulation, analysis and validation of evolution scenarios at any abstraction level using ProB. 
At that time, evolution was not yet automated since models were specified and evolved manually and separately. In the 
remainder, our approach integrating both Dedal and B to automatically manage component-based architecture evolution is 
presented. The automated Dedal to B transformation as well as a problem-specific B solver built on top of the ProB tool are 
the cornerstones of the contribution of this paper.

Using our problem-specific solver enables the automatic generation of evolution plans (sequences of change operations) 
to leverage the impact of a change request in a problem-specific manner and maintain the architecture descriptions coherent 
after change. The feasibility of our approach is demonstrated by experimenting on three evolution scenarios that each 
addresses change in a different abstraction level.

3. The formal evolution approach

This section presents our approach to formally handle the evolution of multi-level component-based architecture de-
scriptions produced during software development. Its key idea is to use a B solver to automatically generate evolution plans 
that correspond to intended changes (cf. Fig. 4).

Given a model in an initial state, a set of state transition rules and a goal state, a B solver finds sequences of rules that 
reach the goal state or proves that the goal state cannot be reached (when it does not run out of time or resources because 
of high computational complexity).

A first requirement is thus to transform the Dedal models produced during development into B models that can be used 
as an input for the solver. The principles of this transformation are detailed in Section 3.1. Architecture evolution operations 
along with validation properties must also be expressed as a set of rules. The resulting Evolution Management Model is 
presented in Section 3.2. Finally, initiated architecture changes must be described as goal states, as explained in Section 3.3. 
With these inputs, a B solver can then find an evolution plan (a sequence of rules) that achieves the intended change 
(reaches the goal state) while preserving the coherence of the architecture definition (enforcing properties), as presented in 
Section 3.4.

3.1. Dedal to Formal Dedal transformation

Dedal models need to be translated into B models, so that a B solver can calculate modifications and evaluate properties 
on the resulting formal architecture descriptions. Defining this transformation amounts to formalize in B the concepts of 
the Dedal meta-model (cf. Fig. 6). This way, any instance of the Dedal meta-model can be transformed into an equivalent 
instance of the Formal Dedal meta-model (cf. Fig. 5).

A meta-class is usually mapped to a B variable typed by an abstract B set while an association relation is translated 
into a B relation. For instance, Fig. 7 presents the formalization of the Component and Interface meta-classes and their 
compInterfaces association.

The Component and Interface meta-classes are respectively mapped to the component and interface variables and typed 
with the COMPS and INTERFACES abstract sets. Their compInterfaces association holding a one-to-many relation is translated 
into an injective function between the component variable and a non-empty set of interfaces: P1(interface).

The whole Dedal meta-model formalization results in four main B machines (extracts of which are shown in Fig. 8). 
A generic Arch_concepts machine helps define the three specific Arch_specification, Arch_configuration and Arch_assembly ma-



Fig. 4. Evolution management approach.

Fig. 5. Dedal to Formal Dedal transformation.

chines that each correspond to one of the three architecture description levels of Dedal. Arch_concepts covers the generic 
concepts of a software architecture (corresponding to the abstract Component, Connection, and ArchitectureDescription meta-
classes). It includes an inner Basic_concepts machine that contains definitions for the finer-grained architectural elements 
like Interface, InterfaceType, Signature or Parameter meta-classes.

These generic definitions are reused in the three specific machines. For instance, in the Arch_specification machine, com-
ponent roles are defined as a subset of components: COMP_ROLES ⊆ COMPS ∧ compRole ⊆ COMP_ROLES.

This corresponds to the inheritance relation between the Component and CompRole meta-classes. Consequently, all rela-
tions defined for the component set (such as comp_interfaces) also stand for the compRole set. The abstract B machines define 
a formal meta-model that can be instantiated (concrete values are given to their variables) in order to generate a Formal 
Dedal model. The latter is then used as an input for the B solver.



Fig. 6. Dedal meta-model.

SETS
COMPS; INTERFACES
VARIABLES
component, interface, comp_interfaces
INVARIANT
component ⊆ COMPS ∧
interface ⊆ INTERFACES ∧
comp_interfaces ∈ component �P1(interface)

Fig. 7. Formalization of meta-classes and associations in B.

3.2. The evolution management model

The evolution management model is composed of generic evolution rules that are used by the solver to find evolution 
plans satisfying given evolution goals. It consists in a B machine that defines the rules and properties that respectively 
enable the simulation and validation of architecture evolution at the three abstraction levels (cf. Fig. 9). Its main elements 
are detailed in the following subsections.

3.2.1. Evolution rules
Evolution rules are operations that control the access and the impact of architecture manipulation operations in order 

to manage evolution and generate consistent evolution plans (cf. Fig. 10). Each evolution rule embeds a corresponding 
architecture manipulation operation that handles the actual modification of the model, not taking into account the context 
of the current evolution plan.

The evolution rule preconditions act as a primary filter for model manipulation operations. Initialization preconditions 
check that all the model initialization operations have completed before starting calculating evolution plans.



MACHINE Arch_concepts
INCLUDES Basic_concepts
SETS
ARCHS;COMPS;COMP_NAMES
VARIABLES
architecture,arch_components,arch_connections,
component, comp_name, connection,
comp_interfaces client, server, . . .
INVARIANT
component ⊆ COMPS ∧
comp_name ∈ component → COMP_NAMES ∧
comp_interfaces ∈ component �P1(interface) ∧
client ∈ component ↔ interface ∧
server ∈ component ↔ interface ∧
connection ∈ client ↔ server ∧
architecture ⊆ ARCHS ∧
arch_components ∈ architecture → P(component) ∧
arch_connections ∈ architecture → P(connection)

MACHINE
Arch_specification
INCLUDES
Arch_concepts
CONSTANTS
COMP_ROLES, ARCH_SPEC
PROPERTIES
COMP_ROLES ⊆ COMPS ∧
ARCH_SPEC ⊆ ARCHS
VARIABLES
compRole, specification, . . .

MACHINE Arch_configuration
USES Arch_specification
SETS
COMP_CLASS; CLASS_NAME; ATTRIBUTES; . . .
CONSTANTS
COMP_TYPES
PROPERTIES
COMP_TYPES ⊆ COMPS ∧
COMP_TYPES = COMPS − COMP_ROLES
VARIABLES
config, config_components, config_connections,
compType, compClass, compositeComp, class_name,
attribute, class_attributes, composite_uses,
delegatedInterface, delegation, . . .
INVARIANT
compType ⊆ COMP_TYPES ∧
compClass ⊆ COMP_CLASS ∧
class_name ∈ compClass → CLASS_NAME ∧
attribute ⊆ ATTRIBUTES ∧
class_attributes ∈ compClass → P(attribute) ∧
compositeComp ⊆ compClass ∧
composite_uses ∈ compositeComp → config ∧
delegatedInterface ⊂ interface ∧
delegation ∈ delegatedInterface � interface ∧
. . .

MACHINE Arch_assembly
USES Arch_configuration
SETS
COMP_INSTANCES;ASSEMBLIES;
ATTRIBUTES_VALUES
VARIABLES
compInstance,assm_components,assm, current_state,
attribute_value, . . .
INVARIANT
compInstance ⊆ COMP_INSTANCES ∧
attribute_value ∈ attribute → ATTRIBUTES_VALUES ∧
current_state ∈ compInstance → P(attribute_value) ∧
assm ⊆ ASSEMBLIES ∧
assm_components ∈ assm → P1(compInstance)
. . .

Fig. 8. Overview of the Dedal formal meta-model.

