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Introduction

Let M be a closed oriented smooth manifold and let LM denote the space of free loops on M . Chas and Sullivan [START_REF] Chas | String topology[END_REF] have defined a product on the homology of LM , called the loop product, H * (LM ) ⊗ H * (LM ) → H * -dim M (LM ). They showed that this loop product, together with the homological BV-operator ∆ : H * (LM ) → H * +1 (LM ), make the shifted free loop space homology H * (LM ) := H * +dim M (LM ) into a Batalin-Vilkovisky algebra, or BV algebra. Over Q, when M is simplyconnected, this BV algebra can be computed using Hochschild cohomology [START_REF] Félix | Rational BV-algebra in string topology[END_REF]. In particular, if M is formal over Q, there is an isomorphism of BV algebras between H * (LM ) and HH * (H * (M ; Q), H * (M ; Q)), the Hochschild cohomology of the symmetric Frobenius algebra H * (M ; Q). Over a field F p , if p = 0, this BV algebra H * (LM ) is hard to compute. It has been computed only for complex Stiefel manifolds [START_REF] Tamanoi | Batalin-Vilkovisky Lie algebra structure on the loop homology of complex Stiefel manifolds[END_REF], spheres [START_REF]String topology for spheres[END_REF], compact Lie groups [START_REF] Hepworth | String topology for Lie groups[END_REF][START_REF]A Batalin-Vilkovisky algebra morphism from double loop spaces to free loops[END_REF] and complex projective spaces [START_REF] Chataur | On the loop homology of complex projective spaces[END_REF][START_REF] Hepworth | String topology for complex projective spaces[END_REF].

Let G be a connected compact Lie group of dimension d and let BG its classifying space. Motivated by Freed-Hopkins-Teleman twisted K-theory [START_REF] Daniel | Loop groups and twisted Ktheory III[END_REF] and by a structure of symmetric Frobenius algebra on H * (G), Chataur and the second author [START_REF] Chataur | String topology of classifying spaces[END_REF] have proved that the homology of the free loop space LBG with coefficients in a field K admits the structure of a d-dimensional homological conformal field theory (More generally, if G acts smoothly on M , Behrend, Ginot, Noohi and Xu [START_REF] Behrend | String topology for stacks[END_REF]Theorem 14.2] have proved that H * (L(EG × G M )) is a (d -dim M )homological conformal field theory.). In particular, the operation associated with a cobordism connecting one dimensional manifolds called the pair of pants, defined a product on the cohomology of LBG, called the dual of the loop coproduct, H * (LBG) ⊗ H * (LBG) → H * -d (LBG). Chataur and the second author showed that the dual of the loop coproduct, together with the cohomological BV-operator ∆ : H * (LBG) → H * -1 (LBG), make the shifted free loop space cohomology H * (LBG) := H * +d (LBG) into a BV algebra up to signs. Over F 2 , Hepworth and Lahtinen [START_REF] Hepworth | On string topology of classifying spaces[END_REF] have extended this result to non connected compact Lie group and more difficult, they showed that this d-dimensional homological conformal field theory, in particular this algebra H * (LBG), has an unit. Our first result is to solve the sign issues and to show that indeed, H * (LBG) is a BV algebra (Corollary 9.3). In fact, we show more generally that the dual of a d-homological field theory has a structure of BV algebra (Theorem 9.1).

In [START_REF] Lahtinen | Higher operations in string topology of classifying spaces[END_REF], Lahtinen computes some non-trivial higher operations in the structure of this d-dimensional homological conformal field theory on the cohomology of BG for some compact Lie groups G. In this paper, we compute the most important part of this d-dimensional homological conformal field theory, namely the BV-algebra H * (LBG; F p ) for almost any connected compact Lie group G and any field F p . According to our knowledge, this BV-algebra H * (LBG; F p ) has never been computed on any example.

Our method is completely different from the methods used to compute the BV algebra H * (LM ) in the known cases recalled above. Suppose that the cohomology algebra of BG over F p , H * (BG; F p ), is a polynomial algebra F p [y 1 , ..., y N ] (few connected compact Lie groups do not satisfy this hypothesis). Then the cup product on H * (LBG; F p ) was first computed by the first author in [START_REF] Kuribayashi | Module derivations and the adjoint action of a finite loop space[END_REF](see [START_REF] Kishimoto | On the cohomology of free and twisted loop spaces[END_REF] for a quick calculation). In his paper [START_REF] Tamanoi | Cap products in string topology[END_REF] entitled "cap products in String topology", Tamanoi explains the relations between the cap product and the loop product on H * (LM ). Dually, in Theorem 2.2 entitled "cup products in String topology of classifying spaces", we give the relations between the cup product on H * (LBG) and the BV algebra H * (LBG). Knowing the cup product on H * (LBG), these relations give the dual of the loop coproduct, m on H * (LBG) (Theorem 3.1). But now, since the cohomological BV-operator ∆ (see section 11) is a derivation with respect to the cup product, ∆ is easy to compute. So finally, on H * (LBG), we have computed at the same time, the cup product and the BV-algebra structure. This has never be done for the BV algebra H * (LM ).

If there is no top degree Steenrod operation Sq 1 on H * (BG; F 2 ), if p is odd or p = 0, applying Theorem 3.1, we give an explicit formula for the dual of the loop coproduct m in Theorem 4.1 and we show in Theorem 6.2 that there is an isomorphism of BV algebras between H * (LBG; F p ) and HH * (H * (G; F p ), H * (G; F p )), the Hochschild cohomology of the symmetric Frobenius algebra H * (G; F p ).

The case p = 2 is more intriguing. When p = 2, we don't give in general an explicit formula for the dual of the loop coproduct m (however, see Theorem 5.4 for a general equation satisfied by m). But for a given compact Lie group G, applying Theorem 3.1, we are able to give an explicit formula. As examples, in this paper, we compute the dual of the loop coproduct when G = SO(3) (Theorem 5.7) or G = G 2 (Theorem 5.1). We show (Theorem 6.3) that the BV algebras H * (LBSO(3); F 2 ) and HH * (H * (SO(3); F 2 ), H * (SO(3); F 2 )), the Hochschild cohomology of the symmetric Frobenius algebra H * (SO(3); F 2 ), are not isomorphic although the underlying Gerstenhaber algebras are isomorphic. Such curious result was observed in [START_REF]String topology for spheres[END_REF] for the Chas-Sullivan BV algebras H * (LS 2 ; F 2 ).

However, for any connected compact Lie group such that H * (BG; F p ), is a polynomial algebra, we show (Corollary 4.3 and Theorem 5.8) that as graded algebras

H * (LBG; F p ) ∼ = H * (G; F p ) ⊗ H * (BG; F p ) ∼ = HH * (H * (G; F p ), H * (G; F p )).
Such isomorphisms of Gerstenhaber algebras should exist (Conjecture 6.1).

We give now the plan of the paper:

Section 2: We carefully recall the definition of the loop product and of the loop coproduct insisting on orientation (Theorem 2.1). Theorem 2.2 mentioned above is proved.

Section 3: When H * (X) is a polynomial algebra, following [START_REF] Kuribayashi | Module derivations and the adjoint action of a finite loop space[END_REF] or [START_REF] Kishimoto | On the cohomology of free and twisted loop spaces[END_REF], we give the cup product on H * (LX). Therefore (Theorem 3.1) the dual of the loop coproduct is completely given by Theorems 2.1 and 2.2.

Section 4 is devoted to the simple case when the characteristic of the field is different from two or when there is no top degree Steenrod operation.

Section 5: The field is F 2 . We give some general properties of the dual of the loop coproduct (Lemma 5.3, Theorem 5.4). In particular, we show that it has an unit (Theorem 5.5). As examples, we compute the dual of the loop coproduct on H * (LBSO(3); F 2 ) and on H * (LBG 2 ; F 2 ) (Theorems 5.7 and 5.1). Up to an isomorphism of graded algebras, H * (LX; F 2 ) is just the tensor product of algebras H * (X; F 2 ) ⊗ H - * (ΩX; F 2 ) = F 2 [V ] ⊗ Λ(sV ) ∨ (Theorem 5.8). As examples, we compute the BV-algebra H * +3 (LBSO(3); F 2 ) ∼ = Λ(u -1 , u -2 ) ⊗ F 2 [v 2 , v 3 ] (Theorem 5.13) and the BV-algebra H * +14 (LBG 2 ; F 2 ) ∼ = Λ(u -3 , u -5 , u -6 ) ⊗ F 2 [v 4 , v 6 , v 7 ] (Theorem 5.14).

Section 6: After studying the formality and the coformality of BG, we compare the associative algebras, the Gerstenhaber algebras, the BV-algebras H * (LBG) and HH * (H * (G), H * (G)) under various hypothesis.

Section 7: We solve some sign problems in the results of Chataur and the second author. In particular, we correct the definition of integration along the fibre and the main cotheorem of [START_REF] Chataur | String topology of classifying spaces[END_REF] concerning the prop structure on H * (LX).

Section 8: Therefore H * (LX) is equipped with a graded associative and graded commutative product m.

Section 9: In fact, H * (LX) equipped with m and the BV-operator ∆ is a BValgebra since the BV identity arises from the lantern relation.

Section 10: This BV identity comes from seven equalities involving Dehn twists and the prop structure on the mapping class group.

Section 11: We compare different definitions of the BV-operator ∆ : H * (LX) → H * -1 (LX).

Section 12: We compute the Gerstenhaber algebra structure on the Hochschild cohomology HH * (S(V ), S(V )) of a free commutative graded algebra S(V ) (Theorem 12.3). In particular, we give the BV-algebra structure on the Hochschild cohomology HH * (Λ(V ), Λ(V )) of a graded exterior algebra Λ(V ).

Section 13: In this last section independent of the rest of the paper, we show that the loop product on H * (LBG; F p ) is trivial if and only if the inclusion of the fibre i : ΩBG ֒→ LBG induces a surjective map in cohomology if and only if H * (BG; F p ) is a polynomial algebra if and only if BG is F p -formal (when p is odd).

The dual of the Loop coproduct

In this paper, all the results are stated for simplicity for a connected compact Lie group G. But they are also valid for an exotic p-compact group. Indeed, following [START_REF] Chataur | String topology of classifying spaces[END_REF], we only require that G is a connected topological group (or a pointed loop space) with finite dimensional cohomology H * (G; F p ). This is the main difference with [START_REF] Hepworth | On string topology of classifying spaces[END_REF], where Hepworth and Lahtinen require the smoothness of G.

Let X be a simply-connected space satisfying the condition that H * (ΩX; K) is of finite dimension. Then there exists an unique integer d such that H i (ΩX; K) = 0 for i > d and H d (ΩX; K) ∼ = K. In order to describe our results, we first recall the definitions of the product Dlcop on H * +d (LX; K) and of the loop product on H * -d (LX; K) defined by Chataur and the second author in [START_REF] Chataur | String topology of classifying spaces[END_REF].

Let F be the pair of pants regarded as a cobordism between one ingoing circle and two outgoing circles. The ingoing map in : S 1 ֒→ F and outgoing map out :

S 1 S 1 ֒→ F give the correspondence LX map(F, X) map(in,X) o o o o map(out,X) / / / / LX × LX
where map(in, X) and map(out, X) are orientable fibrations. After orienting them, the integration along the fibre induces a map in cohomology

map(in, X) ! : H * +d (map(F, X)) → H * (LX)
and a map in homology

map(out, X) ! : H * (LX) ⊗2 → H * +d (map(F, X)).
See Section 7 for the definition of the integration along the fibre. By definition, the loop product is the composite

H * (map(in, X)) • map(out, X) ! : H p-d (LX) ⊗ H q-d (LX) → H p+q-d (map(F, X)) → H p+q-d (LX).
By definition, the dual of the loop coproduct, Dlcop is the composite

map(in, X) ! • H * (map(out, X)) : H p+d (LX) ⊗ H q+d (LX) → H p+q+2d (map(F, X)) → H p+q+d (LX).
The pair of pants F is the mapping cylinder of c π : S 1 (S 1 S 1 ) → S 1 ∨ S 1 where c : S 1 → S 1 ∨ S 1 is the pinch map and π : S 1 S 1 → S 1 ∨ S 1 is the quotient map. Therefore the wedge of circles S 1 ∨ S 1 is a strong deformation retract of the pair of pants F . The retract r : F ≈ ։ S 1 ∨ S 1 corresponds to lower his pants and tuck up his trouser legs at the same time: 

LX map(F, X) map(out,X) / / map(in,X) o o LX ×2 LX × X LX Comp h h Q Q Q Q Q Q Q Q Q Q Q Q q 6 6 l l l l l l l l l l l l map(r,X) ≈ O O
where Comp is the composition of loops and q is the inclusion. If X was a closed manifold M of dimension d, Comp and q would be embeddings. And the Chas-Sullivan loop product is the composite

H * (Comp)•q ! : H p+d (LM )⊗H q+d (LM ) → H p+q+d (LM × M LM )) → H p+q+d (LM ).
while the dual of the loop coproduct is the composite

Comp ! •H * (q) : H p-d (LM )⊗H q-d (LM ) → H p+q-2d (LM × M LM ) → H p+q-d (LM ).
Therefore although Comp and q are not fibrations, by an abuse of notation, sometimes, we will say that in the case of string topology of classifying spaces [START_REF] Chataur | String topology of classifying spaces[END_REF], the loop product on

H * -d (LX) is still H * (Comp) • q ! while Dlcop is Comp ! • H * (q).
The shifted cohomology H * (LX) := H * +d (LX) together with the dual of the loop coproduct Dlcop defined by Chataur and the second author in [START_REF] Chataur | String topology of classifying spaces[END_REF] is a Batalin-Vilkovisky algebra, in particular a graded commutative associative algebra, only up to signs for two reasons:

-First, the integration along the fibre defined in [START_REF] Chataur | String topology of classifying spaces[END_REF] as usually does not satisfy the usual property with respect to the product. We have corrected this sign mistake of [START_REF] Chataur | String topology of classifying spaces[END_REF] in section 7.

-Second, as explained in section 7, this is also due to the non-triviality of the prop detH 1 (F,

∂ out ; Z) ⊗d (if d is odd).
Nevertheless, we show Theorem 9.1. In particular, we have that H * (LX) equipped with the operator ∆ induced by the action of the circle on LX (See our definition in section 11) is a Batalin-Vilkovisky algebra with respect to the product m defined by m(a

⊗ b) = (-1) d(d-|a|) Dlcop(a ⊗ b) for a ⊗ b ∈ H * (LX) ⊗ H * (LX); see Corollary 9.3 below.
In order to investigate Dlcop more precisely, we need to know how the fibration map(in, X) is oriented. As explained in [6, section 11.5], we have to choose a pointed homotopy equivalence f :

F/∂ in ≈ → S 1 . Then the fibre map * (F/∂ in , X) of map(in, X) is oriented by the composite τ • H d (map * (f, X)) : H d (map * (F/∂ in , X)) → H d (ΩX) → K.
where τ is the orientation on ΩX that we choose. In this paper, we choose f such that we have the following homotopy commutative diagram

map * (F/∂ in , X) incl / / map(F, X) ΩX map * (f,X) ≈ O O j / / LX × X LX map(r,X) ≈ O O
where incl is the inclusion of the fibre of map(in, X) and j is the map defined by j(ω) = (ω, ω -1 ).

Theorem 2.1. Let i : ΩX ֒→ LX be the inclusion of pointed loops into free loops. Let S be the antipode of the Hopf algebra H * (ΩX). Let τ : H d (ΩX) → K be the chosen orientation on ΩX. Let a ∈ H p (LX) and b ∈ H q (LX) such that p + q = d. Then with the above choice of pointed homotopy equivalence f :

F/∂ in ≈ → S 1 , m(a ⊗ b) = (-1) d(d-p) τ (H p (i)(a) ∪ S • H q (i)(b)) 1 H * (LX) . Proof. Let F incl ֒→ E p ։ B be an oriented fibration with orientation τ : H d (F ) → K.
By definition or by naturality with respect to pull-backs, the integration along the fibre p ! is in degree d the composite

H d (E) H d (incl) → H d (F ) τ → K η → H 0 (B)
where η is the unit of H * (B). Therefore Dlcop is given by the commutative diagram

H d (LX × LX) H d map(out,X) u u k k k k k k k k k k k k k k H d (q) H d (i×i) ( ( R R R R R R R R R R R R R H d (map(F, X)) H d map(r,X) / / H d (incl) map(in,X) ! & & H d (LX × X LX) H d (j) H d (incl) / / H d (ΩX × ΩX) H d (Id×Inv) H d (map * (F/∂ in )) H d map * (f,X) / / H d (ΩX) τ H d (ΩX × ΩX) H d (∆) o o H 0 (LX) K η o o
where incl : ΩX × ΩX ֒→ LX × X LX is the inclusion and Inv : ΩX → ΩX maps a loop ω to its inverse ω -1 . Therefore

Dlcop(a ⊗ b) = τ (H p (i)(a) ∪ S • H q (i)(b)) 1 H * (LX) .
We define a bracket { , } on H * (LX) with the product m and the Batalin-Vilkovisky operator ∆ :

H * (LX) → H * -1 (LX) by {a, b} = (-1) |a| ∆(m(a ⊗ b)) -(-1) |a| m(∆(a) ⊗ b) -m(a ⊗ ∆(b))
for a, b in H * (LX). By Theorem 9.3, this bracket is exactly a Lie bracket. The following theorem is the analogue for string topology of classifying spaces [START_REF] Chataur | String topology of classifying spaces[END_REF] of the theorems of Tamanoi in [START_REF] Tamanoi | Cap products in string topology[END_REF] for Chas-Sullivan string topology [START_REF] Chas | String topology[END_REF]. This analogy is quite surprising and complete. For our calculations, in the rest of the paper, we use only parts (1) and (2) of this theorem. Let ev : LX ։ X be the evaluation map defined by ev(γ) = γ(0) for γ ∈ LX.

