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THE BV ALGEBRA IN STRING TOPOLOGY OF CLASSIFYING

SPACES

KATSUHIKO KURIBAYASHI AND LUC MENICHI

Abstract. For almost any compact connected Lie group G and any field Fp,

we compute the Batalin-Vilkovisky algebra H∗+dim G(LBG; Fp) on the loop
cohomology of the classifying space introduced by Chataur and the second
author. In particular, if p is odd or p = 0, this Batalin-Vilkovisky algebra is
isomorphic to the Hochschild cohomology HH∗(H∗(G), H∗(G)). Over F2, such
isomorphism of Batalin-Vilkovisky algebras does not hold when G = SO(3) or
G = G2.

1. Introduction

Let M be a closed oriented smooth manifold and let LM denote the space of
free loops on M . Chas and Sullivan [4] have defined a product on the homology of
LM , called the loop product, H∗(LM)⊗H∗(LM)→ H∗−dim M (LM). They showed
that this loop product, together with the homological BV-operator ∆ : H∗(LM)→
H∗+1(LM), make the shifted free loop space homologyH∗(LM) := H∗+dim M (LM)
into a Batalin-Vilkovisky algebra, or BV algebra. Over Q, when M is simply-
connected, this BV algebra can be computed using Hochschild cohomology [11].
In particular, if M is formal over Q, there is an isomorphism of BV algebras be-
tweenH∗(LM) andHH∗(H∗(M ;Q), H∗(M ;Q)), the Hochschild cohomology of the
symmetric Frobenius algebra H∗(M ;Q). Over a field Fp, if p 6= 0, this BV alge-
bra H∗(LM) is hard to compute. It has been computed only for complex Stiefel
manifolds [40], spheres [33], compact Lie groups [19, 34] and complex projective
spaces [5, 17].

Let G be a connected compact Lie group of dimension d and let BG its clas-
sifying space. Motivated by Freed-Hopkins-Teleman twisted K-theory [13] and by
a structure of symmetric Frobenius algebra on H∗(G), Chataur and the second
author [6] have proved that the homology of the free loop space LBG with coeffi-
cients in a field K admits the structure of a d-dimensional homological conformal
field theory (More generally, if G acts smoothly on M , Behrend, Ginot, Noohi
and Xu [1, Theorem 14.2] have proved that H∗(L(EG ×G M)) is a (d − dim M)-
homological conformal field theory.). In particular, the operation associated with
a cobordism connecting one dimensional manifolds called the pair of pants, de-
fined a product on the cohomology of LBG, called the dual of the loop coproduct,
H∗(LBG) ⊗ H∗(LBG) → H∗−d(LBG). Chataur and the second author showed
that the dual of the loop coproduct, together with the cohomological BV-operator
∆ : H∗(LBG) → H∗−1(LBG), make the shifted free loop space cohomology
H∗(LBG) := H∗+d(LBG) into a BV algebra up to signs. Over F2, Hepworth
and Lahtinen [18] have extended this result to non connected compact Lie group
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2 KATSUHIKO KURIBAYASHI AND LUC MENICHI

and more difficult, they showed that this d-dimensional homological conformal field
theory, in particular this algebra H∗(LBG), has an unit. Our first result is to solve
the sign issues and to show that indeed, H∗(LBG) is a BV algebra (Corollary 9.3).
In fact, we show more generally that the dual of a d-homological field theory has a
structure of BV algebra (Theorem 9.1).

In [29], Lahtinen computes some non-trivial higher operations in the structure of
this d-dimensional homological conformal field theory on the cohomology of BG for
some compact Lie groups G. In this paper, we compute the most important part
of this d-dimensional homological conformal field theory, namely the BV-algebra
H∗(LBG;Fp) for almost any connected compact Lie group G and any field Fp. Ac-
cording to our knowledge, this BV-algebra H∗(LBG;Fp) has never been computed
on any example.

Our method is completely different from the methods used to compute the BV
algebra H∗(LM) in the known cases recalled above. Suppose that the cohomology
algebra of BG over Fp, H

∗(BG;Fp), is a polynomial algebra Fp[y1, ..., yN ] (few
connected compact Lie groups do not satisfy this hypothesis). Then the cup product
on H∗(LBG;Fp) was first computed by the first author in [27](see [23] for a quick
calculation). In his paper [41] entitled ”cap products in String topology”, Tamanoi
explains the relations between the cap product and the loop product on H∗(LM).
Dually, in Theorem 2.2 entitled ”cup products in String topology of classifying
spaces”, we give the relations between the cup product on H∗(LBG) and the BV
algebra H∗(LBG). Knowing the cup product on H∗(LBG), these relations give
the dual of the loop coproduct, m on H∗(LBG) (Theorem 3.1). But now, since the
cohomological BV-operator ∆ (see section 11) is a derivation with respect to the
cup product, ∆ is easy to compute. So finally, on H∗(LBG), we have computed at
the same time, the cup product and the BV-algebra structure. This has never be
done for the BV algebra H∗(LM).

If there is no top degree Steenrod operation Sq1 on H∗(BG;F2), if p is odd or
p = 0, applying Theorem 3.1, we give an explicit formula for the dual of the loop
coproduct m in Theorem 4.1 and we show in Theorem 6.2 that there is an isomor-
phism of BV algebras between H∗(LBG;Fp) and HH

∗(H∗(G;Fp), H∗(G;Fp)), the
Hochschild cohomology of the symmetric Frobenius algebra H∗(G;Fp).

The case p = 2 is more intriguing. When p = 2, we don’t give in general an
explicit formula for the dual of the loop coproduct m (however, see Theorem 5.4 for
a general equation satisfied by m). But for a given compact Lie group G, applying
Theorem 3.1, we are able to give an explicit formula. As examples, in this paper, we
compute the dual of the loop coproduct when G = SO(3) (Theorem 5.7) or G = G2

(Theorem 5.1). We show (Theorem 6.3) that the BV algebrasH∗(LBSO(3);F2) and
HH∗(H∗(SO(3);F2), H∗(SO(3);F2)), the Hochschild cohomology of the symmet-
ric Frobenius algebra H∗(SO(3);F2), are not isomorphic although the underlying
Gerstenhaber algebras are isomorphic. Such curious result was observed in [33] for
the Chas-Sullivan BV algebras H∗(LS

2;F2).
However, for any connected compact Lie group such that H∗(BG;Fp), is a poly-

nomial algebra, we show (Corollary 4.3 and Theorem 5.8) that as graded algebras

H∗(LBG;Fp) ∼= H∗(G;Fp)⊗H
∗(BG;Fp) ∼= HH∗(H∗(G;Fp), H∗(G;Fp)).

Such isomorphisms of Gerstenhaber algebras should exist (Conjecture 6.1).
We give now the plan of the paper:
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Section 2: We carefully recall the definition of the loop product and of the loop
coproduct insisting on orientation (Theorem 2.1). Theorem 2.2 mentioned above is
proved.

Section 3: WhenH∗(X) is a polynomial algebra, following [27] or [23], we give the
cup product on H∗(LX). Therefore (Theorem 3.1) the dual of the loop coproduct
is completely given by Theorems 2.1 and 2.2.

Section 4 is devoted to the simple case when the characteristic of the field is
different from two or when there is no top degree Steenrod operation.

Section 5: The field is F2. We give some general properties of the dual of the
loop coproduct (Lemma 5.3, Theorem 5.4). In particular, we show that it has an
unit (Theorem 5.5). As examples, we compute the dual of the loop coproduct on
H∗(LBSO(3);F2) and on H∗(LBG2;F2) (Theorems 5.7 and 5.1). Up to an iso-
morphism of graded algebras, H∗(LX ;F2) is just the tensor product of algebras
H∗(X ;F2) ⊗ H−∗(ΩX ;F2) = F2[V ] ⊗ Λ(sV )∨ (Theorem 5.8). As examples, we
compute the BV-algebra H∗+3(LBSO(3);F2) ∼= Λ(u−1, u−2) ⊗ F2[v2, v3] (Theo-
rem 5.13) and the BV-algebra H∗+14(LBG2;F2) ∼= Λ(u−3, u−5, u−6)⊗F2[v4, v6, v7]
(Theorem 5.14).

Section 6: After studying the formality and the coformality of BG, we compare
the associative algebras, the Gerstenhaber algebras, the BV-algebrasH∗(LBG) and
HH∗(H∗(G), H∗(G)) under various hypothesis.

Section 7: We solve some sign problems in the results of Chataur and the second
author. In particular, we correct the definition of integration along the fibre and
the main cotheorem of [6] concerning the prop structure on H∗(LX).

Section 8: Therefore H∗(LX) is equipped with a graded associative and graded
commutative product m.

Section 9: In fact, H∗(LX) equipped with m and the BV-operator ∆ is a BV-
algebra since the BV identity arises from the lantern relation.

Section 10: This BV identity comes from seven equalities involving Dehn twists
and the prop structure on the mapping class group.

Section 11: We compare different definitions of the BV-operator ∆ : H∗(LX)→
H∗−1(LX).

Section 12: We compute the Gerstenhaber algebra structure on the Hochschild
cohomology HH∗(S(V ), S(V )) of a free commutative graded algebra S(V ) (The-
orem 12.3). In particular, we give the BV-algebra structure on the Hochschild
cohomology HH∗(Λ(V ),Λ(V )) of a graded exterior algebra Λ(V ).

Section 13: In this last section independent of the rest of the paper, we show that
the loop product on H∗(LBG;Fp) is trivial if and only if the inclusion of the fibre
i : ΩBG →֒ LBG induces a surjective map in cohomology if and only if H∗(BG;Fp)
is a polynomial algebra if and only if BG is Fp-formal (when p is odd).

2. The dual of the Loop coproduct

In this paper, all the results are stated for simplicity for a connected compact
Lie group G. But they are also valid for an exotic p-compact group. Indeed, follow-
ing [6], we only require that G is a connected topological group (or a pointed loop
space) with finite dimensional cohomology H∗(G;Fp). This is the main difference
with [18], where Hepworth and Lahtinen require the smoothness of G.

Let X be a simply-connected space satisfying the condition that H∗(ΩX ;K) is of
finite dimension. Then there exists an unique integer d such that Hi(ΩX ;K) = 0
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for i > d and Hd(ΩX ;K) ∼= K. In order to describe our results, we first recall
the definitions of the product Dlcop on H∗+d(LX ;K) and of the loop product on
H∗−d(LX ;K) defined by Chataur and the second author in [6].

Let F be the pair of pants regarded as a cobordism between one ingoing circle
and two outgoing circles. The ingoing map in : S1 →֒ F and outgoing map out :
S1

∐
S1 →֒ F give the correspondence

LX map(F,X)
map(in,X)oooo map(out,X)// // LX × LX

where map(in,X) and map(out,X) are orientable fibrations. After orienting them,
the integration along the fibre induces a map in cohomology

map(in,X)! : H∗+d(map(F,X))→ H∗(LX)

and a map in homology

map(out,X)! : H∗(LX)⊗2 → H∗+d(map(F,X)).

See Section 7 for the definition of the integration along the fibre. By definition, the
loop product is the composite

H∗(map(in,X)) ◦map(out,X)! : Hp−d(LX)⊗Hq−d(LX) → Hp+q−d(map(F,X))

→ Hp+q−d(LX).

By definition, the dual of the loop coproduct, Dlcop is the composite

map(in,X)! ◦H∗(map(out,X)) : Hp+d(LX)⊗Hq+d(LX) → Hp+q+2d(map(F,X))

→ Hp+q+d(LX).

The pair of pants F is the mapping cylinder of c
∐
π : S1

∐
(S1

∐
S1) → S1 ∨ S1

where c : S1 → S1∨S1 is the pinch map and π : S1
∐
S1 → S1∨S1 is the quotient

map. Therefore the wedge of circles S1 ∨ S1 is a strong deformation retract of the

pair of pants F . The retract r : F
≈

։ S1 ∨ S1 corresponds to lower his pants and
tuck up his trouser legs at the same time:

Figure 1. the homotopy between the pairs of pants and the figure eight.

Thus we have the commutative diagram

LX map(F,X)
map(out,X) //map(in,X)oo LX×2

LX ×X LX
Comp

hhQQQQQQQQQQQQ q

66llllllllllll
map(r,X)≈

OO

where Comp is the composition of loops and q is the inclusion. If X was a closed
manifold M of dimension d, Comp and q would be embeddings. And the Chas-
Sullivan loop product is the composite

H∗(Comp)◦q! : Hp+d(LM)⊗Hq+d(LM)→ Hp+q+d(LM×MLM))→ Hp+q+d(LM).
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while the dual of the loop coproduct is the composite

Comp!◦H∗(q) : Hp−d(LM)⊗Hq−d(LM)→ Hp+q−2d(LM×MLM)→ Hp+q−d(LM).

Therefore although Comp and q are not fibrations, by an abuse of notation, some-
times, we will say that in the case of string topology of classifying spaces [6], the
loop product on H∗−d(LX) is still H∗(Comp) ◦ q! while Dlcop is Comp! ◦H∗(q).

The shifted cohomology H∗(LX) := H∗+d(LX) together with the dual of the
loop coproduct Dlcop defined by Chataur and the second author in [6] is a Batalin-
Vilkovisky algebra, in particular a graded commutative associative algebra, only
up to signs for two reasons:

-First, the integration along the fibre defined in [6] as usually does not satisfy the
usual property with respect to the product. We have corrected this sign mistake
of [6] in section 7.

-Second, as explained in section 7, this is also due to the non-triviality of the
prop detH1(F, ∂out;Z)⊗d (if d is odd).

Nevertheless, we show Theorem 9.1. In particular, we have thatH∗(LX) equipped
with the operator ∆ induced by the action of the circle on LX (See our definition
in section 11) is a Batalin-Vilkovisky algebra with respect to the product m defined
by

m(a⊗ b) = (−1)d(d−|a|)Dlcop(a⊗ b)

for a⊗ b ∈ H∗(LX)⊗H∗(LX); see Corollary 9.3 below.
In order to investigate Dlcop more precisely, we need to know how the fibration

map(in,X) is oriented. As explained in [6, section 11.5], we have to choose a

pointed homotopy equivalence f : F/∂in
≈
→ S1. Then the fibre map∗(F/∂in, X) of

map(in,X) is oriented by the composite

τ ◦Hd(map∗(f,X)) : Hd(map∗(F/∂in, X))→ Hd(ΩX)→ K.

where τ is the orientation on ΩX that we choose. In this paper, we choose f such
that we have the following homotopy commutative diagram

map∗(F/∂in, X)
incl // map(F,X)

ΩX

map∗(f,X) ≈

OO

j
// LX ×X LX

map(r,X)≈

OO

where incl is the inclusion of the fibre of map(in,X) and j is the map defined by
j(ω) = (ω, ω−1).

Theorem 2.1. Let i : ΩX →֒ LX be the inclusion of pointed loops into free loops.
Let S be the antipode of the Hopf algebra H∗(ΩX). Let τ : Hd(ΩX) → K be the
chosen orientation on ΩX. Let a ∈ Hp(LX) and b ∈ Hq(LX) such that p+ q = d.

Then with the above choice of pointed homotopy equivalence f : F/∂in
≈
→ S1,

m(a⊗ b) = (−1)d(d−p)τ (Hp(i)(a) ∪ S ◦Hq(i)(b)) 1H∗(LX).

Proof. Let F
incl
→֒ E

p
։ B be an oriented fibration with orientation τ : Hd(F )→ K.

By definition or by naturality with respect to pull-backs, the integration along the
fibre p! is in degree d the composite

Hd(E)
Hd(incl)
→ Hd(F )

τ
→ K

η
→ H0(B)
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where η is the unit ofH∗(B). Therefore Dlcop is given by the commutative diagram

Hd(LX × LX)

Hdmap(out,X)

uukkkk
kk
kk
kk
kk
kk

Hd(q)

��

Hd(i×i)

((RR
RR

RR
RR

RR
RR

R

Hd(map(F,X))
Hdmap(r,X)

//

Hd(incl)

��
map(in,X)!

&&

Hd(LX ×X LX)

Hd(j)

��

Hd(incl)// Hd(ΩX × ΩX)

Hd(Id×Inv)

��
Hd(map∗(F/∂in))

Hdmap∗(f,X)

// Hd(ΩX)

τ

��

Hd(ΩX × ΩX)
Hd(∆)

oo

H0(LX) K
ηoo

where incl : ΩX × ΩX →֒ LX ×X LX is the inclusion and Inv : ΩX → ΩX maps
a loop ω to its inverse ω−1. Therefore

Dlcop(a⊗ b) = τ (Hp(i)(a) ∪ S ◦Hq(i)(b)) 1H∗(LX).

�

We define a bracket { , } on H∗(LX) with the product m and the Batalin-
Vilkovisky operator ∆ : H∗(LX)→ H∗−1(LX) by

{a, b} = (−1)|a|∆(m(a⊗ b))− (−1)|a|m(∆(a)⊗ b)−m(a⊗∆(b))

for a, b in H∗(LX). By Theorem 9.3, this bracket is exactly a Lie bracket. The
following theorem is the analogue for string topology of classifying spaces [6] of the
theorems of Tamanoi in [41] for Chas-Sullivan string topology [4]. This analogy is
quite surprising and complete. For our calculations, in the rest of the paper, we use
only parts (1) and (2) of this theorem. Let ev : LX ։ X be the evaluation map
defined by ev(γ) = γ(0) for γ ∈ LX .

Theorem 2.2. (Cup products in string topology of classifying spaces) Let X be
a simply-connected space such that H∗(ΩX ;K) is finite dimensional. Let P , Q ∈
H∗(X) and a and b ∈ H∗(LX).

(1) (Compare with [41, Theorem A (1.2)]) The dual of the loop coproduct m :
H∗(LX)⊗H∗(LX)→ H∗(LX) is a morphism of left H∗(X)⊗H∗(X)-modules:

m(ev∗(P ) ∪ a⊗ ev∗(Q) ∪ b) = (−1)(|a|−d)|Q|ev∗(P ) ∪ ev∗(Q) ∪m(a⊗ b).