MACHINE
EvolutionManager
INCLUDES
Arch_specification, Arch_configuration, Arch_assembly
SETS
/*Enumerated set to indicate the level of change*/

CHANGE_LEVEL = {eLevel, specLevel, configLevel, asmLevel}
VARIABLES
/*Variable to control the level of change*/
changeLevel, . . .
DEFINITIONS
/*Consistency and coherence properties*/
. . .
global_consistency == spec_consistency ∧ config_consistency ∧ assm_consistency
global_coherence == specConfigCoherence ∧ configAssmCoherence
/*GOAL is the predicate given to the solver to find an evolution plan satisfying it*/
GOAL == global_consistency ∧ global_coherence ∧ . . .
INITIALISATION
/*Initialization is used to set the initial level of change and
the initiated change*/
. . .
OPERATIONS
/*Initialization operations*/
. . .
/*Evolution rules (control the architecture manipulation operations) */
. . .
END

Fig. 9. The EvolutionManager machine.



output ← evolutionRuleName(targetArchitecture, artifacts) =
PRE

initialization = true ∧
changeLevel = currentChangeLevel ∧
artifacts /∈ addedArtifacts ∪ deletedArtifacts ∧
manipulationOperationPrecondition

THEN
/* execute manipulationOperationName(targetArchitecture, artifacts),
update the sets of added artifacts and deleted artifacts,
set the value of output parameters */

END

Fig. 10. Schema of an evolution rule.

output ← mng_addRole(spec, newRole) =
PRE
/*Initialization precondition*/

initialisation = TRUE ∧
/*Change level precondition*/

changeLevel = specLevel ∧
/*Precondition to avoid cycles (inverse operation)*/

newRole ∈ (deletedRoles ∪ addedRoles) ∧
/*Precondition of the role addition operation*/

roleAdditionPrecondition
THEN
/*Access to role addition operation*/

addRole(spec, newRole) ||
addedRoles := addedRoles ∪ {newRole} ||
output := newRole

END;

Fig. 11. The component role addition evolution rule.

Initialization includes calculating and checking relations between architecture elements, such as compatibility and sub-
stitution between components and interfaces. Change level preconditions restrict access to the operations related to the 
current level of change (evolution is managed on one level at a time). History preconditions prevent operations that may 
generate cycles and then decrease the efficiency of the solver. For instance, deleting and adding the same artifact several 
times is unnecessary during an evolution process. Similarly, removing an added artifact results in a null operation that may 
be avoided. History consists of two sets: one for added artifacts and the other for deleted ones. Evolution rules also inform 
the solver about the artifacts that have to be manipulated after the last executed change operation. This information is used 
as a heuristic to increase the efficiency of the solver. Heuristics are further discussed in Section 4.1.2.

Fig. 11 gives the definition of the evolution rule that controls the role addition operation. This rule is enabled when 
evolution is handled at the specification level, after initialization, provided that the role has not yet been added or previously 
removed. If so, the precondition of the role addition operation is checked and, when it is verified, the operation is executed. 
Finally, the set of added component roles (addedRoles) is updated and the output is set to the added component role 
(newRole).

3.2.2. Model manipulation operations
A model manipulation operation is an operation that changes a target software architecture by the deletion, addition or 

substitution of one of its elements (components and connections). They are composed of three parts:

• the operation signature that defines the operation name and its arguments,
• preconditions that are related to the architectural model (e.g. a precondition that checks if substitutability between two

component classes holds),
• actions (called substitutions in B) that update a set of variables related to the architectural model (e.g. the set of

components of the architecture).

Architecture specification evolution. Evolving an architecture specification is usually a response to a new software require-
ment. For instance, the architect may need to add new functionalities to the system and hence add some new roles to the 
specification. Moreover, a specification may also be modified during the change propagation process to preserve coherence 
and keep an up-to-date specification description of the system that may be implemented in several ways. The proposed 
manipulation operations related to the specification level are the addition, deletion and substitution of a component role 
and the addition and deletion of connections. Fig. 12 presents the definition of the role addition operation as an example 
of an architecture specification manipulation operation. Its precondition first checks that arguments are soundly typed and 
then that the chosen role does not already belong to the architecture specification and will not name clash. Its actions 
update the set of component roles of the architecture specification, along with the sets of connected provided and required 
interfaces (respectively spec_components, spec_servers and spec_clients). Indeed, as only effectively used elements are defined 
at specification level, every interface must be connected.



addRole(spec, newRole) =
PRE
spec ∈ arch_spec ∧ newRole ∈ compRole ∧ newRole ∈ spec_components(spec) ∧ 
/* spec does not contain a role with the same name*/
∀ cr.(cr ∈ compRole ∧ cr ∈ spec_components(spec)
⇒ comp_name(cr) = comp_name(newRole))
THEN

spec_servers(spec) := spec_servers(spec) ∪ servers(newRole) ||
spec_clients(spec) := spec_clients(spec) ∪ clients(newRole) ||
spec_components(spec) := spec_components(spec) ∪ {newRole}

END;

Fig. 12. The component role addition manipulation operation.

replaceClass(config, oldClass, newClass) =
PRE

oldClass ∈ compClass ∧ newClass ∈ compClass ∧ config ∈ configuration ∧
oldClass ∈ config_components(config) ∧
/* The old component class can be substituted for the new one

(verified by the component substitution rule)*/
newClass ∈ config_components (config) ∧ (oldClass, newClass) ∈ class_substitution

THEN
config_components(config) := (config_components(config) − {oldClass}) ∪ {newClass}

END

Fig. 13. The component class substitution manipulation operation.

deployInstance(asm, inst, class, state) =
PRE

asm ∈ assembly ∧ class ∈ compClass ∧
/* The instance is a valid instantiation of the chosen component class*/

inst ∈ compInstance ∧ class = comp_instantiates(inst) ∧ inst ∈ assm_components(asm) ∧
/* The state given to the instance is a valid value assignment of its attributes

of the instantiated component class*/
state ∈ P (attribute_value) ∧ card(state) = card(class_attributes(class)) ∧

/* The maximum number of allowed instances of the given component class
is not already reached*/
nb_instances(class) < max_instances(class)

THEN
/*initial and current state initialization*/

initial_state(inst) := state ||
current_state(inst) := state ||

/*updating the number of instances and the assembly architecture*/
nb_instances(class) := nb_instances(class) + 1 ||
assm_components(asm) := assm_components(asm) ∪ {inst} ||
assm_clients(asm) := assm_clients(asm) ∪ clients(inst)

END;

Fig. 14. The component instance deployment manipulation operation.

Architecture configuration evolution. Change can be initiated at the configuration level, for example when new versions of 
software component classes are released or when component classes are not available anymore. Otherwise, an implemen-
tation may also be impacted by change propagation either from the specification level, in response to new requirements, or 
from the assembly level, in response to a dynamic change of the system. Indeed, a configuration may be instantiated several 
times and deployed in multiple contexts. Fig. 13 presents the component class substitution operation as an example of an 
architecture configuration manipulation operation.

Besides checking the type of the arguments, its precondition verifies that the new component class does not already 
belong to the configuration and can be a substitute for the old component class (using the relations calculated during 
initialization). When the precondition is verified, the set of component classes composing the configuration is updated. As 
compared to the role addition operation presented in previous section, there is no need to update the sets of client and 
server interfaces (connected required and provided interfaces) here, as substitution must preserve the connections of the 
replaced component class (see § 3.2.3 for deeper insight about substitution rules).

Architecture assembly evolution. Since the architecture assembly represents the software at runtime, managing the assembly 
level relates to dynamic evolution issues. Indeed, some software systems have to be self-adaptive to keep providing their 
functions despite environmental changes (e.g. lack of resources, failures, user requests). Dealing with unanticipated changes 
is one of the most important issues in software evolution. This issue is handled by the evolution manager which monitors 
the execution state of the software through its corresponding formal model. It then triggers the assembly evolution rules 
to restore consistency and coherence when needed. The assembly manipulation operations include component instance 
addition, component instance removal, component instance substitution and component instance connection / disconnection. 
Fig. 14 gives the definition of the component instance addition as an example of an assembly manipulation operation. After 
checking the types of the arguments, the precondition verifies that the instance corresponds to the chosen component class, 



∀ (cl, se).(cl ∈ client ∧ se ∈ server ⇒
((cl, se) ∈ connection ⇒
∃ (C1, C2, int1, int2).(C1 ∈ component ∧ C2 ∈ component ∧ C1 = C2 ∧
int1 ∈ interface ∧ int2 ∈ interface ∧ cl = (C1, int1) ∧ se = (C2, int2) ∧
(int1, int2) ∈ int_compatible)))

Fig. 15. Interface consistency property.

that it does not already belong to the assembly and that another instance of the class can be added in the assembly. It also 
verifies that the chosen initial state is valid.