Theorem 2.2. (Cup products in string topology of classifying spaces) Let X be a simply-connected space such that H * (ΩX; K) is finite dimensional. Let P , Q ∈ H * (X) and a and b ∈ H * (LX).

(1) (Compare with [41, Theorem A (1.2)]) The dual of the loop coproduct m :

H * (LX) ⊗ H * (LX) → H * (LX) is a morphism of left H * (X) ⊗ H * (X)-modules: m(ev * (P ) ∪ a ⊗ ev * (Q) ∪ b) = (-1) (|a|-d)|Q| ev * (P ) ∪ ev * (Q) ∪ m(a ⊗ b).
(2) (Compare with [41, Theorem A (1.3)]) The cup product with ∆(ev * (P )) is a derivation with respect to the algebra (H * (LX), m):

∆(ev * (P )) ∪ m(a ⊗ b) = m(∆(ev * (P )) ∪ a ⊗ b) + (-1) (|P |-1)(|a|-d) m(a ⊗ ∆(ev * (P )) ∪ b).
(3) (Compare with [41, Theorem A(1.4) ]) The cup product with ∆(ev * (P )) is a derivation with respect to the bracket ∆(ev * (P )) ∪ {a, b} = {∆(ev * (P )) ∪ a, b} + (-1) (|P |-1)(|a|-d-1) {a, ∆(ev * (P )) ∪ b}. (6) (Compare with [41, Theorem C]) Suppose that the algebra (H * (LX), m) has an unit I. Let s ! : H * (X) → H * +d (LX), be the map mapping P to ev * (P ) ∪ I. Then s ! is a morphism of Batalin-Vilkovisky algebras with respect to the trivial BV-operator on H * (X) and ev * (P ) ∪ a = m(s ! (P ) ⊗ a) and (-1) |P | ∆(ev * (P )) ∪ a = {s ! (P ), a}.

(7) Let r ≥ 0. Let P 1 , . . . , P r be r elements of H * (LX). Denote by

X i := ∆(ev * (P i )). Then m(ev * (P ) ∪ a ⊗ ev * (Q) ∪ X 1 ∪ • • • ∪ X r ∪ b) = (-1) (|a|-d)(|Q|+|X1|+•••+|Xr|) × 0≤j1,...,jr ≤1 ±ev * (P ) ∪ ev * (Q) ∪ X 1-j1 1 ∪ • • • ∪ X 1-jr r ∪ m(X j1 1 ∪ • • • ∪ X jr r ∪ a ⊗ b)
where ± is the sign (-1)

j1+•••+jr + r k=1 (1-j k )|X k |(j1|X1|+•••+j k-1 |X k-1 |) .
To prove parts (1) and ( 2), it is shorter to use the following Lemma. This Lemma is just the cohomological version of [START_REF] Chas | String topology[END_REF]Theorem 8.2] when we replace the correspondence

LM × LM q ←֓ LM × M LM Comp → LM by its opposite LX Comp ← LX × X LX q ֒→ LX × LX.
Similarly, it would have been shorter for Tamanoi to prove parts (1.2) and (1.3) of [41, Theorem A] using [START_REF] Chas | String topology[END_REF]Theorem 8.2].

Lemma 2.3. Let a = a 1 ⊗ a 2 ∈ H * (LX × LX) and A ∈ H * (LX) such that H * (Comp)(A) = H * (q)(a). Then for any z ∈ H * (LX × LX), A ∪ m(z) = (-1) d|a2| m(a 1 ⊗ a 2 ∪ z).
Proof. Since the integration along the fibre Comp ! is exactly with signs, a morphism of left H * (LX)-modules (See our definition of integration along the fibre in cohomology in section 7)

Comp ! (H * (Comp)(A) ∪ y) = (-1) d|A| A ∪ Comp ! (y).
Since H * (q) is a morphism of algebras,

(-1) d|A| Dlcop(a ∪ z) = (-1) d|A| Comp ! • H * (q)(a ∪ z) = (-1) d|A| Comp ! (H * (Comp)(A)∪H * (q)(z)) = A∪Comp ! •H * (q)(z) = A∪Dlcop(z).
By linearity, we can suppose that z = z 1 ⊗ z 2 . Then the previous equation is

A∪(-1) d(|z1|-d) m(z 1 ⊗z 2 ) = (-1) d(|a1|+|a2|) (-1) d(|a1|+|z1|-d) m(a 1 ⊗a 2 ∪z 1 ⊗z 2 ).
Proof of Theorem 2.2.

(1) We have the commutative diagram

LX ev ' ' N N N N N N N N N N N LX × X LX Comp o o q / / LX × LX ev×ev X ∆ / / X × X
Therefore by applying Lemma 2.3 to a := H * (ev × ev)(P ⊗ Q) and A := H * (∆ • ev)(P ⊗ Q), we obtain

H * (ev)(P ) ∪ H * (ev)(Q) ∪ m(a ⊗ b) = (-1) d|Q| m(H * (ev)(P ) ⊗ H * (ev)(Q) ∪ a ⊗ b).
(2) By [41, Proof of Theorem 4.2 (4.5)]

Comp * (∆(ev * (P ))) = q * (∆(ev * (P )) × 1 + 1 × ∆(ev * (P ))).

So we can apply Lemma 2.3 to a := ∆(ev * (P )) × 1 + 1 × ∆(ev * (P )) and A := ∆(ev * (P )), we obtain ∆(ev

* (P )) ∪ (m(a ⊗ b) = m ((∆(ev * (P )) ⊗ 1) + (-1) d(|P |-1) m (1 ⊗ ∆(ev * (P ))) ∪ (a ⊗ b)) .
(3) By using the formula (2), the same argument as in [41, Proof of Theorem 4.5] deduces the derivation formula on the bracket.

(4) Again, the arguments are identical as those given by Tamanoi: see [ ) is a H * (X)-algebra (formula (1) of Theorem 2.2), the map s ! : H * (X) → H * +d (LX), P → ev * (P ) ∪ I, is a morphism of unital commutative graded algebras (we denote this map s ! because this map should coincide with some Gysin map of the trivial section s : X ֒→ LX [START_REF] Chataur | String topology of classifying spaces[END_REF]).

Since the cup product with ∆(ev * (P )) is a derivation with respect to the dual of the loop coproduct, ∆(ev * (P )) ∪ I = 0. Since H * (LX) is a Batalin-Vilkovisky algebra, ∆(I) = 0. Therefore, since ∆ is a derivation with respect to the cup product, ∆(s ! (P )) = ∆(ev * (P )) ∪ I + (-1) |P | ev * (P ) ∪ ∆(I) = 0 + 0. Now we can conclude using the same arguments as in [41, proof of Theorem 5.1]. [START_REF] Earle | Teichmüller theory for surfaces with boundary[END_REF] The case r = 0 is just [START_REF] Behrend | String topology for stacks[END_REF]. Now, by induction on r, m(ev

* (P ) ∪ a ⊗ ev * (Q) ∪ X 1 ∪ • • • ∪ X r-1 ∪ (X r ∪ b)) = (-1) (|a|-d)(|Q|+|X1|+•••+|Xr-1|) × 0≤j1,...,jr-1≤1 ±ev * (P ) ∪ ev * (Q) ∪ X 1-j1 1 ∪ • • • ∪ X 1-jr-1 r-1 ∪ m(X j1 1 ∪ • • • ∪ X jr-1 r-1 ∪ a ⊗ X r ∪ b) But by (2), m(X j1 1 ∪ • • • ∪ X jr-1 r-1 ∪ a ⊗ X r ∪ b) = 1 jr =0 (-1) |Xr|(|a|-d)+jr+(1-jr )|Xr | r-1 l=1 j l |X l | X 1-jr r m(X j1 1 ∪ • • • ∪ X jr r ∪ a ⊗ b)
Remark 2.4. Suppose that the algebra H * (LX) is generated by H * (X) and ∆(H * (X)).

Then by formula (7) of Theorem 2.2 in the case b = 1, we see that the dual of the loop coproduct m is completely given by the cup product, by the ∆ operator and by its restriction on H * (LX) ⊗ 1. In the following section, we show that this is the case when H * (X) is a polynomial (see remark 3.2).

The cup product on free loops and the main theorem

Let X be a simply-connected space with polynomial cohomology: H * (X) is a polynomial algebra K[y 1 , ..., y N ]. The cup product on the free loop space cohomology H * (LX; K) was first computed by the first author in [START_REF] Kuribayashi | Module derivations and the adjoint action of a finite loop space[END_REF]Theorem 1.6]. We now explain how to recover simply this computation following [23, p. 648].

By Borel theorem [37, Chapter VII. Corollary 2.8( 2)] (which can be easily proved using the Eilenberg-Moore spectral sequence associated to the path fibration ΩX ֒→ P X ։ X since E * , * 2 ∼ = Λ(σ(y 1 ), . . . , σ(y N ))),

H * (ΩX; K) = ∆(σ(y 1 ), . . . , σ(y N ))
where ∆σ(y i ) denotes an algebra with simple system of generators σ(y i ) [37, Definition p. 367]. If ch(K) = 2, ∆σ(y i ) is just the exterior algebra Λσ(y i ).

Let ∆ : H * (LX) → H * -1 (LX) be the operator induced by the action of the circle on LX (See section 11). Let D := ∆ • ev * denotes the module derivation of the first author in [START_REF] Kuribayashi | Module derivations and the adjoint action of a finite loop space[END_REF]. Since ∆ is a derivation with respect to the cup product, D is a (ev * , ev * )-derivation [START_REF] Kuribayashi | Module derivations and the adjoint action of a finite loop space[END_REF]Proposition 3.3]. Since ∆ and H * (ev) commutes with the Steenrod operations, D also [START_REF] Kuribayashi | Module derivations and the adjoint action of a finite loop space[END_REF]Proposition 3.3]. Since the composite i * • D is the suspension homomorphism σ [23, Proposition 2(1)], i * is surjective and so by Leray-Hirsch theorem,

H * (LX; K) = H * (X) ⊗ ∆ (D(y 1 ), . . . , D(y N )) as H * (X)-algebra. Modulo 2, it follows from above that H * (LX; Z/2)) is the polynomial algebra Z/2[ev * (y i ), Dy i ]
quotiented by the relations

(Dy i ) 2 = D(Sq |yi|-1 y i ).
In particular, we have ∆(ev * (y i )) = Dy i and ∆(Dy i ) = 0 since ∆•∆ = 0. Therefore, we know the cup product and the ∆ operator on H * (LX; K). The following theorem claims that we also know the dual of the loop coproduct.

Theorem 3.1. Let X be a simply-connected space such that H * (X; K) is the polynomial algebra K[y 1 , . . . , y N ]. Denote again by y i , the element of H * (LX), ev * (y i ), and by x i , ∆ • ev * (y i ). With respect to the cup product, as algebras

H * (LX) = K[y 1 , . . . , y N ] ⊗ ∆(x 1 , . . . , x N ).
Let d be the degree of x 1 . . . x N . Then the dual of the loop coproduct

m : H i (LX) ⊗ H j (LX) → H i+j-d (LX)
is given inductively (see remark 3.2) by the following four formulas (1) For any a and b ∈ H * (LX),

∀1 ≤ i ≤ N , m(a ⊗ x i b) = (-1) |xi|(|a|-d) x i m(a ⊗ b) -(-1) d|xi| m(ax i ⊗ b) (2) Let {i 1 , . . . , i l } and {j 1 , . . . , j m } be two disjoint subsets of {1, . . . , N } such that {i 1 , . . . , i l } ∪ {j 1 , . . . , j m } = {1, . . . , N }. If we orient τ : H d (ΩX) ∼ = → K by τ • H * (i)(x 1 . . . x N ) = 1 then m(x i1 . . . x i l ⊗ x j1 . . . x jm ) = (-1) N m+m ε
where ε is the signature of the permutation

1 . . . l + m i 1 . . . i l j 1 . . . j m .
(

) Let {i 1 , . . . , i l } and {j 1 , . . . , j m } be two disjoint subsets of {1, . . . , N } such that {i 1 , . . . , i l } ∪ {j 1 , . . . , j m } = {1, . . . , N }. Then m(x i1 . . . x i l ⊗ x j1 . . . x jm ) = 0. (4) m is a morphism of left H * (X) ⊗ H * (X)-modules: ∀P , Q ∈ H * (X), ∀a and b ∈ H * (LX), m((-1) |Q|(|a|-d) P a ⊗ Qb) = P Qm(a ⊗ b). 3 
Proof. Note that if y i is of odd degree then 2 = 0 in K. (1) and ( 4) are particular cases of ( 1) and ( 2) of Theorem 2.2. Since x i1 . . . x i l ⊗ x j1 . . . x jm is of degree less than d, for degree reasons, we have (3).

(

) Since i * (x i ) = i * • ∆ • ev * (y i ) is the suspension of y i , denoted σ(y i ), by Theorem 2.1, m(x i1 . . . x i l ⊗ x j1 . . . x jm ) = (-1) N m τ (σ(y i1 ) . . . σ(y i l ) ∪ S(σ(y j1 ) . . . σ(y jm )) 1. 2 
Since σ(y i ) is a primitive element, S(σ(y i )) = -σ(y i ). Since also the antipode S : H * (ΩX) → H * (ΩX) is a morphism of commutative graded algebras, m(x i1 . . . x i l ⊗ x j1 . . . x jm ) = (-1) N m+m ετ (σ(y 1 ) . . . σ(y N )).

Remark 3.2. We explain now why the four formulas of Theorem 3.1 determine inductively the dual of the loop coproduct m. For P ∈ H * (X) and {i 1 , . . . , i l } a strict subset of {1, . . . , N }, by ( 2), ( 3) and (4), m(P x i1 . . . x i l ⊗ 1) = 0 and m(P x 1 . . . x N ⊗ 1) = P . Therefore, we know the restriction of m on H * (LX) ⊗ 1. Since the algebra H * (LX) is generated by H * (X) and ∆(H * (X)), m is now given inductively by ( 1) and (4) (see remark 2.4).

The restriction of m : H * (LX) ⊗ 1 → H * (X) looks similar to the intersection morphism i ! : H * (LM ) → H * (ΩM ) for manifold given by the loop product with the constant pointed loop.

Case p odd or no Sq 1

Let Sq 1 be the operator

H * (BG; Z/2) → H * (BG; Z/2) is defined by Sq 1 (x) = Sq deg x-1 x for x ∈ H * (BG; Z/2).
Suppose that H * (BG) is a polynomial algebra, say K[V ] and that (H) :

Sq 1 ≡ 0 on H * (BG) if p = 2 or p is odd or p = 0 (Since Sq(xy) = x 2 Sq 1 (y) + Sq 1 (x)y 2 , it suffices to check that Sq 1 ≡ 0 on V ).
Then it follows that H * (LBG; Z/p) ∼ = ∧(sV ) ⊗ K[V ] as an algebra; see [START_REF] Kono | Module derivations and cohomological splitting of adjoint bundles[END_REF]Remark 3.4] for example. We moreover have Theorem 4.1. Under the hypothesis (H), an explicit form of the dual of the loop coproduct m :

H * (LBG; Z/p) ⊗ H * (LBG; Z/p) → H * -dim G (LBG; Z/p) is given by m(sv i1 • • • sv i l a ⊗ sv j1 • • • sv jm b) = (-1) ε ′ +ε+m+u+lu+N m sv k1 • • • sv ku ab if {i 1 , ...i l } ∪ {j 1 , ..., j m } = {1, ..., N } and m(sv i1 • • • sv i l a ⊗ sv j1 • • • sv jm b) = 0 oth- erwise, where {i 1 , ...i l } ∩ {j 1 , ..., j m } = {k 1 , .., k u }, a, b ∈ H * (BG), (-1) ε = sgn j 1 .... .... .... ...j m k 1 ...k u j 1 ... k 1 ... k u ...j m and (-1) ε ′ = sgn i 1 ...i l j 1 ... k 1 ... k u ...j m 1.... .... .... ...N .
Over R, [1, 17.23] have a similar formula (surprisingly without any signs) for their dual hidden loop product on H * ([G/G]). Proof of Theorem 4.1. By (4) of Theorem 3.1 to prove Theorem 4.1, it suffices to show that the formula for the element

x i1 • • • x i l ⊗ x j1 • • • x jm , namely in the case where a = b = 1. Since x 2 k1 = 0, m(x i1 • • • x i l x k1 ⊗ x j1 • • • x k1 • • • x jm ) = 0. So by (1) of Theo- rem 3.1, m(x i1 • • • x i l ⊗ x j1 • • • x jm ) = (-1) |x k 1 |(|xi 1 •••xi l xj 1 ••• x k 1 |-d) x k1 m(x i1 • • • x i l ⊗ x j1 • • • x k1 • • • x jm ). By induction on u, m(x i1 • • • x i l ⊗ x j1 • • • x jm ) = (-1) u(l-d)+ε x k1 . . . x ku m(x i1 • • • x i l ⊗ x j1 • • • x k1 • • • x ku • • • x jm ).
By ( 2) and (3) of Theorem 3.1,

m(x i1 • • • x i l ⊗ x j1 • • • x k1 • • • x ku • • • x jm ) = (-1) N (m-u)+m-u+ε ′ If {i 1 , . . . , i l } ∪ {j 1 , . . . , j m } = {1, . . . , N }, 0 otherwise.
Here x means that the element x disappears from the presentation.

