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Abstract

The present paper concerns the well-posedness of the Cauchy problem for microlocally symmetrizable hyperbolic
systems whose coefficients and symmetrizer are log-Lipschitz continuous, uniformly in time and space variables.
For the global in space problem we establish energy estimates with finite loss of derivatives, which is linearly
increasing in time. This implies well-posedness in H∞, if the coefficients enjoy enough smoothness in x. From this
result, by standard arguments (i.e. extension and convexification) we deduce also local existence and uniqueness.
A huge part of the analysis is devoted to give an appropriate sense to the Cauchy problem, which is not evident a
priori in our setting, due to the very low regularity of coefficients and solutions.

2010 Mathematics Subject Classification: 35L45 (primary); 35B45, 35B65 (secondary).
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1 Introduction

In the present paper we study local and global questions related to the well-posedness of the
Cauchy problem for m×m first order hyperbolic systems

intro_eq:Lintro_eq:L (1) Lu(t, x) := A0(t, x) ∂tu(t, x) +
n∑
j=1

Aj(t, x) ∂ju(t, x) + B(t, x)u(t, x)

under low regularity assumptions on its coefficients.
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In [17], Ivrĭı and Petkov proved that a necessary condition for the well-posedness in the
energy space L2(Rn) is the existence of a bounded microlocal symmetrizer S(t, x, ξ) for L (see
Definition 2.1 below). We remark that this is equivalent to the hypothesis of strong hyperbolicity
of the operator (see [20] and the references therein). Nonetheless, this condition is far from being
sufficient, even for C∞ well-posedness: see counterexamples in [24], [20] and [12].

On the other hand, in the simplest case when the first order coefficients Aj are symmetric
matrices, i.e. the system is symmetric in the sense of Friedrichs, if they are also Lipschitz contin-
uous over [0, T ]×Rn, energy estimates (and then well-posedness) in L2 are quite easy to obtain.
Notice that, in this instance, the symmetrizer is simply the identity matrix, and it is constant
(and then smooth) in (t, x, ξ).

Keeping theW 1,∞([0, T ]×Rn) regularity for the coefficients of the principal part, the previous
result was extended by Métivier in [19] to the case of microlocally symmetrizable systems, under
the assumption that the symmetrizer S is Lipschitz in (t, x) and smooth with respect to ξ. More
recently, in [20] Métivier also proved that, under a stronger W 2,∞([0, T ] × Rn) condition on the
Aj ’s, the existence of a Lipschitz continuous symmetrizer in all the variables (t, x, ξ) is sufficient
for proving energy estimates in L2. Whether the additional regularity for the coefficients of L is
merely a technical requirement or rather a necessary hypothesis is not clear at present.

Indeed, patological phenomena may be produced by the lack of suitable regularity of the
coefficients. To explain this assertion, let us make a brief parallel with scalar strictly hyperbolic
operators of second order

intro_eq:waveintro_eq:wave (2) Wu(t, x) := ∂2
t u(t, x) −

n∑
j,k=1

∂j

(
ajk(t, x) ∂ku(t, x)

)
.

It is well-known that, if the coefficients ajk are Lipschitz continuous in t and just bounded in x,
then the Cauchy problem for W is well-posed in the energy space H1 × L2. On the contrary,
whenever the Lipschitz regularity in t is not met, additional smoothness in x is required, and the
Cauchy problem is no more well-posed in the usual sense. Namely, the solution loses regularity in
the evolution, and energy estimates are recovered in weaker spaces Hs ×Hs−1, for |s| < 1, which
deteriorates with the passing of time: actually, s = s(t), with s′(t) < 0. Therefore, this justifies
the additional regularity in x, which is not just a technical requirement to make energy estimates
work, but which is really needed to give sense to the Cauchy problem.

Many are the relevant papers on this subject: see e.g. [4], [10], [11], [25], [5]. We refer to [6]
and [7] for an overview and recent results. In passing, we mention that this loss of smoothness
produces relevant effects also at the level of the control of waves. In addition, we have to point
out that similar phenomena were proved to occur also for transport equations with non-regular
coefficients (see e.g. [1], [13]): we refer e.g. to Chapter 3 of [2] for a review of previous results in
this direction and for further references.