When executed, the operation adds the instance in the assembly, updates the count of instances of the component 
class and updates the set of client interfaces. The set of server interfaces will be updated later, as client interfaces are 
automatically connected by the evolution manager to maintain the consistency of the assembly (see § 3.2.3). Manipulation 
operations constitute the dynamic aspect of the architectural formal models. They enable to change the state of a model 
which must therefore be validated thanks to consistency and coherence properties exposed in the following sections.

3.2.3. Consistency properties
Consistency properties maintain the correctness of each architecture description level during the evolution process. 

Taylor et al. [21] define consistency as an internal property intended to ensure that different elements of an architec-
ture model do not contradict one another. They point out five kinds of inconsistencies that may occur in architecture 
models: name, interface, behavior, interaction and refinement. Our consistency properties deal with the following inconsis-
tencies:

• Name consistency ensures that each component holds a unique name to avoid conflicts when selecting components.
• Interface consistency ensures that all architecture connections are correct (i.e. a required interface is always connected to

a compatible provided interface).
• Interaction consistency ensures that the architecture realizes its functional objectives (components are able to soundly

cooperate through their connected interfaces). In our approach, this property is implemented as a verification that
each required interface is connected to a compatible provided one. Moreover, in architecture specifications, all server
interfaces must also be connected (no unused feature is described at this level). Besides, every architecture definition
must be composed of a connected graph, so that no part of the architecture is isolated.

Behavior consistency is out of the scope of the work presented in this paper which only considers static type definitions,
for now. Refinement consistency is handled separately by our coherence properties (cf. Section 3.2.4). As an example, the 
formalization of our interface consistency property is presented in Fig. 15.

This property states that a required (client) interface is properly connected to a provided (server) interface when these 
two interfaces belong to different components and have compatible types.

Consistency properties are based on commonly adopted syntactic typing rules that state compatibility and substitution 
between finer grained entities such as components and interfaces. These rules transpose the well studied typing principles 
used in the object-oriented paradigm to the component-oriented paradigm. As usual, the main principle is that a component 
that belongs to a subtype can substitute for a component that belongs to a supertype (i.e. be connected at the same place 
in the same architecture). This entails that a component subtype must define a set of interfaces that can replace all the 
interfaces defined in its supertype (identical interfaces or interfaces belonging to subtypes). Moreover, a component subtype 
cannot define extra required interfaces, as they correspond to extra connection requirements that break the substitution 
guarantee with the supertype. Conversely, extra provided interfaces can be defined in a subtype as they do not imply 
mandatory extra connections.

Comparing component types thus amounts to comparing interface types. Interface type hierarchies are built with re-
spect to the same substitution principle: an interface subtype must define a set of operations that can replace those of its 
supertypes. Usual specialization rules are applied to provided interface types, that are comparable to object types. A pro-
vided interface subtype must define at least the same operations as its supertypes or specialized operations that can replace 
them. Classically, an operation specializes another one when it has the same name, a contravariant set of input parameters 
(at most as many parameters, with identical or more generic data types) and a covariant set of output parameters (at least 
as many parameters, with identical or more specific data types). With these rules, it is always possible to call a more spe-
cialized operation with the input values of a more generic one and then to use the output values of the more specialized 
operation in place of the output value of the more generic one.

Regarding required interfaces, opposite specialization rules are used. Indeed, a required interface corresponds to depen-
dencies. Thus, a required interface subtype cannot define more operations than its supertypes, in order not to add extra 
dependencies. It cannot define less operations either, as this can impair interactions with other components. A required 
interface subtype must then implement the same operations as its supertypes, or more generic operations (i.e. operations 
with the same name, at least as many input parameters of identical or more specific data types and at most as many out-
put parameters with identical or more generic data types). Requiring more generic operations than its supertypes, a more 
specialized required interface can replace a more generic required interface. Dedal typing rules are discussed and detailed 
in previous work [22].



Fig. 16. Coherence relations between architecture levels.

coherence(modelA , elemA ,modelB , elemB , rela, relb, R, Q ) ==
∀(Ma, Mb).(Ma ∈ modelA ∧ Mb ∈ modelB ⇒ ((Ma, Mb) ∈ R

⇔
(∀eb .(eb ∈ elemB ∧ (Mb, eb) ∈ relb ⇒

∃ea.(ea ∈ elemA ∧ (Ma, ea) ∈ rela ∧ (ea, eb) ∈ Q )))))

Fig. 17. Generic coherence rule.

implements ∈ configuration ↔ specification ∧
coherence(configuration, compClass, specification, compRole,

config_components, spec_components, implements, realizes)

Fig. 18. Implementation coherence property using the generic rule.

Compatibility is calculated thanks to the aforementioned typing rules. Basically, a required interface is compatible with 
a provided interface when they have the same type (i.e. are defined by the same set of operations). The required interface 
is also compatible with a provided interface that belongs to a subtype of its type (because of the substitution principle). 
Compatibility rules are also detailed in [22].

3.2.4. Coherence properties
Coherence properties prevent architecture erosion (mismatches between the different description levels) so as to main-

tain the global correctness of architecture definitions. Coherence properties maintain the relations that must exist between 
the specification, configuration and assembly defining an architecture (cf. Fig. 16-b): its configuration must be a valid imple-
mentation of its specification; its assembly must be a valid instance of its configuration. These relations between description 
levels rely on typing relations between their composing elements. The component classes composing the configuration of an 
architecture must implement the component roles of its specification. In the same way, the component instances composing 
its assembly must be valid instances of the component classes of its configuration. This relates to a generic principle (cf.
Fig. 16-a) that a relation between two kinds of models implies a relation between their composing elements (and possibly 
reciprocally under restrictive conditions). For instance, a model can be considered as a specialization of another model only 
when its composing elements specialize the elements of the other model. The generic principle can be formalized by the 
generic coherence rule depicted in Fig. 17.

In our work, two properties are defined in the Evolution Management Machine to assert the coherence of an architecture 
definition: coherence between configuration and specification and coherence between assembly and configuration.

Coherence between configuration and specification. A specification is a formal description of software requirements that is 
used to guide the search for suitable concrete component classes to implement the software. An architecture configuration 
is coherent with a specification when two properties hold:

• all component roles from the specification are realized by component classes in the configuration. This results in a
many-to-many relation as several component roles may be realized by a single component class while, conversely,
several component classes may be needed to realize a single role. Using the generic coherence rule (cf. Fig. 17), this
first property can be expressed as shown in Fig. 18.



implements ∈ configuration ↔ specification ∧
∀ (Conf, Spec).(Conf ∈ configuration ∧ Spec ∈ specification ⇒
(Conf, Spec) ∈ implements
⇔
∀ CR.(CR ∈ compRole ∧ CR ∈ spec_components(Spec) ⇒
∃ CL.(CL ∈ compClass ∧ CL ∈ config_components(Conf ) ∧
(CL, CR) ∈ realizes)))

Fig. 19. Implementation coherence property (expanded).

conform ∈ specification ↔ configuration ∧
coherence(configuration, server, specification, server,

config_servers, spec_servers, conform, int_substituion′)
where:
(s, s′) ∈ int_substitution′ ⇔ (serverInterfaceElem(s), serverInterfaceElem(s′)) ∈ int_substitution

Fig. 20. Provided interface connection coherence property.

instantiates ∈ assembly → configuration ∧
coherence(assembly, compInstance, configuration, compClass,

assm_components, config_components, instantiates, comp_instantiates)
∧
coherence(configuration, compClass,assembly, compInstance,

config_components,assm_components, instantiates−1, comp_instantiates−1)

where:
instantiates−1 and comp_instantiates−1 are the respective reverse relations of instantiates and comp_instantiates

Fig. 21. Configuration instantiation coherence property.

To illustrate the instantiation of the generic coherence rule, we give the expansion of the implementation coherence 
property in Fig. 19. In the remainder (Fig. 20 and Fig. 21), only the generic coherence rule is used.

• each connected provided (server) interface in the configuration is defined in the specification. This prevents having a
configuration that implements extra functions not specified at the higher level which leads to architectural drift or
erosion (cf. Fig. 20).