Corollary 4.2. Under the hypothesis H, the graded associative commutative algebra (H * (LBG), m) of Corollary 8.3 is unital.

Proof. We see that

x 1 • • • x N is the unit. Theorem 4.1 yield that m(x 1 • • • x N ⊗ x j1 • • • x jm b) = sgn j 1 ......j m j 1 ......j m sgn 1....N 1....N (-1) m+m+mN +N m x j1 • • • x jm b. m(ax i1 • • • x i l ⊗ x 1 • • • x N ) = sgn 1.... .... .... ...N i 1 ...i l 1... i 1 ... i l ...N sgn i 1 ...i l 1... i 1 ... i l ...N 1.... .... .... ...N (-1) N +l+l 2 +N 2 ax i1 • • • x i l .
Theorem 4.3. Under the hypothesis (H), H * (LBG) = H * +dim G (LBG; K) is isomorphic as BV algebras to the tensor product of algebras

H * (BG; K) ⊗ H - * (G; K) ∼ = K[V ] ⊗ ∧(sV ) ∨
equipped with the BV-operator ∆ given by ∆(x

∨ i ∧ x ∨ j ) = ∆(y i y j ) = ∆(x ∨ j ) = ∆(y i ) = 0 for any i, j and ∆(y i ⊗ x ∨ j ) = 0 if i = j, 1 if i = j.
Proof. Since H * (G) is the Hopf algebra Λx i with x i = σ(y i ) primitive, its dual is the Hopf algebra Λx ∨ i . By Corollary 8.3 and Corollary 4.2, we see that the shifted cohomology H * (LBG) is a graded commutative algebra with unit x 1 . . . x N . This enables us to define a morphism of algebras Θ from

H * (BG; K) ⊗ H - * (G; K) = K[y 1 , • • • , y n ] ⊗ Λ(x ∨ 1 , • • • , x ∨ N ) to H * (LBG) = K[y 1 , • • • , y n ] ⊗ Λ(x 1 , • • • , x N ) by Θ(1 ⊗ x ∨ j ) = (-1) j-1 1 ⊗ (x 1 ∧ • • • ∧ x j ∧ • • • ∧ x N ) and Θ(a ⊗ 1) = a ⊗ (x 1 ∧ • • • ∧ x N ) for any a in K[V ]
. By induction on p, using Theorem 4.1, we have that

Θ(a ⊗ (x ∨ j1 ∧ • • • ∧ x ∨ jp )) = ±a ⊗ (x 1 ∧ • • • ∧ x j1 ∧ • • • ∧ x jp ∧ • • • ∧ x N ) for any a ∈ K[V ]. Therefore the map Θ is an isomorphism. The isomorphism Θ sends 1⊗Λ(x ∨ 1 , • • • , x ∨ N ) on 1⊗Λ(x 1 , • • • , x N ) and K[y 1 , • • • , y N ]⊗ 1 on K[y 1 , • • • , y N ]⊗x 1 • • • x N . Since ∆ is null on 1⊗Λ(x 1 , • • • , x N ) and K[y 1 , • • • , y N ]⊗ x 1 • • • x N , ∆ is null on 1 ⊗ Λ(x ∨ 1 , • • • , x ∨ N ) and K[y 1 , • • • , y N ] ⊗ 1:
we have the first equalities. Moreover, we see that Θ( 1) enable us to obtain the second formula.

y i ⊗ x ∨ j ) = (-1) j-1 y i x 1 ∧ • • • ∧ x j ∧ • • • ∧ x N and hence ∆Θ(y i ⊗x ∨ j ) = 0 if i = j. The equalities ∆((-1) i-1 y i x 1 ∧• • •∧ x i ∧• • •∧x N ) = x 1 ∧ • • • ∧ x N = Θ(

mod 2 case

In the case where the operation Sq 1 is non-trivial on H * (BG; Z/2), the loop coproduct structure on H * (LBG; Z/2) is more complicated in general. For example, we compute the dual to the loop coproduct on H * (LBG 2 ; Z/2), where G 2 is the simply-connected compact exceptional Lie group of rank 2. Recall that 

H * (LBG 2 ; Z/2) ∼ = ∆(x 3 , x 5 , x 6 ) ⊗ Z/2[y 4 , y 6 , y 7 ] ∼ = Z/2[x 3 , x 5 ] ⊗ Z/2[
Dlcop : H * (LBG 2 ; Z/2) ⊗ H * (LBG 2 ; Z/2) → H * -14 (LBG 2 ; Z/2)
is commutative strictly and the only non-trivial forms restricted to the submodule ∆(x 3 , x 5 , x 6 ) ⊗ ∆(x 3 , x 5 , x 6 ) are given by Dlcop(x

3 x 5 x 6 ⊗ 1) = Dlcop(x 3 x 5 ⊗ x 6 ) = Dlcop(x 3 x 6 ⊗ x 5 ) = Dlcop(x 5 x 6 ⊗ x 3 ) = 1, Dlcop(x 3 x 5 x 6 ⊗ x 3 ) = Dlcop(x 3 x 5 ⊗ x 3 x 6 ) = x 3 , Dlcop(x 3 x 5 x 6 ⊗ x 5 ) = Dlcop(x 3 x 5 ⊗ x 5 x 6 ) = x 5 , Dlcop(x 3 x 5 x 6 ⊗ x 6 ) = Dlcop(x 3 x 6 ⊗ x 5 x 6 ) = x 6 + y 6 , Dlcop(x 3 x 5 x 6 ⊗ x 3 x 5 ) = x 3 x 5 , Dlcop(x 3 x 5 x 6 ⊗ x 3 x 6 ) = x 3 x 6 + x 3 y 6 , Dlcop(x 3 x 5 x 6 ⊗ x 5 x 6 ) = x 5 x 6 + x 5 y 6 + y 4 y 7 , Dlcop(x 3 x 5 x 6 ⊗ x 3 x 5 x 6 ) = x 3 x 5 x 6 + x 3 x 5 y 6 + x 3 y 4 y 7 + y 2 7 . Lemma 5.2. Let k : {1, . . . , q} → {1, . . . , N }, j → k j be a map such that ∀1 ≤ i ≤ N , the cardinality of the inverse image k -1 ({i}) is ≤ 2. In H * (LX; F 2 ) = F 2 [y 1 , . . . , y N ] ⊗ ∆(x 1 , . . . , x N )
, the cup product satisfies the equality

x k1 • • • x kq = 0≤l≤cardinal of {k1,...,kq}, 1≤i1<•••<i l ≤N P i1,...,i l x i1 • • • x i l
where P i1,...,i l are elements of F[y 1 , . . . , y N ].

Proof. Suppose by induction that the lemma is true for q-1. If the elements k 1 , . . . , k q are pairwise distinct, take {i 1 , . . . , i l } = {k 1 , . . . , k q }. Otherwise by permuting the elements x k1 , . . . , x kq , suppose that k q-1 = k q .

x 2 kq = ∆ • ev * • Sq |y kq |-1 (y kq ) = N i=1
x i P i where P 1 ,. . . ,P N are elements of F[y 1 , . . . , y N ]. So

x k1 • • • x kq = N i=1 x k1 • • • x kq-2 x i P i .
Since k q = k q-1 , by hypothesis, k q / ∈ {k 1 , . . . , k q-2 }. Therefore the cardinal of {k 1 , . . . , k q-2 , i} is less or equal to the cardinal of {k 1 , . . . , k q }. By our induction hypothesis,

x k1 • • • x kq-2 x i = 0≤l≤cardinal of {k1,...,kq-2,i}, 1≤i1<•••<i l ≤N P i1,...,i l x i1 • • • x i l . Lemma 5.3. Let k : {1, . . . , q + r} → {1, . . . , N }, j → k j be a non-surjective map such that ∀1 ≤ i ≤ N , the cardinality of the inverse image k -1 ({i}) is ≤ 2. Then Dlcop(x k1 • • • x kq ⊗ x kq+1 • • • x kq+r ) = 0.
Proof. We do an induction on r ≥ 0. Case r = 0: By Lemma 5.2, since the cardinal of {k 1 , . . . , k q } < N ,

Dlcop(x k1 • • • x kq ⊗ 1) = 0≤l<N, 1≤i1<•••<i l ≤N Dlcop(P i1,...,i l x i1 • • • x i l ⊗ 1)
where P i1,...,i l are elements of F[y 1 , . . . , y N ]. By (3) and (4) of Theorem 3.1, since l < N ,

Dlcop(P i1,...,i l x i1 • • • x i l ⊗ 1) = 0.
Suppose now by induction that the Lemma is true for r -1. Then by (1) of Theorem 3.1,

Dlcop(x k1 • • • x kq ⊗ x kq+1 • • • x kq+r ) = x kq+1 Dlcop(x k1 • • • x kq ⊗ x kq+2 • • • x kq+r ) +Dlcop(x k1 • • • x kq+1 ⊗ x kq+2 • • • x kq+r ) = x kq+1 × 0 + 0. Let I = {i 1 , .., i l } ⊂ {1, ..., N }. In ∆(x 1 , • • • , x N ), denote by x I the generator x i1 ∪ x i2 ∪ • • • ∪ x i l .
Since mod 2, the cup product is strictly commutative, we don't need to assume that i

1 < i 2 < • • • < i l .
Theorem 5.4. Let I and J be two subsets of {1, . . . , N }. Then

Dlcop(x I ⊗ x J ) = Dlcop(x 1 . . . x N ⊗ x I∩J ) if I ∪ J = {1, . . . , N }, 0 otherwise. In particular, {x I , x J } = ∆(Dlcop(x I ⊗x J )) = ∆(Dlcop(x I∪J ⊗x I∩J )) = {x I∪J , x I∩J }.
Proof. Let {i 1 , .., i l } denote the elements of the relative complement I -J. Let {j 1 , .., j m } denote the elements of the relative complement J -I. Let {k 1 , .., k u } denote the elements of the intersection I ∩ J.

By Lemma 5.3, Dlcop(x i1 . . . x i l x k1 . . . x ku ⊗ x j2 . . . x jm x k1 . . . x ku ) = 0. So by (1) of Theorem 3.1, Dlcop(x i1 . . . x i l x k1 . . . x ku ⊗ x j1 . . . x jm x k1 . . . x ku ) = x j1 × 0 +Dlcop(x i1 . . . x i l x j1 x k1 . . . x ku ⊗ x j2 . . . x jm x k1 . . . x ku ).
By induction on m, this is equal to Dlcop(x i1 . . . x i l x j1 . . . x jm x k1 . . . x ku ⊗ x k1 . . . x ku ).

So we have proved that Dlcop(x I ⊗ x J ) = Dlcop(x I∪J ⊗ x I∩J ). By Lemma 5.3, if I ∪ J = {1, . . . , N } then Dlcop(x I ⊗ x J ) = 0. Theorem 5.5. Let X be a simply-connected space such that H * (X; F 2 ) is the polynomial algebra F 2 [y 1 , . . . , y N ]. The dual of the loop coproduct admits Dlcop(x 1 . . .

x N ⊗ x 1 . . . x N ) ∈ H d (LX; F 2 ) as unit. Lemma 5.6. Let a ∈ H * (LX; F 2 ) (1) For 1 ≤ i ≤ N , x i Dlcop(a ⊗ a) = 0. (2) For any b ∈ H * (LX; F 2 ), Dlcop(Dlcop(a ⊗ a) ⊗ b) = bDlcop(Dlcop(a ⊗ a) ⊗ 1).
Proof of Lemma 5.6. (1) By (1) of Theorem 3.1,

Dlcop(a ⊗ ax i ) = x i Dlcop(a ⊗ a) + Dlcop(ax i ⊗ a).
Since Dlcop is graded commutative [START_REF] Chataur | String topology of classifying spaces[END_REF], Dlcop(a

⊗ ax i ) = Dlcop(ax i ⊗ a). So x i Dlcop(a ⊗ a) = 0.
(2) By ( 1) and (1) of Theorem 3.1,

Dlcop(Dlcop(a ⊗ a) ⊗ bx i ) = x i Dlcop(Dlcop(a ⊗ a) ⊗ b) + 0.
Therefore by induction

Dlcop(Dlcop(a ⊗ a) ⊗ x i1 . . . x i l ) = x i1 . . . x i l Dlcop(Dlcop(a ⊗ a) ⊗ 1).
Using (4) of Theorem 3.1, we obtain (2).

Proof of Theorem 5.5. Since Dlcop is graded associative [START_REF] Chataur | String topology of classifying spaces[END_REF] and using (2) of Theorem 3.1 twice,

Dlcop(Dlcop(x 1 . . . x N ⊗ x 1 . . . x N ) ⊗ 1) = Dlcop(x 1 . . . x N ⊗ Dlcop(x 1 . . . x N ⊗ 1)) = Dlcop(x 1 . . . x N ⊗ 1) = 1.
Therefore using (2) of Lemma 5.6,

Dlcop(Dlcop(x 1 . . . x N ⊗ x 1 . . . x N ) ⊗ b) = bDlcop(Dlcop(x 1 . . . x N ⊗ x 1 . . . x N ) ⊗ 1) = b × 1 = b.
The simplest connected Lie group with non-trivial Steenrod operation Sq 1 in the cohomology of its classifying space is SO(3).

Theorem 5.7. The cup product and the dual of the loop coproduct on the mod 2 free loop cohomology of the classifying space of SO(3) are given by In the following proof, we detail the computation of the cup product and the dual of the loop coproduct following Theorem 3.1 for a more complicated example of Lie group. We would like to emphasize that Theorem 5.1 gives at the same time, the cup product and the dual of the loop coproduct on H * (LBG 2 ; Z/2). As mentioned in Introduction, if we forget the cup product, then the following Theorem shows that the dual of the loop coproduct is really simple: Theorem 5.8. Let X be a simply-connected space such that H * (X; F 2 ) is the polynomial algebra F 2 [V ]. Then with respect to the dual of the loop coproduct, there is an isomorphism of graded algebras between H * +d (LX; F 2 ) and the tensor product of algebras H * (X;

H * (LBSO(3); Z/2) ∼ = ∆(x 1 , x 2 ) ⊗ Z/2[y 2 , y 3 ] ∼ = Z/2[x 1 , x 2 ] ⊗ Z/2[y 2 , y 3 ] / x 2 1 + x 2 x 2 2 + x 2 y 2 + y 3 x 1 as algebras over H * (BSO(3); Z/2) ∼ = Z/2[y 2 , y 3 ], where deg x i = i and deg y j = j. Dlcop(x 1 x 2 ⊗ 1) = Dlcop(x 1 ⊗ x 2 ) = 1, Dlcop(x 1 x 2 ⊗ x 1 ) = x 1 , Dlcop(x 1 x 2 ⊗ x 2 ) = x 2 + y 2 , Dlcop(x 1 x 2 ⊗ x 1 x 2 ) = x 1 x 2 + x 1 y 2 + y 3 , Proof.
F 2 ) ⊗ H - * (ΩX; F 2 ) ∼ = F 2 [V ] ⊗ Λ(sV ) ∨ .
Lemma 5.9. Let X be a simply-connected space such that H * (X;

F 2 ) = F 2 [V ]. Let x 1 , . . . , x N be a basis of sV . 1) Suppose that {i 1 , .., i l }∪{j 1 , ..., j m } = {1, ..., N }. Let {k 1 , .., k u } := {i 1 , ..., i l }∩ {j 1 , ..., j m }. Then H * (i) • Dlcop(x i1 • • • x i l ⊗ x j1 • • • x jm ) = x k1 • • • x ku . 2 ) Let Θ : H - * (ΩX) = ∧(sV ) ∨ ∼ =
→ H * +d (ΩX) = ∆(sV ) be the linear isomorphism defined by

Θ(x ∨ j1 ∧ • • • ∧ x ∨ jp ) = x 1 ∪ • • • ∪ x j1 ∪ • • • ∪ x jp ∪ • • • ∪ x N .
Here ∨ denote the dual and denotes omission. Then the composite Θ -1 • H * (i) :

H * +d (LX) → H * +d (ΩX) ∼ =
→ H - * (ΩX) is a morphism of graded algebras preserving the units.

Proof of Lemma 5.9. 1) Suppose that |x k1 | ≥ • • • ≥ |x ku |. There exists polynomials P 1 ,. . . ,P N ∈ F[y 1 , . . . , y N ] possibly null such that

x 2 k1 = ∆ • ev * • Sq |y k 1 |-1 (y k1 ) = N i=1
x i P i .

If P i is of degree 0, since |x i | > |x k1 |,
x i is not one of the elements x k1 ,. . . , x ku and so by Lemma 5.