There is an important feature to point out about the wave operator (2). The work of Tarama
[25] showed that Zygmund type conditions in time are well-adapted to this kind of analysis. These
are smoothness assumptions which are made on the second variation of the function, i.e. on the
symmetric difference |f(t+τ)+f(t−τ)−2f(t)|, rather than on its modulus of continuity; besides,
they can be related with special Besov type regularities. It turns out that these conditions are
weaker than the corresponding ones made on the first variation, namely on |f(t + τ) − f(t)|: in
particular, one can recover well-posedness (with no loss) for the pure Zygmund condition

(Z) |f(t+ τ) + f(t− τ)− 2f(t)| ≤ C |τ | ,

which is weaker than the Lipschitz one. In order to deal with this worse behaviour in hyperbolic
Cauchy problems, one has to introduce a lower order corrector in the definition of the energy: this
additional term is necessary to produce special algebraic cancellations in the estimates, erasing
bad remainders arising in the time derivative of the energy. We refer to the above mentioned
works [5], [6], [7] (where the coefficients depend also on x) for further progress in this direction.
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Let us come back to the operator L, defined in (1). In the present paper we aim at investigating
the problem of its well-posedness looking at minimal regularity conditions in time and space
variables for coefficients and symmtrizers: namely, we will consider the case of non-Lipschitz
dependence on (t, x), keeping however the smoothness of S(t, x, ξ) with respect to ξ (see the
discussion above). Indeed, our analysis makes a broad use of paradifferential calculus, which
requires smoothness of symbols in the dual variable.

In a preliminary study (see [9]), we focused on time-dependent coefficients: Aj(t) and B = 0
for simplicity. Inspired by [25], it was natural to formulate Zygmund type hypotheses on them;
on the other hand, in this context it is out of use to know a priori the existence of a microlocal
symmetrizer S(t, ξ) with the same regularity in time. As a matter of fact, analogoulsy to the
case of the wave equation, the time derivative of the energy E(t) ∼

(
Su, u

)
L2 produces bad

remainders, and one needs to introduce correctors to cancel them out: the challenge there was
to build up a suitable microlocal symmetrizer, for which energy estimates work well. Hence,
we supposed the system to be hyperbolic with constant multiplicities, which means that all the
eigenvalues of the principal symbol are real, semi-simple and with constant multiplicities in t and
ξ; this condition implies in particular strong hyperbolicity.

In the end, in [9] we proved well-posedness in any Hs for Zygmund type assumptions (even
of integral type), while energy estimates with a finite time-increasing loss of derivatives for log-
Zymgund type assumptions (in the right-hand side of (Z) an extra logarithmic factor | log τ | is
added), which entail well-posedness just in H∞.

We have to point out that the hypothesis of dependence of the Aj ’s just on time was crucial
in [9], in order to construct a good symmetrizer, and it is far to be clear at present how to deal
with the more general case of dependence also on x.

As a first step in this direction, in the present paper we consider coefficients Aj(t, x) with
slightly better regularity conditions in t, and non-zero matrices B(t, x): we will see that, now, the
presence of 0-th order term makes some differences in the analysis. More precisely, we assume B
to be L∞

(
[0, T ]; Cγ(Rn)

)
, for some Hölder exponent 0 < γ < 1, and the Aj ’s to be bounded and

uniformly log-Lipschitz continuous in their variables.

d:LL Definition 1.1. Let Ω ⊂ RN be an open domain. A function f ∈ L∞(Ω) is said to be log-
Lipschitz in Ω, and we write f ∈ LL(Ω), if the quantity

|f |LL := sup
y,z∈Ω, |y−z|<1

(
|f(y) − f(z)|

|y − z| log
(
1 + 1/|y − z|

)) < +∞ .

We define ‖f‖LL := ‖f‖L∞ + |f |LL.

The same regularity hypothesis is assumed in (t, x) also for the microlocal symmetrizer (of
course, it is taken smooth in ξ). Indeed, as we will see, corrector terms are no more needed in
this case, and the energy can be defined in a classical way, in terms (roughly speaking) of the L2

scalar product with respect to S. Then, the microlocal simmetrizability assumption will be still
suitable for our purposes.