(2) (Compare with [41, Theorem A (1.3)]) The cup product with ∆(ev∗(P )) is a
derivation with respect to the algebra (H∗(LX),m):

∆(ev∗(P )) ∪m(a⊗ b)

= m(∆(ev∗(P )) ∪ a⊗ b) + (−1)(|P |−1)(|a|−d)m(a⊗∆(ev∗(P )) ∪ b).

(3) (Compare with [41, Theorem A(1.4) ]) The cup product with ∆(ev∗(P )) is a
derivation with respect to the bracket

∆(ev∗(P )) ∪ {a, b} = {∆(ev∗(P )) ∪ a, b}+ (−1)(|P |−1)(|a|−d−1){a,∆(ev∗(P )) ∪ b}.

(4) (Compare with [41, formula p. 16, line -3]) The following formula gives a
relation for the cup product of ev∗(P ) with the bracket

{ev∗(P ) ∪ a, b} = ev∗(P ) ∪ {a, b}+ (−1)|P |(|a|−d−1)m(a⊗∆(ev∗(P )) ∪ b)
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(5) (Compare with [41, Theorem B]) The direct sum H∗(X) ⊕ H∗(LX) is a
Batalin-Vilkovisky algebra where the dual of the loop coproduct m, the bracket and
the ∆ operator are extended by m(P ⊗ a) := ev∗(P ) ∪ a, m(P ⊗ Q) = P ∪ Q,
{P, a} = (−1)|P |∆(ev∗(P )) ∪ a, {P,Q} = 0 and ∆(P ) = 0.

(6) (Compare with [41, Theorem C]) Suppose that the algebra (H∗(LX),m) has
an unit I. Let s! : H∗(X) → H∗+d(LX), be the map mapping P to ev∗(P ) ∪ I.
Then s! is a morphism of Batalin-Vilkovisky algebras with respect to the trivial
BV-operator on H∗(X) and

ev∗(P ) ∪ a = m(s!(P )⊗ a) and (−1)|P |∆(ev∗(P )) ∪ a = {s!(P ), a}.

(7) Let r ≥ 0. Let P1, . . . , Pr be r elements of H∗(LX). Denote by Xi :=
∆(ev∗(Pi)). Then

m(ev∗(P ) ∪ a⊗ ev∗(Q) ∪X1 ∪ · · · ∪Xr ∪ b) = (−1)(|a|−d)(|Q|+|X1|+···+|Xr|)×
∑

0≤j1,...,jr≤1

±ev∗(P ) ∪ ev∗(Q) ∪X1−j1
1 ∪ · · · ∪X1−jr

r ∪m(Xj1
1 ∪ · · · ∪X

jr
r ∪ a⊗ b)

where ± is the sign (−1)j1+···+jr+
∑

r
k=1(1−jk)|Xk|(j1|X1|+···+jk−1|Xk−1|).

To prove parts (1) and (2), it is shorter to use the following Lemma. This
Lemma is just the cohomological version of [4, Theorem 8.2] when we replace the
correspondence

LM × LM
q
←֓ LM ×M LM

Comp
→ LM

by its opposite

LX
Comp
← LX ×X LX

q
→֒ LX × LX.

Similarly, it would have been shorter for Tamanoi to prove parts (1.2) and (1.3)
of [41, Theorem A] using [4, Theorem 8.2].

Lemma 2.3. Let a =
∑
a1 ⊗ a2 ∈ H∗(LX × LX) and A ∈ H∗(LX) such that

H∗(Comp)(A) = H∗(q)(a). Then for any z ∈ H∗(LX × LX),

A ∪m(z) =
∑

(−1)d|a2|m(a1 ⊗ a2 ∪ z).

Proof. Since the integration along the fibre Comp! is exactly with signs, a mor-
phism of left H∗(LX)-modules (See our definition of integration along the fibre in
cohomology in section 7)

Comp!(H∗(Comp)(A) ∪ y) = (−1)d|A|A ∪Comp!(y).

Since H∗(q) is a morphism of algebras,

(−1)d|A|Dlcop(a ∪ z) = (−1)d|A|Comp! ◦H∗(q)(a ∪ z)

= (−1)d|A|Comp!(H∗(Comp)(A)∪H∗(q)(z)) = A∪Comp!◦H∗(q)(z) = A∪Dlcop(z).

By linearity, we can suppose that z = z1 ⊗ z2. Then the previous equation is

A∪(−1)d(|z1|−d)m(z1⊗z2) =
∑

(−1)d(|a1|+|a2|)(−1)d(|a1|+|z1|−d)m(a1⊗a2∪z1⊗z2).

�
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Proof of Theorem 2.2. (1) We have the commutative diagram

LX

ev
''NN

N
N
N
N
N
N
N
N
N

LX ×X LX
Compoo q //

��

LX × LX

ev×ev
��

X
∆

// X ×X

Therefore by applying Lemma 2.3 to a := H∗(ev × ev)(P ⊗ Q) and A := H∗(∆ ◦
ev)(P ⊗Q), we obtain

H∗(ev)(P ) ∪H∗(ev)(Q) ∪m(a⊗ b) = (−1)d|Q|m(H∗(ev)(P )⊗H∗(ev)(Q) ∪ a⊗ b).

(2) By [41, Proof of Theorem 4.2 (4.5)]

Comp∗(∆(ev∗(P ))) = q∗(∆(ev∗(P ))× 1 + 1×∆(ev∗(P ))).

So we can apply Lemma 2.3 to a := ∆(ev∗(P )) × 1 + 1 × ∆(ev∗(P )) and A :=
∆(ev∗(P )), we obtain

∆(ev∗(P )) ∪ (m(a⊗ b) =

m ((∆(ev∗(P ))⊗ 1) + (−1)d(|P |−1)m (1⊗∆(ev∗(P ))) ∪ (a⊗ b)) .

(3) By using the formula (2), the same argument as in [41, Proof of Theorem
4.5] deduces the derivation formula on the bracket.

(4) Again, the arguments are identical as those given by Tamanoi: see [41, end
of proof of Theorem 4.7].

(5) As explained in [41, proof of Theorem 4.7] by Tamanoi, (2), (3) and (4)
are equivalent to the Poisson and Jacobi identities in the Gerstenhaber algebra
H∗(X) ⊕ H∗(LX). By definition of the bracket, this Gerstenhaber algebra is a
Batalin-Vilkovisky algebra: see [41, proof of Theorem 4.8].

(6) Since H∗+d(LX ;F2) is a H∗(X)-algebra (formula (1) of Theorem 2.2), the
map s! : H∗(X)→ H∗+d(LX), P 7→ ev∗(P ) ∪ I, is a morphism of unital commuta-
tive graded algebras (we denote this map s! because this map should coincide with
some Gysin map of the trivial section s : X →֒ LX [6]).

Since the cup product with ∆(ev∗(P )) is a derivation with respect to the dual
of the loop coproduct, ∆(ev∗(P )) ∪ I = 0. Since H∗(LX) is a Batalin-Vilkovisky
algebra, ∆(I) = 0. Therefore, since ∆ is a derivation with respect to the cup
product,

∆(s!(P )) = ∆(ev∗(P )) ∪ I+ (−1)|P |ev∗(P ) ∪∆(I) = 0 + 0.

Now we can conclude using the same arguments as in [41, proof of Theorem 5.1].
(7) The case r = 0 is just (1). Now, by induction on r,

m(ev∗(P ) ∪ a⊗ ev∗(Q) ∪X1 ∪ · · · ∪Xr−1 ∪ (Xr ∪ b)) = (−1)(|a|−d)(|Q|+|X1|+···+|Xr−1|)×
∑

0≤j1,...,jr−1≤1

±ev∗(P ) ∪ ev∗(Q) ∪X1−j1
1 ∪ · · · ∪X

1−jr−1

r−1 ∪m(Xj1
1 ∪ · · · ∪X

jr−1

r−1 ∪ a⊗Xr ∪ b)
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But by (2),

m(Xj1
1 ∪ · · · ∪X

jr−1

r−1 ∪ a⊗Xr ∪ b) =

1∑

jr=0

(−1)|Xr|(|a|−d)+jr+(1−jr)|Xr |
∑r−1

l=1 jl|Xl|X1−jr
r m(Xj1

1 ∪ · · · ∪X
jr
r ∪ a⊗ b)

�

Remark 2.4. Suppose that the algebraH∗(LX) is generated byH∗(X) and ∆(H∗(X)).
Then by formula (7) of Theorem 2.2 in the case b = 1, we see that the dual of the
loop coproduct m is completely given by the cup product, by the ∆ operator and
by its restriction on H∗(LX)⊗ 1. In the following section, we show that this is the
case when H∗(X) is a polynomial (see remark 3.2).

3. The cup product on free loops and the main theorem

Let X be a simply-connected space with polynomial cohomology: H∗(X) is a
polynomial algebra K[y1, ..., yN ]. The cup product on the free loop space cohomol-
ogy H∗(LX ;K) was first computed by the first author in [27, Theorem 1.6]. We
now explain how to recover simply this computation following [23, p. 648].

By Borel theorem [37, Chapter VII. Corollary 2.8(2)] (which can be easily proved
using the Eilenberg-Moore spectral sequence associated to the path fibration ΩX →֒
PX ։ X since E∗,∗

2
∼= Λ(σ(y1), . . . , σ(yN ))),

H∗(ΩX ;K) = ∆(σ(y1), . . . , σ(yN ))

where ∆σ(yi) denotes an algebra with simple system of generators σ(yi) [37, Defi-
nition p. 367]. If ch(K) 6= 2, ∆σ(yi) is just the exterior algebra Λσ(yi).

Let ∆ : H∗(LX) → H∗−1(LX) be the operator induced by the action of the
circle on LX (See section 11). Let D := ∆ ◦ ev∗ denotes the module derivation of
the first author in [27]. Since ∆ is a derivation with respect to the cup product, D
is a (ev∗, ev∗)-derivation [27, Proposition 3.3]. Since ∆ and H∗(ev) commutes with
the Steenrod operations, D also [27, Proposition 3.3]. Since the composite i∗ ◦D is
the suspension homomorphism σ [23, Proposition 2(1)], i∗ is surjective and so by
Leray-Hirsch theorem,

H∗(LX ;K) = H∗(X)⊗∆(D(y1), . . . ,D(yN ))

as H∗(X)-algebra. Modulo 2, it follows from above that H∗(LX ;Z/2)) is the
polynomial algebra

Z/2[ev∗(yi),Dyi]

quotiented by the relations

(Dyi)
2 = D(Sq|yi|−1yi).

In particular, we have ∆(ev∗(yi)) = Dyi and ∆(Dyi) = 0 since ∆◦∆ = 0. Therefore,
we know the cup product and the ∆ operator onH∗(LX ;K). The following theorem
claims that we also know the dual of the loop coproduct.

Theorem 3.1. Let X be a simply-connected space such that H∗(X ;K) is the poly-
nomial algebra K[y1, . . . , yN ]. Denote again by yi, the element of H∗(LX), ev∗(yi),
and by xi, ∆ ◦ ev

∗(yi). With respect to the cup product, as algebras

H∗(LX) = K[y1, . . . , yN ]⊗∆(x1, . . . , xN ).
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Let d be the degree of x1 . . . xN . Then the dual of the loop coproduct

m : Hi(LX)⊗Hj(LX)→ Hi+j−d(LX)

is given inductively (see remark 3.2) by the following four formulas
(1) For any a and b ∈ H∗(LX), ∀1 ≤ i ≤ N ,

m(a⊗ xib) = (−1)|xi|(|a|−d)xim(a⊗ b)− (−1)d|xi|m(axi ⊗ b)

(2) Let {i1, . . . , il} and {j1, . . . , jm} be two disjoint subsets of {1, . . . , N} such

that {i1, . . . , il} ∪ {j1, . . . , jm} = {1, . . . , N}. If we orient τ : Hd(ΩX)
∼=
→ K by

τ ◦H∗(i)(x1 . . . xN ) = 1 then

m(xi1 . . . xil ⊗ xj1 . . . xjm) = (−1)Nm+mε

where ε is the signature of the permutation

(
1 . . . l +m
i1 . . . ilj1 . . . jm

)
.

(3) Let {i1, . . . , il} and {j1, . . . , jm} be two disjoint subsets of {1, . . . , N} such
that {i1, . . . , il} ∪ {j1, . . . , jm} 6= {1, . . . , N}. Then

m(xi1 . . . xil ⊗ xj1 . . . xjm) = 0.

(4) m is a morphism of left H∗(X)⊗H∗(X)-modules: ∀P , Q ∈ H∗(X), ∀a and
b ∈ H∗(LX), m((−1)|Q|(|a|−d)Pa⊗Qb) = PQm(a⊗ b).

Proof. Note that if yi is of odd degree then 2 = 0 in K. (1) and (4) are particular
cases of (1) and (2) of Theorem 2.2. Since xi1 . . . xil ⊗ xj1 . . . xjm is of degree less
than d, for degree reasons, we have (3).

(2) Since i∗(xi) = i∗ ◦ ∆ ◦ ev∗(yi) is the suspension of yi, denoted σ(yi), by
Theorem 2.1,

m(xi1 . . . xil ⊗ xj1 . . . xjm) = (−1)Nmτ (σ(yi1) . . . σ(yil) ∪ S(σ(yj1) . . . σ(yjm)) 1.

Since σ(yi) is a primitive element, S(σ(yi)) = −σ(yi). Since also the antipode
S : H∗(ΩX)→ H∗(ΩX) is a morphism of commutative graded algebras,

m(xi1 . . . xil ⊗ xj1 . . . xjm) = (−1)Nm+mετ(σ(y1) . . . σ(yN )).

�

Remark 3.2. We explain now why the four formulas of Theorem 3.1 determine
inductively the dual of the loop coproduct m. For P ∈ H∗(X) and {i1, . . . , il}
a strict subset of {1, . . . , N}, by (2), (3) and (4), m(Pxi1 . . . xil ⊗ 1) = 0 and
m(Px1 . . . xN ⊗ 1) = P . Therefore, we know the restriction of m on H∗(LX)⊗ 1.
Since the algebra H∗(LX) is generated by H∗(X) and ∆(H∗(X)), m is now given
inductively by (1) and (4) (see remark 2.4).

The restriction of m : H∗(LX) ⊗ 1 → H∗(X) looks similar to the intersection
morphism i! : H∗(LM) → H∗(ΩM) for manifold given by the loop product with
the constant pointed loop.

4. Case p odd or no Sq1

Let Sq1 be the operator H∗(BG;Z/2) → H∗(BG;Z/2) is defined by Sq1(x) =
Sqdegx−1x for x ∈ H∗(BG;Z/2).

Suppose that H∗(BG) is a polynomial algebra, say K[V ] and that

(H) : Sq1 ≡ 0 on H∗(BG) if p = 2 or p is odd or p = 0 (Since
Sq(xy) = x2Sq1(y) + Sq1(x)y

2, it suffices to check that Sq1 ≡ 0 on V ).
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Then it follows that

H∗(LBG;Z/p) ∼= ∧(sV )⊗K[V ]

as an algebra; see [25, Remark 3.4] for example. We moreover have

Theorem 4.1. Under the hypothesis (H), an explicit form of the dual of the loop
coproduct m : H∗(LBG;Z/p)⊗H∗(LBG;Z/p)→ H∗−dimG(LBG;Z/p) is given by

m(svi1 · · · svila⊗ svj1 · · · svjmb) = (−1)ε
′+ε+m+u+lu+Nmsvk1 · · · svku

ab

if {i1, ...il} ∪ {j1, ..., jm} = {1, ..., N} and m(svi1 · · · svila⊗ svj1 · · · svjmb) = 0 oth-
erwise, where {i1, ...il} ∩ {j1, ..., jm} = {k1, .., ku}, a, b ∈ H

∗(BG),

(−1)ε = sgn

(
j1.... .... .... ...jm
k1...kuj1...k̂1...k̂u...jm

)
and (−1)ε

′

= sgn

(
i1...ilj1...k̂1...k̂u...jm
1.... .... .... ...N

)
.

Over R, [1, 17.23] have a similar formula (surprisingly without any signs) for
their dual hidden loop product on H∗([G/G]).
Proof of Theorem 4.1. By (4) of Theorem 3.1 to prove Theorem 4.1, it suffices to
show that the formula for the element xi1 · · ·xil ⊗ xj1 · · ·xjm , namely in the case
where a = b = 1.

Since x2k1
= 0, m(xi1 · · ·xilxk1 ⊗ xj1 · · · x̂k1 · · ·xjm) = 0. So by (1) of Theo-

rem 3.1,

m(xi1 · · ·xil ⊗ xj1 · · ·xjm)

= (−1)|xk1
|(|xi1 ···xil

xj1 ···x̂k1
|−d)xk1m(xi1 · · ·xil ⊗ xj1 · · · x̂k1 · · ·xjm ).

By induction on u,

m(xi1 · · ·xil ⊗ xj1 · · ·xjm)

= (−1)u(l−d)+εxk1 . . . xku
m(xi1 · · ·xil ⊗ xj1 · · · x̂k1 · · · x̂ku

· · ·xjm).

By (2) and (3) of Theorem 3.1,

m(xi1 · · ·xil ⊗ xj1 · · · x̂k1 · · · x̂ku
· · ·xjm )

=

{
(−1)N(m−u)+m−u+ε′ If {i1, . . . , il} ∪ {j1, . . . , jm} = {1, . . . , N},

0 otherwise.

Here x̂ means that the element x disappears from the presentation. �

Corollary 4.2. Under the hypothesis H, the graded associative commutative algebra
(H∗(LBG),m) of Corollary 8.3 is unital.