3 Dlcop(x i1 • • • x k1 • • • x i l x i ⊗ x j1 • • • x k1 • • • x jm ) = 0. If P i is of degree ≥ 1, by (4) of Theorem 3.1, H * (i) • Dlcop(P i x i1 • • • x k1 • • • x i l x i ⊗ x j1 • • • x k1 • • • x jm ) = 0 Therefore H * (i) • Dlcop(x i1 • • • x k1 • • • x i l x 2 k1 ⊗ x j1 • • • x k1 • • • x jm ) = 0
. Now the same proof as the proof of Theorem 4.1 shows 1).

2) Since H * (ΩX; F 2 ) is generated by the x i := σ(y i ), 1 ≤ i ≤ N which are primitives, by [35, 4.20 Proposition], all squares vanish in H * (ΩX; F 2 ). Therefore H * (ΩX; F 2 ) is the exterior algebra Λσ(y i ) ∨ . 

Let I = {i 1 , .., i l } ⊂ {1, ..., N }. Recall from Theorem 5.4 that in ∆(x 1 , • • • , x N ), x I denotes the generator x i1 ∪ x i2 ∪ • • • ∪ x i l . Denote also in the exterior algebra Λ(x ∨ 1 , • • • , x ∨ N ) by x ∨ I the element x ∨ i1 ∧ x ∨ i2 ∧ • • • ∧ x ∨ i l .
Θ -1 • H * (i) • Dlcop(x 1 . . . x N ⊗ x 1 . . . x N ) = Θ -1 (x 1 . . . x N ) = 1.
Therefore Θ -1 • H * (i) preserves also the units. 

≤ i ≤ N , σ(x 1 . . . x i . . . x N ) = x 1 . . . x i . . . x N and such that σ • Θ : H - * (ΩX) = Λ(sV ) ∨ → H * +d (LX) is a morphism of unital commutative graded algebras. For 1 ≤ i ≤ N , Θ -1 • H * (i) • σ • Θ(x ∨ i ) = x ∨ i . By Lemma 5.9, the composite Θ -1 • H * (i) : H * +d (LX) → H * +d (ΩX) ∼ = → H - * (ΩX) is a morphism of graded algebras. So the composite Θ -1 • H * (i) • σ • Θ is the identity map and σ is a section of H * (i). So by Leray-Hirsch theorem, the linear morphism of H * (X)-modules H * (X)⊗H * (ΩX) → H * (LX), a ⊗ g → ev * (a)σ(g), is an isomorphism. The composite ϕ : H * (X) ⊗ H - * (ΩX) s ! ⊗σ•Θ → H * +d (LX) ⊗ H * +d (LX) Dlcop → H * +d (LX)
is a morphism of commutative graded algebras with respect to the dual of the loop coproduct. By (4) of Theorem 3.1 and since I is an unit for Dlcop, ϕ(a ⊗ g) = Dlcop(ev * (a)I ⊗ σ • Θ(g)) = ev * (a)σ • Θ(g). Therefore ϕ is an isomorphism.

Example 5.10. With respect to the dual of the loop coproduct, there is an isomorphism of algebras between H * +3 (LBSO(3); Z/2) and

H - * (SO(3); Z/2) ⊗ H * (BSO(3); Z/2) ∼ = ∧(u -1 , u -2 ) ⊗ Z/2[v 2 , v 3 ].
Proof. By Theorem 5.5, Dlcop(x 1 x 2 ⊗ x 1 x 2 ) = x 1 x 2 + x 1 y 2 + y 3 is an unit for the dual of the loop coproduct on H * +3 (LBSO(3); Z/2). By Lemma 5.3,

Dlcop(x 1 ⊗ x 1 ) = Dlcop(x 2 ⊗ x 2 ) = 0. So let ϕ : ∧(u -1 , u -2 ) ⊗ Z/2[v 2 , v 3 ] → H * +3 (LBSO(3); Z/2) be the unique mor- phism of algebras such that ϕ(u -2 ) = x 1 , ϕ(u -1 ) = x 2 , ϕ(v 2 ) = y 2 (x 1 x 2 +x 1 y 2 +y 3 ) and ϕ(v 3 ) = y 3 (x 1 x 2 + x 1 y 2 + y 3 ). For all i, j ≥ 0, we see that ϕ(v i 2 v j 3 ) = y i 2 y j 3 (x 1 x 2 + x 1 y 2 + y 3 ), ϕ(u -1 u -2 v i 2 v j 3 ) = y i 2 y j 3 , ϕ(u -1 v i 2 v j 3 ) = x 2 y i 2 y j 3 and ϕ(u -2 v i 2 v j 3 ) = x 1 y i 2 y j 3 . Therefore ϕ sends a linear basis of ∧(u -1 , u -2 ) ⊗ Z/2[v 2 , v 3 ] to a linear basis H * +3 (LBSO(3); Z/2). So ϕ is an isomorphism. ∆(u -6 v 7 ) = ∆(u -5 v 6 ) = ∆(u -3 v 4 ) = 1 + u -6 v 6 + u -5 u -6 v 4 v 7 + u -3 u -5 u -6 v 2 7 . Note that ϕ -1 • ∆ • ϕ(y i ⊗ x ∨ i ) = ϕ -1 (x 1 . . . x N ) is independent of i.

Relation with Hochschild cohomology

Let K be any field. Let G be a connected compact Lie group of dimension d. Suppose that

H * (BG; K) is a polynomial algebra K[V ] = K[y 1 , . . . , y N ].
It follows from [39, Theorem 9, p. 572] (See also [START_REF] Mccleary | A user's guide to spectral sequences[END_REF]Proposition 8.21]) that BG is K-formal. Then BG is K-coformal and H * (G; K) is the exterior algebra ∧(sV ) ∨ . Indeed, since BG is K-formal, the Cobar construction ΩH * (BG) is weakly equivalent as algebras to S * (G). Let A i denote the exterior algebra Λs -1 (y ∨ i ). Then EZ, the Eilenberg-Zilber map and ε, the counit of the adjonction between the Bar and the Cobar construction give the quasi-isomorphims of algebras

ΩH * (BG) = Ω(⊗ N i=1 BA i ) ⊗ N i=1 ΩBA i ≃ EZ o o ≃ ⊗ N i=1 εi / / ⊗ N i=1 A i = Λs -1 V ∨ .
Alternatively, since BG is K-formal, you can use the implication (2) ⇒ (1) in Theorem 2.14 of [START_REF] Berglund | Free Loop Space Homology of Highly Connected Manifolds[END_REF]. Therefore, we have the isomorphism of Gerstenhaber algebras

HH * (S * (G), S * (G)) ∼ = HH * (H * (G; K), H * (G; K)) ∼ = HH * (∧(sV ) ∨ , ∧(sV ) ∨ ).
By Theorem 12.3 as graded algebras

HH * (∧(sV ) ∨ , ∧(sV ) ∨ ) ∼ = ∧(sV ) ∨ ⊗ K[V ] ∼ = H - * (G; K) ⊗ H * (BG; K).
So in Theorem 5.8, we have checked Conjecture 6.1 only for the algebra structure when K = F 2 . When K = F 2 , we would like to check conjecture 6.1 also for the Gerstenhaber algebra structure.

The following theorem shows that the conjecture is true for the Gerstenhaber algebra structure when K is a field of characteristic different from 2. Theorem 6.2. Under the hypothesis (H), the free loop space cohomology of the classifying space of G, H * +dimG (LBG; F) is isomorphic as Batalin-Vilkovisky algebra to the Hochschild cohomology of H * (G; F), HH * (H * (G; F); H * (G; F)). In particular the underlying Gerstenhaber algebras are isomorphic.

Proof. By hypothesis, H

* (BG) ∼ = K[V ] = K[y i ] as algebras. Then H * (G) ∼ = Λ(sV ) ∨ = Λx ∨
j as algebras. Let Ψ : sV → (sV ) ∨∨ be the canonical isomorphism of the graded vector space sV into its bidual. By definition, Ψ(sv)(ϕ) = (-1) |ϕ||sv| ϕ(sv) for any linear form ϕ on sV . By Theorem 12.3, we have the BV-algebra isomorphism

HH * (H * (G); H * (G)) ∼ = Λ(sV ) ∨ ⊗ K[s -1 (sV ) ∨∨ ] where for any v ∈ V and ϕ ∈ (sV ) ∨ , ∆((1⊗s -1 Ψ(sv))(ϕ⊗1)) = (-1) |v| {s -1 Ψ(sv), ϕ} = -Ψ(sv)(ϕ) = -(-1) |ϕ||sv| ϕ(sv)
and where ∆ is trivial on Λ(sV ) ∨ and on K[s -1 (sV ) ∨∨ ].

The isomorphism of algebras Id

⊗ K[s -1 Ψ] : Λ(sV ) ∨ ⊗ K[V ] → Λ(sV ) ∨ ⊗ K[s -1 (sV ) ∨∨ ] is a isomorphism of BV-algebras if for any v ∈ V and ϕ ∈ (sV ) ∨ , ∆((1 ⊗ v)(ϕ ⊗ 1)) = -(-1) |ϕ||sv| ϕ(sv) and if ∆ is trivial on Λ(sV ) ∨ and on K[V ].
Taking v = y i and ϕ = σ(y j ) ∨ = x ∨ j , we obtained that ∆(y i ⊗ x ∨ j ) = 1 if i = j and 0 otherwise like in Theorem 4.3. Theorem 6.3. For G = SO(3) or G = G 2 , the free loop space modulo 2 cohomology of the classifying space of G, H * +dimG (LBG; F 2 ) is not isomorphic as Batalin-Vilkovisky algebra to the Hochschild cohomology of H * (G; F 2 ), HH * (H * (G; F 2 ); H * (G; F 2 )) although when G = SO(3) the underlying Gerstenhaber algebras are isomorphic.

The main result of [START_REF]String topology for spheres[END_REF] is that the same phenomenon appears for Chas-Sullivan string topology even in the simple case of the two dimensional sphere S 2 . Lemma 6.4. Let A and B two unital BV-algebras. Let ϕ : A → B be a linear map preserving the units and commuting with the BV-operators ∆ (For example if ϕ is an isomorphism preserving the multiplications and the ∆'s).

If 1 A ∈ Im ∆ then 1 B ∈ Im ∆.
Proof. There exists a ∈ A such that ∆(a) = 1 A . So Proof. When d = 0, this Lemma is Proposition 3.8 of [START_REF] Milnor | On the structure of Hopf algebras[END_REF]. But the proof of [START_REF] Milnor | On the structure of Hopf algebras[END_REF] cannot be easily generalized. Therefore we provide a proof.

1 B = ϕ(1 A ) = ϕ(∆(a)) = ∆(ϕ(a)) ∈ Im ∆.
Filter A by wordlength:

F n (A) := A • A • • • • A for any n ≥ 0. The sequence ⊕ n i=1 A ⊗i-1 ⊗ A • A ⊗ A ⊗n-i → A ⊗n ։ Q(A) ⊗n → 0 is exact. Alternatively, since over a field F, A = A • A ⊕ Q(A), 0 → + n i=1 A ⊗i-1 ⊗ A • A ⊗ A ⊗n-i ֒→ A ⊗n ։ Q(A) ⊗n → 0 is a short exact sequence. Therefore the iterated multiplication of A induces a natural map Q(A) ⊗n ։ F n (A)/F n+1 (A) obviously surjective. Assume that Q(f ) is surjective. Then Q(f ) ⊗n : Q(A) ⊗n ։ Q(B)
⊗n is also surjective. Since the following square is commutative by naturality,

Q(A) ⊗n Q(f ) ⊗n / / F n (A)/F n+1 (A) Grnf Q(B) ⊗n / / F n (B)/F n+1 (B),
the map induced by f , Gr n f , is also surjective. In a fixed degree, consider the commutative diagram 

0 / / F n+1 (A) / / f |F n+1 (A) F n (A) / / f |F n (A) F n (A)/F n+1 (A) Grnf / / 0 0 / / F n+1 (B) / / F n (B) / / F n (B)/F n+1 (
(x -2 , x -1 ) ⊗ F 2 [y 2 , y 3 ] with ∆(x -2 y 3 ) = 1, ∆(x -2 y 2 ) = 0, ∆(x -1 y 2 ) = 1, ∆(x -1 y 3 ) = 0, and ∆ is trivial on Λ(x -2 , x -1 )⊗1 and on 1⊗F 2 [y 2 , y 3 ]. The BV-algebra H * +3 (LBSO(3); F 2 ) ∼ = Λ(u -2 , u -1 ) ⊗ F 2 [v 2 , v 3 ] is explicited by Theorem 5.13. Let ϕ : Λ(x -2 , x -1 ) ⊗ F 2 [y 2 , y 3 ] → Λ(u -2 , u -1 ) ⊗ F 2 [v 2 , v 3 ] be any morphism of graded algebras. Since Λ(x -2 , x -1 ) ⊗ F 2 [y 2 , y 3 ] and Λ(u -2 , u -1 ) ⊗ F 2 [v 2 , v 3 ]
are of the same finite dimension in each degree, ϕ is an isomorphism iff ϕ is surjective. By Lemma 6.5,

ϕ is surjective iff Q(ϕ) is surjective. Therefore if ϕ is an isomorphism of algebras iff ϕ(x -2 ) = u -2 , ϕ(x -1 ) = u -1 + εu -1 u -2 v 2 , ϕ(y 2 ) = v 2 + au -2 v 2 2 + bu -1 u -2 v 2 v 3 + cu -1 v 3 , ϕ(y 3 ) = v 3 + αu -2 v 2 v 3 + βu -1 u -2 v 2 3 + γu -1 u -2 v 3 2 + δu -1 v 2 2
where ε, a, b, c, α, β, γ, δ are 8 elements of F 2 . Since (u -2 ) 2 = (u -1 +εu -1 u -2 v 2 ) 2 = 0, the above 4 formulas define always a morphism ϕ of algebras. By the Poisson rule, a morphism of algebras between Gerstenhaber algebras is a morphism of Gerstenhaber algebras iff the brackets are compatible on the generators.

Note that modulo 2, in a BV-algebra, for any elements z and t, {z + t, z + t} = {z, z}+{t, t} and {z, z} = ∆(z 2 ). Therefore it is easy to check that ϕ({x

-2 , x -2 }) = 0 = {ϕ(x -2 ), ϕ(x -2 )}, ϕ({x -1 , x -1 }) = 0 = {ϕ(x -1 ), ϕ(x -1 )}, ϕ({y 2 , y 2 }) = 0 = {ϕ(y 2 ), ϕ(y 2 )} and ϕ({y 3 , y 3 }) = 0 = {ϕ(y 3 ), ϕ(y 3 )}. Note that ∆ϕ(x -1 ) = εu -2 , ∆ϕ(x -2 ) = 0, ∆ϕ(y 2 ) = (b + c)(u -2 v 3 + u -1 v 2 ) and ∆ϕ(y 3 ) = αu -1 v 3 + αv 2 + (α + γ)u -2 v 2 2 + αu -1 u -2 v 2 v 3 . Therefore ϕ({x -2 , y 2 }) = 0, {ϕ(x -2 ), ϕ(y 2 )} = (1 + c)u -1 + (b + c)u -1 u -2 v 2 , ϕ({x -1 , y 2 }) = 1, {ϕ(x -1 ), ϕ(y 2 )} = 1 + (1 + ε)u -2 v 2 + (εc + 1 + b + c)u -1 u -2 v 3 , ϕ({x -2 , x -1 }) = 0 = {ϕ(x -2 ), ϕ(x -1 )}, ϕ({x -2 , y 3 }) = 1, {ϕ(x -2 ), ϕ(y 3 )} = 1 + (1 + α)u -2 v 2 + (1 + α)u -1 u -2 v 3 , ϕ({x -1 , y 3 }) = 0, {ϕ(x -1 ), ϕ(y 3 )} = (1 + α+ ε + α)u -1 v 2 + (ε + 1 + α+ ε)u -2 v 3 + (εδ + α + γ + εα)u -1 u -2 v 2 2 , ϕ({y 2 , y 3 }) = 0, {ϕ(y 2 ), ϕ(y 3 )} = ∆ϕ(y 2 )ϕ(y 3 ) + ∆(ϕ(y 2 )ϕ(y 3 )) + ϕ(y 2 )∆ϕ(y 3 ) = (b + c)(u -2 v 2 3 + u -1 v 2 v 3 + (α + δ)u -1 u -2 v 2 2 v 3 ) + ∆ (a + α)u -2 v 2 2 v 3 + (b + cα + β)u -1 u -2 v 2 v 2 3 + δu -1 v 3 2 + ϕ(y 2 )∆ϕ(y 3 ) = (a + α + δ + α)v 2 2 + (a + α + δ + α + γ + aα)u -2 v 3 2 + ((b + c)(α + δ) + a + α + δ + α + aα + bα + cα + cγ)u -1 u -2 v 2 2 v 3 + (b + c + α + cα)u -1 v 2 v 3 + (b + c + b + cα + β)u -2 v 2
3 . Therefore, by symmetry of the Lie brackets, ϕ is a morphism of Gerstenhaber algebras iff ε = b = c = α = 1, β = 0 and a = γ = δ. Conclusion: we have found two isomorphisms of Gerstenhaber algebras between H * +3 (LBSO(3); F 2 ) and HH * (H * (SO(3)), H * (SO(3))).