Coherence between assembly and configuration. As the definition of an assembly is not obtained from a configuration by an 
instantiation process (assemblies are defined at design-time), coherence between assembly and configuration descriptions 
must be checked a posteriori explicitly. An assembly is coherent with a configuration when every class of the configuration 
is instantiated at least once in the assembly and, conversely, every component instance in the assembly is a valid instance 
of a component class of the configuration (cf. Fig. 21).

3.3. Evolution goal

The evolution goal (GOAL) consists in a predicate definition that the solver will attempt to satisfy by searching for a 
valid sequence of evolution rules (evolution plan) to execute on the architecture. The evolution goal consists of a static and 
a variable part. The static part contains all the consistency (global_consistency) and coherence (global_coherence) properties: 
the calculated evolution plan must maintain the validity of the architecture. The variable part contains the arguments of the 
initiated change: the evolution plan must achieve the intended change. For example, if the initiated change consists in the 
addition of a component role cr in a specification spec, the evolution goal would be the following:

GOAL == global_consistency ∧ global_coherence ∧ cr ∈ spec_components(spec)

3.4. Evolution plan generation

Our evolution process distinguishes two kinds of change: initiated change and triggered change. Initiated changes have an 
external source: they originate from a user action or from the execution environment. Triggered changes are induced by the 
evolution manager to restore architecture consistency at each level (they are called local changes) and / or global architecture 
coherence (they are called propagated changes), after they have been impacted by an initiated change.

Evolution is handled as a three step process (cf. Fig. 22). First, the initiated changes that compose a change request are 
all processed. These changes all affect a given level of architecture description (called the changed architecture level). In 
a second step, the impact of these initiated changes are calculated at the changed architecture definition level, thanks to 
the consistency properties. Maintaining consistency may imply additional (triggered) changes. Finally, the impact of these 
changes on the other architecture definition levels are calculated thanks to the coherence properties. Maintaining coherence 
may also imply additional (propagated) changes on the other architecture definition levels.



Fig. 22. Evolution plan generation process.

Fig. 23. Architecture of the Dedal modeling and evolution management environment.

4. Implementation and experimentation

To support our approach, we have implemented DedalStudio, a CASE tool which provides a Dedal modeler, a Formal
Dedal generator and an evolution manager based on a solver. Three experiments are then presented in this section to assert 
the feasibility of our formal evolution approach. Each evolution scenario illustrates a change propagation issue that starts 
at a different abstraction level, in order to cover the three kinds of multi-level evolution: top-down, bottom-up and mixed. 
Finally, we evaluate the performance of our solver on the basis of the three experiments.

4.1. DedalStudio

To validate our approach, we have implemented DedalStudio, an Eclipse-based modeling and evolution management 
environment for Dedal.

4.1.1. Architecture of the tool suite
DedalStudio, the architecture of which is shown in Fig. 23, enables the creation of architecture definitions, using a 

graphical concrete syntax designed for the Dedal meta-model, composed of Specification Diagrams (SD), Configuration 
Diagrams (CD) and Assembly Diagrams (AD). The diagram editor (DedalModeler), shown in Fig. 24 is based on SIRIUS,1

a generic platform that enables the creation of graphical modeling tools on top of EMF (Eclipse Modeling Framework).2

The FormalDedalGenerator creates Formal Dedal models corresponding to Dedal diagrams. The DedalManager handles the 
evolution process and the generation of evolution plans. It implements a customized solver built upon the ProB API3 that 
enables the animation and model-checking of B models. Finally, the DedalChangeParser parses the generated evolution plans 
and apply the manipulation operations on the Dedal models. All theses tools, except for DedalModeler which is targeted to 
the architect, are fully automatic.

1 https://eclipse.org/sirius/.
2 https://eclipse.org/modeling/emf/.
3 http://stups.hhu.de/ProB/w/ProB_Java_API.

https://eclipse.org/sirius/
https://eclipse.org/modeling/emf/
http://stups.hhu.de/ProB/w/ProB_Java_API


Fig. 24. The DedalModeler tool.

4.1.2. The DedalManager solver
Evolution management starts when a change to the architecture model is requested (for instance, a component class 

addition is requested in the configuration). The DedalManager receives the request, identifies the change level and deduces 
the evolution goal. It then invokes its solver, that conforms to the design principles presented in Section 3. The resolution 
algorithm implemented in the solver explores the search space to find a sequence of evolution rules leading to the chosen 
goal. If a solution is found, the DedalManager generates an evolution plan that can then be committed by user. Otherwise 
(i.e. in case of failure), the DedalManager rejects the change request.

In previous work [20], we have made an evaluation of the performances of the ProB solver to generate evolution plans 
by state space exploration. The tested strategies were Depth-First (DF), Breadth-First (BF) and mixed (DF/BF) [23]. In most 
cases DF performed best, better than DF/BF and BF. The ProB solver, however, is general-purpose and increasing resolution 
time (over 3 minutes) is necessary when models become complex. To try and overcome this problem, this paper proposes 
an alternative: the implementation of a customized solver, using the API provided with ProB. It also consists in a depth-
first search algorithm but enhanced with two specific heuristics: the artifact-oriented heuristic and the operation-oriented 
heuristic.

The artifact-oriented heuristic. The idea of artifact-oriented heuristic is to prioritize the operations manipulating the artifacts 
that are more likely to satisfy the evolution goal (thereafter called the main artifacts). For instance, adding a new compo-
nent usually entails several connection operations on that component to restore architecture consistency. Main artifacts are 
determined at each iteration of the search process by the output of last executed evolution rule.

The operation-oriented heuristic. The operation-oriented heuristic adopts an opposite point of view. It delays the use of 
operations that engender unsatisfied dependencies between the components of the architecture and hence more evolution 
operations to be found in order to reestablish architecture consistency. Addition operations are the most concerned ones. 
They are therefore ordered as the least priority operations while performing the search process.

The search algorithm. Listing 1 describes the search algorithm of our customized solver. Lines 1–14 define and initialize the 
main variables of the algorithm. Transitions refers to the set of all the evolution rules instances in the current state of 
the architecture model. The set of already explored transitions is stored in visited, in order to avoid cycles in the search 
process. The current sequence of executed transitions is stored in pl, to collect the candidate evolution plan. The traversal 
of the search graph is handled by stack. At each step of the search process, the set of all the enabled transitions (i.e. the 
evolution rule instances whose preconditions are verified) is pushed on the stack in order to explore them in the next steps. 
Transitions are pushed on the stack along with the current state of the architecture model and the current evolution plan. 
This enables to backtrack to previous nodes in the search graph and explore other paths when dead ends are reached. The 
main artifact a is used in the evaluation of the artifact-oriented heuristics. The initialMainArtifact references the 
artifact modified by the initiated change. It is calculated from the post-conditions of the corresponding operations.

At each iteration of the search process (lines 17–33), the top of the stack is popped (line 19), setting a context con-
sisting of an architecture model state (s), an evolution plan (pl) and an enabled transition (ei ). If the transition has already 



1 // initialisation step
2 s = initialState;
3 a = initialMainArtifact;
4 pl = null;
5 stack = null;
6 visited = ∅;
7 enabledTransitions = {ei ∈ Transitions where pre(ei) == true};
8 priorTransitions = {ei ∈ enabledTransitions where h1(ei) == true};
9 lowpriorTransitions = ∅;

10 enabledTransitions = enabledTransitions - priorTransitions;
11
12 // organizing stack
13 stack.push(s, pl, enabledTransitions);
14 stack.push(s, pl, priorTransitions);
15
16 // starting forward, DF search
17 while (stack = ∅)
18 {
19 (s, pl, ei) = stack.pop();
20 if ((s, ei) /∈ visited)
21 {
22 visited = visited ∪ {(s, ei)};
23 s = execute(ei);
24 pl = pl+ei;
25 if (goal == true) return pl;
26 a = output(ei);
27 enabledTransitions = {ei ∈ Transitions where pre(ei) == true};
28 priorTransitions = {ei ∈ enabledTransitions where h1(ei) == true};
29 lowpriorTransitions = {ei ∈ enabledTransitions where h2(ei) == true};
30 enabledTransitions = enabledTransitions - (priorTransitions ∪ lowpriorTransitions);
31 stack.push(s, pl, lowpriorTransitions);
32 stack.push(s, pl, enabledTransitions);
33 stack.push(s, pl, priorTransitions);
34 }
35 }
36 return null; // no solution for this change request