For operator L, supplemented with these additional hypotheses, in Theorem 2.4 we establish
energy estimates on the whole [0, T ]× Rn with time-increasing loss of derivatives, which are the
exact couterpart of similar inequalities for the wave operator (2) (see [10], [11]). These estimates,
however, hold true in low regularity Sobolev spaces Hs, for 0 < s < γ, due to the weak smoothness
of the coefficients in x. For the same reason, the result is just local in time: if the loss of derivatives
is too high, u ends up in very weak classes, for which the product with log-Lipschitz or Hölder
functions is no more well-defined.

Let us explain better this point. One has to remark (see also Proposition 3.9 and Corollary
3.10 below) that multiplication by a log-Lipschitz function is a self-map ofHs if and only if |s| < 1,
so that the first order part makes sense in Hs−1 if and only if −1 < s−1 < 0. On the other hand,
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the 0-th order term will be treated as a remainder, and so we need it to be in Hs: this is true for
|s| < γ. Notice here that the argument is symmetric for the conservative counterpart

L∗u = − ∂tu −
n∑
j=1

∂j
(
A∗j u

)
+ B∗ u ,

and in fact, for L∗ one gets a sort of “dual” version of the previous result, in Hs classes for
−γ < s < 0 (but the loss is always increasing in time, of course).

Our result strongly relies on paradifferential calculus in logarithmic Sobolev classes, and espe-
cially on a fine analysis of paradifferential operators associated to symbols which are log-Lipschitz
(or Hölder) continuous in x, for which we develop also a symbolic calculus. This analysis allows
us to approximate the principal part A of L by its paradifferential operator TA, and to define
an approximate symmetrizer for TA by taking, roughly speaking, the paradifferential operator
associated to the original symmetrizer S (up to small modifications, required in order to deal
with low frequencies).

On the other hand, the time dependence comes into play as well, and the weak smoothness
in t causes some troubles in view of energy estimates. Then, following the approach initiated in
[4] by Colombini, De Giorgi and Spagnolo for the scalar wave equation, we need to introduce a
regularization in time, and to link the regularization parameter (say) ε with the dual variable ξ.
More precisely, given a simbol a = a(t, x, ξ), in a first moment we smooth it out by convolution
with a smoothing kernel: we define the family aε = ρε ∗t a. Then, in view of closing energy
estimates, we have to make the key choice ε = 1/|ξ|: this means that the approximation is
different, depending on the size of the frequencies we are looking at. Therefore, the previous
paradifferential calculus construction has to be completely revisited and adapted to treat new
symbols ã(t, x, ξ) which are obtained by the family

(
aε
)
ε
performing the choice ε = |ξ|−1.

Let us point out that, in our analysis, the log-Lipschitz continuity in (t, x) of both the first order
coefficients and the symmetrizer is exploited in a fundamental way. Also, the counterexamples
established in [20] and [12] imply somehow the sharpness of our result. In particular, in [12]
Colombini and Métivier were able to exhibit explicit examples of 2×2 microlocally symmetrizable
systems with smooth time-dependent coefficients, for which the following phenomena occur: if
the symmetrizer is ω-continuous for some modulus of continuity ω which is even slightly worse
than Lipschitz, a loss of derivatives has to occur in the energy estimates (then ill-posedness in
L2); if ω is worse than log-Lipschitz, then the loss is in general infinite (which shows ill-posedness
of the Cauchy problem in C∞).

This having been done, we turn our attention to local in space existence and uniqueness
questions. Indeed, our regularity hypotheses are invariant under smooth change of variables, and
thus they are suitable for local analysis. On the other hand, we will prove that also the microlocal
symmetrizability assumption (reformulated in Definition 2.9 in a coordinate independent way) is
invariant under change of variables. So, in Theorems 2.10 and 2.12 we show respectively local
existence and uniqueness of solutions to the Cauchy problem for our operator L (written in a
coordinate independent way, see formula (12) below). These results are the analogue of what
established in [11] for wave operators W . In passing, we mention that local uniqueness will be
derived from a result about propagation of zero across space-like manifolds, which also implies
finite speed of propagation and a sharp description of the propagation of supports by standard
arguments (see e.g. [15], [22]).