Review of [6] with signs corrections

In this section, we review the results of Chataur and the second author in [START_REF] Chataur | String topology of classifying spaces[END_REF]. And we correct a sign mistake. Integration along the fibre in homology with corrected sign. Let F → E p → B be an oriented fibration with B path-connected; that is, the homology H * (F ; K) is concentrated in degree less than or equal to n, π 1 (B) acts on H n (F ; K) trivially and H n (F ; K) ∼ = K. In what follows, we write H * (X) for H * (X; K). We choose a generator ω of H n (F ; K), which is called an orientation class. Then the integration along the fibre p ω ! : H * (B) → H * +n (E) is defined by the composite

H s (B) η → H s (B) ⊗ H n (F ) = E 2 s,n ։ E ∞ s,n = F s /F s-1 = F s ⊂ H s+n (E)
, where η sends the x ∈ H s (B) to the element (-1) sn x ⊗ ω ∈ H s (B) ⊗ H n (F ) and {F l } l≥0 denotes the filtration of the Leray-Serre spectral sequence {E r * , * , d r } of the fibration F → E p → B. This Koszul sign (-1) sn does not appear in the usual definition of integration along the fibre recalled in [6, 2.2.1].

Products: Let F ′ → E ′ p ′ → B ′ be another oriented fibration with orientation class ω ′ ∈ H n ′ (F ′ ). We will choose ω ⊗ ω ′ ∈ H n+n ′ (F × F ′ ) as an orientation class of the fibration F × F ′ → E × E ′ p×p ′ → B × B ′
. By [START_REF] Spanier | Algebraic topology[END_REF]3 Theorem,page 493], the cross product × induces a morphism of spectral sequences between the tensor product of the Serre spectral sequences associated to p and p ′ and the Serre spectral sequence associated to p×p ′ . Therefore the interchange on H * (B)⊗H n (F )⊗H * (B ′ )⊗H n ′ (F ′ ) between the orientation class ω ∈ H n (F ) and elements in H * (B ′ ) yields the formula given (without proof) in [6, section 2.3]

(7.1). (p × p ′ ) ω×ω ′ ! (a × b) = (-1) |ω ′ ||a| p ω ! (a) × p ′ω ′ ! (b).
Note that with the usual definition of integration along the fibre recalled in [6, 2.2.1], the Koszul sign (-1) |ω ′ ||a| must be replaced by the awkward sign (-1) |ω||b| . Therefore there is a sign mistake in [6, section 2.3].

Integration along the fibre in cohomology with corrected sign. Let F incl ֒→ E p ։ B be an oriented fibration with orientation τ : H n (F ) → K. By definition,

p ! τ : H s+n (E) → H s (B) is the composite H s+n (E) ։ E s,n ∞ ⊂ E s,n 2 = H s (B) ⊗ H n (F ) id⊗τ → H s (B)
where (id ⊗ τ )(b ⊗ f ) = (-1) n|b| bτ (f ). This Koszul sign (-1) n|b| does not appear in the usual definition of integration along the fibre recalled in [3, p. 268]. By [3, IV.14.1], Example: trivial fibrations. Let ω ∈ H n (F ; K) be a generator. Define the orientation τ : H n (F ) → K as the image of ω by the natural isomorphism of the homology into its double dual, ψ :

p ! τ (H * (p)(β) ∪ α) = (-1) |β|n β ∪ p ! τ (α) for α ∈ H * (E)
H n (F ; K) → Hom(H n (F ; K), K). Explicitly, τ (f ) = (-1) n|f | < f, ω > where < , > is the Kronecker bracket.
Let p 1 : B × F ։ B be the projection on the first factor. Then for any f ∈ H * (F ) and b ∈ H * (B), p ! 1τ (b × f ) = (-1) |f ||b| bτ (f ). Let p 2 : F × B ։ B be the projection on the second factor. Since p 2 is the composite of p 1 and the exchange homeomorphism, by naturality of integration along the fibre, [START_REF] Chataur | String topology of classifying spaces[END_REF] with signs. The main theorem of [START_REF] Chataur | String topology of classifying spaces[END_REF] states that H * (LX) is a d-dimensional (non-unital non co-unital) homological conformal field theory: that is H * (LX) is an algebra over the tensor product of graded linear props

p ! 2τ (f × b) = p ! 1τ ((-1) |f ||b| b × f ) = bτ (f ) = (-1) n|f | < f, ω > b. Main coTheorem of
Fp+q detH 1 (F, ∂ in ; Z) ⊗d ⊗ Z H * (BDif f + (F, ∂); K).
See [START_REF] Chataur | String topology of classifying spaces[END_REF]Sections 3 and 11] for the definition of this prop. The prop detH 1 (F, ∂ in ; Z) manages the degree shift and the sign of each operation. In [START_REF] Chataur | String topology of classifying spaces[END_REF], Chataur and the second author did not pay attention to this prop detH 1 (F, ∂ in ; Z) ([1, p. 120] neither, it seems). Therefore, in order to get the signs correctly, we need to review all the results of [START_REF] Chataur | String topology of classifying spaces[END_REF] by taking this prop into account. Explicitly, we have maps

ν * (F q+p ) : detH 1 (F q+p , ∂ in ; Z) ⊗d ⊗ Z H * (BDif f + (F q+p , ∂))⊗H * (LX) ⊗q → H * (LX) ⊗p s ⊗ a ⊗ v → ν * (F q+p ) s⊗a (v).
Therefore (Compare with [6, Section 6.3]), its dual H * (LX) is an algebra over the opposite prop

Fp+q detH 1 (F, ∂ in ; Z) op⊗d ⊗ Z H * (BDif f + (F, ∂)) op .
which is isomorphic to the prop

Fp+q detH 1 (F, ∂ out ; Z) ⊗d ⊗ Z H * (BDif f + (F, ∂)). since detH 1 (F p+q , ∂ out ; Z) = detH 1 (F q+p , ∂ in ; Z) and Dif f + (F p+q , ∂) = Dif f + (F q+p , ∂).
Explicitly, the degree 0 map

ν * (F p+q ) : detH 1 (F q+p , ∂ in ; Z) ⊗d ⊗ Z H * (BDif f + (F q+p , ∂))⊗H * (LX) ⊗p → H * (LX) ⊗q send the element s ⊗ a ⊗ α to ν * (F p+q ) s⊗a (α) := t (ν * (F q+p ) s⊗a )(α) = (-1) |α|(|s|+|a|) α • ν * (F q+p ) s⊗a .
Note that here, we have defined the transposition of a map f as

t f (α) = (-1) |α||f | α • f.
This means the following five propositions. Proposition 7.1. (Compare with [6, Proposition 24]) Let F and F ′ be two cobordisms with same incoming boundary and same outgoing boundary. Let φ : F → F ′ be an orientation preserving diffeomorphism, fixing the boundary (i. e. an equivalence between the two cobordisms F and

F ′ ). Let c φ : Dif f + (F, ∂) → Dif f + (F ′ , ∂) be the isomorphism of groups, mapping f to φ • f • φ -1 . Then for s ⊗ a ∈ detH 1 (F, ∂ out ; Z) ⊗d ⊗ Z H * (BDif f + (F, ∂)), ν * s⊗a (F ) = ν * detH1(φ,∂out;Z) ⊗d (s)⊗H * (Bc φ )(a) (F ′ ). Remark 7.2. In Proposition 7.1, suppose that F = F ′ . By a variant of [6, Proposi- tion 19], H 1 (φ, ∂ out ; Z) is of determinant +1. Since the natural surjection Dif f + (F, ∂)) ≃ → π 0 (Dif f + (F, ∂)
) is a homotopy equivalence [START_REF] Earle | Teichmüller theory for surfaces with boundary[END_REF] and π 0 (c φ ) is the conjugation by the isotopy class of φ, H * (Bc φ ) is the identity. So the conclusion of Proposition 7.1 is just ν * s⊗a (F ) = ν * s⊗a (F ). Using Proposition 7.1, it is enough to define the operation ν * (F ) for a set of representatives F of oriented classes of cobordisms (therefore the direct sum over a set ⊕ F in the above definition of the prop has a meaning). Conversely, if ν * (F ) is defined for a cobordism F then using Proposition 7.1, we can define ν * (F ′ ) for any equivalent cobordism F ′ using an equivalence of cobordism φ : For

F → F ′ . Two equivalences of cobordism φ, φ ′ : F → F ′ define the same operation ν * (F ′ ) since detH 1 (φ) • detH 1 (φ ′ ) -1 = detH 1 (φ • φ ′-1 ) = Id and H * (Bc φ ) • H * (Bc φ ′ ) -1 = H * (Bc φ•φ ′-1 ) = Id
; Z) ⊗d ⊗ Z H * (BDif f + (F, ∂)) and t ⊗ b ∈ detH 1 (F ′ , ∂ out ; Z) ⊗d ⊗ Z H * (BDif f + (F ′ , ∂)) ν * (s⊗t)⊗(a⊗b) (F F ′ ) = (-1) |t||a| ν * s⊗a (F ) ⊗ ν * t⊗b (F ′ ).
s 1 ⊗ m 1 ∈ detH 1 (F p+q , ∂ out ; Z) ⊗d ⊗ Z H * (BDif f + (F p+q , ∂)) and s 2 ⊗ m 2 ∈ detH 1 (F q+r , ∂ out ; Z) ⊗d ⊗ Z H * (BDif f + (F q+r , ∂)) ν * s2⊗m2 (F q+r ) • ν * s1⊗m1 (F p+q ) = (-1) |m2||s1| ν * (s2•s1)⊗(m2•m1) (F q+r • F p+q ).
Here

• : H * (BDif f + (F q+r , ∂))⊗H * (BDif f + (F p+q , ∂)) → H * (BDif f + (F q+r •F p+q , ∂))
mapping m 2 ⊗ m 1 to m 2 • m 1 is induced by the gluing of F p+q and F q+r .

As noted by [START_REF] Hepworth | On string topology of classifying spaces[END_REF] with their notion of h-graph cobordism, [START_REF] Chataur | String topology of classifying spaces[END_REF] never used the smooth structure of the cobordisms. So in fact, our cobordisms are topological. Therefore the cobordism F q+r • F p+q obtained by gluing is canonically defined [24, 1.3.2]. Note that by [START_REF] Earle | Teichmüller theory for surfaces with boundary[END_REF] and [START_REF] Hamstrom | Homotopy groups of the space of homeomorphisms on a 2manifold[END_REF], the inclusion Dif f + (F, ∂)

≈ ֒→ Homeo + (F, ∂) is a homotopy equivalence since π 0 (Dif f + (F, ∂)) ∼ = π 0 (Homeo + (F, ∂)) [8, p. 45].
Proposition 7.5. (Compare with [6, Corollary 28 i) identity]) Let id 1 ∈ detH 1 (F 0,1+1 , ∂ out ; Z) and id 1 ∈ H 0 (BDif f + (F 0,1+1 , ∂)) be the identity morphisms of the object 1 in the two props. Then ν * id ⊗d 1 ⊗id1 (F 0,1+1 ) = Id H * (LX) .

Proposition 7.6. (Compare with [6, Corollary 28 ii) symmetry]) Let C φ be the twist cobordism of

S 1 S 1 . Let τ ∈ detH 1 (C φ , ∂ out ; Z), τ ∈ H 0 (BDif f + (C φ , ∂))
and τ ∈ End(H * (LX) ⊗2 ) be the exchange isomorphisms of the three props. Then

ν * τ ⊗d ⊗τ (C φ ) = τ.
Let F be a cobordism. Let ι F be the generator of H 0 (BDif f + (F, ∂)) which is represented by the connected component of BDif f + (F, ∂). We may write ι instead of ι F for simplicity. If χ(F ) = 0 then H 1 (F, ∂ out ; Z) = {0} has an unique orientation class which correspond to the generator 1

∈ detH 1 (F, ∂ out ; Z) = Λ -χ(F ) H 1 (F, ∂ out ; Z) = Z.
The identity morphim id 1 and the exchange isomorphism τ of the prop detH 1 (F, ∂ out ; Z) correspond to these unique orientation classes of H 1 (F 0,1+1 , ∂ out ; Z) and H 1 (C φ , ∂ out ; Z).

The identity morphim id 1 and the exchange isomorphism τ of the prop H * (BDif f + (F, ∂)) are just ι F0,1+1 and ι C φ .

Commutativity and associativity of the dual to the Loop coproduct

Theorem 8.1. Let d ≥ 0. Let H * (upper graded) be an algebra over the (lower graded) prop

detH 1 (F, ∂ out ; Z) ⊗d ⊗ Z H 0 (BDif f + (F, ∂)). Let s ∈ detH 1 (F 0,2+1 , ∂ out ; Z) ⊗d be a chosen orientation. Let Dlcop := ν * s⊗ι (F 0,2+1 ).
Let m be the product defined by

m(a ⊗ b) = (-1) d(i-d) Dlcop(a ⊗ b) for a ⊗ b ∈ H i ⊗ H j . Let H * := H * +d .
Then (H * , m) is a graded associative and commutative algebra.

Proof. Using Propositions 7.3, 7.4 and 7.5,

Dlcop • (Dlcop ⊗ 1) = ν * s•(s⊗id1) ι•(ι⊗id1) (F 0,2+1 • (F 0,2+1 F 0,1+1 )) and Dlcop • (1 ⊗ Dlcop) = ν * s•(id1⊗s) ι•(id1⊗ι) (F 0,2+1 • (F 0,1+1 F 0,2+1 )). The cobordisms F 0,2+1 •(F 0,2+1 F 0,1+1 ) and F 0,2+1 •(F 0,1+1 F 0,2+1 ) are equiva- lent. When you identified them, ι• (ι⊗ id 1 ) = ι• (id 1 ⊗ ι). Also F 0,2+1 • C φ = F 0,2+1 and ι • τ = ι. Let β ∈ detH 1 (F 0,2+1 , ∂ out ; Z) the generator such that β ⊗d = s.
The compositions of the Z-linear prop detH 1 (F, ∂ out ; Z) are isomorphisms. Therefore, they send generators to generators. Moreover detH 1 (F, ∂ out ; Z) := Λ -χ(F ) H 1 (F, ∂ out ; Z) is an abelian group on a single generator of lower degree -χ(F ). So β • (β ⊗ id 1 ) = ε ass β•(id 1 ⊗β) and β•τ = ε com β for given signs ε ass and ε com ∈ {-1, 1}. Therefore

s • (s ⊗ id 1 ) = β ⊗d • (β ⊗ id 1 ) ⊗d = (-1) d(d-1) 2 |β| 2 (β • (β ⊗ id 1 )) ⊗d = ε d ass s • (id 1 ⊗ s) and s • τ = β ⊗d • τ ⊗d = (β • τ ) ⊗d = (ε com β) ⊗d = ε d com β ⊗d = ε d com s.
Therefore, by proposition 7.1

Dlcop • (Dlcop ⊗ 1) = ε d ass Dlcop • (1 ⊗ Dlcop) and Dlcop • τ = ε d com Dlcop. This means that for a, b, c ∈ H * (LX), m(m(a ⊗ b) ⊗ c) = ε d ass (-1) d m(a ⊗ m(b ⊗ c) and m(b ⊗ a) = ε d com (-1) (|a|-d)(|b|-d)+d m(a ⊗ b)) since m(m(a ⊗ b) ⊗ c) = (-1) d|b|+d Dlcop • (Dlcop ⊗ 1)(a ⊗ b ⊗ c) and m(a⊗m(b⊗c)) = (-1) d(|a|+|b|) Dlcop(a⊗Dlcop(b⊗c)) = (-1) d|b| Dlcop•(1⊗Dlcop)(a⊗b⊗c).
In [14, Proof of Proposition 21], Godin has shown geometrically that ε ass = -1 for the prop detH 1 (F, ∂ in ; Z). To determine the signs ε ass and ε com for the prop detH 1 (F, ∂ out ; Z), we prefer to use our computations of m.

Consider a particular connected compact Lie group G of a particular dimension d and a particular field K of characteristic different from 2 such that H * (BG; K) is polynomial, for example G = (S 1 ) d or K = Q. Then H * (LBG; Q) is an algebra over our prop and we can apply (2) of Theorem 3.1 or Corollary 4.2. Taking a = x 1 . . . x N , b = 1 and c = x 1 . . . x N , we obtain 1 = ε d ass (-1) d and 1 = ε d com (-1) d . So if we have chosen d odd, ε ass = ε com = -1 and m is associative and graded commutative.

Remark 8.2. When d is even, the d-th power of the prop detH 1 (F, ∂ in ; Z) is isomorphic to the d-th power of the trivial prop with a degree shift χ(F ).

More precisely, let P the prop such that

P(p, q) := Fp+q s -χ(Fp+q) Z, s -χ(F ′ ) 1 • s -χ(F ) 1 = s -χ(F ′ •F ) 1 and s -χ(F ) 1 ⊗ s -χ(F ′ ) 1 = s -χ(F F ′ ) 1.
This prop P is the the trivial prop with a degree shift χ(F ).

For any cobordism F , let Θ F : s -χ(F ) Z → detH 1 (F, ∂ i n; Z) be an chosen isomorphism. Then Θ ⊗d F : P ⊗d → detH 1 (F, ∂ in ; Z) ⊗d is an isomorphim of props if d is even. This prop P ⊗d is the d-th power of the trivial prop with a degree shift χ(F ) and is not isomorphic to the trivial prop with a degree shift -dχ(F ).