Listing 1: Search algorithm of the specific solver.

been visited from this state (line 20), another context is popped from the stack (this happens when a state can be 
reached by several paths of the search tree). If the transition has not been explored, it is listed as visited (line 22) and 
executed (line 23), updating the state of the architecture model. The last executed transition is appended to the evolution 
plan (line 24). If the goal is satisfied, an evolution plan has been found and it is returned (line 25). Otherwise, the set 
of the enabled transitions in the current state is calculated (line 27) as is the set of higher priority enabled transitions 
(line 28) based on the artifact-oriented heuristic (h1). This uses the main artifact defined as the output of the last executed 
transition (line 26). The set of lower priority enabled transitions is also calculated (line 29), based on the operation-oriented 
heuristic (h2). This enables to push on the stack the enabled transitions to be explored depending on the priority deter-
mined by our heuristics (lines 31–33). The use of a stack enables a DF traversal of the graph: the next iteration of the 
search process will pop one of the currently enabled transitions, from the current architecture state, trying to extend the 
search path down to the goal. When a dead end is reached (no transitions are enabled in the current state), the search 
process implicitly backtracks to a previous graph node by popping from the top of the stack a previously pushed context. 
This enables the complete traversal of the search graph (breadth search). The search process is iterated until the goal is 
reached or there is no more transition to explore (line 17). In this latter case, the requested change is rejected (line 36). 
Three examples of evolution plans calculated by our solver are presented in the next sections.

4.2. First experiment: requirement change

The first scenario addresses a requirement change. The initial Has architecture enables to switch on / off the lights at 
specific hours (cf. Fig. 25). However, it does not enable any control on light intensity. To add this new functionality, an 
architect should modify the Has specification. This corresponds to a top-down evolution since the change starts at the 
highest abstraction level. A solution is to replace the Light component role by a new one (Luminosity) that enables intensity 
control. Fig. 26 presents the initial architecture specification and the evolved one. An extract of the instantiation of the 
Arch_specification machine corresponding to the Has is presented in Fig. 27.

4.2.1. Evolution goal and initiated change
The initiated change consists in replacing the Light component role (cr1) by the Luminosity component role (cr1a). This 

corresponds to the execution of the role substitution operation on the Has specification:

spec_replaceRole(HAS_spec, cr1, cr1a)



Fig. 25. Architecture definitions of the HAS.

Fig. 26. Evolving the HAS specification by role replacement.

compRole := {cr1, cr1a, cr2, cr3, cr3a} ||
comp_name := {cr1 �→ Light, cr1a �→ Luminosity, cr2 �→ Time,

cr3 �→ HomeOrchestrator,
cr3a �→ HomeOrchestrator2} ||

arch_spec := {HAS_spec} ||
spec_components := {HAS_spec �→ {cr1, cr2, cr3}} ||
spec_connections := {HAS_spec �→ {

((cr3, rintILight) �→ (cr1,pintILight)),
((cr3, rintITime) �→ (cr2,pintITime)), }} ||

spec_clients := {(HAS_spec �→ {(cr3, rintILight), (cr3, rintITime)}} ||
spec_servers := {(HAS_spec �→ {(cr1,pintILight), (cr2,pintITime)}

Fig. 27. Instantiation of the Arch_specification machine for the Has.

The following goal is thus given to the solver, based on the post-conditions of the substitution operation, defining the 
change that must be achieved by the evolution process:

GOAL == global_consistency ∧ global_coherence ∧ cr1a ∈ spec_components(HAS_spec) ∧ cr1 ∈ spec_components(HAS_spec)

The solver then calculates an evolution plan that can restore the consistency and coherence of the architecture that may 
have been altered by the initial change.

4.2.2. Triggered change
The intended role substitution entails the addition of a new server interface (the IIntensity provided interface) which 

must be connected to restore the consistency of the Has specification (all interfaces must be connected at specification 
level). The solver generates the plan presented in Fig. 28 to restore the consistency of the Has specification.

Change entails the disconnection of all the required interfaces, the deletion of the initial orchestrator (cr3), the addi-
tion of a new orchestrator (cr3a) and finally the connection of all the required interfaces (this is enough to get all the 
interfaces connected and satisfy the interaction consistency property at specification level). After consistency is verified for 
specification, change is propagated to the configuration in order to restore the coherence of the architecture definition.



spec_disconnect(HAS_spec, (cr3, rintILight), (cr1a, pintILight)) 
spec_disconnect(HAS_spec, (cr3, rintITime), (cr2, pintITime))
spec_deleteRole(HAS_spec, cr3)

spec_addRole(HAS_spec, cr3a)

spec_connect(HAS_spec, (cr3a, rintILight2), (cr1a, pintILight2)) 
spec_connect(HAS_spec, (cr3a, rintITime2), (cr2, pintITime))
spec_connect(HAS_spec, (cr3a, rintIIntensity), (cr1a, pintIIntensity))

Fig. 28. Has specification consistency restoration plan.

compClass := {cl1, cl1a, cl2, cl3, cl3a, cl2a} ||
comp_name := {cl1 �→ Lamp, cl1a �→ AdjustableLamp, cl2 �→ Clock,

cl3 �→ Orchestrator, cl3a �→ AndroidOrchestrator,
cl2a �→ AndroidClock} ||

configuration := {HAS_config} ||
config_components := {HAS_config �→ {cl1, cl2, cl3}}
config_connections := {HAS_config �→ {

((cl3, rintIPower) �→ (cl1,pintIPower)),
((cl3, rintIClock) �→ (cl2,pintIClock))}

Fig. 29. Initial Has configuration in Formal Dedal.

config_replaceClass(HAS_config, cl1, cl1a)

config_disconnect(HAS_config, (cl3, rintILamp), (cl1,pintILamp))

config_disconnect(HAS_config, (cl3, rintIClock), (cl2,pintIClock))
config_deleteClass(HAS_config, cl3)

config_addClass(HAS_config, cl3a)

config_connect(HAS_config, (cl3a, rintILamp2), (cl1a,pintILamp2))

config_connect(HAS_config, (cl3a, rintIClock2), (cl2,pintIClock))
config_connect(HAS_config, (cl3a, rintIIntensity), (cl1a,pintIIntensity))

Fig. 30. Coherence restoration plan for the Has configuration.

compInstance := {ci11, ci12, ci1a1, ci1a2, ci2, ci2a, ci3, ci3a} ||
comp_instantiates := {ci11 �→ cl1, ci12 �→ cl1, ci1a1 �→ cl1a

ci1a2 �→ cl1a, ci2 �→ cl2, ci2a �→ cl2
ci3 �→ cl3, ci3a �→ cl3} ||

compInstance_name := {ci11 �→ lamp1, ci12 �→ lamp2, ci1a1 �→ adjustableLamp1,
ci1a2 �→ adjustableLamp2, ci2 �→ clock1
ci3 �→ orchestrator1, ci3a �→ androidOrchestrator1,
ci2a �→ androidClock1} ||

assembly := {HAS_assembly} ||
assm_components := {HAS_assembly �→ {ci11, ci12, ci2, ci3}}
assm_connections := {HAS_assembly �→ {

((ci3, rintIPowerInst) �→ (ci11,pintIPowerInst)),
((ci3, rintIClock) �→ (ci2,pintIClockInst)), . . .}

Fig. 31. Initial Has architecture assembly.

4.2.3. Change propagation to the configuration
Coherence is altered due to the new requirement defined by the specification. Indeed, the initial Has configuration (cf.

Fig. 25) does not correctly implement all the roles of the evolved Has specification. Fig. 29 details the instantiation of the 
Arch_configuration machine corresponding to the initial Has configuration. Change propagation is therefore needed to restore 
coherence. The restoration plan found by the solver is presented in Fig. 30.