Of course, since we are in a low regularity framework, the sense of the local Cauchy problem
is not clear a priori: therefore, the initial efforts (see Subection 5.1) will be devoted to explain
the setting, how one has to interpret the Cauchy problem under our assumptions and in which
sense one can aim at solving it. Then, by a change of variables we will reconduct the analysis
to operator L written in the form (1) above, and, by a classical convexification argument, we
will be able to reduce the proof of the local statements to the global in space results, previously
established.
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Before going on, let us give a brief overview of the paper.
In the next section we collect our hypotheses, and we state our main results, first for the global

Cauchy problem, and then for the local one. Section 3 is devoted to Littlewood-Paley analysis
of log-Lipschitz and Sobolev classes, and to developing paradifferential calculus associated to low
regularity symbols. This analysis will be the key to the proof of the global statement, which will
be presented in Section 4. Finally, in Section 5 we discuss the local questions.

Notations

Before going on, let us introduce some notations.
First of all, given two vectors v and w in Cm, we will denote by v · w the usual hermitian

product in Cm and by |v| the usual norm of a vector in Cm:

v · w =

m∑
j=1

vj wj and |v|2 = v · v .

On the contrary, given a infinite-dimensional Banach space X, we will denote by ‖ · ‖X its
norm and, if it’s Hilbert, by ( · , · )X its scalar product. Tipically, for us X = L2(Rn;Rm) or
Hs(Rn;Rm).

We will also setMm(C) the set of allm×m matrices whose components are complex numbers,
and we will denote by | · |M its norm:

|A|M := sup
|v|=1
|Av| ≡ sup

|v|≤1
|Av| ≡ sup

v 6=0

|Av|
|v|

.

Acknowledgements

The first two authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Proba-
bilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

2 Basic definitions and main results
s:results

We state here our main results. Let us start by the global in space questions.

2.1 The global Cauchy problem

For m ≥ 1, let us consider the m×m linear first order system

def:Ldef:L (3) Lu(t, x) = ∂tu(t, x) +

n∑
j=1

Aj(t, x) ∂ju(t, x) + B(t, x)u(t, x)

defined on a strip [0, T ]×Rn, for some time T > 0 and n ≥ 1. We suppose u(t, x) ∈ Rm and, for
all 1 ≤ j ≤ n, the matrices Aj(t, x) ∈Mm(C) as well as B(t, x).

We define the principal symbolA associated to the operator L: for all (t, x, ξ) ∈ [0, T ]×Rn×Rn,

def:symboldef:symbol (4) A(t, x, ξ) :=

n∑
j=1

ξj Aj(t, x) .

Then, for all (t, x, ξ) fixed, A(t, x, ξ) is an m ×m matrix which has complex-valued coefficients.
We denote by

(
λk(t, x, ξ)

)
1≤k≤m ⊂ C its eigenvalues at any point (t, x, ξ).

Analogously, we consider also its conservative counterpart, i.e. the operator L̃ defined by

def:L*def:L* (5) L̃u(t, x) = ∂tu(t, x) +

n∑
j=1

∂j
(
Aj(t, x)u(t, x)

)
+ B(t, x)u(t, x)
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and whose principal symbol is still A(t, x, ξ), with a different quantization.
Let us state now our working hypothesis. First of all, in the sequel we will always assume

that our operator L is hyperbolic, namely
(
λk(t, x, ξ)

)
1≤k≤m ⊂ R. As for the coefficients of L, we

always suppose boundedness: we suppose that, for all M ∈ {A1 . . . An, B},

hyp:boundhyp:bound (6)
∥∥M∥∥

L∞([0,T ]×Rn;Mm(C))
:= sup

(t,x)

∣∣M(t, x)
∣∣
M ≤ K0 .