Proof. The following upper square commutes always, while the following lower square commutes if d is even.

(s -χ(F ′ ) Z) ⊗d ⊗ (s -χ(F ) Z) ⊗d Θ ⊗d F ′ ⊗Θ ⊗d F / / τ detH 1 (F ′ , ∂ in ; Z) ⊗d ⊗ detH 1 (F, ∂ in ; Z) ⊗d τ (s -χ(F ′ ) Z ⊗ s -χ(F ) Z) ⊗d (Θ F ′ ⊗ΘF ) ⊗d / / • ⊗d (detH 1 (F ′ , ∂ in ; Z) ⊗ detH 1 (F, ∂ in ; Z)) ⊗d • ⊗d (s -χ(F ′ •F ) Z) ⊗d (Θ F ′ •F ) ⊗d / / detH 1 (F ′ • F, ∂ in ; Z) ⊗d
Replacing • by the tensor product ⊗ of props, we have proved that Θ ⊗d F is an isomorphism of props if d is even.

Observe that the dual of the loop coproduct Dlcop on H * (LX) satisfies the same commutative and associative formulae as those of the Chas-Sullivan loop product on the loop homology of M . See [START_REF] Tamanoi | Cap products in string topology[END_REF]Remark 3.6] or [START_REF] Kuribayashi | Derived string topology and the Eilenberg-Moore spectral sequence[END_REF]Proposition 2.7]. So we wonder if the prop detH 1 (F, ∂ out ; Z) is isomorphic to the prop detH 1 (F, ∂ in ; Z). Corollary 8.3. Let X be a simply connected space such that H * (ΩX; K) is finite dimensional. The shifted cohomology H * (LX) := H * +d (LX) is a graded commutative, associative algebra endowed with the product m defined by

m(a ⊗ b) = (-1) d(i-d) Dlcop(a ⊗ b) for a ⊗ b ∈ H i (LX) ⊗ H j (LX).

The Batalin-Vilkovisky identity

For any simple closed curve γ in a cobordism F , let us denote by γ the image of the Dehn twist T γ by the hurewicz map Θ

π 0 (Dif f + (F, ∂)) ∂ -1 ----→ ∼ = π 1 (BDif f + (F, ∂)) Θ ----→H 1 (BDif f + (F, ∂)).
In this section, we prove the following theorem. Theorem 9.1. Let H * be an algebra over the prop

detH 1 (F, ∂ out ; Z) ⊗d ⊗ Z H * (BDif f + (F, ∂)).
Consider the the graded associative and commutative algebra (H * , m) given by Theorem 8.1. Let α be a closed curve in the cylinder F 0,1+1 parallel to one of the boundary components. Let

∆ = ν * id1⊗α (F 0,1+1 ).
Then (H * , m, ∆) is a Batalin-Vilkovisky algebra.

In the case d = 0, Wahl [START_REF] Wahl | Ribbon braids and related operads[END_REF]Rem 2.2.4] or Kupers [26,4.1,page 158] give an incomplete proof that we complete. Moreover, we pay attention to signs.

The shifted cohomology algebra (H * , m) equipped with the operator ∆ is a BValgebra if and only if ∆ • ∆ = 0 and if the Batalin-Vilkovisky identity holds; that is, for any elements a, b and c in

H * , ∆(a • b • c) = ∆(a • b) • c + (-1) a a • ∆(b • c) + (-1) b a + b b • ∆(a • c) -∆(a) • b • c -(-1) a a • ∆(b) • c -(-1) a + b a • b • ∆(c),
where α • β = m(α ⊗ β) and α stands for the degree of an element α in

H * , namely α = |α| -d. Since BDif f + (F 0,1+1 ) is BZ, α • α ∈ H 2 (BDif f + (F 0,1+1 )) = {0}. Therefore ∆ • ∆ = ±ν * id1⊗α•α (F 0,1+1 ) = 0
The BV-identity will arise up to signs from the lantern relation ( [44, Rem 2. In order to prove Theorem 9.3, we represent each term of the B-V identity in terms of elements of the prop with a HCF theoretical way: this means using the horizontal (coproduct) composition ⊗ and the vertical composition • on the prop. We start by the most complicated element b • ∆(a • c).

By Propositions 7.3, 7.4, 7.5 and 7.6,

Dlcop • [Id ⊗ (∆ • Dlcop)] • (τ ⊗ Id) = ν * s⊗ι (F 0,2+1 ) • ν * id1⊗id1 (F 0,1+1 ) ⊗ (ν * id1⊗α (F 0,1+1 ) • ν * s⊗ι (F 0,2+1 )) •(ν * τ ⊗τ (C φ ) ⊗ ν * id1⊗id1 (F 0,1+1 )) = ±ν * s•[id1⊗s]•(τ ⊗id1) ι•[id1⊗(α•ι)]•(τ ⊗id1) (F 0,2+1 • (F 0,1+1 F 0,2+1 ) • (C φ F 0,1+1 ))
Here ± is the Koszul sign (-1) |s||α| = (-1) d , since only s and α have positive degrees.

We choose s ′ = s • (s ⊗ id 1 ). In the proof of Theorem 8.1, we saw s 

• (s ⊗ id 1 ) = (-1) d s • (id 1 ⊗ s) and s • τ = (-1) d s. Therefore s•(id 1 ⊗s)•(τ ⊗id 1 ) = (-1) d s•(s⊗id 1 )•(τ ⊗id 1 ) = (-1) d s•[(s • τ ) ⊗ (id 1 • id 1 )] = s ′ . Since ι • [id 1 ⊗ (α • ι)] • (τ ⊗ id 1

Similar computations shows that

Dlcop • (Id ⊗ (∆ • Dlcop)) = ±ν * s•[id1⊗s] ι•[id1⊗(α•ι)] (F 0,2+1 • (F 0,1+1 F 0,2+1 )) = ν * s ′ ⊗x (F 0,3+1 ), Dlcop • ((∆ • Dlcop) ⊗ Id) = ±ν * s•[s⊗id1] ι•[(α•ι)⊗id1] (F 0,2+1 • (F 0,2+1 F 0,1+1 )) = (-1) d ν * s ′ ⊗y (F 0,3+1 ), ∆ • Dlcop • (Dlcop • Id) = ν * s•[s⊗id1] α•ι•(ι⊗id1) (F 0,2+1 • (F 0,2+1 F 0,1+1 )) = ν * s ′ ⊗a4 (F 0,3+1 ), Dlcop • (∆ ⊗ Dlcop) = ±ν * s•[id1⊗s] ι•[α⊗ι] (F 0,2+1 • (F 0,1+1 F 0,2+1 )) = ν * s ′ ⊗a1 (F 0,3+1 ), Dlcop • (Id ⊗ Dlcop) • (Id ⊗ ∆ ⊗ Id) = ν * s•[id1⊗s] ι•(id1⊗ι)•(id1⊗α⊗id1) (F 0,2+1 • (F 0,1+1 F 0,2+1 )) = (-1) d ν * s ′ ⊗a2 (F 0,3+1 ) and Dlcop • (Dlcop ⊗ ∆) = ν * s•[s⊗id1] ι•[ι⊗α] (F 0,2+1 • (F 0,1+1 F 0,2+1 )) = ν * s ′ ⊗a3 (F 0,3+1 ).
Therefore using the definition of the product m, straightforward computations show that

∆((a • b) • c) = (-1) d|b|+d ν * s ′ ⊗a4 (F 0,3+1 )(a ⊗ b ⊗ c) ∆(a) • b • c = (-1) d|b|+d ν * s ′ ⊗a1 (F 0,3+1 )(a ⊗ b ⊗ c) (-1) a a • ∆(b) • c = (-1) d|b|+d ν * s ′ ⊗a2 (F 0,3+1 )(a ⊗ b ⊗ c) (-1) a + b a • b • ∆(c) = (-1) d|b|+d ν * s ′ ⊗a3 (F 0,3+1 )(a ⊗ b ⊗ c) ∆(a • b) • c = (-1) d|b|+d ν * s ′ ⊗y (F 0,3+1 )(a ⊗ b ⊗ c) (-1) a a • ∆(b • c) = (-1) d|b|+d ν * s ′ ⊗x (F 0,3+1 )(a ⊗ b ⊗ c) (-1) b a + b b • ∆(a • c) = (-1) d|b|+d ν * s ′ ⊗z (F 0,3+1 )(a ⊗ b ⊗ c).
The lantern relation gives rise to the equality

ν * s ′ ⊗a4 (F 0,3+1 ) + ν * s ′ ⊗a1 (F 0,3+1 ) + ν * s ′ ⊗a2 (F 0,3+1 ) + ν * s ′ ⊗a3 (F 0,3+1 ) = ν * s ′ ⊗x (F 0,3+1 ) + ν * s ′ ⊗y (F 0,3+1 ) + ν * s ′ ⊗z (F 0,3+1 )
since the hurewicz map is a morphism of groups. Thus 10. Seven prop structure equalities on the homology of mapping class groups proving the BV identity

∆(a • b • c) + ∆(a) • b • c + (-1) a a • ∆(b) • c + (-1) a + b a • b • ∆(c) = ∆(a • b) • c + (-1) a a • ∆(b • c) + (-1) b a + b b • ∆(a • c).
Recall that for any simple closed curve γ in a cobordism F , we write γ for the image of the Dehn twist T α by the hurewicz map Θ

π 0 (Dif f + (F, ∂)) ∂ -1 ----→ ∼ = π 1 (BDif f + (F, ∂)) Θ ----→H 1 (BDif f + (F, ∂)).
Here ∂ is the connecting homomorphism associated to the universal principal fibration.

Let α be a closed curve in the cylinder F 0,1+1 parallel to one of the boundary components. Let a 1 , ..., a 4 and x, y, z be the simple closed curves in F 0,3+1 described in [26, which acts (up to signs) on H * +dim G (LBG; K). The goal of this section is to show the following equalities needed in the proof of the BV-identity, given in section 9.

Proposition 10.1. z = ι • [id 1 ⊗ (α • ι)] • [τ ⊗ id 1 ], x = ι • [id 1 ⊗ (α • ι)], y = ι • [(α • ι) ⊗ id 1 ], a 4 = α • ι • (ι ⊗ id 1 ), a 1 = ι • [α ⊗ ι], a 2 = ι • (id 1 ⊗ ι) • (id 1 ⊗ α ⊗ id 1 ) and a 3 = ι • [ι ⊗ α].
Let F denote the group Dif f + (F, ∂) (or the mapping class group of a surface F with boundary ∂). Recall that ι F or simply ι denote the generator of H 0 (B F ) which is represented by the connected component of B F . Proposition 10.2. Let F and F ′ be two cobordisms. In i) and ii), suppose that F and F ′ are gluable. Let • : F × F ′ → F • F ′ be the map induced by gluing on diffeomorphisms. Let id F ∈ F be the identity map of F . For D in π 0 ( F ) and

D ′ in π 0 ( F ′ ), i) Θ∂ -1 (id F • D ′ ) = ι F • Θ∂ -1 D ′ ii) Θ∂ -1 (D • id F ′ ) = Θ∂ -1 D • ι F ′ . iii) Θ∂ -1 (id F ⊔ D ′ ) = ι F ⊗ Θ∂ -1 D ′
Proof. We consider the diagram:

π 0 ( F ) × π 0 ( F ′ ) ϕ ∼ = π 0 ( F ′ ) i2 5 5 l l l l l l l l l l l l l l l l π0(i2) / / π 0 ( F × F ′ ) π0(•) / / π 0 ( F • F ′ ) π 1 (B( F ′ )) Θ ∼ = ∂ O O π1(B(i2)) / / π1(i2) ) ) R R R R R R R R R R R R R R π 1 (B( F × F ′ )) Θ ! ! C C C C C C C C C C C C C C C C C C C C C ∼ = ∂ O O π1(ξ) ∼ = π1(B(•)) / / π 1 (B F • F ′ ) Θ A A A A A A A A A A A A A A A A A A A A ∼ = ∂ O O H 1 (B F ′ ) k2 H1(i2) ) ) R R R R R R R R R R R R R R π 1 (B F × B F ′ ) Θ H 0 (B F ) ⊗ H 1 (B F ′ ) κ / / H 1 (B F × B F ′ ) H 1 (B( F × F ′ )) H1(ξ) ∼ = o o H1(B(•)) / / H 1 (B F • F ′ )
Here ϕ is the natural isomorphism, κ is the Künneth map, ξ :

B( F × F ′ ) ≈ → B( F )× B( F ′ )
is the canonical homotopy equivalence, k 2 is the isomorphism defined by k 2 (x) = ι F ⊗ x and i 2 denotes various inclusions on the second factor. Note that by the definition of the prop structure, the bottom line coincides with • :

H 0 (B F ) ⊗ H 1 (B F ′ ) → H 1 (B F • F ′ ). The commutativity of the diagram shows i).
Replacing the i 2 's and k 2 by inclusions on the first factor, we obtain ii). Replacing

• : F × F ′ → F • F ′ by the map F × F ′ → F F ′ , (D, D ′ ) → D ⊔ D ′ , we obtain iii).
Proof of Proposition 10.1. Let F = (F 0,1+1 F 0,2+1 )•(C φ F 0,1+1 ). We can identify F 0,3+1 with F 0,2+1 • (F 0,1+1 F 0,1+1 ) • F . Let emb 2 : F 0,1+1 ֒→ F 0,3+1 be the second embedding due to this identification. The composite of the curve α and of emb 2 , S 1 α → F 0,1+1 emb2 ֒→ F 0,3+1 , coincides with the curve z. Taking the same tubular neighborhood around α and z, the Dehn twists of α and z, T α and T z , coincide on this tubular neighborhood. Outside of this tubular neighborhood, T α and two squares

H * (LX) Γ * / / µLX H * (S 1 × LX) S 1 / / µ S 1 ×LX H * -1 (LX) µLX H * (LX) ∨ (Γ * ) ∨ / / H * (S 1 × LX) ∨ ([S 1 ]×-) ∨ / / H * -1 (LX) ∨ .
The left square commutes by naturality of µ X . For any α ∈ H * (S 1 ) and β ∈ H * (LX) and y ∈ H * (LX), 

(µ LX • S 1 )(α × β)(y) = µ LX (-1) |α||[S 1 ]| < α, [S 1 ] > β (y) = (-1) |α||[S 1 ]| < α, [S 1 ] >< β, y > and ([S 1 ] × -) ∨ (µ S 1 ×LX (α × β)) (y) = (-1) |α×β||[S 1 ]| µ S 1 ×LX (α × β) • ([S 1 ] × -)(y) = (-1) |α||[S 1 ]|+|β||[S 1 ]| < α × β, [S 1 ] × y > . Since < α × β, [S 1 ] × y >= (-1) |β||[S 1 ]| < α, [S 1 ] >< β,
* (A, A) ∼ = HH * +|Θ| (A, A ∨ ), 1) ∆([a]) = 0, 2) ∆([d • s -1 ]) is equal to [a]
the cohomology class of a if and only if for any a 0 ∈ A, (-1) 1+|d| tr • d(a 0 ) = tr(aa 0 ).

3) In particular, the unit belongs to the image of ∆ if and only if there exists a derivation d : A → A of degree 0 commuting with the trace: tr • d(a 0 ) = tr(a 0 ) for any element a 0 in A.

Proof. By definition of ∆, the following diagram commutes up to the sign (-1) |Θ| for any p ≥ 0.

C p (A, A) C p (A,Θ) / / ∆ C p (A, A ∨ ) Ad / / C p (A, A) ∨ B ∨ C p-1 (A, A) C p-1 (A,Θ) / / C p-1 (A, A ∨ ) Ad / / C p-1 (A, A) ∨ .
Taking p = 0 we obtain 1).

The image of the cocycle

d • s -1 ∈ C 1 (A; A) by Ad • C * (A; Θ) is the form Θ(d) on C 1 (A; A) = A ⊗ sA defined by (Compare with [33, Proof of Proposition 20]) Θ(d)(a 0 [sa 1 ]) = (-1) |sa1||a0| (Θ • d)(a 1 )(a 0 ) = (-1) |sa1||a0| tr(d(a 1 )a 0 ).
For any a 0 ∈ A,

(-1) |Θ|+1+|d| B ∨ ( Θ(d))(a 0 ) = ( Θ(d) • B)(a 0 []) = Θ(d)(1[sa 0 ]) = tr • d(a 0 ).
The image of the cocycle a ∈ C 0 (A; A) by Ad • C * (A; Θ) is the form on A, mapping a 0 to (Θ • a)([])(a 0 ) = Θ(a)(a 0 ) = tr(aa 0 ). Therefore ∆(d • s -1 ) = a if and only if for any a 0 ∈ A, (-1) |Θ|+1+|d| tr • d(a 0 ) = (-1) |Θ| tr(aa 0 ). Since there is no coboundary in C 0 (A, A), this proves 2). b)Let V be a graded vector space. Let A := Λ(V ) be the graded exterior algebra on V . If V is in non-positive degrees, then A is just the cohomology algebra of a product of spheres. Let x 1 , . . . , x N be a basis of V . The trace of A is (x 1 . . . x N ) ∨ . Let d 1 be the derivation on Λx 1 considered in the previous example. Then

d := d 1 ⊗ id is a derivation on Λx 1 ⊗ Λ(x 2 , . . . , x N ) ∼ = ΛV . Obviously d commutes with the trace. So 1 ∈ Im ∆. c) Let A = F [x]/x n+1
, n ≥ 1 be the truncated polynomial algebra on a generator x of even degree different from 0. If x is of upper degree 2 then A = H * (CP n ; F). The trace of A is (x n ) ∨ . Let d : A → A be the unique derivation of A such that d(x) = x (The case n = 1 was considered in example a)). Then d(x i ) = ix i . For degree reason, d is a basis of the derivations of degree 0 of A. Then λd commutes with the trace if and only if λn = 1 in F. Therefore 1 ∈ Im ∆ in HH * (A; A) if and only n is invertible in F(Compare with [START_REF] Westerland | String homology of spheres and projective spaces[END_REF] modulo 2 and with [START_REF] Yang | A Batalin-Vilkovisky algebra structure on the Hochschild cohomology of truncated polynomials[END_REF] otherwise).