It first consists in replacing the Lamp component class by the AdjustableLamp component class. This operation does 
not require any modification of the connections, as it is based on the substitution principle between the two component 
classes (the AdjustableLamp class is a specialization of the Lamp class). The situation is different regarding the Orchestrator
component class. It cannot be simply replaced by the existing AndroidOrchestrator component class, which is a valid imple-
mentation of the HomeOrchestrator2 role. Indeed, as it holds an extra required interface, the AndroidOrchestrator component 
class is not a specialization of the Orchestrator component class. Nonetheless, the solver is able to find a suitable plan 
to restore consistency in this more difficult situation. The Orchestrator component class is disconnected and removed. The 
AndroidOrchestrator component class is then added and connected. This way, the configuration is consistent (all required 
interfaces are connected and the configuration is composed of a unique connected graph of components) and coherent with 
the specification (every role is implemented in the configuration).

4.2.4. Change propagation to the assembly
After coherence is reached in the configuration, change is propagated to the architecture assembly. Here again, coherence 

is altered because the current Has assembly is not a valid instantiation of the evolved Has configuration. Fig. 31 details the 
initial state of the corresponding Arch_assembly machine.

The coherence restoration plan presented in Fig. 32 is generated by the solver to propagate changes. First, the client 
interfaces of the Orchestrator component instance are disconnected. Then, the two Light component instances are replaced 
by AdjustableLight component instances (as allowed by the substitution principle). The Orchestrator component instance is 



assm_unbind(HAS_assembly, (ci3, rintILampInst), (ci11, pintILampInst1)) 
assm_unbind(HAS_assembly, (ci3, rintILampInst), (ci2, pintILampInst2))

assm_unbind(HAS_assembly, (ci3, rintIClockInst), (ci12, pintIClockInst))
assm_replaceInstance(HAS_assembly, ci1, ci1a1)

assm_replaceInstance(HAS_assembly, ci12, ci1a2)

assm_removeInstance(HAS_assembly, ci3)

assm_deployInstance(HAS_assembly, ci3a)

assm_bind(HAS_assembly, (ci3a, rintILamp2Inst), (ci1a1, pintILampInst1)) 
assm_bind(HAS_assembly, (ci3a, rintIIntensity2Inst), (ci1a1, pintIIntensityInst1)) 
assm_bind(HAS_assembly, (ci3a, rintIClockInst), (ci2, pintIClockInst))
assm_bind(HAS_assembly, (ci3a, rintILamp2Inst), (ci1a2, pintILampInst2)) 
assm_bind(HAS_assembly, (ci3a, rintIIntensity2Inst), (ci1a2, pintIItensityInst2))

Fig. 32. Coherence restoration plan for the Has architecture assembly.

Fig. 33. Evolving the HAS configuration by component substitution.

removed and an AndroidOrchestrator component instance is added. As explained for the configuration coherence restoration, 
substitution is not possible because of the extra required interfaces of the AndroidOrchestrator component. Fortunately, 
an evolution plan can still be found so that every component class in the configuration is instantiated at least once in 
the assembly. Finally, all the required interfaces are connected to compatible provided interfaces, maintaining a consistent 
assembly.

4.3. Second experiment: implementation change

The second scenario addresses an implementation change. The objective is to enable the control of the building through 
a mobile device (running Android OS for example). To adapt the current implementation to Android, the Orchestrator com-
ponent class (cl3) should be removed and replaced with an Android compatible one (cl3a). Change is initiated at the 
configuration level, which entails a mixed evolution: bottom-up because the change has to be propagated to the higher 
level specification and top-down because it has to be propagated also to the lower assembly level. Fig. 33-a shows the 
initial implementation of the Has while Fig. 33-b shows the evolved one.

4.3.1. Initiated change
Change is initiated by deleting the initial orchestrator (cl3) and adding the Android compatible one (cl3a). This is pro-

cessed by the following sequence of operations:

config_disconnect(HAS_config, (cl3, rintILamp), (cl1,pintILamp))

config_disconnect(HAS_config, (cl3, rintIClock), (cl2,pintIClock))
config_deleteClass(HAS_config, cl3)

config_addClass(HAS_config, cl3a)

To start the evolution process, the following goal is given to the solver:

GOAL == global_consistency ∧ global_coherence ∧ cl3a ∈ config_components(HAS_config) ∧ cl3 ∈ config_components(HAS_config)

4.3.2. Triggered change
The generated triggered change is listed in Fig. 34. To restore consistency, all component classes must be correctly 

connected. The AndroidOrchestrator component class requires an additional server interface to control the intensity of light. 
The Lamp component class (cl1) is suitably replaced with AdjustableLamp (cl1a) that provides the IIntensity server interface. 
This is another illustration of the solving capabilities of our approach. After configuration consistency is verified, change is 
propagated to the architecture specification.

4.3.3. Change propagation to the specification
The current Has specification is not any more a good design model of the new version of the Has configuration. This 

corresponds to an erosion problem as light intensity control is not included in the current specification. Hence, a new 



config_connect(HAS_config, (cl3a, rintIClock2), (cl2,pintIClock))
config_replaceClass(HAS_config, cl1, cl1a)

config_connect(HAS_config, (cl3a, rintIPower2), (cl1a,pintIPower2))

config_connect(HAS_config, (cl3a, rintIIntensity), (cl1a,pintIIntensity))

Fig. 34. Has configuration consistency restoration plan.

spec_disconnect(HAS_spec, (cr3, rintILight), (cr1,pintILight))
spec_disconnect(HAS_spec, (cr3, rintITime), (cr2,pintITime))
spec_deleteRole(HAS_spec, cr3)

spec_addRole(HAS_spec, cr3a)

spec_replaceRole(HAS_spec, cr1, cr1a)

spec_connect(HAS_spec, (cr3a, rintILight2), (cr1a,pintILight2))

spec_connect(HAS_spec, (cr3a, rintIIntensity), (cr1a,pintIIntensity))

spec_connect(HAS_spec, (cr3a, rintITime2), (cr2,pintITime))

Fig. 35. Has specification coherence restoration plan.

assm_unbind(HAS_assembly, (ci3, rintILampInst), (ci11,pintILampInst1))

assm_unbind(HAS_assembly, (ci3, rintILampInst), (ci12,pintILampInst2))

assm_unbind(HAS_assembly, (ci3, rintIClockInst), (ci2,pintIClockInst))
assm_removeInstance(HAS_assembly, ci3)

assm_deployInstance(HAS_assembly, ci3a, cl3a)

assm_replaceInstance(HAS_assembly, ci11, ci1a1)

assm_replaceInstance(HAS_assembly, ci12, ci1a2)

assm_bind(HAS_assembly, (ci3a, rintILamp2Inst), (ci1a1,pintILampInst1a))

assm_bind(HAS_assembly, (ci3a, rintIIntensity2Inst), (ci1a1,pintIItensityInst1))

assm_bind(HAS_assembly, (ci3a, rintIClockInst), (ci2,pintIClockInst))
assm_bind(HAS_assembly, (ci3a, rintILamp2Inst), (ci1a2,pintILampInst2a))

assm_bind(HAS_assembly, (ci3a, rintIIntensity2Inst), (ci1a2,pintIItensityInst2))

Fig. 36. Has assembly coherence restoration plan.

Fig. 37. Evolving the Has assembly by component instance substitution.

specification version is required to keep architecture descriptions coherent. Change is propagated to the Has specification 
(cf. Fig. 35) by replacing the HomeOrchestrator role (cr3) with the HomeOrchestrator2 (cr3a). To do so, the HomeOrchestrator
role is disconnected and deleted. Then the HomeOrchestrator2 role is added. On the other way, the Luminosity role (cr1a) 
can be directly substituted for the Light role (cr1). This enforces coherence between the specification and the configura-
tion. Finally, the connection of all client interfaces is sufficient to restore the consistency of the specification (no pending 
interfaces; a unique connected component graph).

4.3.4. Change propagation to the assembly
The current version of the Has assembly is no more a valid instantiation of the evolved Has configuration. Change has 

to be propagated at assembly level to restore coherence (cf. Fig. 36). In a similar way to specification coherence restoration, 
the Orchestrator component instance (ci3) is disconnected and deleted. An AndroidOrchestrator component instance (ci3a) 
is added to the assembly. Two AdjustableLight component instances (ci1a1) and (ci1a2) are substituted for the existing 
Light component instances (ci11) and (ci12). This restores the coherence of the assembly with the configuration. The server 
interfaces of the components are then bound to compatible provided interfaces, so that the assembly remains consistent 
(no pending server interfaces; a unique connected component graph).