Concerning their regularity, let us start by focusing on first order coefficients: we assume that, for
all 1 ≤ j ≤ n, the matrix-valued functions Aj are log-Lipschitz continuous (LL in brief) in their
variables: there exists a constant K1 > 0 such that, for all τ > 0 and all y ∈ Rn \ {0}, one has

hyp:LLhyp:LL (7) sup
(t,x)

∣∣Aj(t+ τ, x+ y) − Aj(t, x)
∣∣
M ≤ K1

(
|τ |+ |y|

)
log

(
1 +

1

|τ |+ |y|

)
.

Notice that, since we are in finite dimension, this is equivalent to require the same condition on
each component of Aj .

Concerning the coefficient of the lower order term, we will assume γ-Hölder continuity in
space, uniformly in time. More precisely, we suppose that there exist a γ ∈ ]0, 1[ and a constant
K2 > 0 such that, for all y ∈ Rn \ {0}, one has

hyp:Holderhyp:Holder (8) sup
(t,x)

∣∣B(t, x+ y) − B(t, x)
∣∣
M ≤ K2 |y|γ .

Finally, we will require that the system is uniformly microlocally symmetrizable, in the sense of
Métivier (see [19], Chapter 7). The word uniformly here means with respect to (t, x) ∈ [0, T ]×Rn
(see also Section 4 of [20]).

d:micro_symm Definition 2.1. System (3) is uniformly symmetrizable if there exists a m×m matrix S(t, x, ξ),
homogeneous of degree 0 in ξ, such that:

• ξ 7→ S(t, x, ξ) is C∞ for ξ 6= 0;

• for any point (t, x, ξ), the matrix S(t, x, ξ) is self-adjoint;

• there exist constants 0 < λ ≤ Λ such that λ Id ≤ S(t, x, ξ) ≤ Λ Id for any (t, x, ξ);

• for any point (t, x, ξ), the matrix S(t, x, ξ)A(t, x, ξ) is self-adjoint.

The matrix valued function S is called a microlocal symmetrizer for system (1).

ex:symm Example 2.2. Obviously, symmetric systems are microlocally symmetrizable hyperbolic systems,
whose symmetrizer is simply the identity matrix.

ex:const Example 2.3. Also hyperbolic systems with constant multiplicities (and in particular strictly
hyperbolic systems, for which multiplicities are all equal to 1) are microlocally symmetrizable.
Indeed, a symmetrizer can be easily constructed (see e.g. [19]) in terms of the eigenvalues and
projection operators onto the eigenspaces related to A(t, x, ξ).

In addition, standard perturbation theory for linear operators (see e.g. [16], [20],[23]) entails
that the eigenvalues and eigenprojectors inherit the same regularity in (t, x) as the coefficients of
L. In particular, this implies that, in general, one cannot expect to find a symmetrizer having
more smoothness than the one of the coefficients of L or L̃.

In what follows, we are going to consider the case when also the symmetrizer S is log-Lipschitz
continuous in (t, x), in the sense that it verifies an inequality of the same type as (7) at any ξ 6= 0
fixed. Such a regularity hypothesis for S will be exploited in a fundamental way in order to get
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our result. Without loss of generality, we can assume that the constants K0 in (6) and K1 in (7)
are large enough, to control also the corresponding quantities computed for the symmetrizer S.

Under the previous hypotheses, we can show an energy estimate with finite loss of derivatives
for L and L̃. We point out that such a loss is linearly increasing in time, which implies that the
solution becomes more and more irregular in the time evolution.

The estimates are stated for smooth enoug u at this level. However, as a consequence of a
“weak = strong” type result (see Theorem 4.10 below), they remain true for tempered distributions
in a much broader class.

th:en_LL Theorem 2.4. Let us consider the first-order system (3), and assume it to be microlocally sym-
metrizable, in the sense of Definition 2.1. Suppose moreover that the coefficients

(
Aj
)

1≤j≤n and
the symmetrizer S satisfy the boundedness and log-Lipschitz conditions (6)-(7). Suppose also that
the coefficient B verifies hypotheses (6)-(8), for some γ ∈ ]0, 1[ .