Proof. We see that x1 · · ·xN is the unit. Theorem 4.1 yield that

m(x1 · · ·xN ⊗ xj1 · · ·xjmb) =

sgn

(
j1......jm
j1......jm

)
sgn

(
1....N
1....N

)
(−1)m+m+mN+Nmxj1 · · ·xjmb.

m(axi1 · · ·xil ⊗ x1 · · ·xN ) = sgn

(
1.... .... .... ...N

i1...il1...î1...îl...N

)

sgn

(
i1...il1...î1...îl...N
1.... .... .... ...N

)
(−1)N+l+l2+N2

axi1 · · ·xil .

�
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Theorem 4.3. Under the hypothesis (H), H∗(LBG) = H∗+dim G(LBG;K) is iso-
morphic as BV algebras to the tensor product of algebras

H∗(BG;K)⊗H−∗(G;K) ∼= K[V ]⊗ ∧(sV )∨

equipped with the BV-operator ∆ given by ∆(x∨i ∧ x
∨
j ) = ∆(yiyj) = ∆(x∨j ) =

∆(yi) = 0 for any i, j and

∆(yi ⊗ x
∨
j ) =

{
0 if i 6= j,
1 if i = j.

Proof. Since H∗(G) is the Hopf algebra Λxi with xi = σ(yi) primitive, its dual is
the Hopf algebra Λx∨i . By Corollary 8.3 and Corollary 4.2, we see that the shifted
cohomology H∗(LBG) is a graded commutative algebra with unit x1 . . . xN . This
enables us to define a morphism of algebras Θ from

H∗(BG;K)⊗H−∗(G;K) = K[y1, · · · , yn]⊗ Λ(x∨1 , · · · , x
∨
N )

to

H∗(LBG) = K[y1, · · · , yn]⊗ Λ(x1, · · · , xN )

by

Θ(1⊗x∨j ) = (−1)j−11⊗ (x1∧· · ·∧ x̂j ∧· · ·∧xN ) and Θ(a⊗1) = a⊗ (x1∧· · ·∧xN )

for any a in K[V ]. By induction on p, using Theorem 4.1, we have that

Θ(a⊗ (x∨j1 ∧ · · · ∧ x
∨
jp
)) = ±a⊗ (x1 ∧ · · · ∧ x̂j1 ∧ · · · ∧ x̂jp ∧ · · · ∧ xN )

for any a ∈ K[V ]. Therefore the map Θ is an isomorphism.
The isomorphismΘ sends 1⊗Λ(x∨1 , · · · , x

∨
N ) on 1⊗Λ(x1, · · · , xN ) andK[y1, · · · , yN ]⊗

1 onK[y1, · · · , yN ]⊗x1 · · ·xN . Since ∆ is null on 1⊗Λ(x1, · · · , xN ) andK[y1, · · · , yN ]⊗
x1 · · ·xN , ∆ is null on 1 ⊗ Λ(x∨1 , · · · , x

∨
N ) and K[y1, · · · , yN ]⊗ 1: we have the first

equalities. Moreover, we see that Θ(yi⊗x
∨
j ) = (−1)j−1yix1∧· · ·∧ x̂j ∧· · ·∧xN and

hence ∆Θ(yi⊗x
∨
j ) = 0 if i 6= j. The equalities ∆((−1)i−1yix1∧· · ·∧x̂i∧· · ·∧xN ) =

x1 ∧ · · · ∧ xN = Θ(1) enable us to obtain the second formula. �

5. mod 2 case

In the case where the operation Sq1 is non-trivial on H∗(BG;Z/2), the loop
coproduct structure onH∗(LBG;Z/2) is more complicated in general. For example,
we compute the dual to the loop coproduct on H∗(LBG2;Z/2), where G2 is the
simply-connected compact exceptional Lie group of rank 2. Recall that

H∗(LBG2;Z/2) ∼= ∆(x3, x5, x6)⊗ Z/2[y4, y6, y7]

∼= Z/2[x3, x5]⊗ Z/2[y4, y6, y7] /

(
x43 + x5y7 + x23y6
x25 + x3y7 + x23y4

)

as algebras over H∗(BG2;Z/2) ∼= Z/2[y4, y6, y7], where deg xi = i and deg yj = j;
see [27, Theorem 1.7].

Theorem 5.1. The dual to the loop coproduct

Dlcop : H∗(LBG2;Z/2)⊗H
∗(LBG2;Z/2)→ H∗−14(LBG2;Z/2)
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is commutative strictly and the only non-trivial forms restricted to the submodule
∆(x3, x5, x6)⊗∆(x3, x5, x6) are given by Dlcop(x3x5x6⊗ 1) = Dlcop(x3x5⊗x6) =
Dlcop(x3x6 ⊗ x5) = Dlcop(x5x6 ⊗ x3) = 1,

Dlcop(x3x5x6 ⊗ x3) = Dlcop(x3x5 ⊗ x3x6) = x3,
Dlcop(x3x5x6 ⊗ x5) = Dlcop(x3x5 ⊗ x5x6) = x5,
Dlcop(x3x5x6 ⊗ x6) = Dlcop(x3x6 ⊗ x5x6) = x6 + y6,
Dlcop(x3x5x6 ⊗ x3x5) = x3x5,
Dlcop(x3x5x6 ⊗ x3x6) = x3x6 + x3y6,
Dlcop(x3x5x6 ⊗ x5x6) = x5x6 + x5y6 + y4y7,
Dlcop(x3x5x6 ⊗ x3x5x6) = x3x5x6 + x3x5y6 + x3y4y7 + y27 .

Lemma 5.2. Let k : {1, . . . , q} → {1, . . . , N}, j 7→ kj be a map such that ∀1 ≤
i ≤ N , the cardinality of the inverse image k−1({i}) is ≤ 2. In H∗(LX ;F2) =
F2[y1, . . . , yN ]⊗∆(x1, . . . , xN ), the cup product satisfies the equality

xk1 · · ·xkq
=

∑

0≤l≤cardinal of {k1,...,kq},
1≤i1<···<il≤N

Pi1,...,ilxi1 · · ·xil

where Pi1,...,il are elements of F[y1, . . . , yN ].

Proof. Suppose by induction that the lemma is true for q−1. If the elements k1, . . . ,
kq are pairwise distinct, take {i1, . . . , il} = {k1, . . . , kq}. Otherwise by permuting
the elements xk1 , . . . , xkq

, suppose that kq−1 = kq.

x2kq
= ∆ ◦ ev∗ ◦ Sq|ykq |−1(ykq

) =

N∑

i=1

xiPi

where P1,. . . ,PN are elements of F[y1, . . . , yN ]. So

xk1 · · ·xkq
=

N∑

i=1

xk1 · · ·xkq−2xiPi.

Since kq = kq−1, by hypothesis, kq /∈ {k1, . . . , kq−2}. Therefore the cardinal of
{k1, . . . , kq−2, i} is less or equal to the cardinal of {k1, . . . , kq}. By our induction
hypothesis,

xk1 · · ·xkq−2xi =
∑

0≤l≤cardinal of {k1,...,kq−2,i},
1≤i1<···<il≤N

Pi1,...,ilxi1 · · ·xil .

�

Lemma 5.3. Let k : {1, . . . , q + r} → {1, . . . , N}, j 7→ kj be a non-surjective map
such that ∀1 ≤ i ≤ N , the cardinality of the inverse image k−1({i}) is ≤ 2. Then

Dlcop(xk1 · · ·xkq
⊗ xkq+1 · · ·xkq+r

) = 0.

Proof. We do an induction on r ≥ 0.
Case r = 0: By Lemma 5.2, since the cardinal of {k1, . . . , kq} < N ,

Dlcop(xk1 · · ·xkq
⊗ 1) =

∑

0≤l<N,
1≤i1<···<il≤N

Dlcop(Pi1,...,ilxi1 · · ·xil ⊗ 1)
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where Pi1,...,il are elements of F[y1, . . . , yN ]. By (3) and (4) of Theorem 3.1, since
l < N ,

Dlcop(Pi1,...,ilxi1 · · ·xil ⊗ 1) = 0.

Suppose now by induction that the Lemma is true for r − 1. Then by (1) of
Theorem 3.1,

Dlcop(xk1 · · ·xkq
⊗ xkq+1 · · ·xkq+r

) = xkq+1Dlcop(xk1 · · ·xkq
⊗ xkq+2 · · ·xkq+r

)

+Dlcop(xk1 · · ·xkq+1 ⊗ xkq+2 · · ·xkq+r
) = xkq+1 × 0 + 0.

�

Let I = {i1, .., il} ⊂ {1, ..., N}. In ∆(x1, · · · , xN ), denote by xI the generator
xi1 ∪xi2 ∪ · · ·∪xil . Since mod 2, the cup product is strictly commutative, we don’t
need to assume that i1 < i2 < · · · < il.

Theorem 5.4. Let I and J be two subsets of {1, . . . , N}. Then

Dlcop(xI ⊗ xJ ) =

{
Dlcop(x1 . . . xN ⊗ xI∩J ) if I ∪ J = {1, . . . , N},
0 otherwise.

In particular, {xI , xJ} = ∆(Dlcop(xI⊗xJ)) = ∆(Dlcop(xI∪J⊗xI∩J)) = {xI∪J , xI∩J}.

Proof. Let {i1, .., il} denote the elements of the relative complement I − J . Let
{j1, .., jm} denote the elements of the relative complement J − I. Let {k1, .., ku}
denote the elements of the intersection I ∩ J .

By Lemma 5.3, Dlcop(xi1 . . . xilxk1 . . . xku
⊗ xj2 . . . xjmxk1 . . . xku

) = 0. So by
(1) of Theorem 3.1,

Dlcop(xi1 . . . xilxk1 . . . xku
⊗ xj1 . . . xjmxk1 . . . xku

) = xj1 × 0

+Dlcop(xi1 . . . xilxj1xk1 . . . xku
⊗ xj2 . . . xjmxk1 . . . xku

).

By induction on m, this is equal to

Dlcop(xi1 . . . xilxj1 . . . xjmxk1 . . . xku
⊗ xk1 . . . xku

).

So we have proved that Dlcop(xI ⊗ xJ) = Dlcop(xI∪J ⊗ xI∩J ). By Lemma 5.3, if
I ∪ J 6= {1, . . . , N} then Dlcop(xI ⊗ xJ ) = 0. �

Theorem 5.5. Let X be a simply-connected space such that H∗(X ;F2) is the poly-
nomial algebra F2[y1, . . . , yN ]. The dual of the loop coproduct admits Dlcop(x1 . . . xN⊗
x1 . . . xN ) ∈ Hd(LX ;F2) as unit.

Lemma 5.6. Let a ∈ H∗(LX ;F2)
(1) For 1 ≤ i ≤ N , xiDlcop(a⊗ a) = 0.
(2) For any b ∈ H∗(LX ;F2),

Dlcop(Dlcop(a⊗ a)⊗ b) = bDlcop(Dlcop(a⊗ a)⊗ 1).

Proof of Lemma 5.6. (1) By (1) of Theorem 3.1,

Dlcop(a⊗ axi) = xiDlcop(a⊗ a) +Dlcop(axi ⊗ a).

Since Dlcop is graded commutative [6], Dlcop(a ⊗ axi) = Dlcop(axi ⊗ a). So
xiDlcop(a⊗ a) = 0.

(2) By (1) and (1) of Theorem 3.1,

Dlcop(Dlcop(a⊗ a)⊗ bxi) = xiDlcop(Dlcop(a⊗ a)⊗ b) + 0.
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Therefore by induction

Dlcop(Dlcop(a⊗ a)⊗ xi1 . . . xil) = xi1 . . . xilDlcop(Dlcop(a⊗ a)⊗ 1).

Using (4) of Theorem 3.1, we obtain (2). �

Proof of Theorem 5.5. Since Dlcop is graded associative [6] and using (2) of Theo-
rem 3.1 twice,

Dlcop(Dlcop(x1 . . . xN ⊗ x1 . . . xN )⊗ 1)

= Dlcop(x1 . . . xN ⊗Dlcop(x1 . . . xN ⊗ 1)) = Dlcop(x1 . . . xN ⊗ 1) = 1.

Therefore using (2) of Lemma 5.6,

Dlcop(Dlcop(x1 . . . xN ⊗ x1 . . . xN )⊗ b)

= bDlcop(Dlcop(x1 . . . xN ⊗ x1 . . . xN )⊗ 1) = b× 1 = b.

�

The simplest connected Lie group with non-trivial Steenrod operation Sq1 in the
cohomology of its classifying space is SO(3).

Theorem 5.7. The cup product and the dual of the loop coproduct on the mod 2
free loop cohomology of the classifying space of SO(3) are given by

H∗(LBSO(3);Z/2) ∼= ∆(x1, x2)⊗ Z/2[y2, y3]

∼= Z/2[x1, x2]⊗ Z/2[y2, y3] /

(
x21 + x2

x22 + x2y2 + y3x1

)

as algebras over H∗(BSO(3);Z/2) ∼= Z/2[y2, y3], where deg xi = i and deg yj = j.

Dlcop(x1x2 ⊗ 1) = Dlcop(x1 ⊗ x2) = 1,
Dlcop(x1x2 ⊗ x1) = x1, Dlcop(x1x2 ⊗ x2) = x2 + y2,
Dlcop(x1x2 ⊗ x1x2) = x1x2 + x1y2 + y3,

Proof. The cohomology H∗(BSO(3);Z/2) is the polynomial algebra on the Stiefel-
Whitney classes y2 and y3 of the tautological bundle γ3 ([36, Theorem 7.1] or [37,
III.Corollary 5.10]). By Wu formula [37, III.Theorem 5.12(1)], Sq1y2 = y3 and
Sq2y3 = y2y3. Now the computation of the cup product and of the dual of the loop
coproduct follows from Theorem 3.1. �

In the following proof, we detail the computation of the cup product and the
dual of the loop coproduct following Theorem 3.1 for a more complicated example
of Lie group.

Proof of Theorem 5.1. Observe that Sq2y4 = y6, Sq
1y6 = y7 [37, VII.Corollary 6.3]

and hence Sq3y4 = Sq1Sq2y4 = y7. From [27, Proof of Theorem 1.7], Sq5y6 = y4y7
and Sq6y7 = y6y7. Therefore the computation of the cup product onH∗(LBG2;Z/2)
follows from Theorem 3.1: x23 = x6, x

2
5 = x3y7 + y4x6 and x26 = x5y7 + y6x6.

Lemma 5.3 implies that monomials with non-trivial loop coproduct are ones only
listed in the theorem.

By (2) of Theorem 3.1,

Dlcop(x3x5x6⊗1) = Dlcop(x3x5⊗x6) = Dlcop(x3x6⊗x5) = Dlcop(x5x6⊗x3) = 1.

By Lemma 5.3, Dlcop(x3x
2
5 ⊗ 1) = 0. By (1) of Theorem 3.1,

Dlcop(x3x5x6 ⊗ x6) = x6Dlcop(x3x5x6 ⊗ 1) +Dlcop(x3x5x
2
6 ⊗ 1).
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Since x3x5x
2
6 = x3x5(x5y7 + y6x6), by (4) of Theorem 3.1,

Dlcop(x3x5x
2
6 ⊗ 1) = y7Dlcop(x3x

2
5 ⊗ 1) + y6Dlcop(x3x5x6 ⊗ 1) = y7 × 0 + y6 × 1

So finally Dlcop(x3x5x6 ⊗ x6) = x6 + y6.
By Theorem 5.4, Dlcop(x3x6 ⊗ x5x6) = Dlcop(x3x5x6 ⊗ x6).
Since x3x

2
5x6 = x5y

2
7 +x6y6y7+x3x5y7y4+x3x6y6y4, by (1) of Theorem 3.1 and

Lemma 5.3,

Dlcop(x3x5x6 ⊗ x5x6) = x5Dlcop(x3x5x6 ⊗ x6) +Dlcop(x3x
2
5x6 ⊗ x6)

= x5(x6 + y6) + y27 × 0 + y6y7 × 0 + y7y4 × 1 + y6y4 × 0.

The other computations are left to the reader. �

We would like to emphasize that Theorem 5.1 gives at the same time, the cup
product and the dual of the loop coproduct on H∗(LBG2;Z/2). As mentioned in
Introduction, if we forget the cup product, then the following Theorem shows that
the dual of the loop coproduct is really simple:

Theorem 5.8. Let X be a simply-connected space such that H∗(X ;F2) is the poly-
nomial algebra F2[V ]. Then with respect to the dual of the loop coproduct, there is
an isomorphism of graded algebras between H∗+d(LX ;F2) and the tensor product
of algebras H∗(X ;F2)⊗H−∗(ΩX ;F2) ∼= F2[V ]⊗ Λ(sV )∨.

Lemma 5.9. Let X be a simply-connected space such that H∗(X ;F2) = F2[V ].
Let x1, . . . , xN be a basis of sV .

1) Suppose that {i1, .., il}∪{j1, ..., jm} = {1, ..., N}. Let {k1, .., ku} := {i1, ..., il}∩
{j1, ..., jm}. Then

H∗(i) ◦Dlcop(xi1 · · ·xil ⊗ xj1 · · ·xjm) = xk1 · · ·xku
.

2 ) Let Θ : H−∗(ΩX) = ∧(sV )∨
∼=
→ H∗+d(ΩX) = ∆(sV ) be the linear isomor-

phism defined by

Θ(x∨j1 ∧ · · · ∧ x
∨
jp
) = x1 ∪ · · · ∪ x̂j1 ∪ · · · ∪ x̂jp ∪ · · · ∪ xN .

Here ∨ denote the dual and ̂ denotes omission. Then the composite Θ−1 ◦H∗(i) :

H∗+d(LX)→ H∗+d(ΩX)
∼=
→ H−∗(ΩX) is a morphism of graded algebras preserving

the units.

Proof of Lemma 5.9. 1) Suppose that |xk1 | ≥ · · · ≥ |xku
|. There exists polynomials

P1,. . . ,PN ∈ F[y1, . . . , yN ] possibly null such that

x2k1
= ∆ ◦ ev∗ ◦ Sq|yk1

|−1(yk1) =
N∑

i=1

xiPi.