4.4. Third experiment: runtime change

The third scenario addresses a runtime change. It corresponds to a bottom-up evolution since the change is initiated at 
the lowest abstraction level. Because of a dry battery, the clock device in the building is out of service. This environmental 
change induces the dysfunction of the clock1 driver (ci2). The objective is to find a solution to dynamically repair the 
architecture in order to maintain the functionalities of the system. Fig. 37 shows the initial and evolved version of the Has

assembly.



Table 1
Performance evaluation.

Change level DF (ms) H-DF (ms)

Exp 1 specLevel (initial) 3260 2100
configLevel 3254 1393
asmLevel 26738 1926

Exp 2 configLevel (initial) 4712 2537
specLevel 8733 1896
asmLevel TIME-OUT 1927

Exp 3 asmLevel (initial) 4747 1184
configLevel TIME-OUT 2351
specLevel (not affected) – –

4.4.1. Initiated change
The clock1 (ci2) component instance must be replaced by another component instance that provides the same services. 

An instance of the AndroidClock component class, androidClock1 (ci2a), is thus chosen to replace clock1. The initiated change 
is handled by the following operations:

replaceInstance(HAS_assembly, ci2, ci2a)

The solver then searches an evolution plan that reaches the following goal:

GOAL == global_consistency ∧ global_coherence ∧ ci2a ∈ assm_components(HAS_assembly) ∧ ci2 ∈ assm_components(HAS_assm)

4.4.2. Triggered change
The component instance replacement does not alter the consistency of the assembly architecture. However, coherence 

with the configuration architecture has to be reestablished. Indeed, the evolved assembly architecture is not a valid instan-
tiation of the current configuration architecture since the ci2a component instance does not instantiate the cl2 component 
class.

4.4.3. Change propagation to the configuration
Change propagation induces the substitution of the AndroidClock component class (cl2a) for the Clock component class 

(cl2), which amounts to the following evolution plan:

replaceClass(HAS_config, cl2, cl2a)

As connections are preserved by the substitution operation, the consistency of the configuration is also preserved. The 
evolution plan thus includes no other operation.

4.4.4. Change propagation to the specification
The component class substitution preserves the coherence between the specification and the configuration. Indeed, when 

a component class implements a given role, any component subclass, as a substitute, also implements the role. As a conse-
quence, no change needs to be propagated to the specification.

4.5. Performance evaluation

The performance of the solver has been measured during the three experiments, in order to evaluate the influence of 
our proposed heuristics. Tests were run on a standard PC (2.5 GHZ Intel Core i5, 8 GB SDRAM) under Windows 7. Test of the 
three evolution scenarios are then performed first using DF and then using DF enhanced with heuristics (H-DF) to compare 
the results. Table 1 shows the average time in milliseconds of 5 runs for each evolution scenario, using depth-first search 
without heuristics (DF) and with heuristics (H-DF).

Timeout is set to 3 minutes. Results doubtlessly show the benefits of a custom solver that integrates specific heuristics. 
The order and number of evolution rules may differ from a generated evolution plan to another (our algorithms are not 
deterministic as they make random choices when sets of equivalent elements are considered, such as a set of candidate 
main artifacts) but all generated plans are valid and lead to the same goal state.

A more precise performance evaluation, based on a larger set of experiments and a theoretical study of the combinatorial 
complexity of the search space is needed. Performance is indeed an inherent limitation for search-based software engineer-
ing, as the resolution time of solvers generally grows exponentially depending on the size of the problems. Designing and 
integrating new heuristics to cut down resolution time is promising (we can for instance preferentially choose transitions 
that generate no or little incoherence in the architecture model).



5. Related work

This section presents three areas of related work. The first area is that of software architecture evolution which is the
main theme of this work. It presents a survey of the main state-of-the-art evolution approaches our work can be compared 
to. The second area is that of formal modeling languages. It presents a brief comparison of seven formal modeling languages 
including B. The third area describes other approaches based on model transformation and integration of semi-formal and 
formal methods. These approaches do not necessarily focus on architecture evolution but they present interesting alterna-
tives from the technical point of view.

5.1. Software architecture evolution

Most of the approaches dealing with architecture evolution adopt an Adl to model architectures and propose a mapping 
between the Adl and a runtime framework in order to implement the change and enable dynamic evolution. C2-SADEL [24], 
Darwin [25], ArchWare [26] and Plastik [27] fall into this category. C2-SADEL models architectures in the C2 style [28] and 
provides multiple component subtyping mechanisms to favor reuse and enable architecture evolution. Its tool support is 
Dradel, an environment that enables the mapping between architectural description and the implementation by translating 
them into Java code. The tool supports static evolution by applying changes on architectural descriptions first and then 
implementing them. The architecture analysis however is limited since no powerful analysis techniques were integrated. 
Darwin and ArchWare (which provides π -Adl [29] as an Adl) focus on modeling dynamic structures. They both rely on 
π -calculus to define the semantics of architecture constructs and guarantee a reliable interaction between components and 
compile architecture descriptions into code. ArchWare also proposes π -Arl [30] an architecture refinement language to 
evolve architecture descriptions by stepwise refinement. Plastik was also proposed to deal with dynamic reconfigurations. It 
relies on Armani, an extension of the ACME [31] Adl to enable invariants expression and reconfigurations properties. Com-
pared to the previous approaches, Plastik has the advantage to map its Adl to OpenCOM [32], a runtime component model 
dedicated to component-based programming and proposing built-in reconfiguration operations. The main shortcoming of 
these approaches is that they don’t consider changes as first-class elements and focus more on how to implement architec-
ture evolution rather than specify, analyze and propagate it. Moreover, adopted Adls hardly cover the entire Cbsd process. 
The specification level (necessary to guide reuse) and assembly level (that describes the software at runtime) are often 
missing. Finally, the coherence between architectural descriptions and implementation is not guaranteed since evolution is 
processed top-down only.

Recent work by Sanchez et al. [33] proposes an architecture-based re-engineering approach to evolve and maintain 
legacy software. The principle is to produce a high level architecture description of the legacy system so that it becomes 
easy to reason about change and then reversely use the produced knowledge to modify source code. The approach is guided 
through a bidirectional transformation and relies on Archery [34], an Adl for modeling architecture patterns corresponding 
to translated code parts. Targeted at legacy system re-engineering, this work is different from our proposal on the evolution 
of component-based software systems developed by a reuse-based process.

Other recent approaches show a particular interest to specifying architecture evolution as first-class entities. A first ex-
ample is the work of Tamazalit, Le Goaer et al. [35,36]. The authors introduce the notion of evolution styles, first-class entities 
that can be specified and classified for reuse to evolve a particular family of systems. Evolution styles include evolution op-
erations that can be specialized, composed and instantiated to deal with change. Barnes et al. [37] adopt a wider definition 
of evolution styles and introduce the concept of evolution paths as a way to plan the evolution of domain-specific software 
systems. A path is an evolution trace leading from an initial architecture to a desired target architecture. An evolution style 
refers to a family of evolution paths sharing common properties. It includes operations, constraints and functions to evaluate 
paths according to quality metrics. Path constraints can be formally specified using the path constraint language, a specific 
extension of LTL (Linear Temporal Logic). While the computability of the language was proved, as far as we know, there is 
no existing model checker to support the automated analysis of path constraints. The authors also propose a solution [38] to 
automate evolution planning using PDDL [39] (the Planning Domain Definition Language). However, this approach still lacks 
automation since no translation from any Adl to PDDL specification was proposed. Moreover, the evolution is specified and 
planned beforehand. In our approach, changes are not necessarily expected and the architect intervenes only to validate the 
work of the evolution manager.