Then, for all s ∈ ]0, γ[ , there exist positive constants C1, C2 (depending just on s, K0 and
K1), a β > 0 (depending just on K1) and a time T∗ ∈ ]0, T ], with β T∗ < s, such that the estimate

est:u_LLest:u_LL (9) sup
t∈[0,T∗]

‖u(t)‖Hs−βt ≤ C1 e
C2 T

(
‖u(0)‖Hs +

∫ T∗

0

∥∥Lu(τ)
∥∥
Hs−βτ dτ

)
holds true for any tempered distribution u ∈ L2

(
[0, T ];H1(Rn;Rm)

)
∩ H1

(
[0, T ];L2(Rn;Rm)

)
.

An analogous estimate holds true also for operator L̃ defined in (5), but for any s ∈ ]− γ, 0[
and under the condition β T∗ < γ + s.

Some remarks on the previous statement are in order.

r:no-lower Remark 2.5. (i) The technical limitation |s| < γ is dictated by product continuity properties
(see Proposition 3.9 below). The same can be said about the conditions on the time T∗.

(ii) A careful but easy inspection of our proof reveals that, if B ∈ L∞
(
[0, T ];LL(Rn)

)
, then

Theorem 2.4 holds true replacing γ by 1 (see also Corollary 3.10). On the other hand,
having additional regularity for B does not help to improve the result: in particular, this is
the case when the operator is homogeneous of first order, i.e. if B ≡ 0.

(iii) In the case of operator L̃, the Hölder regularity of the 0-th order term imposes an additional
limitation on the lifespan T∗. We notice that this is coherent with what is known for scalar
wave equations (see e.g. [8]).

From the previous theorem, we can deduce the existence and uniqueness of a local in time
solution to the Cauchy problem associated to L and L̃.

t:global_e Theorem 2.6. Let us consider the first-order system (3), and assume it to be microlocally sym-
metrizable, in the sense of Definition 2.1. Suppose moreover that the coefficients

(
Aj
)

1≤j≤n and
the symmetrizer S satisfy the boundedness and log-Lipschitz conditions (6)-(7). Suppose also that
the coefficient B verifies hypotheses (6)-(8), for some γ ∈ ]0, 1[ .

For s ∈ ]0, γ[ , let β > 0 and T∗ > 0 respectively the loss parameter and the existence time
given by Theorem 2.4. Set s0 := s− βT∗.

Then, for any fixed u0 ∈ Hs(Rn;Rm) and f ∈ L1
(
[0, T ];Hs(Rn;Rm)

)
, there exists a unique

solution u ∈ C
(
[0, T∗];H

s0(Rn;Rm)
)
to the Cauchy problem

eq:Cauchyeq:Cauchy (10)

{
Lu = f

u|t=0 = u0 ,

which satisfies the energy inequality (9). In particular, for any t ∈ [0, T∗], one has

u(t) ∈ Hs−βt(Rn;Rm) ,
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and the map t 7→ u(t) is continuous between the respective functional spaces.
An analogous statement still holds true for the conservative operator L̃.

r:Cauchy Remark 2.7. Let us denote by C∞b (Rn) the space of C∞(Rn) functions which are uniformly
bounded with all their derivatives.

Theorems 2.4 and 2.6 immediately imply the following statement: if the coefficients of L
(respectively L̃) and the symmetrizer S are L∞

(
[0, T ]; C∞b (Rn)

)
, with the first order coefficients

and S log-Lipschitz continuous in time, then the Cauchy problem for L (respectively L̃) is well-
posed in the space H∞(Rn;Rm), with a finite loss of derivatives.

2.2 Local in space results
ss:local_th

We turn now our attention to the local in space problem. For simplicity of exposition, we will
always consider smooth bounded domains and manifolds.

Hence, we fix a smooth open bounded domain Ω ⊂ R1+n, and we suppose that the coefficients
Aj = Aj(z) are log-Lipschitz in Ω (keep in mind Definition 1.1).

We recall also that Hs(Ω) is defined (see Chapter 3 of [26], where the more general context of
Besov spaces is treated) as

def:H^sdef:H^s (11) Hs(Ω) :=

{
u ∈ D′(Ω)

∣∣∣∣ there exists ũ ∈ Hs(R1+n) such that ũ|Ω ≡ u

}
,

endowed with the norm

‖u‖Hs(Ω) := inf

{
‖ũ‖Hs(R1+n)

∣∣∣∣ ũ ∈ Hs(R1+n) and ũ|Ω ≡ u

}
.