If Pi is of degree 0, since |xi| > |xk1 |, xi is not one of the elements xk1 ,. . . , xku
and

so by Lemma 5.3 Dlcop(xi1 · · · x̂k1 · · ·xilxi ⊗ xj1 · · · x̂k1 · · ·xjm) = 0.
If Pi is of degree ≥ 1, by (4) of Theorem 3.1, H∗(i) ◦Dlcop(Pixi1 · · · x̂k1 · · ·xilxi ⊗
xj1 · · · x̂k1 · · ·xjm ) = 0
Therefore H∗(i) ◦ Dlcop(xi1 · · · x̂k1 · · ·xilx

2
k1
⊗ xj1 · · · x̂k1 · · ·xjm) = 0. Now the

same proof as the proof of Theorem 4.1 shows 1).
2) Since H∗(ΩX ;F2) is generated by the xi := σ(yi), 1 ≤ i ≤ N which are

primitives, by [35, 4.20 Proposition], all squares vanish in H∗(ΩX ;F2). Therefore
H∗(ΩX ;F2) is the exterior algebra Λσ(yi)

∨.
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Let I = {i1, .., il} ⊂ {1, ..., N}. Recall from Theorem 5.4 that in ∆(x1, · · · , xN ),
xI denotes the generator xi1 ∪ xi2 ∪ · · · ∪ xil . Denote also in the exterior algebra
Λ(x∨1 , · · · , x

∨
N ) by x∨I the element x∨i1 ∧ x

∨
i2
∧ · · · ∧ x∨il . Then with this notation,

Θ(x∨I ) = xIc where Ic is the complement of I in {1, ..., N}. Let comp! : H∗+d(ΩX)⊗
H∗+d(ΩX)→ H∗+d(ΩX) be the multiplication defined by comp!(xI ⊗ xJ ) = xI∩J

if I ∪J = {1, ..., N} and 0 otherwise. By (1) and Lemma 5.3, H∗(i) : H∗+d(LX)→
H∗+d(ΩX) commutes with the products Dlcop and comp!. Since x(I∪J)c = xIc∩Jc ,

Θ : H−∗(ΩX)→ H∗+d(ΩX) commutes with the exterior product and comp!.
By Theorem 5.5, Dlcop(x1 . . . xN ⊗ x1 . . . xN ) is the unit of Dlcop. By (1),

Θ−1 ◦H∗(i) ◦Dlcop(x1 . . . xN ⊗ x1 . . . xN ) = Θ−1(x1 . . . xN ) = 1.

Therefore Θ−1 ◦H∗(i) preserves also the units. �

Proof of Theorem 5.8. Denote by I := Dlcop(x1 . . . xN ⊗ x1 . . . xN ) the unit of
H∗+d(LX ;F2) (Theorem 5.5). By (6) of Theorem 2.2, the map s! : H∗(X) →
H∗+d(LX), a 7→ ev∗(a)I, is a morphism of unital commutative graded algebras.

By Lemma 5.3, we have Dlcop(x1 . . . x̂i . . . xN ⊗ x1 . . . x̂i . . . xN ) = 0. So let
σ : H∗+d(ΩX) → H∗+d(LX) be the unique linear map such that for ∀1 ≤ i ≤ N ,
σ(x1 . . . x̂i . . . xN ) = x1 . . . x̂i . . . xN and such that σ ◦ Θ : H−∗(ΩX) = Λ(sV )∨ →
H∗+d(LX) is a morphism of unital commutative graded algebras. For 1 ≤ i ≤ N ,
Θ−1 ◦ H∗(i) ◦ σ ◦ Θ(x∨i ) = x∨i . By Lemma 5.9, the composite Θ−1 ◦ H∗(i) :

H∗+d(LX) → H∗+d(ΩX)
∼=
→ H−∗(ΩX) is a morphism of graded algebras. So the

composite Θ−1 ◦H∗(i)◦σ ◦Θ is the identity map and σ is a section of H∗(i). So by
Leray-Hirsch theorem, the linear morphism ofH∗(X)-modulesH∗(X)⊗H∗(ΩX)→
H∗(LX), a⊗ g 7→ ev∗(a)σ(g), is an isomorphism.

The composite

ϕ : H∗(X)⊗H−∗(ΩX)
s!⊗σ◦Θ
→ H∗+d(LX)⊗H∗+d(LX)

Dlcop
→ H∗+d(LX)

is a morphism of commutative graded algebras with respect to the dual of the loop
coproduct. By (4) of Theorem 3.1 and since I is an unit for Dlcop, ϕ(a ⊗ g) =
Dlcop(ev∗(a)I ⊗ σ ◦Θ(g)) = ev∗(a)σ ◦Θ(g). Therefore ϕ is an isomorphism. �

Example 5.10. With respect to the dual of the loop coproduct, there is an isomor-
phism of algebras between H∗+3(LBSO(3);Z/2) and

H−∗(SO(3);Z/2)⊗H
∗(BSO(3);Z/2) ∼= ∧(u−1, u−2)⊗ Z/2[v2, v3].

Proof. By Theorem 5.5, Dlcop(x1x2 ⊗ x1x2) = x1x2 + x1y2 + y3 is an unit for the
dual of the loop coproduct on H∗+3(LBSO(3);Z/2). By Lemma 5.3,

Dlcop(x1 ⊗ x1) = Dlcop(x2 ⊗ x2) = 0.

So let ϕ : ∧(u−1, u−2) ⊗ Z/2[v2, v3] → H∗+3(LBSO(3);Z/2) be the unique mor-
phism of algebras such that ϕ(u−2) = x1, ϕ(u−1) = x2, ϕ(v2) = y2(x1x2+x1y2+y3)
and ϕ(v3) = y3(x1x2 + x1y2 + y3).

For all i, j ≥ 0, we see that ϕ(vi2v
j
3) = yi2y

j
3(x1x2 +x1y2 + y3), ϕ(u−1u−2v

i
2v

j
3) =

yi2y
j
3, ϕ(u−1v

i
2v

j
3) = x2y

i
2y

j
3 and ϕ(u−2v

i
2v

j
3) = x1y

i
2y

j
3. Therefore ϕ sends a linear

basis of ∧(u−1, u−2) ⊗ Z/2[v2, v3] to a linear basis H∗+3(LBSO(3);Z/2). So ϕ is
an isomorphism. �
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Example 5.11. With respect to the dual of the loop coproduct, there is an isomor-
phism of algebras betweenH∗+14(LBG2;Z/2) andH−∗(G2;Z/2)⊗H

∗(BG2;Z/2) ∼=
∧(u−3, u−5, u−6)⊗ Z/2[v4, v6, v7].

Proof. By Theorem 5.5, Dlcop(x3x5x6⊗ x3x5x6) = x3x5x6 + x3x5y6 + x3y4y7 + y27
is an unit for the dual of the loop coproduct on H∗+14(LBG2;Z/2). By Lemma 5.3,

Dlcop(x5x6 ⊗ x5x6) = Dlcop(x3x6 ⊗ x3x6) = Dlcop(x3x5 ⊗ x3x5) = 0.

So let ϕ : ∧(u−3, u−5, u−6) ⊗ Z/2[v4, v6, v7] → H∗+14(LBG2;Z/2) be the unique
morphism of algebras such that ϕ(u−3) = x5x6, ϕ(u−5) = x3x6, ϕ(u−6) = x3x5,
ϕ(v4) = y4(x3x5x6+x3x5y6+x3y4y7+y

2
7), ϕ(v6) = y6(x3x5x6+x3x5y6+x3y4y7+y

2
7)

and ϕ(v7) = y7(x3x5x6 + x3x5y6 + x3y4y7 + y27).

For all i, j and k ≥ 0, we see that ϕ(vi4v
j
6v

k
7 ) = yi4y

j
6y

k
7 (x3x5x6 + x3x5y6 +

x3y4y7 + y27), ϕ(u−3u−5u−6v
i
4v

j
6v

k
7 ) = yi4y

j
6y

k
7 , ϕ(u−3u−5v

i
4v

j
6v

k
7 ) = (x6 + y6)y

i
4y

j
6y

k
7 ,

ϕ(u−3u−6v
i
4v

j
6v

k
7 ) = x5y

i
4y

j
6y

k
7 , ϕ(u−5u−6v

i
4v

j
6v

k
7 ) = x3y

i
4y

j
6y

k
7 , ϕ(u−3v

i
4v

j
6v

k
7 ) =

x5x6y
i
4y

j
6y

k
7 , ϕ(u−5v

i
4v

j
6v

k
7 ) = x3x6y

i
4y

j
6y

k
7 and ϕ(u−6v

i
4v

j
6v

k
7 ) = x3x5y

i
4y

j
6y

k
7 . There-

fore ϕ sends a linear basis of ∧(u−3, u−5, u−6) ⊗ Z/2[v4, v6, v7] to a linear basis
H∗+14(LBG2;Z/2). So ϕ is an isomorphism. �

Lemma 5.12. Let (A, •) be a commutative unital associative graded algebra such
that x • x = 1. Let ψ : A→ A be the linear morphism mapping a to x • a. Then ψ
is an involutive isomorphism such that ψ(a) • ψ(b) = a • b.

Proof. ψ(a) • ψ(b) = (x • a) • (x • b) = (x • x) • (a • b) = 1 • (a • b) = a • b. �

Second proof of Theorem 5.8 which gives another (better?) algebra isomorphism. By
commutativity and associativity of Dlcop and Theorem 5.5, applying Lemma 5.12,
ψ : H∗(X)⊗H∗+d(ΩX)→ H∗+d(LX) defined by

ψ(a⊗ xk1 . . . xku
) = Dlcop(x1 . . . xN ⊗ axk1 . . . xku

)

is an involutive isomorphism such that

Dlcop(ψ(a⊗ xI)⊗ ψ(b⊗ xJ )) = Dlcop(axI ⊗ bxJ)

for any subsets I and J of {1, ..., N}.
Case I ∪ J = {1, ..., N}. By Theorem 5.4,

Dlcop(axI⊗bxJ) = Dlcop(x1 . . . xN⊗abxI∩J) = ψ(ab⊗xI∩J) = ψ(ab⊗comp!(xI⊗xJ)).

Case I ∪J 6= {1, ..., N}. By Theorem 5.4, Dlcop(axI ⊗ bxJ) = 0 and comp!(xI ⊗
xJ) = 0.

Therefore ψ is a morphism of graded algebras.
One can shows that {ψ(1 ⊗ Θ(x∨i )), ψ(1 ⊗ Θ(x∨j ))} = 0. That is why this iso-

morphism might be better. �

Theorem 5.13. As Batalin-Vilkovisky algebra,

H∗+3(LBSO(3);Z/2) ∼= ∧(u−1, u−2)⊗ Z/2[v2, v3]

where for all i, j ≥ 0, ∆(vi2v
j
3) = 0, ∆(u−1u−2v

i
2v

j
3) = iu−2v

i−1
2 vj3 + ju−1v

i
2v

j−1
3 ,

∆(u−2v
i
2v

j
3) = iu−1v

i−1
2 vj3 + jvi2v

j−1
3 + ju−2v

i+1
2 vj−1

3 + ju−1u−2v
i
2v

j
3 and

∆(u−1v
i
2v

j
3) = ivi−1

2 vj3 + (i+ j)u−2v
i
2v

j
3 + iu−1u−2v

i−1
2 vj+1

3 + ju−1v
i+1
2 vj−1

3 .

In particular 1 /∈ Im ∆.
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Proof. Theorem 5.7 gives the BV-algebraH∗+3(LBSO(3);Z/2) since ∆ is a deriva-
tion with respect to the cup product. In the proof of Example 5.10, the isomorphism
of algebras ϕ : ∧(u−1, u−2) ⊗ Z/2[v2, v3] → H∗+3(LBSO(3);Z/2) of Theorem 5.8
is made explicit on generators. We now transport the operator ∆ using ϕ.

In degree 1, the ∆ operator is given by ∆(u−1u−2v
2
2) = 0 and

∆(u−2v3) = ∆(u−1v2) = 1 + u−2v2 + u−1u−2v3.

�

Theorem 5.14. As Batalin-Vilkovisky algebra,

H∗+14(LBG2;Z/2) ∼= ∧(u−3, u−5, u−6)⊗ Z/2[v4, v6, v7]

where for all i, j, k ≥ 0, ∆(vi4v
j
6v

k
7 ) = 0,

∆(u−3u−5u−6v
i
4v

j
6v

k
7 ) = iu−5u−6v

i−1
4 vj6v

k
7 + ju−3u−6v

i
4v

j−1
6 vk7

+ ku−3u−5v
i
4v

j
6v

k−1
7 + ku−3u−5u−6v

i
4v

j+1
6 vk−1

7 ,

∆(u−5u−6v
i
4v

j
6v

k
7 ) = iu−3u−5v

i−1
4 vj6v

k
7 + iu−3u−5u−6v

i−1
4 vj+1

6 vk7

+ ju−6v
i
4v

j−1
6 vk7 + ku−5v

i
4v

j
6v

k−1
7 ,

∆(u−3u−6v
i
4v

j
6v

k
7 ) = iu−6v

i−1
4 vj6v

k
7 + ju−5u−6v

i
4v

j−1
6 vk+1

7

+ ju−3u−5v
i+1
4 vj−1

6 vk7 + ju−3u−5u−6v
i+1
4 vj6v

k
7 + ku−3v

i
4v

j
6v

k−1
7 ,

∆(u−3u−5v
i
4v

j
6v

k
7 ) = iu−5v

i−1
4 vj6v

k
7 + iu−5u−6v

i−1
4 vj+1

6 vk7

+ ju−3v
i
4v

j−1
6 vk7 + (j + 1 + k)u−3u−6v

i
4v

j
6v

k
7

∆(u−6v
i
4v

j
6v

k
7 ) = iu−3v

i−1
4 vj6v

k
7 + ju−5v

i+1
4 vj−1

6 vk7 + ju−3u−5v
i
4v

j−1
6 vk+1

7

+(j+k)u−3u−5u−6v
i
4v

j
6v

k+1
7 +kvi4v

j
6v

k−1
7 +ku−6v

i
4v

j+1
6 vk−1

7 +ku−5u−6v
i+1
4 vj6v

k
7 ,

∆(u−3v
i
4v

j
6v

k
7 ) = ivi−1

4 vj6v
k
7 + iu−6v

i−1
4 vj+1

6 vk7 + (i+ k)u−5u−6v
i
4v

j
6v

k+1
7

+ iu−3u−5u−6v
i−1
4 vj6v

k+2
7 + ju−5v

i
4v

j−1
6 vk+1

7 + ju−3u−6v
i+1
4 vj−1

6 vk+1
7

+(j+ k)u−3u−5v
i+1
4 vj6v

k
7 +(j+ k)u−3u−5u−6v

i+1
4 vj+1

6 vk7 + ku−3v
i
4v

j+1
6 vk−1

7 and

∆(u−5v
i
4v

j
6v

k
7 ) = iu−3u−5v

i−1
4 vj+1

6 vk7 + iu−3u−5u−6v
i−1
4 vj+2

6 vk7 + jvi4v
j−1
6 vk7

+(j+k)u−6v
i
4v

j
6v

k
7+ju−5u−6v

i+1
4 vj−1

6 vk+1
7 +ju−3u−5u−6v

i
4v

j−1
6 vk+2

7 +ku−5v
i
4v

j+1
6 vk−1

7 .

In particular 1 /∈ Im ∆.

Proof. Theorem 5.1 gives the BV-algebraH∗+14(LBG2;Z/2) since ∆ is a derivation
with respect to the cup product. In the proof of Example 5.11, the isomorphism of
algebras ϕ : ∧(u−3, u−5, u−6)⊗ Z/2[v4, v6, v7]→ H∗+14(LG2;Z/2) of Theorem 5.8
is made explicit on generators. We now transport the operator ∆ using ϕ.

In degree 1, the ∆ operator is given by ∆(u−5u−6v
2
6) = 0,

∆(u−3u−5u−6v
2
4v7) = ∆(u−5u−6v

3
4) = u−3u−5v

2
4 + u−3u−5u−6v

2
4v6,

∆(u−3u−6v4v6) = u−6v6 + u−5u−6v4v7 + u−3u−5v
2
4 + u−3u−5u−6v

2
4v6 and
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∆(u−6v7) = ∆(u−5v6) = ∆(u−3v4) = 1 + u−6v6 + u−5u−6v4v7 + u−3u−5u−6v
2
7 .

�

Note that ϕ−1 ◦∆ ◦ ϕ(yi ⊗ x
∨
i ) = ϕ−1(x1 . . . xN ) is independent of i.

6. Relation with Hochschild cohomology

Let K be any field. Let G be a connected compact Lie group of dimension d.

Conjecture 6.1. [6, Conjecture 68] There is an isomorphism of Gerstenhaber
algebras

H∗+d(LBG)
∼=
→ HH∗(S∗(G), S∗(G)).

Suppose that H∗(BG;K) is a polynomial algebra K[V ] = K[y1, . . . , yN ]. It fol-
lows from [39, Theorem 9, p. 572] (See also [30, Proposition 8.21]) that BG is
K-formal. Then BG is K-coformal and H∗(G;K) is the exterior algebra ∧(sV )∨.
Indeed, since BG is K-formal, the Cobar construction ΩH∗(BG) is weakly equiva-
lent as algebras to S∗(G). Let Ai denote the exterior algebra Λs−1(y∨i ). Then EZ,
the Eilenberg-Zilber map and ε, the counit of the adjonction between the Bar and
the Cobar construction give the quasi-isomorphims of algebras

ΩH∗(BG) = Ω(⊗N
i=1BAi) ⊗N

i=1ΩBAi≃

EZoo
≃

⊗N
i=1εi //⊗N

i=1Ai = Λs−1V ∨.

Alternatively, since BG is K-formal, you can use the implication (2) ⇒ (1) in
Theorem 2.14 of [2].