Theorem 12.3. Let V be a graded vector space (non-negatively lower graded or concentrated in upper degree ≥ 1) such that in each degre, V is of finite dimension. i) Let A = S(V ), 0 be the free strictly commutative graded algebra on V : A = ΛV odd ⊗ F[V even ] is the graded tensor product on the exterior algebra on V odd , the odd degree elements and on V even the even degree elements [9, p. 46]. Then the Hochschild cohomology of A, HH * (A, A), is isomorphic as Gerstenhaber algebras to A⊗S(s -1 V ∨ ). For ϕ a linear form on V and v ∈ V , {1⊗s -1 ϕ, v⊗1} = (-1) |ϕ| ϕ(v). The Lie bracket is trivial on (A⊗1)⊗(A⊗1) and on (1⊗S(s

-1 V ∨ ))⊗(1⊗S(s -1 V ∨ )).
ii) Suppose that F is a field of characteristic 2. Then we can extend i) in the following way: Let U and W are two graded vector spaces such that U ⊕ W = V . (i. e. we don't assume anymore that U = V odd and W

= V even ). Let A = ΛU ⊗ F[W ]. Then HH * (A, A) is isomorphic as Gerstenhaber algebras to A ⊗ F(s -1 U ∨ ) ⊗ Λ(s -1 W ∨ )
and the Lie bracket is the same as in i).

iii) Suppose that V is concentrated in odd degres or that K is a field of characteristic 2. Let A = ΛV be the exterior algebra on V . Then the BV-algebra extending the Gerstenhaber algebra HH

* (A, A) ∼ = A ⊗ K[s -1 V ∨ ] has trivial BV-operator ∆ on A and on K[s -1 V ∨ ]. Proof. i) Recall that the Bar resolution B(A, A, A) = A ⊗ T sA ⊗ A ≃ ։ A is a resolution of A as A ⊗ A op -modules. When A = S(V ), 0, there is another smaller resolution (A ⊗ Γ(sV ) ⊗ A, D) ≃ ։ A.
Here Γ(sV ) is the free divided power graded algebra on sV and D is the unique derivation such that D(γ k (sv)) = v ⊗γ k-1 (sv)⊗ 1 -1 ⊗ γ k-1 (sv) ⊗ v [START_REF] Menichi | The cohomology ring of free loop spaces[END_REF]. Since Γ(sV ) is the invariants of T (sV ) under the action of the permutation groups, there is a canonical inclusion of graded algebras [15, p. 278] i : Γ(sV ) ֒→ T (sV ) ֒→ T (sA).

This map i maps γ k (sv) to [sv| . . . |sv]. Since both (A ⊗ Γ(sV ) ⊗ A, D) and B(A, A, A) are A ⊗ A-free resolutions of A, the inclusion of differential graded algebras

A ⊗ i ⊗ A : (A ⊗ Γ(sV ) ⊗ A, D) ≃ ֒→ B(A, A, A)
is a quasi-isomorphism. So by applying the functor Hom A⊗A (-, A), Hom(i, A) :

C * (A, A) ≃ ։ (Hom(Γ(sV ), A), 0) is a quasi-isomorphism of complexes. The differ- ential on Hom A⊗A ((A ⊗ Γ(sV ) ⊗ A, D), (A, 0)) is zero since f • D(γ k1 (sv 1 ) . . . γ kr (sv r )) = 0.
The inclusion i : Γ(sV ) ֒→ T (sA) is a morphism of graded coalgebras with respect to the diagonal [15, p. 279

] ∆[sa 1 | . . . |sa r ] = r p=0 [sa 1 | . . . |sa p ] ⊗ [sa p+1 | . . . |sa r ].
Therefore the quasi-isomorphism of complexes Hom(i, A) : C * (A, A) ≃ ։ (Hom(Γ(sV ), A), 0) is also a morphism of graded algebras with respect to the cup product on the Hochschild cochain complex C * (A, A) and the convolution product on Hom(Γ(sV ), A).

The morphism of commutative graded algebras j : A⊗Γ(sV ) ∨ → Hom(Γ(sV ), A) mapping a ⊗ φ to the linear map j(a ⊗ φ) from Γ(sV ) to A defined by j(a ⊗ φ)(γ) = φ(γ)a is an isomorphim. By [15, (A.7)], the canonical map (sV ) ∨ → Γ(sV ) ∨ extends to an isomorphism of graded algebras k : S(sV

) ∨ ∼ = → Γ(sV ) ∨ . The composite Θ : (sV ) ∨ s ∨ → V ∨ s -1 → s -1 (V ∨ ), mapping x to Θ(x) = (-1) |x| s -1 (x • s)
, is a chosen isomorphism between (sV ) ∨ and s -1 (V ∨ ). Note that Θ -1 is the opposite of the composite (s -1 ) ∨ • s. Finally, the composite

A ⊗ S(s -1 (V ∨ )) A⊗S(Θ) → A ⊗ S((sV ) ∨ ) A⊗k → A ⊗ (Γ(sV )) ∨ j → Hom(Γ(sV ), A)
is an isomorphism of graded algebras. So we have obtained an explicit isomorphism of graded algebras l : HH * (A, A)

∼ = → A ⊗ S(s -1 (V ∨ )). To compute the bracket, it is sufficient to compute it on the generators on A ⊗ S(s -1 (V ∨ )). For m ∈ A, let m ∈ C 0 (A, A) = Hom((sA) ⊗0 , A) defined by m([]) = m. Obviously, l -1 (m ⊗ 1)
is the cohomology class of the cocycle m. For any linear form ϕ on V , let ϕ ∈ C 1 (A, A) = Hom(sA, A) be the map defined by Let ϕ and ϕ ′ be two linear forms on V . Then

ϕ([sv 1 v 2 . . . v n ]) = n i=1 (-1) |ϕ||sv1v2...vi-1| ϕ(v i )v 1 . . . v i . . . v n . Since the composite ϕ • s is a derivation of A, ϕ is a cocycle. Since ϕ([sv 1 ]) = (-1) |ϕ| ϕ(v 1 )1, the composite ϕ • i is the image of 1 ⊗ s -1 ϕ by the composite j•(A⊗k)⊗(A⊗S(Θ)) : A⊗S(s -1 (V ∨ )) → Hom(Γ(sV ), A). Therefore l -1 (1⊗s -1 ϕ) is the
ϕ•s•ϕ ′ •s([v 1 . . . v n ]) = 1≤j<i≤n (-1) |ϕ||ϕ ′ | ε ij (ϕ, ϕ ′ ) + ε ij (ϕ ′ , ϕ) v 1 . . . v j . . . v i . . . v n
where ε ij (ϕ, ϕ ′ ) = (-1) |ϕ||sv1...vi-1|+|ϕ ′ ||sv1...vj-1| ϕ(v i )ϕ ′ (v j ). Therefore ϕ

• s • ϕ ′ • s -(-1) |ϕ||ϕ ′ | ϕ ′ • s • ϕ • s = 0.
So by c), the Lie bracket {1 ⊗ s -1 ϕ, 1 ⊗ s -1 ϕ ′ } = 0. iii) By 1) of Proposition 12.1, ∆([m]) = 0 and so ∆ is trivial on all m⊗ 1 ∈ A⊗ 1. Let x 1 , . . . , x N be a basis of V . The trace of A is (x 1 . . . x N ) ∨ . Therefore the trace vanishes on elements of wordlength strictly less than N . For any ϕ ∈ V ∨ , the derivation ϕ•s decreases wordlength by 1. So tr•ϕ•s = 0. By 2) of Proposition 12.1, ∆(1⊗s -1 ϕ) = 0. Since the Lie bracket is trivial on (1⊗K[s

-1 V ∨ ])⊗(1⊗K[s -1 V ∨ ]), ∆ is trivial on 1 ⊗ K[s -1 V ∨ ].
ii) The proof is the same as in i): for example, Γ(sV ) is the graded tensor product of the free divided power algebra on sU and of the exterior algebra on sW . Remark 12.4. Suppose that V is concentrated in degree 0. We have obtained a quasi-isomorphism of differential graded algebras C * (S(V ), S(V )) ≃ ։ (S(V ) ⊗ Λ(s -1 V ∨ ), 0).

In particular, the differential graded algebra C * (S(V ), S(V )) is formal.

It is easy to see that if V is of dimension 1 then the inclusion (S(V ) ⊗ Λ(s -1 V ∨ ), 0) ֒→ C * (S(V ), S(V )) is a quasi-isomorphism of differential graded Lie algebras. In particular, the differential graded Lie algebra C * (S(V ), S(V )) is formal. Kontsevich formality theorem says that over a field F of characteristic zero, the differential graded Lie algebra C * (S(V ), S(V )) is formal even if V is not of dimension 1 [22, Theorem 2.4.2 (Tamarkin)].

13. Triviality of the loop product when H * (BG) is polynomial This section is independent of the rest of the paper. Recall the dual of the loop coproduct introduced by Sullivan for manifolds H * (LM ) ⊗ H * (LM ) → H * +d (LM ) is (almost) trivial [START_REF]Loop coproducts in string topology and triviality of higher genus TQFT operations[END_REF]. In this section, we prove that the loop product for classifying spaces of Lie groups H * (LBG) ⊗ H * (LBG) → H * +d (LBG) is trivial if the inclusion of the fibre in cohomology j * : H * (LBG; K) ։ H * (G; K) is surjective (Theorem 13.1). We also explain that this condition j * : H * (LBG; K) ։ H * (G; K) surjective is equivalent to our hypothesis H * (BG) polynomial (Theorem 13.3).

Theorem 13.1. Let BG be the classifying space of a connected Lie group G. Suppose that the map induced in cohomology H * (LBG; K) ։ H * (G; K) is surjective. Then the loop product on H * (LBG; K) is trivial while the loop coproduct is injective.

This result is a generalization of [START_REF]String topology on Gorenstein spaces[END_REF]Theorem D] in which it is assumed that the underlying field is of characteristic zero. If CharK = 2, the triviality of the loop product was first proved by Tamanoi [START_REF]Stable string operations are trivial[END_REF]Theorem 4.7 (2)]. The second author and David Chataur conjecture that the loop coproduct on H * (LBG) has always a counit. Assuming that the loop coproduct on H * (LBG) has a counit, obviously the loop coproduct is injective and it follows from [START_REF]Stable string operations are trivial[END_REF]Theorem 4.5 (i)] that the loop product on H * (LBG) is trivial.

The injectivity described in Theorem 13.1 follows from a consideration of the Eilenberg-Moore spectral sequences associated with appropriate pullback diagrams. In fact, the induced maps Comp ! and H(q) in the cohomology are epimorphisms; see Proposition 13.2.

Let ΩX

i ֒→ LX ։ X be the free loop fibration. The following proposition is a key to proving Theorem 13.1. Proposition 13.2. Let X be a simply-connected space. Suppose that i * : H * (LX) → H * (ΩX) induced by the inclusion is surjective. Then one has (1) the map H * (q) induced by the inclusion q : LX × X LX → LX × LX is an epimorphism.

(2) Suppose that G is a connected Lie group. Then, for the map Comp : LBG × BG LBG → LBG, Comp ! is an epimorphism. Proof of Theorem 13.1. By Proposition 13.2 (1) and ( 2), we see that the dual to the loop coproduct Dlcop := Comp ! • H * (q) on H * (LBG) is surjective. Since q ! is H * (LBG × LBG)-linear and decreases the degrees, q ! • H * (q) = 0. By Proposition 13.2 (1), H * (q) is an epimorphism. Therefore q ! is trivial and the dual of the loop product Dlp := H * (q ! ) • H * (Comp) on H * (LBG) is also trivial. are isomorphisms. In particular, H * (q) is an epimorphism and we have an isomorphism of graded vector spaces between H * (LX × X LX) and H * (LX) ⊗ H * (ΩX).

which is a contradiction. Observe that x i and x lu are primitive. Thus it follows that x i is transgressive for any 1 ≤ i ≤ N .

In the case where CharK = p = 2, since j * is surjective by assumption, it follows from the argument in [START_REF] Kuribayashi | Module derivations and the adjoint action of a finite loop space[END_REF]Remark 1.4] that H * (G; Z) has no p-torsion. Observe that to obtain the result, the connectedness of the loop space is assumed. By virtue of [37, Chapter 7, Theorem 2.12], we see that H * (BG; K) is a polynomial algebra. This completes the proof.

The following theorem give another characterisation of our hypothesis H * (BG) polynomial.

Theorem 13.4. Let G be a connected Lie group. Then the following three conditions are equivalent:

1) H * (BG; K) is a polynomial algebra on even degree generators.

2) BG is K-formal and H * (BG; K) is strictly commutative.

3) The singular cochain algebra S * (BG; K) is weakly equivalent as algebras to a strictly commutative differential graded algebra A.

Stricly commutative means that a 2 = 0 if a ∈ A odd (K can be a field of characteristics two).

Proof. 1 ⇒ 2. Suppose that H * (BG; K) is a polynomial algebra. Then by the beginning of section 6, BG is K-formal.

2 ⇒ 3. Formality means that we can take A = (H * (BG; K), 0) in 3). If H * (ΩY ) is of finite dimension then the suspension of V , sV , must be concentrated in odd degree and so V must be in even degree and d = 0, i. e. Y is K-formal and H * (Y ) is polynomial in even degree.

Figure 1 .

 1 Figure 1. the homotopy between the pairs of pants and the figure eight.

( 4 )

 4 (Compare with [41, formula p. 16, line -3]) The following formula gives a relation for the cup product of ev * (P ) with the bracket {ev * (P ) ∪ a, b} = ev * (P ) ∪ {a, b} + (-1) |P |(|a|-d-1) m(a ⊗ ∆(ev * (P )) ∪ b) (5) (Compare with [41, Theorem B]) The direct sum H * (X) ⊕ H * (LX) is a Batalin-Vilkovisky algebra where the dual of the loop coproduct m, the bracket and the ∆ operator are extended by m(P ⊗ a) := ev * (P ) ∪ a, m(P ⊗ Q) = P ∪ Q, {P, a} = (-1) |P | ∆(ev * (P )) ∪ a, {P, Q} = 0 and ∆(P ) = 0.

  The cohomology H * (BSO(3); Z/2) is the polynomial algebra on the Stiefel-Whitney classes y 2 and y 3 of the tautological bundle γ 3 ([36, Theorem 7.1] or [37, III.Corollary 5.10]). By Wu formula [37, III.Theorem 5.12(1)], Sq 1 y 2 = y 3 and Sq 2 y 3 = y 2 y 3 . Now the computation of the cup product and of the dual of the loop coproduct follows from Theorem 3.1.

Proof of Theorem 5 . 1 . 6 ⊗ 1 ) = y 7 Dlcop(x 3 x 2 5 ⊗ 1 ) + y 6 3 x 2 5 x 6 = x 5 y 2 7 + x 6 y 6 y 7 + x 3 x 5 y 7 y 4 +

 516175166774 Observe that Sq 2 y 4 = y 6 , Sq 1 y 6 = y 7 [37, VII.Corollary 6.3] and hence Sq 3 y 4 = Sq 1 Sq 2 y 4 = y 7 . From [27, Proof of Theorem 1.7], Sq 5 y 6 = y 4 y 7 and Sq 6 y 7 = y 6 y 7 . Therefore the computation of the cup product on H * (LBG 2 ; Z/2) follows from Theorem 3.1: x 2 3 = x 6 , x 2 5 = x 3 y 7 + y 4 x 6 and x 2 6 = x 5 y 7 + y 6 x 6 . Lemma 5.3 implies that monomials with non-trivial loop coproduct are ones only listed in the theorem.By (2) of Theorem 3.1,Dlcop(x 3 x 5 x 6 ⊗1) = Dlcop(x 3 x 5 ⊗x 6 ) = Dlcop(x 3 x 6 ⊗x 5 ) = Dlcop(x 5 x 6 ⊗x 3 ) = 1.By Lemma 5.3, Dlcop(x 3 x 2 5 ⊗ 1) = 0. By (1) of Theorem 3.1, Dlcop(x 3 x 5 x 6 ⊗ x 6 ) = x 6 Dlcop(x 3 x 5 x 6 ⊗ 1) + Dlcop(x 3 x 5 x 2 6 ⊗ 1).Since x 3 x 5 x 2 6 = x 3 x 5 (x 5 y 7 + y 6 x 6 ), by (4) of Theorem 3.1, Dlcop(x 3 x 5 x 2 Dlcop(x 3 x 5 x 6 ⊗ 1) = y 7 × 0 + y 6 × 1 So finally Dlcop(x 3 x 5 x 6 ⊗ x 6 ) = x 6 + y 6 .By Theorem 5.4, Dlcop(x 3 x 6 ⊗ x 5 x 6 ) = Dlcop(x 3 x 5 x 6 ⊗ x 6 ). Since x x 3 x 6 y 6 y 4 , by (1) of Theorem 3.1 and Lemma 5.3, Dlcop(x 3 x 5 x 6 ⊗ x 5 x 6 ) = x 5 Dlcop(x 3 x 5 x 6 ⊗ x 6 ) + Dlcop(x 3 x 2 5 x 6 ⊗ x 6 ) = x 5 (x 6 + y 6 ) + y 2 7 × 0 + y 6 y 7 × 0 + y 7 y 4 × 1 + y 6 y 4 × 0. The other computations are left to the reader.