As for the boundary ∂Ω, partition of unity leads to a similar definition for Hs(∂Ω), by use of
local charts and extension operator; the same can be said for smooth submanifolds Σ.

Let us consider the operator P , defined in Ω by the formula

eq:def_Peq:def_P (12) P (z, ∂z)u :=

n∑
j=0

Aj(z)∂zju + B(z)u ,

where, for all 1 ≤ j ≤ n, the Aj ’s and B are real m ×m matrices; we will specify later on their
regularity. For the time being, let us introduce the principal symbol P1 of P , identified by the
formula

P1(z, ζ) =
n∑
j=0

i ζj Aj(z) ,

and recall some basic definitions (see Section 4 of [20]). At this level, the dependence of the
coefficients on the variable z ∈ Ω is not really important, so let us omit it from the notations here.

d:hyperbolic Definition 2.8. The operator P is said to be hyperbolic in the direction ν ∈ R1+d if the following
conditions are verified:

(i) det
(
P1(ν)

)
6= 0;

(ii) there exists a η0 > 0 such that det
(
P1(iτν + ζ) + B

)
6= 0 for all ζ ∈ R1+d and all τ ∈ R

such that |τ | > η0.

The principal operator P1(∂z) is strongly hyperbolic in the direction ν if for all matrix B ∈Mm(R),
then P1 +B is hyperbolic in the direction ν.

Let us recall that Proposition 4.2 of [20] gives a characterization of the strong hyperbolicity.
We do not enter into the details here; however, we will come back to this notion in a while.
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Now, we are interested in considering the dependence on z ∈ Ω: more precisely, for any z ∈ Ω,
we assign a direction ν(z) ∈ Sd (where Sd is the unitary sphere in R1+d) in a smooth way. In
what follows, we are going to assume that

(H-1) P1(z, ·) is uniformly strongly hyperbolic in the direction ν(z), for all z ∈ Ω.

By Theorem 4.10 of [20], hypothesis (H-1) is equivalent to the following conditions:

1. one has the property

eq:det_poseq:det_pos (13) CΩ := inf
z∈Ω

∣∣∣detP1

(
z, ν(z)

)∣∣∣ > 0 ;

2. P1 admits a bounded family of full symmetrizers S(z, ·) which is uniformly positive in the
direction ν(z).

Hence, let us recall Definition 4.7 of [20] here below.

d:full-symm Definition 2.9. A bounded family of full symmetrizers for P1(z, ζ) is a family of m×m matrices
S(z, ζ), homogeneous of degree 0 in ζ 6= 0, such that the following conditions are satisfied:

• uniform boundedness: there exists a constant Λ > 0 such that sup(z,ζ) |S(z, ζ)|M ≤ Λ;

• symmetrizability: for any (z, ζ), the matrix S(z, ζ)P1(z, ζ) is self-adjoint.

The symmetrizer S(z, ζ) is positive in the direction ν 6= 0 if there exists a constant λ > 0 such
that, for all ζ 6= 0, one has

v ∈ KerP1(z, ζ) =⇒ Re
(
S(z, ζ)P1

(
z, ν
)
v · v

)
≥ λ |v|2 .

Uniform positivity means positivity of S(z, ·) in the direction ν(z) for all z ∈ Ω, for a constant λ
independent of z.

We are going to need also the following assumptions concerning the family of symmetrizers:

(H-2) the map ζ 7→ S(z, ζ) is C∞ for ζ 6= 0 (smoothness in ζ);

(H-3) the map z 7→ S(z, ζ) is uniformly LL in Ω (log-Lipschitz regularity in z).

As for the coefficients of the operator P , defined in (12), we suppose instead that:

(H-4) the matrices Aj have coefficients in the LL(Ω) class;

(H-5) B has coefficients in the Hölder space Cγ(Ω).

Let us now fix a smooth hypersurface Σ ⊂ Ω. As in [11], up to shrink Ω, we can assume that
Σ is defined by the equation ϕ = 0, for a smooth ϕ such that dϕ 6= 0. Finally, we suppose that,
for any z ∈ Σ, the vector ν(z) coincides with the normal to Σ in z, i.e. dϕ(z).