Therefore, we have the isomorphism of Gerstenhaber algebras

HH∗(S∗(G), S∗(G)) ∼= HH∗(H∗(G;K), H∗(G;K)) ∼= HH∗(∧(sV )∨,∧(sV )∨).

By Theorem 12.3 as graded algebras

HH∗(∧(sV )∨,∧(sV )∨) ∼= ∧(sV )∨ ⊗K[V ] ∼= H−∗(G;K)⊗H∗(BG;K).

So in Theorem 5.8, we have checked Conjecture 6.1 only for the algebra structure
when K = F2. When K = F2, we would like to check conjecture 6.1 also for the
Gerstenhaber algebra structure.

The following theorem shows that the conjecture is true for the Gerstenhaber
algebra structure when K is a field of characteristic different from 2.

Theorem 6.2. Under the hypothesis (H), the free loop space cohomology of the
classifying space of G, H∗+dimG(LBG;F) is isomorphic as Batalin-Vilkovisky al-
gebra to the Hochschild cohomology of H∗(G;F), HH∗(H∗(G;F);H∗(G;F)). In
particular the underlying Gerstenhaber algebras are isomorphic.

Proof. By hypothesis, H∗(BG) ∼= K[V ] = K[yi] as algebras. Then H∗(G) ∼=
Λ(sV )∨ = Λx∨j as algebras.

Let Ψ : sV → (sV )∨∨ be the canonical isomorphism of the graded vector space
sV into its bidual. By definition, Ψ(sv)(ϕ) = (−1)|ϕ||sv|ϕ(sv) for any linear form
ϕ on sV .

By Theorem 12.3, we have the BV-algebra isomorphism HH∗(H∗(G);H∗(G)) ∼=
Λ(sV )∨ ⊗K[s−1(sV )∨∨] where for any v ∈ V and ϕ ∈ (sV )∨,

∆((1⊗s−1Ψ(sv))(ϕ⊗1)) = (−1)|v|{s−1Ψ(sv), ϕ} = −Ψ(sv)(ϕ) = −(−1)|ϕ||sv|ϕ(sv)

and where ∆ is trivial on Λ(sV )∨ and on K[s−1(sV )∨∨].
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The isomorphism of algebras Id ⊗ K[s−1Ψ] : Λ(sV )∨ ⊗ K[V ] → Λ(sV )∨ ⊗
K[s−1(sV )∨∨] is a isomorphism of BV-algebras if for any v ∈ V and ϕ ∈ (sV )∨,
∆((1⊗ v)(ϕ ⊗ 1)) = −(−1)|ϕ||sv|ϕ(sv) and if ∆ is trivial on Λ(sV )∨ and on K[V ].

Taking v = yi and ϕ = σ(yj)
∨ = x∨j , we obtained that ∆(yi ⊗ x

∨
j ) = 1 if i = j

and 0 otherwise like in Theorem 4.3. �

Theorem 6.3. For G = SO(3) or G = G2, the free loop space modulo 2 cohomol-
ogy of the classifying space of G, H∗+dimG(LBG;F2) is not isomorphic as Batalin-
Vilkovisky algebra to the Hochschild cohomology of H∗(G;F2), HH

∗(H∗(G;F2);H∗(G;F2))
although when G = SO(3) the underlying Gerstenhaber algebras are isomorphic.

The main result of [33] is that the same phenomenon appears for Chas-Sullivan
string topology even in the simple case of the two dimensional sphere S2.

Lemma 6.4. Let A and B two unital BV-algebras. Let ϕ : A→ B be a linear map
preserving the units and commuting with the BV-operators ∆ (For example if ϕ is
an isomorphism preserving the multiplications and the ∆’s). If 1A ∈ Im ∆ then
1B ∈ Im ∆.

Proof. There exists a ∈ A such that ∆(a) = 1A. So

1B = ϕ(1A) = ϕ(∆(a)) = ∆(ϕ(a)) ∈ Im ∆.

�

Lemma 6.5. Let d ∈ N be a non-negative integer. Let f : A→ B be a morphism of
augmented graded algebras such that B = B≥−d, i. e. B is concentrated in degrees
greater or equal than −d and such that B0 = F. Then f is surjective iff Q(f) is
surjective.

Proof. When d = 0, this Lemma is Proposition 3.8 of [35]. But the proof of [35]
cannot be easily generalized. Therefore we provide a proof.

Filter A by wordlength: Fn(A) := A · A · · · · A for any n ≥ 0. The sequence

⊕n
i=1A

⊗i−1
⊗A ·A⊗A

⊗n−i
→ A

⊗n
։ Q(A)⊗n → 0

is exact. Alternatively, since over a field F, A = A · A⊕Q(A),

0→ +n
i=1A

⊗i−1
⊗A · A⊗A

⊗n−i
→֒ A

⊗n
։ Q(A)⊗n → 0

is a short exact sequence. Therefore the iterated multiplication of A induces a
natural map Q(A)⊗n

։ Fn(A)/Fn+1(A) obviously surjective.
Assume that Q(f) is surjective. Then Q(f)⊗n : Q(A)⊗n

։ Q(B)⊗n is also
surjective. Since the following square is commutative by naturality,

Q(A)⊗n

Q(f)⊗n

��

// Fn(A)/Fn+1(A)

Grnf

��
Q(B)⊗n // Fn(B)/Fn+1(B),
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the map induced by f , Grnf , is also surjective. In a fixed degree, consider the
commutative diagram

0 // Fn+1(A) //

f |Fn+1(A)

��

Fn(A) //

f |Fn(A)

��

Fn(A)/Fn+1(A)

Grnf

��

// 0

0 // Fn+1(B) // Fn(B) // Fn(B)/Fn+1(B) // 0

with exact rows. Suppose by induction that the restriction of f to Fn+1(A),
f |Fn+1(A), is surjective. Then by the five Lemma, f |Fn(A), is also surjective.
Since Fn(B) is concentrated in degrees greator or equal than n − 2d, in a fixed
degree, for large n, Fn(B) is trivial and we can start the induction. Therefore
f = f |F 0(A) is surjective. �

Proof of Theorem 6.3. Since H∗(G) is an exterior algebra, by Example 12.2 b),
1 ∈ Im ∆ in the BV-algebra HH∗(H∗(G);H∗(G)). On the contrary, by Theo-
rems 5.13 and 5.14, the unit 1 does not belong to the image of ∆ in the BV-algebra
H∗+dimG(LBG;F2). So by Lemma 6.4, the BV-algebras HH∗(H∗(G);H∗(G)) and
H∗+dimG(LBG;F2) are not isomorphic.

The BV-algebraHH∗(H∗(SO(3)), H∗(SO(3))) is explicitly computed in the proof
of Theorem 6.2 and is isomorphic to the tensor product of algebras Λ(x−2, x−1)⊗
F2[y2, y3] with ∆(x−2y3) = 1, ∆(x−2y2) = 0, ∆(x−1y2) = 1, ∆(x−1y3) = 0, and ∆
is trivial on Λ(x−2, x−1)⊗1 and on 1⊗F2[y2, y3]. The BV-algebraH

∗+3(LBSO(3);F2) ∼=
Λ(u−2, u−1)⊗ F2[v2, v3] is explicited by Theorem 5.13.

Let ϕ : Λ(x−2, x−1)⊗ F2[y2, y3] → Λ(u−2, u−1)⊗ F2[v2, v3] be any morphism of
graded algebras. Since Λ(x−2, x−1)⊗ F2[y2, y3] and Λ(u−2, u−1)⊗ F2[v2, v3] are of
the same finite dimension in each degree, ϕ is an isomorphism iff ϕ is surjective. By
Lemma 6.5, ϕ is surjective iff Q(ϕ) is surjective. Therefore if ϕ is an isomorphism
of algebras iff

ϕ(x−2) = u−2,

ϕ(x−1) = u−1 + εu−1u−2v2,

ϕ(y2) = v2 + au−2v
2
2 + bu−1u−2v2v3 + cu−1v3,

ϕ(y3) = v3 + αu−2v2v3 + βu−1u−2v
2
3 + γu−1u−2v

3
2 + δu−1v

2
2

where ε, a, b, c, α, β, γ, δ are 8 elements of F2. Since (u−2)
2 = (u−1+εu−1u−2v2)

2 =
0, the above 4 formulas define always a morphism ϕ of algebras.

By the Poisson rule, a morphism of algebras between Gerstenhaber algebras
is a morphism of Gerstenhaber algebras iff the brackets are compatible on the
generators.

Note that modulo 2, in a BV-algebra, for any elements z and t, {z + t, z + t} =
{z, z}+{t, t} and {z, z} = ∆(z2). Therefore it is easy to check that ϕ({x−2, x−2}) =
0 = {ϕ(x−2), ϕ(x−2)}, ϕ({x−1, x−1}) = 0 = {ϕ(x−1), ϕ(x−1)}, ϕ({y2, y2}) = 0 =
{ϕ(y2), ϕ(y2)} and ϕ({y3, y3}) = 0 = {ϕ(y3), ϕ(y3)}.

Note that ∆ϕ(x−1) = εu−2, ∆ϕ(x−2) = 0, ∆ϕ(y2) = (b+c)(u−2v3+u−1v2) and
∆ϕ(y3) = αu−1v3 + αv2 + (α+ γ)u−2v

2
2 + αu−1u−2v2v3.

Therefore ϕ({x−2, y2}) = 0, {ϕ(x−2), ϕ(y2)} = (1 + c)u−1 + (b + c)u−1u−2v2,
ϕ({x−1, y2}) = 1, {ϕ(x−1), ϕ(y2)} = 1+(1+ ε)u−2v2+(εc+1+ b+ c)u−1u−2v3,
ϕ({x−2, x−1}) = 0 = {ϕ(x−2), ϕ(x−1)},
ϕ({x−2, y3}) = 1, {ϕ(x−2), ϕ(y3)} = 1 + (1 + α)u−2v2 + (1 + α)u−1u−2v3,
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ϕ({x−1, y3}) = 0, {ϕ(x−1), ϕ(y3)} = (1+α+ε+α)u−1v2+(ε+1+α+ε)u−2v3+
(εδ + α+ γ + εα)u−1u−2v

2
2 ,

ϕ({y2, y3}) = 0,

{ϕ(y2), ϕ(y3)} = ∆ϕ(y2)ϕ(y3) + ∆(ϕ(y2)ϕ(y3)) + ϕ(y2)∆ϕ(y3)

= (b+ c)(u−2v
2
3 + u−1v2v3 + (α+ δ)u−1u−2v

2
2v3)

+ ∆
(
(a+ α)u−2v

2
2v3 + (b+ cα+ β)u−1u−2v2v

2
3 + δu−1v

3
2

)
+ ϕ(y2)∆ϕ(y3)

= (a+ α+ δ + α)v22 + (a+ α+ δ + α+ γ + aα)u−2v
3
2

+ ((b + c)(α+ δ) + a+ α+ δ + α+ aα+ bα+ cα+ cγ)u−1u−2v
2
2v3

+ (b + c+ α+ cα)u−1v2v3 + (b+ c+ b+ cα+ β)u−2v
2
3 .

Therefore, by symmetry of the Lie brackets, ϕ is a morphism of Gerstenhaber
algebras iff ε = b = c = α = 1, β = 0 and a = γ = δ. Conclusion: we have
found two isomorphisms of Gerstenhaber algebras between H∗+3(LBSO(3);F2)
and HH∗(H∗(SO(3)), H∗(SO(3))). �

7. Review of [6] with signs corrections

In this section, we review the results of Chataur and the second author in [6].
And we correct a sign mistake.

Integration along the fibre in homology with corrected sign. Let F → E
p
→

B be an oriented fibration with B path-connected; that is, the homology H∗(F ;K)
is concentrated in degree less than or equal to n, π1(B) acts on Hn(F ;K) trivially
and Hn(F ;K) ∼= K. In what follows, we write H∗(X) for H∗(X ;K). We choose a
generator ω of Hn(F ;K), which is called an orientation class. Then the integration
along the fibre pω! : H∗(B)→ H∗+n(E) is defined by the composite

Hs(B)
η
→ Hs(B)⊗Hn(F ) = E2

s,n ։ E∞
s,n = F s/F s−1 = F s ⊂ Hs+n(E),

where η sends the x ∈ Hs(B) to the element (−1)snx ⊗ ω ∈ Hs(B) ⊗Hn(F ) and
{F l}l≥0 denotes the filtration of the Leray-Serre spectral sequence {Er

∗,∗, d
r} of the

fibration F → E
p
→ B. This Koszul sign (−1)sn does not appear in the usual

definition of integration along the fibre recalled in [6, 2.2.1].

Products: Let F ′ → E′ p′

→ B′ be another oriented fibration with orientation class
ω′ ∈ Hn′(F ′). We will choose ω⊗ω′ ∈ Hn+n′(F ×F ′) as an orientation class of the

fibration F × F ′ → E × E′ p×p′

→ B × B′. By [38, 3 Theorem, page 493], the cross
product × induces a morphism of spectral sequences between the tensor product of
the Serre spectral sequences associated to p and p′ and the Serre spectral sequence
associated to p×p′. Therefore the interchange onH∗(B)⊗Hn(F )⊗H∗(B

′)⊗Hn′(F ′)
between the orientation class ω ∈ Hn(F ) and elements in H∗(B

′) yields the formula
given (without proof) in [6, section 2.3]

(7.1). (p× p′)ω×ω′

! (a× b) = (−1)|ω
′||a|pω! (a)× p

′ω′

! (b).

Note that with the usual definition of integration along the fibre recalled in [6,

2.2.1], the Koszul sign (−1)|ω
′||a| must be replaced by the awkward sign (−1)|ω||b|.

Therefore there is a sign mistake in [6, section 2.3].

Integration along the fibre in cohomology with corrected sign. Let F
incl
→֒

E
p
։ B be an oriented fibration with orientation τ : Hn(F ) → K. By definition,
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p!τ : Hs+n(E)→ Hs(B) is the composite

Hs+n(E) ։ Es,n
∞ ⊂ Es,n

2 = Hs(B)⊗Hn(F )
id⊗τ
→ Hs(B)

where (id ⊗ τ)(b ⊗ f) = (−1)n|b|bτ(f). This Koszul sign (−1)n|b| does not appear
in the usual definition of integration along the fibre recalled in [3, p. 268].

By [3, IV.14.1],

p!τ (H
∗(p)(β) ∪ α) = (−1)|β|nβ ∪ p!τ (α)

for α ∈ H∗(E) and β ∈ H∗(B). This means that the degree −n linear map
p!τ : H∗(E) → H∗−n(B) is a morphism of left H∗(B)-modules in the sense that
f(xm) = (−1)|f ||x|xf(m) as quoted in [9, p. 44].
Example: trivial fibrations. Let ω ∈ Hn(F ;K) be a generator. Define the
orientation τ : Hn(F ) → K as the image of ω by the natural isomorphism of the
homology into its double dual, ψ : Hn(F ;K) → Hom(Hn(F ;K),K). Explicitly,
τ(f) = (−1)n|f | < f, ω > where < , > is the Kronecker bracket.

Let p1 : B × F ։ B be the projection on the first factor. Then for any f ∈
H∗(F ) and b ∈ H∗(B), p!1τ (b × f) = (−1)|f ||b|bτ(f). Let p2 : F × B ։ B be the
projection on the second factor. Since p2 is the composite of p1 and the exchange
homeomorphism, by naturality of integration along the fibre,

p!2τ (f × b) = p!1τ ((−1)
|f ||b|b× f) = bτ(f) = (−1)n|f | < f, ω > b.

Main coTheorem of [6] with signs. The main theorem of [6] states that H∗(LX)
is a d-dimensional (non-unital non co-unital) homological conformal field theory:
that is H∗(LX) is an algebra over the tensor product of graded linear props

⊕

Fp+q

detH1(F, ∂in;Z)
⊗d ⊗Z H∗(BDiff

+(F, ∂);K).

See [6, Sections 3 and 11] for the definition of this prop. The prop detH1(F, ∂in;Z)
manages the degree shift and the sign of each operation. In [6], Chataur and the
second author did not pay attention to this prop detH1(F, ∂in;Z) ([1, p. 120]
neither, it seems). Therefore, in order to get the signs correctly, we need to review
all the results of [6] by taking this prop into account. Explicitly, we have maps

ν∗(Fq+p) : detH1(Fq+p, ∂in;Z)
⊗d⊗ZH∗(BDiff

+(Fq+p, ∂))⊗H∗(LX)⊗q → H∗(LX)⊗p

s⊗ a⊗ v 7→ ν∗(Fq+p)
s⊗a(v).

Therefore (Compare with [6, Section 6.3]), its dual H∗(LX) is an algebra over
the opposite prop

⊕

Fp+q

detH1(F, ∂in;Z)
op⊗d ⊗Z H∗(BDiff

+(F, ∂))op.

which is isomorphic to the prop
⊕

Fp+q

detH1(F, ∂out;Z)
⊗d ⊗Z H∗(BDiff

+(F, ∂)).

since detH1(Fp+q , ∂out;Z) = detH1(Fq+p, ∂in;Z) andDiff+(Fp+q , ∂) = Diff+(Fq+p, ∂).
Explicitly, the degree 0 map

ν∗(Fp+q) : detH1(Fq+p, ∂in;Z)
⊗d⊗ZH∗(BDiff

+(Fq+p, ∂))⊗H
∗(LX)⊗p → H∗(LX)⊗q

send the element s⊗ a⊗ α to

ν∗(Fp+q)
s⊗a(α) :=t (ν∗(Fq+p)

s⊗a)(α) = (−1)|α|(|s|+|a|)α ◦ ν∗(Fq+p)
s⊗a.
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Note that here, we have defined the transposition of a map f as

tf(α) = (−1)|α||f |α ◦ f.

This means the following five propositions.