  Then with this notation, Θ(x ∨ I ) = x I c where I c is the complement of I in {1, ..., N }. Let comp ! : H * +d (ΩX)⊗ H * +d (ΩX) → H * +d (ΩX) be the multiplication defined by comp ! (x I ⊗ x J ) = x I∩J if I ∪ J = {1, ..., N } and 0 otherwise. By (1) and Lemma 5.3, H * (i) : H * +d (LX) → H * +d (ΩX) commutes with the products Dlcop and comp ! . Since x (I∪J) c = x I c ∩J c , Θ : H - * (ΩX) → H * +d (ΩX) commutes with the exterior product and comp ! . By Theorem 5.5, Dlcop(x 1 . . . x N ⊗ x 1 . . . x N ) is the unit of Dlcop. By (1),

Conjecture 6 . 1 . [ 6 ,

 616 Conjecture 68] There is an isomorphism of Gerstenhaber algebras H * +d (LBG) ∼ = → HH * (S * (G), S * (G)).

Lemma 6 . 5 .

 65 Let d ∈ N be a non-negative integer. Let f : A → B be a morphism of augmented graded algebras such that B = B ≥-d , i. e. B is concentrated in degrees greater or equal than -d and such that B 0 = F. Then f is surjective iff Q(f ) is surjective.

  and β ∈ H * (B). This means that the degree -n linear map p ! τ : H * (E) → H * -n (B) is a morphism of left H * (B)-modules in the sense that f (xm) = (-1) |f ||x| xf (m) as quoted in [9, p. 44].

Proposition 7 . 4 .

 74 (Compare with [6, Proposition 31 Gluing]) Let F p+q and F q+r be two composable cobordisms. Denote by F q+r •F p+q the cobordism obtained by gluing.

  2.4] or [26, 4.1, page 158]): Proposition 9.2. [21][8, Section 5.1] Let a 1 , ..., a 4 and x, y, z be the simple closed curves described in [26, Figure 6.89, page 161]. Then one has T a1 T a2 T a3 T a4 = T x T y T z in the mapping class group of F 0,4 , where T γ denotes the Dehn twist around a simple closed curve γ in the surface.

  ) coincides with z by Proposition 10.1, we have proved thatDlcop • (Id ⊗ (∆ • Dlcop)) • (τ ⊗ Id) = (-1) d ν * s ′ ⊗z (F 0,3+1 ).

Corollary 9 . 3 .

 93 Let G be a connected compact Lie group of dimension d. Consider the graded associative and commutative algebra (H * (LBG), m) given by Corollary 8.3. Let ∆ be the operator induced by the action of the circle on LBG (See our definition in section 11)). Then the shifted cohomology H * (LBG) carries the structure of a Batalin-Vilkovisky algebra. Proof. By Proposition 11.1 and by [6, Proposition 60]), ∆ = ν * id1⊗α (F 0,1+1 ).

Figure 6 .

 6 89, page 161]. In what follows, we denote by • the vertical product in the prop F H * (BDif f + (F, ∂); K)

12 .

 12 y >, the right square commutes also. Hochschild cohomology computations Proposition 12.1. Let A be a graded (or ungraded) algebra equipped with an isomorphism of A-bimodules Θ : A ∼ = → A ∨ between A and its dual of any degree |Θ|. Denote by tr := Θ(1) the induced graded trace on A. Let a ∈ Z(A) be an element of the center of A. Let d : A → A be a derivation of A. Obviously a ∈ C 0 (A, A) = Hom(K, A) defined by a(1) = a and d • s -1 ∈ C 1 (A, A) = Hom(sA, A) are two Hochschild cocycles. Then in the Batalin-Vilkovisky algebra HH

Example 12 .

 12 2. a) Let A = Λx -d be the exterior algebra on a generator of lower degree -d ∈ Z. If d ≥ 0 then A = H * (S d ; F). Denote by 1 ∨ and x ∨ the dual basis of A ∨ . The trace on A is x ∨ . Let d : A → A be the linear map such that d(1) = 0 and d(x) = x. Since d(x ∧ x) = 0 and dx ∧ x + x ∧ dx = 2x ∧ x = 2 × 0 = 0, even over a field of characteristic different from 2, d is a derivation commuting with the trace. Therefore by Theorem 12.1, 1 ∈ Im ∆ in HH * (A; A). When F = F 2 , compare with [33, Proposition 20].

  cohomology class of the cocycle ϕ. By[10, p. 48-9], a) the Lie bracket is null onC 0 (A, A) ⊗ C 0 (A, A), b) the Lie bracket restricted to { , } : C 1 (A, A) ⊗ C 0 (A, A) → C 0 (A,A) is given by {g, a} = g(sa) for any g : sA → A and a ∈ A, c) the Lie bracket restricted to { , } :C 1 (A, A) ⊗ C 1 (A, A) → C 1 (A, A) is given by {f, g, }([sa]) = f • s • g • s(a) -(-1) (|f |+1)(|g|+1) g • s • f • s(a).By a), the Lie bracket is trivial on (A ⊗ 1) ⊗ (A ⊗ 1). By b), for ϕ ∈ V ∨ and v ∈ V , {1 ⊗ s -1 ϕ, v ⊗ 1} = (-1) |ϕ| ϕ(v)1 ⊗ 1.

Proof of Proposition 13 . 2 .

 132 Consider the two Eilenberg-Moore spectral sequences associated to the free loop fibration mentioned above and to the pull-back diagramLX × X LX q / / p LX × LX p×p X ∆ / / X × X Since H * (LX)is a free H * (X)-module by Leray-Hirsch theorem, these two Eilenberg-Moore spectral sequences are concentrated on the 0-th column. So the two morphisms of graded algebrasH * (i) ⊗ H * (X) η : H * (LX) ⊗ H * (X) K ∼ = → H * (ΩX)andH * (q) ⊗ H * (X) ⊗2 H * (p) : (H * (LX) ⊗ H * (LX)) ⊗ H * (X) ⊗2 H * (X) ∼ = → H * (LX × X LX)

3 ⇒ 1 .

 31 Let Y be a simply connected space such that S * (Y ; K) is weakly equivalent as algebras to a strictly commutative differential graded algebra A. Let (ΛV, d) be a minimal Sullivan model of A. Consider the semifree-(ΛV, d) resolution of (K, 0), (ΛV ⊗ ΓsV, D) given in [15, Proposition 2.4] or [32, Lemma 7.2]. Then the tensor product of commutative differential graded algebras (K, 0) ⊗ (ΛV,d) (ΛV ⊗ ΓsV, D) ∼ = (ΓsV, D) has a trivial differential D = 0 [15, Corollary 2.6]. Therefore we have the isomorphisms of graded vector spaces H * (ΩY ) ∼ = Tor S * (Y ;K) (K, K) ∼ = Tor (ΛV,d) (K, K) ∼ = H * (ΓsV, D) ∼ = ΓsV.

  y 4 , y 6 , y 7 ] / x 4 3 + x 5 y 7 + x 2 3 y 6 x 2 5 + x 3 y 7 + x 2 3 y 4 as algebras over H * (BG 2 ; Z/2) ∼ = Z/2[y 4 , y 6 , y 7 ], where deg x i = i and deg y j = j; see [27, Theorem 1.7].

	Theorem 5.1. The dual to the loop coproduct

  Proof of Theorem 5.8. Denote by I := Dlcop(x 1 . . . x N ⊗ x 1 . . . x N ) the unit of H * +d (LX; F 2 ) (Theorem 5.5). By (6) of Theorem 2.2, the map s ! : H * (X) → H * +d (LX), a → ev * (a)I, is a morphism of unital commutative graded algebras.By Lemma 5.3, we have Dlcop(x 1 . . . x i . . . x N ⊗ x 1 . . . x i . . . x N ) = 0. So let σ : H * +d (ΩX) → H * +d (LX) be the unique linear map such that for ∀1

  Suppose by induction that the restriction of f to F n+1 (A), f |F n+1 (A), is surjective. Then by the five Lemma, f |F n (A), is also surjective. Since F n (B) is concentrated in degrees greator or equal than n -2d, in a fixed degree, for large n, F n (B) is trivial and we can start the induction. Therefore f = f |F 0 (A) is surjective. computed in the proof of Theorem 6.2 and is isomorphic to the tensor product of algebras Λ

	B)	/ / 0
	with exact rows. Proof of Theorem 6.3. Since H	

* (G) is an exterior algebra, by Example 12.2 b), 1 ∈ Im ∆ in the BV-algebra HH * (H * (G); H * (G)). On the contrary, by Theorems 5.13 and 5.14, the unit 1 does not belong to the image of ∆ in the BV-algebra H * +dimG (LBG; F 2 ). So by Lemma 6.4, the BV-algebras HH * (H * (G); H * (G)) and H * +dimG (LBG; F 2 ) are not isomorphic.

The BV-algebra HH * (H * (SO(3)), H * (SO(3))) is explicitly

  by Remark 7.2. Proposition 7.3. (Compare with [6, Proposition 30 Monoidal]) Let F and F ′ be two cobordisms. For s ⊗ a ∈ detH 1 (F, ∂ out

 Example 5.11. With respect to the dual of the loop coproduct, there is an isomorphism of algebras between H * +14 (LBG 2 ; Z/2) and H - * (G 2 ; Z/2)⊗H * (BG 2 ; Z/2) ∼ = ∧(u -3 , u -5 , u -6 ) ⊗ Z/2[v 4 , v 6 , v 7 ].

Proof. By Theorem 5.5, Dlcop(x 3 x 5 x 6 ⊗ x 3 x 5 x 6 ) = x 3 x 5 x 6 + x 3 x 5 y 6 + x 3 y 4 y 7 + y 2 7 is an unit for the dual of the loop coproduct on H * +14 (LBG 2 ; Z/2). By Lemma 5.3, Dlcop(x 5 x 6 ⊗ x 5 x 6 ) = Dlcop(x 3 x 6 ⊗ x 3 x 6 ) = Dlcop(x 3 x 5 ⊗ x 3 x 5 ) = 0. So let ϕ : ∧(u -3 , u -5 , u -6 ) ⊗ Z/2[v 4 , v 6 , v 7 ] → H * +14 (LBG 2 ; Z/2) be the unique morphism of algebras such that ϕ(u -3 ) = x 5 x 6 , ϕ(u -5 ) = x 3 x 6 , ϕ(u -6 ) = x 3 x 5 , ϕ(v 4 ) = y 4 (x 3 x 5 x 6 +x 3 x 5 y 6 +x 3 y 4 y 7 +y 2 7 ), ϕ(v 6 ) = y 6 (x 3 x 5 x 6 +x 3 x 5 y 6 +x 3 y 4 y 7 +y 2 7 ) and ϕ(v 7 ) = y 7 (x 3 x 5 x 6 + x 3 x 5 y 6 + x 3 y 4 y 7 + y 2 7 ). For all i, j and k ≥ 0, we see that ϕ(v i 4 v j 6 v k 7 ) = y i 4 y j 6 y k 7 (x

Therefore ϕ sends a linear basis of ∧(u -3 , u -5 , u -6 ) ⊗ Z/2[v 4 , v 6 , v 7 ] to a linear basis H * +14 (LBG 2 ; Z/2). So ϕ is an isomorphism. Lemma 5.12. Let (A, •) be a commutative unital associative graded algebra such that

Second proof of Theorem 5.8 which gives another (better?) algebra isomorphism. By commutativity and associativity of Dlcop and Theorem 5.5, applying Lemma 5.12, ψ : H * (X) ⊗ H * +d (ΩX) → H * +d (LX) defined by ψ(a ⊗ x k1 . . . x ku ) = Dlcop(x 1 . . . x N ⊗ ax k1 . . . x ku ) is an involutive isomorphism such that

for any subsets I and J of {1, ..., N }.

Case I ∪ J = {1, ..., N }. By Theorem 5.4,

Dlcop(ax

Case I ∪ J = {1, ..., N }. By Theorem 5.4, Dlcop(ax I ⊗ bx J ) = 0 and comp ! (x I ⊗ x J ) = 0.

Therefore ψ is a morphism of graded algebras.

One can shows that {ψ

That is why this isomorphism might be better. Theorem 5.13. As Batalin-Vilkovisky algebra,

where for all i, j ≥ 0, ∆(v i

Proof. Theorem 5.7 gives the BV-algebra H * +3 (LBSO(3); Z/2) since ∆ is a derivation with respect to the cup product. In the proof of Example 5.10, the isomorphism of algebras ϕ :

is made explicit on generators. We now transport the operator ∆ using ϕ.

In degree 1, the ∆ operator is given by ∆(u

Theorem 5.14. As Batalin-Vilkovisky algebra,

where for all i, j, k

In particular 1 / ∈ Im ∆.

Proof. Theorem 5.1 gives the BV-algebra H * +14 (LBG 2 ; Z/2) since ∆ is a derivation with respect to the cup product. In the proof of Example 5.11, the isomorphism of algebras ϕ : ∧(u -3 , u -5 , u -6 ) ⊗ Z/2[v 4 , v 6 , v 7 ] → H * +14 (LG 2 ; Z/2) of Theorem 5.8 is made explicit on generators. We now transport the operator ∆ using ϕ.

In degree 1, the ∆ operator is given by ∆(u

T z coincide with the identity maps of F 0,1+1 and of F 0,3+1 , id F0,1+1 and id F0,3+1 . Therefore

By virtue of Proposition 10.2 i), ii) and then iii), we have

The prop structure on the 0th homology gives

Finally, the prop structure on the homology of mapping class groups gives

By similar fashion, we have the other six equalities.

The cohomological BV-operator ∆

The goal of this section is to give our definition of the BV-operator ∆ in cohomology and to compare it to others definitions given in the literature.

Let Γ : S 1 × LX → LX be the S 1 -action map. Then in this paper the Batalin-Vilkovisky operator ∆ : Therefore for any β ∈ H * (LX), the image of β by ∆, ∆(β), is the unique element such that (see [START_REF] Tamanoi | Cap products in string topology[END_REF] up to the sign -)

where {S 1 } is the fundamental class in cohomology defined by

So finally, we have proved that with our definition of integration along the fibre, since we define the BV-operator ∆ using integration along the fibre as [27, Proposition 3.3], our ∆ is exactly the opposite of the one defined by [START_REF] Tamanoi | Cap products in string topology[END_REF] or [23, p. 648 line 4].

In particular, observe that ∆ satisfies ∆ 2 = 0 and is a derivation on the cup product on H * (LX) [START_REF] Tamanoi | Cap products in string topology[END_REF]Proposition 4.1].

In section 9, we will need another characterisation of our BV-operator ∆:

Proof. For any space X, let µ X : H * (X; K) → H * (X; K) ∨ be the map sending α to the form on H * (X; K), < α, ->. Here < -, -> is the Kronecker bracket. By the universal coefficient theorem for cohomology, µ X is an isomorphism. Consider the Consider the Leray-Serre spectral sequence { E * , * r , d r } of the homotopy fibration ΩX 

This implies that the Leray-Serre spectral sequence (LSSS) for F collapses at the E 2 -term and hence j * is surjective. See the beginning of section 3 for an alternative proof which uses module derivations.

Suppose that j * is surjective. We further assume that CharK = 2. By the argument in [START_REF] Kuribayashi | Module derivations and the adjoint action of a finite loop space[END_REF]Remark 1.4] or [20, Proof of Theorem 2.2], we see that the Hopf algebra A = H * (G; K) is cocommutative and so primitively generated; that is, the natural map ι : P (A) → Q(A) is surjective. By [START_REF] Kuribayashi | Module derivations and the adjoint action of a finite loop space[END_REF]Lemma 4.3], this yields that H * (G; K) ∼ = ∆(x 1 , ..., x N ), where x i is primitive for any 1 ≤ i ≤ N . The same argument as in the proof of [37, Chapter 7, Theorem 2.26 [START_REF] Berglund | Free Loop Space Homology of Highly Connected Manifolds[END_REF]] allows us to deduce that each x i is transgressive in the LSSS {E r , d r } for F ′ . To see this more precisely, we recall that the action of G on EG gives rise to a morphism of spectral sequence Suppose that there exists an integer i such that x j is transgressive for j < i but not x i . Then we see that for some r < deg x i + 1, d r (x i ) = 0 and d p (x i ) = 0 if p < r. We write

where each b l is a non-zero element of H * (BG; K) and 1 ≤ l u ≤ N for any l and u. The equality µ * r d r (x i ) = (d r ⊗ 1)µ * r (x i ) implies that