Another closely related work is the one of Hansen, Ingstrup and others [40,41]. The authors propose an approach to 
model and analyze runtime architectural change. They opt for a runtime architecture model that closely maps to the OSGi4

platform to facilitate implementation and for Alloy [42] as a relational first-order logic modeling language to formalize 
the static and dynamic (operations) concepts of the architecture model. The choice of Alloy is motivated by its support 
for object-oriented modeling and its accompanying analyzer that enables automated verification. The objective is to apply 
architectural changes without violating some predefined properties. For this purpose, the authors model the reconfiguration 
planning as a predicate satisfaction problem with pre- and post-conditions. Then, they run the Alloy SAT solver to find 
sequences of the model instances satisfying the problem where the first instance satisfies the pre-conditions and the last 

4 http://www.osgi.org/Main/HomePage.
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instance satisfies the post-conditions. This work is similar to ours in the sense that both aim to provide a reliable and 
automated way to handle architectural changes. It proposes an interesting alternative for resolving evolution using the 
constraint-solving technique. However, this work focuses only on one level of change which is runtime. Moreover, the 
formalized architecture model is dependent on OSGi. Finally, the work lacks automation, since no automatic translation 
from Adl models to Alloy models was proposed.

5.2. Comparison of formal modeling languages

Formal modeling brings abstraction, precision and rigor to software systems. It intervenes at the very early stages of 
software development to give a formal specification of system requirements. Resulting models constitute unambiguous 
descriptions that enable software analysis, verification and validation. Several languages and methods were proposed to aid 
formal modeling. Formal languages provide abstractions to represent concepts, properties over them and possibly behavior. 
However, they differ in expressiveness, underlying semantics and purpose. Some languages focus more on descriptions and 
how to make formal modeling more accessible whereas others focus more on automated analysis neglecting expressiveness. 
A good formal language must be a compromise between both aspects. In the following, we compare seven formal modeling 
languages. These languages are B [9], Z [43], Ocl [44], Alloy [42], Vdm [45], Coq [46] and Agda [47].

B, Z and Vdm are quite similar in term of expressiveness since they were basically designed for theorem-proving. All 
of them enable to express properties practically in the same way and support almost the same types (In addition, Vdm

supports real numbers). However there are some subtle differences between them. Z is more abstract while Vdm and B are 
more low level and intended to be refined into code. Both Vdm and B adopt a similar structure that realizes abstract state 
machines. They explicitly separate the declarative (structure) from the dynamic (operations) part and, unlike Z, they sep-
arate pre-conditions from post-conditions. B has the particularity to modify variables by assignments like in programming 
languages while in Vdm and Z, pre and post states must be explicit.

Coq and Agda are proof assistants designed for the verification of functional programs. Unlike the previously mentioned 
formal modeling languages, Coq and Agda are implementations of type theories rather than set theory. They support higher 
order logic, polymorphism, dependent types, as well as inductive types. Set theoretic operators (e.g. ∪, ∩), for instance, are 
not directly predefined in such systems. Unlike B and VDM, these languages do not implement state machines. Therefore, 
there is no built-in structure that explicitly defines variables, invariants and operations.

Ocl and Alloy are different and were designed for different purposes. Ocl was basically developed to express constraints 
that cannot be expressed using graphical notations on UML diagrams. It has an object-oriented notation and heavily relies 
on navigation. Hence predicate expressions are sometimes verbose comparing to the mathematical notation adopted by the 
other languages. Alloy is a structural modeling language inspired by Z. It was designed for supporting fully automated anal-
ysis. Being strictly first-order, Alloy is less expressive than the other languages [48]. For instance, set of sets and predicates 
over relations are not directly expressible with Alloy.

Regarding analysis support, all these languages are typed and hence support type-checking. Theorem-proving is sup-
ported by Coq, Agda, Z, B and Vdm which were basically designed for software correctness. Model-checking and constraint 
solving is only supported by B, with the ProB tool, and Alloy, with the Alloy analyzer. To some extent, Jaza [49], an animator 
for Z, enables constraint-solving on small domains. However, Z is limited in terms of model-checking capabilities. This is 
due to the high abstract nature of the Z language making its handling challenging [50]. Nevertheless, continuous attempts 
to build a model checker for Z are undertaken [51].

B seems to be the best compromise between expressiveness and analysis support. Alloy could also be a good alternative 
in our case. However, regardless its expressiveness, it presents another shortcoming. As witnessed in Torlak et al. [52], Alloy 
lacks support of partial instances. Partial instances are explicit representations of instances included in the specification of 
the model. This is central in our approach since instances are generated automatically from graphical models and injected 
in B specifications (so-called deep embedding technique [53]). Montaghami et al. [54] argued that this feature enables a 
number of capabilities such as test-driven development, regression testing, modeling by example, and combined modeling 
and meta-modeling. The authors also proposed a syntax extension of Alloy to support partial instance definition but, as far 
as we know, this feature is not yet integrated in the last version of Alloy [55].

5.3. Alternative formal approaches

Integration between semi-formal and formal methods is gaining more and more interest in software engineering. On 
the one hand, semi-formal languages, such as Uml [56], offer graphical notations that significantly ease modeling. On the 
other hand, formal modeling languages provide a strong support for automated software analysis. Several works benefit 
from combining both kinds of notation to validate their approaches.

Ledru et al. [57] propose an approach based on the transformation of Uml into B to validate security policies for infor-
mation systems. They use their B4MSecure5 tool to generate B specifications corresponding to a security model. Conjointly, 
they use ProB to validate security policy scenarios.

5 http://b4msecure.forge.imag.fr/.
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Keznikl et al. propose the ARCAS method [58], an automated approach to generate connections solutions for middleware 
architectures. Given a connector specification, the approach translates it into a corresponding Alloy model and performs 
constraint-solving to find connector instances that realize the specification.

Macedo et al. propose Echo [59], an Eclipse-based tool for model repair and transformation using model finding. Given 
a set of meta-models with internal constraints (specified using OCL) and a set of inter-model consistency rules (speci-
fied using QVT-R [60] transformations), Echo can detect inconsistencies on derived models and keep them consistent with 
their corresponding meta-models and between them as well. The detection and repair mechanism is based on translating 
MDE [61] artifacts (meta-models and their annotations with OCL and QVT-R rules) to Alloy. The output is then analyzed 
using a procedure built on top of Alloy solver that generates consistent models as close as possible to the original ones.

6. Conclusions and future work

Managing software architecture evolution throughout the whole software lifecycle is a significant issue. This paper pro-
poses an approach to manage the evolution of component-based software architectures. Thanks to the three-level Dedal 
architecture model, our approach handles change at three abstraction levels of software architectures: specification, im-
plementation and deployment. The evolution process is driven by an evolution management model that captures changes 
initiated at any abstraction level, controls their impact to preserve / restore consistency and propagates them to other levels 
to maintain global coherence.

The proposed evolution management model is based on the B formal language. Using our solver built on top of the ProB 
tool, it enables the generation of reliable evolution plans as sequences of change operations. The feasibility of our approach 
is demonstrated by experimenting on three evolution scenarios that each addresses change in a different abstraction level.

The limitation of this work is its scalability. This limitation is classical in comparable works as architecture descriptions 
can be considered as graphs (of connected software components) the size of which can theoretically be arbitrarily big. 
Establishing evolution plans therefore amounts to exploring all possible change action combinations on these graphs to 
restore properties that can be seen as (local or global) constraints on these graphs. Scalability issue is an inherent limitation 
for search-based software engineering problems. However, such limitation is mitigated by two factors. First, architecture 
descriptions are often limited in size as architects prefer to split them in intelligible parts of moderate size using hierarchical 
composition, an asset of Cbsd [1]. Secondly, instead of using an off-the-shelf agnostic B solver, we proposed our own solver 
that integrates problem-specific heuristics that decrease the calculation time.

Threats to the validity of our approach lie in the example scenarios that we have considered for experimental validation. 
Although, the examples cover all kinds of scenarios, experimenting with real architecture descriptions might reveal unfore-
seen issues (scalability, efficiency of heuristics, etc.). Further experiments on real case studies is therefore necessary to fully 
validate our approach.

As future work, we would like to extend our definition of the consistency property in order to include behavioral con-
sistency as described in Taylor et al. [21] and thus cover all their identified five kinds of consistency. This would amount in 
considering architectural protocols and component behavior.

Another interesting research direction would be to integrate the notion of evolution style [36] in our evolution manage-
ment model. The idea is to enable the generation of multiple candidate evolution plans that can be evaluated considering 
non-functional properties (e.g. quality, cost, time) as proposed by Barnes et al. [37].

Regarding the technical aspect, we are investigating new heuristics to improve the performance of our solver and reduce 
complexity.
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