Proposition 7.1. (Compare with [6, Proposition 24]) Let F and F ′ be two cobor-
disms with same incoming boundary and same outgoing boundary. Let φ : F → F ′

be an orientation preserving diffeomorphism, fixing the boundary (i. e. an equiva-
lence between the two cobordisms F and F ′). Let cφ : Diff+(F, ∂)→ Diff+(F ′, ∂)
be the isomorphism of groups, mapping f to φ ◦ f ◦ φ−1. Then for s ⊗ a ∈
detH1(F, ∂out;Z)⊗d ⊗Z H∗(BDiff

+(F, ∂)),

ν∗s⊗a(F ) = ν∗detH1(φ,∂out;Z)
⊗d(s)⊗H∗(Bcφ)(a)(F ′).

Remark 7.2. In Proposition 7.1, suppose that F = F ′. By a variant of [6, Proposi-

tion 19],H1(φ, ∂out;Z) is of determinant +1. Since the natural surjectionDiff+(F, ∂))
≃
→

π0(Diff
+(F, ∂)) is a homotopy equivalence [7] and π0(cφ) is the conjugation by the

isotopy class of φ, H∗(Bcφ) is the identity. So the conclusion of Proposition 7.1 is
just ν∗s⊗a(F ) = ν∗s⊗a(F ).

Using Proposition 7.1, it is enough to define the operation ν∗(F ) for a set of
representatives F of oriented classes of cobordisms (therefore the direct sum over
a set ⊕F in the above definition of the prop has a meaning). Conversely, if ν∗(F )
is defined for a cobordism F then using Proposition 7.1, we can define ν∗(F ′) for
any equivalent cobordism F ′ using an equivalence of cobordism φ : F → F ′. Two
equivalences of cobordism φ, φ′ : F → F ′ define the same operation ν∗(F ′) since
detH1(φ) ◦ detH1(φ

′)−1 = detH1(φ ◦ φ
′−1) = Id and H∗(Bcφ) ◦ H∗(Bcφ′)−1 =

H∗(Bcφ◦φ′−1) = Id by Remark 7.2.

Proposition 7.3. (Compare with [6, Proposition 30 Monoidal]) Let F and F ′

be two cobordisms. For s ⊗ a ∈ detH1(F, ∂out;Z)⊗d ⊗Z H∗(BDiff
+(F, ∂)) and

t⊗ b ∈ detH1(F
′, ∂out;Z)⊗d ⊗Z H∗(BDiff

+(F ′, ∂))

ν∗(s⊗t)⊗(a⊗b)(F
∐

F ′) = (−1)|t||a|ν∗s⊗a(F )⊗ ν∗t⊗b(F ′).

Proposition 7.4. (Compare with [6, Proposition 31 Gluing]) Let Fp+q and Fq+r be
two composable cobordisms. Denote by Fq+r◦Fp+q the cobordism obtained by gluing.
For s1 ⊗ m1 ∈ detH1(Fp+q , ∂out;Z)⊗d ⊗Z H∗(BDiff

+(Fp+q , ∂)) and s2 ⊗ m2 ∈
detH1(Fq+r , ∂out;Z)⊗d ⊗Z H∗(BDiff

+(Fq+r , ∂))

ν∗s2⊗m2(Fq+r) ◦ ν
∗s1⊗m1(Fp+q) = (−1)|m2||s1|ν∗(s2◦s1)⊗(m2◦m1)(Fq+r ◦ Fp+q).

Here

◦ : H∗(BDiff
+(Fq+r , ∂))⊗H∗(BDiff

+(Fp+q , ∂))→ H∗(BDiff
+(Fq+r◦Fp+q, ∂))

mapping m2 ⊗m1 to m2 ◦m1 is induced by the gluing of Fp+q and Fq+r.

As noted by [18] with their notion of h-graph cobordism, [6] never used the
smooth structure of the cobordisms. So in fact, our cobordisms are topological.
Therefore the cobordism Fq+r ◦Fp+q obtained by gluing is canonically defined [24,

1.3.2]. Note that by [7] and [16], the inclusion Diff+(F, ∂)
≈
→֒ Homeo+(F, ∂) is a

homotopy equivalence since π0(Diff
+(F, ∂)) ∼= π0(Homeo

+(F, ∂)) [8, p. 45].
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Proposition 7.5. (Compare with [6, Corollary 28 i) identity]) Let id1 ∈ detH1(F0,1+1, ∂out;Z)
and id1 ∈ H0(BDiff

+(F0,1+1, ∂)) be the identity morphisms of the object 1 in the
two props. Then

ν∗id
⊗d
1 ⊗id1(F0,1+1) = IdH∗(LX).

Proposition 7.6. (Compare with [6, Corollary 28 ii) symmetry]) Let Cφ be the
twist cobordism of S1

∐
S1. Let τ ∈ detH1(Cφ, ∂out;Z), τ ∈ H0(BDiff

+(Cφ, ∂))
and τ ∈ End(H∗(LX)⊗2) be the exchange isomorphisms of the three props. Then

ν∗τ
⊗d⊗τ (Cφ) = τ.

Let F be a cobordism. Let ιF be the generator of H0(BDiff
+(F, ∂)) which

is represented by the connected component of BDiff+(F, ∂). We may write
ι instead of ιF for simplicity. If χ(F ) = 0 then H1(F, ∂out;Z) = {0} has an
unique orientation class which correspond to the generator 1 ∈ detH1(F, ∂out;Z) =
Λ−χ(F )H1(F, ∂out;Z) = Z.

The identity morphim id1 and the exchange isomorphism τ of the prop detH1(F, ∂out;Z)
correspond to these unique orientation classes ofH1(F0,1+1, ∂out;Z) andH1(Cφ, ∂out;Z).

The identity morphim id1 and the exchange isomorphism τ of the propH∗(BDiff
+(F, ∂))

are just ιF0,1+1 and ιCφ
.

8. Commutativity and associativity of the dual to the Loop

coproduct

Theorem 8.1. Let d ≥ 0. Let H∗ (upper graded) be an algebra over the (lower
graded) prop

detH1(F, ∂out;Z)
⊗d ⊗Z H0(BDiff

+(F, ∂)).

Let s ∈ detH1(F0,2+1, ∂out;Z)⊗d be a chosen orientation. Let

Dlcop := ν∗s⊗ι(F0,2+1).

Let m be the product defined by

m(a⊗ b) = (−1)d(i−d)Dlcop(a⊗ b)

for a ⊗ b ∈ Hi ⊗Hj. Let H∗ := H∗+d. Then (H∗,m) is a graded associative and
commutative algebra.

Proof. Using Propositions 7.3, 7.4 and 7.5,

Dlcop ◦ (Dlcop⊗ 1) = ν∗s◦(s⊗id1)
⊗

ι◦(ι⊗id1)(F0,2+1 ◦ (F0,2+1

∐
F0,1+1)) and

Dlcop ◦ (1⊗Dlcop) = ν∗s◦(id1⊗s)
⊗

ι◦(id1⊗ι)(F0,2+1 ◦ (F0,1+1

∐
F0,2+1)).

The cobordisms F0,2+1◦(F0,2+1

∐
F0,1+1) and F0,2+1◦(F0,1+1

∐
F0,2+1) are equiva-

lent. When you identified them, ι◦(ι⊗id1) = ι◦(id1⊗ι). Also F0,2+1◦Cφ = F0,2+1

and ι ◦ τ = ι.
Let β ∈ detH1(F0,2+1, ∂out;Z) the generator such that β⊗d = s. The compo-

sitions of the Z-linear prop detH1(F, ∂out;Z) are isomorphisms. Therefore, they
send generators to generators. Moreover detH1(F, ∂out;Z) := Λ−χ(F )H1(F, ∂out;Z)
is an abelian group on a single generator of lower degree −χ(F ). So β ◦ (β⊗ id1) =
εassβ◦(id1⊗β) and β◦τ = εcomβ for given signs εass and εcom ∈ {−1, 1}. Therefore

s◦ (s⊗ id1) = β⊗d ◦ (β⊗ id1)
⊗d = (−1)

d(d−1)
2 |β|2 (β ◦ (β ⊗ id1))

⊗d
= εdasss◦ (id1⊗s)

and s ◦ τ = β⊗d ◦ τ⊗d = (β ◦ τ)⊗d = (εcomβ)
⊗d = εdcomβ

⊗d = εdcoms.
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Therefore, by proposition 7.1

Dlcop ◦ (Dlcop⊗ 1) = εdassDlcop ◦ (1⊗Dlcop)

and Dlcop ◦ τ = εdcomDlcop. This means that for a, b, c ∈ H∗(LX),

m(m(a⊗ b)⊗ c) = εdass(−1)
dm(a⊗m(b ⊗ c)

and m(b⊗ a) = εdcom(−1)(|a|−d)(|b|−d)+dm(a⊗ b)) since

m(m(a⊗ b)⊗ c) = (−1)d|b|+dDlcop ◦ (Dlcop⊗ 1)(a⊗ b⊗ c)

and

m(a⊗m(b⊗c)) = (−1)d(|a|+|b|)Dlcop(a⊗Dlcop(b⊗c)) = (−1)d|b|Dlcop◦(1⊗Dlcop)(a⊗b⊗c).

In [14, Proof of Proposition 21], Godin has shown geometrically that εass = −1
for the prop detH1(F, ∂in;Z). To determine the signs εass and εcom for the prop
detH1(F, ∂out;Z), we prefer to use our computations of m.

Consider a particular connected compact Lie group G of a particular dimension
d and a particular field K of characteristic different from 2 such that H∗(BG;K)
is polynomial, for example G = (S1)d or K = Q. Then H∗(LBG;Q) is an algebra
over our prop and we can apply (2) of Theorem 3.1 or Corollary 4.2. Taking
a = x1 . . . xN , b = 1 and c = x1 . . . xN , we obtain 1 = εdass(−1)

d and 1 = εdcom(−1)d.
So if we have chosen d odd, εass = εcom = −1 and m is associative and graded
commutative. �

Remark 8.2. When d is even, the d-th power of the prop detH1(F, ∂in;Z) is iso-
morphic to the d-th power of the trivial prop with a degree shift χ(F ).

More precisely, let P the prop such that

P(p, q) :=
⊕

Fp+q

s−χ(Fp+q)Z,

s−χ(F ′)1 ◦ s−χ(F )1 = s−χ(F ′◦F )1 and s−χ(F )1⊗ s−χ(F ′)1 = s−χ(F
∐

F ′)1. This prop
P is the the trivial prop with a degree shift χ(F ).

For any cobordism F , let ΘF : s−χ(F )Z → detH1(F, ∂in;Z) be an chosen iso-

morphism. Then Θ⊗d
F : P⊗d → detH1(F, ∂in;Z)⊗d is an isomorphim of props if d is

even. This prop P⊗d is the d-th power of the trivial prop with a degree shift χ(F )
and is not isomorphic to the trivial prop with a degree shift −dχ(F ).

Proof. The following upper square commutes always, while the following lower
square commutes if d is even.

(s−χ(F ′)Z)⊗d ⊗ (s−χ(F )Z)⊗d
Θ⊗d

F ′ ⊗Θ⊗d
F//

τ

��

detH1(F
′, ∂in;Z)⊗d ⊗ detH1(F, ∂in;Z)⊗d

τ

��
(s−χ(F ′)Z⊗ s−χ(F )Z)⊗d

(ΘF ′⊗ΘF )⊗d

//

◦⊗d

��

(detH1(F
′, ∂in;Z)⊗ detH1(F, ∂in;Z))

⊗d

◦⊗d

��
(s−χ(F ′◦F )Z)⊗d

(ΘF ′◦F )⊗d

// detH1(F
′ ◦ F, ∂in;Z)⊗d

Replacing ◦ by the tensor product ⊗ of props, we have proved that Θ⊗d
F is an

isomorphism of props if d is even. �
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Observe that the dual of the loop coproduct Dlcop on H∗(LX) satisfies the same
commutative and associative formulae as those of the Chas-Sullivan loop product
on the loop homology of M . See [41, Remark 3.6] or [28, Proposition 2.7]. So we
wonder if the prop detH1(F, ∂out;Z) is isomorphic to the prop detH1(F, ∂in;Z).

Corollary 8.3. Let X be a simply connected space such that H∗(ΩX ;K) is finite
dimensional. The shifted cohomology H∗(LX) := H∗+d(LX) is a graded commuta-
tive, associative algebra endowed with the product m defined by

m(a⊗ b) = (−1)d(i−d)Dlcop(a⊗ b)

for a⊗ b ∈ Hi(LX)⊗Hj(LX).

9. The Batalin-Vilkovisky identity

For any simple closed curve γ in a cobordism F , let us denote by γ the image of
the Dehn twist Tγ by the hurewicz map Θ

π0(Diff
+(F, ∂))

∂−1

−−−−→
∼=

π1(BDiff
+(F, ∂))

Θ
−−−−→H1(BDiff

+(F, ∂)).

In this section, we prove the following theorem.

Theorem 9.1. Let H∗ be an algebra over the prop

detH1(F, ∂out;Z)
⊗d ⊗Z H∗(BDiff

+(F, ∂)).

Consider the the graded associative and commutative algebra (H∗,m) given by The-
orem 8.1. Let α be a closed curve in the cylinder F0,1+1 parallel to one of the
boundary components. Let

∆ = ν∗id1⊗α(F0,1+1).

Then (H∗,m,∆) is a Batalin-Vilkovisky algebra.

In the case d = 0, Wahl [44, Rem 2.2.4] or Kupers [26, 4.1, page 158] give an
incomplete proof that we complete. Moreover, we pay attention to signs.

The shifted cohomology algebra (H∗,m) equipped with the operator ∆ is a BV-
algebra if and only if ∆ ◦∆ = 0 and if the Batalin-Vilkovisky identity holds; that
is, for any elements a, b and c in H∗,

∆(a · b · c) = ∆(a · b) · c+ (−1)‖a‖a ·∆(b · c) + (−1)‖b‖‖a‖+‖b‖b ·∆(a · c)

−∆(a) · b · c− (−1)‖a‖a ·∆(b) · c− (−1)‖a‖+‖b‖a · b ·∆(c),

where α · β = m(α ⊗ β) and ‖ α ‖ stands for the degree of an element α in H∗,
namely ‖ α ‖= |α| − d.

Since BDiff+(F0,1+1) is BZ, α ◦ α ∈ H2(BDiff
+(F0,1+1)) = {0}. Therefore

∆ ◦∆ = ±ν∗id1⊗α◦α(F0,1+1) = 0
The BV-identity will arise up to signs from the lantern relation ( [44, Rem 2.2.4]

or [26, 4.1, page 158]):

Proposition 9.2. [21][8, Section 5.1] Let a1, ..., a4 and x, y, z be the simple closed
curves described in [26, Figure 6.89, page 161]. Then one has

Ta1Ta2Ta3Ta4 = TxTyTz

in the mapping class group of F0,4, where Tγ denotes the Dehn twist around a simple
closed curve γ in the surface.
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In order to prove Theorem 9.3, we represent each term of the B-V identity in
terms of elements of the prop with a HCF theoretical way: this means using the
horizontal (coproduct) composition ⊗ and the vertical composition ◦ on the prop.
We start by the most complicated element b ·∆(a · c).

By Propositions 7.3, 7.4, 7.5 and 7.6,

Dlcop ◦ [Id⊗ (∆ ◦Dlcop)] ◦ (τ ⊗ Id) =

ν∗s⊗ι(F0,2+1) ◦
[
ν∗id1⊗id1(F0,1+1)⊗ (ν∗id1⊗α(F0,1+1) ◦ ν

∗s⊗ι(F0,2+1))
]

◦(ν∗τ⊗τ (Cφ)⊗ ν
∗id1⊗id1(F0,1+1)) =

±ν∗s◦[id1⊗s]◦(τ⊗id1)
⊗

ι◦[id1⊗(α◦ι)]◦(τ⊗id1)(F0,2+1 ◦ (F0,1+1

∐
F0,2+1) ◦ (Cφ

∐
F0,1+1))

Here ± is the Koszul sign (−1)|s||α| = (−1)d, since only s and α have positive
degrees.

We choose s′ = s ◦ (s⊗ id1). In the proof of Theorem 8.1, we saw s ◦ (s⊗ id1) =
(−1)ds ◦ (id1 ⊗ s) and s ◦ τ = (−1)ds. Therefore

s◦(id1⊗s)◦(τ⊗id1) = (−1)ds◦(s⊗id1)◦(τ⊗id1) = (−1)ds◦[(s ◦ τ)⊗ (id1 ◦ id1)] = s′.

Since ι ◦ [id1 ⊗ (α ◦ ι)] ◦ (τ ⊗ id1) coincides with z by Proposition 10.1, we have
proved that

Dlcop ◦ (Id⊗ (∆ ◦Dlcop)) ◦ (τ ⊗ Id) = (−1)dν∗s
′⊗z(F0,3+1).

Similar computations shows that

Dlcop ◦ (Id⊗ (∆ ◦Dlcop)) =

±ν∗s◦[id1⊗s]
⊗

ι◦[id1⊗(α◦ι)](F0,2+1 ◦ (F0,1+1

∐
F0,2+1)) = ν∗s

′⊗x(F0,3+1),

Dlcop ◦ ((∆ ◦Dlcop)⊗ Id) =

±ν∗s◦[s⊗id1]
⊗

ι◦[(α◦ι)⊗id1](F0,2+1 ◦ (F0,2+1

∐
F0,1+1)) = (−1)dν∗s

′⊗y(F0,3+1),

∆ ◦Dlcop ◦ (Dlcop ◦ Id) =

ν∗s◦[s⊗id1 ]
⊗

α◦ι◦(ι⊗id1)(F0,2+1 ◦ (F0,2+1

∐
F0,1+1)) = ν∗s

′⊗a4(F0,3+1),

Dlcop ◦ (∆⊗Dlcop) =

±ν∗s◦[id1⊗s]
⊗

ι◦[α⊗ι](F0,2+1 ◦ (F0,1+1

∐
F0,2+1)) = ν∗s

′⊗a1(F0,3+1),

Dlcop ◦ (Id⊗Dlcop) ◦ (Id⊗∆⊗ Id) =

ν∗s◦[id1⊗s]
⊗

ι◦(id1⊗ι)◦(id1⊗α⊗id1)(F0,2+1 ◦ (F0,1+1

∐
F0,2+1)) = (−1)dν∗s

′⊗a2(F0,3+1)

and Dlcop ◦ (Dlcop⊗∆) =

ν∗s◦[s⊗id1]
⊗

ι◦[ι⊗α](F0,2+1 ◦ (F0,1+1

∐
F0,2+1)) = ν∗s

′⊗a3(F0,3+1).
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Therefore using the definition of the productm, straightforward computations show
that

∆((a · b) · c) = (−1)d|b|+dν∗s
′⊗a4(F0,3+1)(a⊗ b⊗ c)

∆(a) · b · c = (−1)d|b|+dν∗s
′⊗a1(F0,3+1)(a⊗ b⊗ c)

(−1)‖a‖a ·∆(b) · c = (−1)d|b|+dν∗s
′⊗a2(F0,3+1)(a⊗ b⊗ c)

(−1)‖a‖+‖b‖a · b ·∆(c) = (−1)d|b|+dν∗s
′⊗a3(F0,3+1)(a⊗ b⊗ c)

∆(a · b) · c = (−1)d|b|+dν∗s
′⊗y(F0,3+1)(a⊗ b ⊗ c)

(−1)‖a‖a ·∆(b · c) = (−1)d|b|+dν∗s
′⊗x(F0,3+1)(a⊗ b⊗ c)

(−1)‖b‖‖a‖+‖b‖b ·∆(a · c) = (−1)d|b|+dν∗s
′⊗z(F0,3+1)(a⊗ b⊗ c).

The lantern relation gives rise to the equality

ν∗s
′⊗a4(F0,3+1) + ν∗s

′⊗a1(F0,3+1) + ν∗s
′⊗a2(F0,3+1) + ν∗s

′⊗a3(F0,3+1)

= ν∗s
′⊗x(F0,3+1) + ν∗s

′⊗y(F0,3+1) + ν∗s
′⊗z(F0,3+1)

since the hurewicz map is a morphism of groups. Thus

∆(a · b · c) + ∆(a) · b · c+ (−1)‖a‖a ·∆(b) · c+ (−1)‖a‖+‖b‖a · b ·∆(c)

= ∆(a · b) · c+ (−1)‖a‖a ·∆(b · c) + (−1)‖b‖‖a‖+‖b‖b ·∆(a · c).

Corollary 9.3. Let G be a connected compact Lie group of dimension d. Con-
sider the graded associative and commutative algebra (H∗(LBG),m) given by Corol-
lary 8.3. Let ∆ be the operator induced by the action of the circle on LBG (See
our definition in section 11)). Then the shifted cohomology H∗(LBG) carries the
structure of a Batalin-Vilkovisky algebra.

Proof. By Proposition 11.1 and by [6, Proposition 60]),

∆ = ν∗id1⊗α(F0,1+1).

�

10. Seven prop structure equalities on the homology of mapping

class groups proving the BV identity

Recall that for any simple closed curve γ in a cobordism F , we write γ for the
image of the Dehn twist Tα by the hurewicz map Θ

π0(Diff
+(F, ∂))

∂−1

−−−−→
∼=

π1(BDiff
+(F, ∂))

Θ
−−−−→H1(BDiff

+(F, ∂)).

Here ∂ is the connecting homomorphism associated to the universal principal fibra-
tion.

Let α be a closed curve in the cylinder F0,1+1 parallel to one of the boundary
components. Let a1, ..., a4 and x, y, z be the simple closed curves in F0,3+1 described
in [26, Figure 6.89, page 161]. In what follows, we denote by ◦ the vertical product
in the prop ⊕

F

H∗(BDiff
+(F, ∂);K)

which acts (up to signs) on H∗+dimG(LBG;K). The goal of this section is to show
the following equalities needed in the proof of the BV-identity, given in section 9.
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Proposition 10.1. z = ι ◦ [id1 ⊗ (α ◦ ι)] ◦ [τ ⊗ id1], x = ι ◦ [id1 ⊗ (α ◦ ι)], y =
ι◦ [(α◦ ι)⊗ id1], a4 = α◦ ι◦(ι⊗ id1), a1 = ι◦ [α⊗ ι], a2 = ι◦(id1⊗ ι)◦(id1⊗α⊗ id1)
and a3 = ι ◦ [ι⊗ α].

Let F̃ denote the group Diff+(F, ∂) (or the mapping class group of a surface

F with boundary ∂). Recall that ιF or simply ι denote the generator of H0(BF̃ )

which is represented by the connected component of BF̃ .

Proposition 10.2. Let F and F ′ be two cobordisms. In i) and ii), suppose that

F and F ′ are gluable. Let ◦ : F̃ × F̃ ′ → F̃ ◦ F ′ be the map induced by gluing on

diffeomorphisms. Let idF ∈ F̃ be the identity map of F . For D in π0(F̃ ) and D′

in π0(F̃ ′),
i) Θ∂−1(idF ◦D

′) = ιF ◦Θ∂
−1D′

ii) Θ∂−1(D ◦ idF ′) = Θ∂−1D ◦ ιF ′ .
iii) Θ∂−1(idF ⊔D

′) = ιF ⊗Θ∂−1D′

Proof. We consider the diagram:

π0(F̃ )× π0(F̃ ′)

ϕ∼=

��

π0(F̃ ′)

i2

55llllllllllllllll

π0(i2)
// π0(F̃ × F̃ ′)

π0(◦) // π0(F̃ ◦ F ′)

π1(B(F̃ ′))

Θ
��

∼= ∂

OO

π1(B(i2))
//

π1(i2) ))RR
RR

RR
RR

RR
RR

RR

π1(B(F̃ × F̃ ′))

Θ

!!C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

∼= ∂

OO

π1(ξ)∼=
��

π1(B(◦))
// π1(BF̃ ◦ F ′)

Θ

  A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

∼= ∂

OO

H1(BF̃ ′)

k2

�� H1(i2) ))RR
RR

RR
RR

RR
RR

RR

π1(BF̃ ×BF̃ ′)

Θ
��

H0(BF̃ )⊗H1(BF̃ ′)
κ

// H1(BF̃ ×BF̃ ′) H1(B(F̃ × F̃ ′))
H1(ξ)

∼=oo
H1(B(◦))

// H1(BF̃ ◦ F ′)

Here ϕ is the natural isomorphism, κ is the Künneth map, ξ : B(F̃ × F̃ ′)
≈
→

B(F̃ )×B(F̃ ′) is the canonical homotopy equivalence, k2 is the isomorphism defined
by k2(x) = ιF ⊗ x and i2 denotes various inclusions on the second factor. Note
that by the definition of the prop structure, the bottom line coincides with ◦ :

H0(BF̃ )⊗H1(BF̃ ′)→ H1(BF̃ ◦ F ′). The commutativity of the diagram shows i).
Replacing the i2’s and k2 by inclusions on the first factor, we obtain ii). Replacing

◦ : F̃ × F̃ ′ → F̃ ◦ F ′ by the map F̃ × F̃ ′ → F̃
∐
F ′, (D,D′) 7→ D ⊔D′, we obtain

iii).
�

Proof of Proposition 10.1. Let F = (F0,1+1

∐
F0,2+1)◦(Cφ

∐
F0,1+1). We can iden-

tify F0,3+1 with F0,2+1 ◦ (F0,1+1

∐
F0,1+1) ◦ F . Let emb2 : F0,1+1 →֒ F0,3+1 be the

second embedding due to this identification. The composite of the curve α and

of emb2, S
1 α
→ F0,1+1

emb2
→֒ F0,3+1, coincides with the curve z. Taking the same

tubular neighborhood around α and z, the Dehn twists of α and z, Tα and Tz, co-
incide on this tubular neighborhood. Outside of this tubular neighborhood, Tα and
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Tz coincide with the identity maps of F0,1+1 and of F0,3+1, idF0,1+1 and idF0,3+1 .
Therefore

Tz = idF0,2+1 ◦ (idF0,1+1 ⊔ Tα) ◦ idF .

By virtue of Proposition 10.2 i), ii) and then iii), we have

z = Θ∂−1Tz = Θ∂−1
(
idF0,2+1 ◦ (idF0,1+1 ⊔ Tα) ◦ idF

)

= ιF0,2+1 ◦Θ∂
−1

(
(idF0,1+1 ⊔ Tα) ◦ idF

)

= ιF0,2+1 ◦Θ∂
−1

(
idF0,1+1 ⊔ Tα

)
◦ ιF

= ιF0,2+1 ◦
(
ιF0,1+1 ⊗Θ∂−1Tα

)
◦ ιF = ιF0,2+1 ◦ [id1 ⊗ α] ◦ ιF

The prop structure on the 0th homology gives ιF = [id1⊗ιF0,2+1 ]◦ [τ⊗id1]. Finally,
the prop structure on the homology of mapping class groups gives

z = ιF0,2+1 ◦ [id1⊗α]◦ [id1⊗ιF0,2+1 ]◦ [τ⊗id1] = ιF0,2+1 ◦ [id1⊗(α◦ιF0,2+1)]◦ [τ⊗id1].

By similar fashion, we have the other six equalities. �

11. The cohomological BV-operator ∆

The goal of this section is to give our definition of the BV-operator ∆ in coho-
mology and to compare it to others definitions given in the literature.

Let Γ : S1 × LX → LX be the S1-action map. Then in this paper the Batalin-
Vilkovisky operator ∆ : H∗(LX) → H∗−1(LX) is defined [27, Proposition 3.3] by
∆ :=

∫
S1 ◦Γ

∗, where
∫
S1 : H∗(S1 × LX) → H∗−1(LX) denotes the integration

along the fibre of the trivial fibration S1 × LX ։ LX .
By our example in section 7 (see also up to the sign [27, Proof of Proposition

3.3]),
∫
S1 f × b = (−1)|f | < f, [S1] > b. Up to some signs, this is the slant with [S1]

(Compare [23, Definition 1]).
Therefore for any β ∈ H∗(LX), the image of β by ∆, ∆(β), is the unique element

such that (see [41] up to the sign − )

Γ∗(β) = 1× β − {S1} ×∆(β)

where {S1} is the fundamental class in cohomology defined by < {S1}, [S1] >= 1.
So finally, we have proved that with our definition of integration along the fibre,

since we define the BV-operator ∆ using integration along the fibre as [27, Propo-
sition 3.3], our ∆ is exactly the opposite of the one defined by [41] or [23, p. 648
line 4].

In particular, observe that ∆ satisfies ∆2 = 0 and is a derivation on the cup
product on H∗(LX) [41, Proposition 4.1].

In section 9, we will need another characterisation of our BV-operator ∆:

Proposition 11.1. The BV-operator ∆ :=
∫
S1 ◦Γ

∗ is the dual (=transposition) of
the composite

H∗(LX)
[S1]×−
→ H∗+1(S

1 × LX)
Γ∗→ H∗+1(LX).

Proof. For any space X , let µX : H∗(X ;K)→ H∗(X ;K)∨ be the map sending α to
the form on H∗(X ;K), < α,− >. Here < −,− > is the Kronecker bracket. By the
universal coefficient theorem for cohomology, µX is an isomorphism. Consider the
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two squares

H∗(LX)
Γ∗

//

µLX

��

H∗(S1 × LX)

∫
S1 //

µ
S1×LX

��

H∗−1(LX)

µLX

��
H∗(LX)∨

(Γ∗)
∨

// H∗(S
1 × LX)∨

([S1]×−)∨
// H∗−1(LX)∨.

The left square commutes by naturality of µX . For any α ∈ H∗(S1) and β ∈
H∗(LX) and y ∈ H∗(LX),

(µLX ◦

∫

S1

)(α× β)(y) = µLX

(
(−1)|α||[S

1]| < α, [S1] > β
)
(y)

= (−1)|α||[S
1]| < α, [S1] >< β, y >

and

([S1]×−)∨ (µS1×LX(α× β)) (y) = (−1)|α×β||[S1]|µS1×LX(α× β) ◦ ([S1]×−)(y)

= (−1)|α||[S
1]|+|β||[S1]| < α× β, [S1]× y > .

Since < α × β, [S1] × y >= (−1)|β||[S
1]| < α, [S1] >< β, y >, the right square

commutes also. �

12. Hochschild cohomology computations

Proposition 12.1. Let A be a graded (or ungraded) algebra equipped with an

isomorphism of A-bimodules Θ : A
∼=
→ A∨ between A and its dual of any de-

gree |Θ|. Denote by tr := Θ(1) the induced graded trace on A. Let a ∈ Z(A)
be an element of the center of A. Let d : A → A be a derivation of A. Obvi-
ously a ∈ C0(A,A) = Hom(K, A) defined by a(1) = a and d ◦ s−1 ∈ C1(A,A) =
Hom(sA,A) are two Hochschild cocycles. Then in the Batalin-Vilkovisky algebra
HH∗(A,A) ∼= HH∗+|Θ|(A,A∨),

1) ∆([a]) = 0,
2) ∆([d ◦ s−1]) is equal to [a] the cohomology class of a if and only if for any

a0 ∈ A,

(−1)1+|d|tr ◦ d(a0) = tr(aa0).

3) In particular, the unit belongs to the image of ∆ if and only if there exists a
derivation d : A→ A of degree 0 commuting with the trace: tr ◦ d(a0) = tr(a0) for
any element a0 in A.

Proof. By definition of ∆, the following diagram commutes up to the sign (−1)|Θ|

for any p ≥ 0.

Cp(A,A)
Cp(A,Θ) //

∆

��

Cp(A,A∨)
Ad // Cp(A,A)∨

B∨

��
Cp−1(A,A)

Cp−1(A,Θ)

// Cp−1(A,A∨)
Ad

// Cp−1(A,A)
∨.

Taking p = 0 we obtain 1).
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The image of the cocycle d ◦ s−1 ∈ C1(A;A) by Ad ◦ C∗(A; Θ) is the form Θ̂(d) on
C1(A;A) = A⊗ sA defined by (Compare with [33, Proof of Proposition 20])

Θ̂(d)(a0[sa1]) = (−1)|sa1||a0|(Θ ◦ d)(a1)(a0) = (−1)|sa1||a0|tr(d(a1)a0).

For any a0 ∈ A,

(−1)|Θ|+1+|d|B∨(Θ̂(d))(a0) = (Θ̂(d) ◦B)(a0[]) = Θ̂(d)(1[sa0]) = tr ◦ d(a0).

The image of the cocycle a ∈ C0(A;A) by Ad ◦ C∗(A; Θ) is the form on A, mapping
a0 to (Θ ◦ a)([])(a0) = Θ(a)(a0) = tr(aa0).
Therefore ∆(d ◦ s−1) = a if and only if for any a0 ∈ A, (−1)

|Θ|+1+|d|tr ◦ d(a0) =
(−1)|Θ|tr(aa0). Since there is no coboundary in C0(A,A), this proves 2). �

Example 12.2. a) Let A = Λx−d be the exterior algebra on a generator of lower
degree −d ∈ Z. If d ≥ 0 then A = H∗(Sd;F). Denote by 1∨ and x∨ the dual basis
of A∨. The trace on A is x∨. Let d : A→ A be the linear map such that d(1) = 0
and d(x) = x. Since d(x ∧ x) = 0 and dx ∧ x + x ∧ dx = 2x ∧ x = 2 × 0 = 0,
even over a field of characteristic different from 2, d is a derivation commuting with
the trace. Therefore by Theorem 12.1, 1 ∈ Im ∆ in HH∗(A;A). When F = F2,
compare with [33, Proposition 20].

b)Let V be a graded vector space. Let A := Λ(V ) be the graded exterior algebra
on V . If V is in non-positive degrees, then A is just the cohomology algebra
of a product of spheres. Let x1, . . . , xN be a basis of V . The trace of A is
(x1 . . . xN )∨. Let d1 be the derivation on Λx1 considered in the previous example.
Then d := d1 ⊗ id is a derivation on Λx1 ⊗ Λ(x2, . . . , xN ) ∼= ΛV . Obviously d
commutes with the trace. So 1 ∈ Im ∆.

c) Let A = F [x]/xn+1, n ≥ 1 be the truncated polynomial algebra on a generator
x of even degree different from 0. If x is of upper degree 2 then A = H∗(CPn;F).
The trace of A is (xn)∨. Let d : A → A be the unique derivation of A such that
d(x) = x (The case n = 1 was considered in example a)). Then d(xi) = ixi. For
degree reason, d is a basis of the derivations of degree 0 of A. Then λd commutes
with the trace if and only if λn = 1 in F. Therefore 1 ∈ Im ∆ in HH∗(A;A) if and
only n is invertible in F(Compare with [45] modulo 2 and with [46] otherwise).

Theorem 12.3. Let V be a graded vector space (non-negatively lower graded or
concentrated in upper degree ≥ 1) such that in each degre, V is of finite dimension.

i) Let A = S(V ), 0 be the free strictly commutative graded algebra on V : A =
ΛV odd ⊗ F[V even] is the graded tensor product on the exterior algebra on V odd, the
odd degree elements and on V even the even degree elements [9, p. 46]. Then the
Hochschild cohomology of A, HH∗(A,A), is isomorphic as Gerstenhaber algebras to
A⊗S(s−1V ∨). For ϕ a linear form on V and v ∈ V , {1⊗s−1ϕ, v⊗1} = (−1)|ϕ|ϕ(v).
The Lie bracket is trivial on (A⊗1)⊗(A⊗1) and on (1⊗S(s−1V ∨))⊗(1⊗S(s−1V ∨)).

ii) Suppose that F is a field of characteristic 2. Then we can extend i) in the
following way: Let U and W are two graded vector spaces such that U ⊕W = V .
(i. e. we don’t assume anymore that U = V odd and W = V even). Let A =
ΛU ⊗ F[W ]. Then HH∗(A,A) is isomorphic as Gerstenhaber algebras to A ⊗
F(s−1U∨)⊗ Λ(s−1W∨) and the Lie bracket is the same as in i).

iii) Suppose that V is concentrated in odd degres or that K is a field of character-
istic 2. Let A = ΛV be the exterior algebra on V . Then the BV-algebra extending
the Gerstenhaber algebra HH∗(A,A) ∼= A ⊗ K[s−1V ∨] has trivial BV-operator ∆
on A and on K[s−1V ∨].
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Proof. i) Recall that the Bar resolution B(A,A,A) = A ⊗ TsA ⊗ A
≃
։ A is a

resolution of A as A ⊗ Aop-modules. When A = S(V ), 0, there is another smaller

resolution (A ⊗ Γ(sV )⊗ A,D)
≃
։ A. Here Γ(sV ) is the free divided power graded

algebra on sV and D is the unique derivation such that D(γk(sv)) = v⊗γk−1(sv)⊗
1− 1⊗ γk−1(sv)⊗ v [31]. Since Γ(sV ) is the invariants of T (sV ) under the action
of the permutation groups, there is a canonical inclusion of graded algebras [15, p.
278]

i : Γ(sV ) →֒ T (sV ) →֒ T (sA).

This map i maps γk(sv) to [sv| . . . |sv]. Since both (A ⊗ Γ(sV ) ⊗ A,D) and
B(A,A,A) are A ⊗ A-free resolutions of A, the inclusion of differential graded
algebras

A⊗ i⊗A : (A⊗ Γ(sV )⊗A,D)
≃
→֒ B(A,A,A)

is a quasi-isomorphism. So by applying the functor HomA⊗A(−, A), Hom(i, A) :

C∗(A,A)
≃
։ (Hom(Γ(sV ), A), 0) is a quasi-isomorphism of complexes. The differ-

ential on HomA⊗A((A⊗ Γ(sV )⊗A,D), (A, 0)) is zero since

f ◦D(γk1(sv1) . . . γ
kr(svr)) = 0.

The inclusion i : Γ(sV ) →֒ T (sA) is a morphism of graded coalgebras with respect
to the diagonal [15, p. 279]

∆[sa1| . . . |sar] =

r∑

p=0

[sa1| . . . |sap]⊗ [sap+1| . . . |sar].

Therefore the quasi-isomorphism of complexes Hom(i, A) : C∗(A,A)
≃
։ (Hom(Γ(sV ), A), 0)

is also a morphism of graded algebras with respect to the cup product on the
Hochschild cochain complex C∗(A,A) and the convolution product on Hom(Γ(sV ), A).

The morphism of commutative graded algebras j : A⊗Γ(sV )∨ → Hom(Γ(sV ), A)
mapping a ⊗ φ to the linear map j(a ⊗ φ) from Γ(sV ) to A defined by j(a ⊗
φ)(γ) = φ(γ)a is an isomorphim. By [15, (A.7)], the canonical map (sV )∨ →

Γ(sV )∨ extends to an isomorphism of graded algebras k : S(sV )∨
∼=
→ Γ(sV )∨. The

composite Θ : (sV )∨
s∨

→ V ∨ s−1

→ s−1(V ∨), mapping x to Θ(x) = (−1)|x|s−1(x◦s), is
a chosen isomorphism between (sV )∨ and s−1(V ∨). Note that Θ−1 is the opposite
of the composite (s−1)∨ ◦ s. Finally, the composite

A⊗ S(s−1(V ∨))
A⊗S(Θ)
→ A⊗ S((sV )∨)

A⊗k
→ A⊗ (Γ(sV ))∨ j→ Hom(Γ(sV ), A)

is an isomorphism of graded algebras. So we have obtained an explicit isomorphism

of graded algebras l : HH∗(A,A)
∼=
→ A ⊗ S(s−1(V ∨)). To compute the bracket,

it is sufficient to compute it on the generators on A ⊗ S(s−1(V ∨)). For m ∈ A,
let m ∈ C0(A,A) = Hom((sA)⊗0, A) defined by m([]) = m. Obviously, l−1(m ⊗ 1)
is the cohomology class of the cocycle m. For any linear form ϕ on V , let ϕ ∈
C1(A,A) = Hom(sA,A) be the map defined by

ϕ([sv1v2 . . . vn]) =

n∑

i=1

(−1)|ϕ||sv1v2...vi−1|ϕ(vi)v1 . . . v̂i . . . vn.

Since the composite ϕ ◦ s is a derivation of A, ϕ is a cocycle. Since ϕ([sv1]) =
(−1)|ϕ|ϕ(v1)1, the composite ϕ ◦ i is the image of 1 ⊗ s−1ϕ by the composite
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j◦(A⊗k)⊗(A⊗S(Θ)) : A⊗S(s−1(V ∨))→ Hom(Γ(sV ), A). Therefore l−1(1⊗s−1ϕ)
is the cohomology class of the cocycle ϕ. By [10, p. 48-9],
a) the Lie bracket is null on C0(A,A)⊗ C0(A,A),
b) the Lie bracket restricted to { , } : C1(A,A) ⊗ C0(A,A) → C0(A,A) is given

by {g, a} = g(sa) for any g : sA→ A and a ∈ A,
c) the Lie bracket restricted to { , } : C1(A,A) ⊗ C1(A,A) → C1(A,A) is given
by

{f, g, }([sa]) = f ◦ s ◦ g ◦ s(a)− (−1)(|f |+1)(|g|+1)g ◦ s ◦ f ◦ s(a).

By a), the Lie bracket is trivial on (A⊗ 1)⊗ (A⊗ 1). By b), for ϕ ∈ V ∨ and v ∈ V ,

{1⊗ s−1ϕ, v ⊗ 1} = (−1)|ϕ|ϕ(v)1 ⊗ 1.

Let ϕ and ϕ′ be two linear forms on V . Then

ϕ◦s◦ϕ′◦s([v1 . . . vn]) =
∑

1≤j<i≤n

(
(−1)|ϕ||ϕ′|εij(ϕ, ϕ

′) + εij(ϕ
′, ϕ)

)
v1 . . . v̂j . . . v̂i . . . vn

where εij(ϕ, ϕ
′) = (−1)|ϕ||sv1...vi−1|+|ϕ′||sv1...vj−1|ϕ(vi)ϕ

′(vj). Therefore ϕ ◦ s ◦ ϕ′ ◦

s− (−1)|ϕ||ϕ′|ϕ′ ◦ s ◦ϕ ◦ s = 0. So by c), the Lie bracket {1⊗ s−1ϕ, 1⊗ s−1ϕ′} = 0.
iii) By 1) of Proposition 12.1, ∆([m]) = 0 and so ∆ is trivial on all m⊗1 ∈ A⊗1.

Let x1, . . . , xN be a basis of V . The trace of A is (x1 . . . xN )∨. Therefore the
trace vanishes on elements of wordlength strictly less than N . For any ϕ ∈ V ∨, the
derivation ϕ◦s decreases wordlength by 1. So tr◦ϕ◦s = 0. By 2) of Proposition 12.1,
∆(1⊗s−1ϕ) = 0. Since the Lie bracket is trivial on (1⊗K[s−1V ∨])⊗(1⊗K[s−1V ∨]),
∆ is trivial on 1⊗K[s−1V ∨].

ii) The proof is the same as in i): for example, Γ(sV ) is the graded tensor product
of the free divided power algebra on sU and of the exterior algebra on sW . �

Remark 12.4. Suppose that V is concentrated in degree 0. We have obtained a
quasi-isomorphism of differential graded algebras

C∗(S(V ),S(V ))
≃
։ (S(V )⊗ Λ(s−1V ∨), 0).

In particular, the differential graded algebra C∗(S(V ),S(V )) is formal.
It is easy to see that if V is of dimension 1 then the inclusion

(S(V )⊗ Λ(s−1V ∨), 0) →֒ C∗(S(V ),S(V ))

is a quasi-isomorphism of differential graded Lie algebras. In particular, the differ-
ential graded Lie algebra C∗(S(V ),S(V )) is formal. Kontsevich formality theorem
says that over a field F of characteristic zero, the differential graded Lie alge-
bra C∗(S(V ),S(V )) is formal even if V is not of dimension 1 [22, Theorem 2.4.2
(Tamarkin)].

13. Triviality of the loop product when H∗(BG) is polynomial

This section is independent of the rest of the paper. Recall the dual of the loop
coproduct introduced by Sullivan for manifolds H∗(LM)⊗H∗(LM)→ H∗+d(LM)
is (almost) trivial [43]. In this section, we prove that the loop product for classi-
fying spaces of Lie groups H∗(LBG) ⊗ H∗(LBG) → H∗+d(LBG) is trivial if the
inclusion of the fibre in cohomology j∗ : H∗(LBG;K) ։ H∗(G;K) is surjective
(Theorem 13.1). We also explain that this condition j∗ : H∗(LBG;K) ։ H∗(G;K)
surjective is equivalent to our hypothesis H∗(BG) polynomial (Theorem 13.3).



THE BV ALGEBRA IN STRING TOPOLOGY OF CLASSIFYING SPACES 37

Theorem 13.1. Let BG be the classifying space of a connected Lie group G. Sup-
pose that the map induced in cohomology H∗(LBG;K) ։ H∗(G;K) is surjective.
Then the loop product on H∗(LBG;K) is trivial while the loop coproduct is injective.

This result is a generalization of [12, Theorem D] in which it is assumed that the
underlying field is of characteristic zero. If CharK 6= 2, the triviality of the loop
product was first proved by Tamanoi [42, Theorem 4.7 (2)]. The second author
and David Chataur conjecture that the loop coproduct on H∗(LBG) has always a
counit. Assuming that the loop coproduct on H∗(LBG) has a counit, obviously
the loop coproduct is injective and it follows from [42, Theorem 4.5 (i)] that the
loop product on H∗(LBG) is trivial.

The injectivity described in Theorem 13.1 follows from a consideration of the
Eilenberg-Moore spectral sequences associated with appropriate pullback diagrams.
In fact, the induced maps Comp! and H(q) in the cohomology are epimorphisms;
see Proposition 13.2.

Let ΩX
i
→֒ LX ։ X be the free loop fibration. The following proposition is a

key to proving Theorem 13.1.

Proposition 13.2. LetX be a simply-connected space. Suppose that i∗ : H∗(LX)→
H∗(ΩX) induced by the inclusion is surjective. Then one has
(1) the map H∗(q) induced by the inclusion q : LX ×X LX → LX × LX is an
epimorphism.
(2) Suppose that G is a connected Lie group. Then, for the map Comp : LBG×BG

LBG→ LBG, Comp! is an epimorphism.

Proof of Theorem 13.1. By Proposition 13.2 (1) and (2), we see that the dual to
the loop coproduct Dlcop := Comp! ◦H∗(q) on H∗(LBG) is surjective. Since q! is
H∗(LBG×LBG)-linear and decreases the degrees, q! ◦H∗(q) = 0. By Proposition
13.2 (1), H∗(q) is an epimorphism. Therefore q! is trivial and the dual of the loop
product Dlp := H∗(q!) ◦H∗(Comp) on H∗(LBG) is also trivial. �

Proof of Proposition 13.2. Consider the two Eilenberg-Moore spectral sequences
associated to the free loop fibration mentioned above and to the pull-back diagram

LX ×X LX
q //

p

��

LX × LX

p×p

��
X

∆ // X ×X

SinceH∗(LX) is a freeH∗(X)-module by Leray-Hirsch theorem, these two Eilenberg-
Moore spectral sequences are concentrated on the 0-th column. So the two mor-
phisms of graded algebras

H∗(i)⊗H∗(X) η : H∗(LX)⊗H∗(X) K
∼=
→ H∗(ΩX)

and

H∗(q)⊗H∗(X)⊗2H∗(p) : (H∗(LX)⊗H∗(LX))⊗H∗(X)⊗2H∗(X)
∼=
→ H∗(LX×X LX)

are isomorphisms. In particular, H∗(q) is an epimorphism and we have an isomor-
phism of graded vector spaces between H∗(LX ×X LX) and H∗(LX)⊗H∗(ΩX).
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Consider the Leray-Serre spectral sequence {Ê∗,∗
r , d̂r} of the homotopy fibration

ΩX
j
→ LX ×X LX

Comp
→ LX . Since H∗(LX ×X LX) is isomorphic to H∗(LX)⊗

H∗(ΩX), by [37, III.Lemma 4.5 (2)], {Ê∗,∗
r , d̂r} collapses at the E2-term. Then

for X = BG, the integration along the fibre Comp! : H∗(LBG ×BG LBG) →
H∗−dimG(LBG) is surjective. �

Let G be a connected Lie group and K a field of arbitrary characteristic. Let

F : G
j
→ LBG→ BG be the free loop fibration.

Theorem 13.3. The induced map j∗ : H∗(LBG;K) → H∗(G;K) is surjective if
and only if H∗(BG;K) is a polynomial algebra.

Proof. The ”if” part follows from the usual EMSS argument. In fact, suppose that
H∗(BG;K) ∼= K[V ]. Then the EMSS for the universal bundle F ′ : G→ EG→ BG
allows one to deduce that H∗(G;K) ∼= ∆(sV ). By using the EMSS for the fibre
square ([25, Proof of Theorem 1.2] or [27, Proof of Theorem 1.6])

LBG //

��

BGI

��
BG

∆
// BG×BG,

we see that H∗(LBG;K) ∼= H∗(BG;K) ⊗ ∆(sV ) as an H∗(BG) = K[V ]-algebra.
This implies that the Leray-Serre spectral sequence (LSSS) for F collapses at the
E2-term and hence j∗ is surjective. See the beginning of section 3 for an alternative
proof which uses module derivations.

Suppose that j∗ is surjective. We further assume that CharK = 2. By the
argument in [27, Remark 1.4] or [20, Proof of Theorem 2.2], we see that the Hopf
algebra A = H∗(G;K) is cocommutative and so primitively generated; that is, the
natural map ι : P (A) → Q(A) is surjective. By [27, Lemma 4.3], this yields that
H∗(G;K) ∼= ∆(x1, ..., xN ), where xi is primitive for any 1 ≤ i ≤ N . The same
argument as in the proof of [37, Chapter 7, Theorem 2.26(2)] allows us to deduce
that each xi is transgressive in the LSSS {Er, dr} for F

′. To see this more precisely,
we recall that the action of G on EG gives rise to a morphism of spectral sequence

{µ∗
r} : {Er, dr} → {Er ⊗H

∗(G;K), dr ⊗ 1}

for which µ∗
2 = 1 ⊗ µ∗ : H∗(BG;K) ⊗ H∗(G;K) → H∗(BG;K) ⊗ H∗(G;K) ⊗

H∗(G;K), where µ : G×G→ G denotes the multiplication on G; see [37, Chapter
7, Section 2].

Suppose that there exists an integer i such that xj is transgressive for j < i but
not xi. Then we see that for some r < deg xi + 1, dr(xi) 6= 0 and dp(xi) = 0 if
p < r. We write

dr(xi) =
∑

l

bl ⊗ xl1 · · ·xlsl ,

where each bl is a non-zero element of H∗(BG;K) and 1 ≤ lu ≤ N for any l and u.
The equality µ∗

rdr(xi) = (dr ⊗ 1)µ∗
r(xi) implies that

∑

l

bl ⊗ xl1 · · ·xlsl−1 ⊗ xlsl + · · · = dr ⊗ 1(1⊗ xi ⊗ 1 + 1⊗ 1⊗ xi)

=
∑

l

bl ⊗ xl1 · · ·xlsl ⊗ 1,
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which is a contradiction. Observe that xi and xlu are primitive. Thus it follows
that xi is transgressive for any 1 ≤ i ≤ N .

In the case where CharK = p 6= 2, since j∗ is surjective by assumption, it follows
from the argument in [27, Remark 1.4] that H∗(G;Z) has no p-torsion. Observe
that to obtain the result, the connectedness of the loop space is assumed. By virtue
of [37, Chapter 7, Theorem 2.12], we see that H∗(BG;K) is a polynomial algebra.
This completes the proof. �

The following theorem give another characterisation of our hypothesis H∗(BG)
polynomial.

Theorem 13.4. Let G be a connected Lie group. Then the following three condi-
tions are equivalent:

1) H∗(BG;K) is a polynomial algebra on even degree generators.
2) BG is K-formal and H∗(BG;K) is strictly commutative.
3) The singular cochain algebra S∗(BG;K) is weakly equivalent as algebras to a

strictly commutative differential graded algebra A.

Stricly commutative means that a2 = 0 if a ∈ Aodd (K can be a field of charac-
teristics two).

Proof. 1 ⇒ 2. Suppose that H∗(BG;K) is a polynomial algebra. Then by the
beginning of section 6, BG is K-formal.

2⇒ 3. Formality means that we can take A = (H∗(BG;K), 0) in 3).
3⇒ 1. Let Y be a simply connected space such that S∗(Y ;K) is weakly equiva-

lent as algebras to a strictly commutative differential graded algebra A. Let (ΛV, d)
be a minimal Sullivan model of A. Consider the semifree-(ΛV, d) resolution of (K, 0),
(ΛV ⊗ ΓsV,D) given in [15, Proposition 2.4] or [32, Lemma 7.2]. Then the tensor
product of commutative differential graded algebras (K, 0)⊗(ΛV,d) (ΛV ⊗ΓsV,D) ∼=

(ΓsV,D) has a trivial differential D = 0 [15, Corollary 2.6]. Therefore we have the
isomorphisms of graded vector spaces

H∗(ΩY ) ∼= TorS
∗(Y ;K)(K,K) ∼= Tor(ΛV,d)(K,K) ∼= H∗(ΓsV,D) ∼= ΓsV.

IfH∗(ΩY ) is of finite dimension then the suspension of V , sV , must be concentrated
in odd degree and so V must be in even degree and d = 0, i. e. Y is K-formal and
H∗(Y ) is polynomial in even degree. �
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