We introduce the notations Ω≥ := Ω ∩ {ϕ ≥ 0} and Ω> := Ω ∩ {ϕ > 0}. For s ∈ R, we
say that u ∈ Hs

loc(Ω≥) if, for any open Ω′ ⊂ Ω, relatively compact in Ω, the restriction of u to
Ω′ ∩ {ϕ > 0} belongs to Hs(Ω>). In a similar way, we say that v ∈ Hs

comp(Ω≥) if v ∈ Hs(Ω>)
has compact support in Ω≥.

For a z0 ∈ Σ, we are interested in solving the Cauchy problem for P in a neighborhood of z0.
We have the following local existence result.
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t:local_e Theorem 2.10. Let 1/2 < γ < 1 and s ∈ ]1 − γ, γ[ . Let P be the operator defined in (12),
satisfying all hypotheses from (H-1) to (H-5).

Fix a neighborhood ω of z0 in Σ. Then, there exist a s0 ∈ ]1 − γ, s[ and a neighborhood Ω0

of z0 in Ω such that, for any u0 ∈ Hs(ω) and any f ∈ Hs(Ω0 ∩ {ϕ > 0}), there exists a solution
u ∈ Hs0(Ω0 ∩ {ϕ > 0}) to the Cauchy problem

(CP )

{
Pu = f

u|Σ = u0 .

r:sense Remark 2.11. Notice that, due to the low regularity of the coefficients, the meaning of (CP )
is not clear a priori: we will precise it in Subsection 5.1. In particular, one step of the proof is
devoted exactly to giving sense to the trace operator in a weak smoothness framework.

For the problem (CP ) we have also local uniqueness of a solution. From this statement, which
establish propagation of zero across any space-like hypersurface, one can deduce also further local
results, for instance about finite propagation speed and domain of dependence, by use of classical
arguments (see e.g. [15] and [22]).

t:local_u Theorem 2.12. Let 1/2 < γ < 1 and s ∈ ]1 − γ, γ[ . Let P be the operator defined in (12),
satisfying all hypotheses from (H-1) to (H-5).

If u ∈ Hs(Ω>) satisfies (CP ) with f = 0 and Cauchy datum u0 = 0, then u ≡ 0 on a
neighborhood of z0 in Ω≥.

In Section 5, after rigorously justify the good formulation of the Cauchy problem (CP ), we
will show the invariance of our hypotheses with respect to smooth changes of variables. This fact
will enable us to pass in (t, x) coordinates: then, the proof of Theorems 2.10 and 2.12 will be
deduced from the global in space results. Therefore, let us focus first on these latter properties.

3 Tools from Littlewood-Paley theory
s:tools

We collect here some notions and results which turn out to be useful in our proof. First, by
use of the Littlewood-Paley decomposition, we describe some properties of Sobolev spaces and
of log-Lipschitz functions. Then, we recall some notions of Paradifferential Calculus, focusing on
operators whose symbol is in the log-Lipschitz class.

3.1 Dyadic analysis of Sobolev and log-Lipschitz classes
ss:L-P

Let us first define the so called Littlewood-Paley decomposition in RN (for any N ≥ 1), based on
a non-homogeneous dyadic partition of unity with respect to the Fourier variable. We refer to [2]
(Chapter 2) and [19] (Chapters 4 and 5) for the details.

So, fix a smooth radial function χ supported in the ball B(0, 2) ⊂ RN , equal to 1 in a
neighborhood of B(0, 1) and such that r 7→ χ(r e) is nonincreasing over R+ for all unitary vectors
e ∈ RN . Set ϕ (ξ) = χ (ξ)− χ (2ξ) and ϕj(ξ) := ϕ(2−jξ) for all j ≥ 0.

The dyadic blocks (∆j)j∈Z are defined by1

∆j := 0 if j ≤ −1, ∆0 := χ(D) and ∆j := ϕ(2−jD) if j ≥ 1.

We also introduce the following low frequency cut-off:

Sju := χ(2−jD)u =
∑
k≤j

∆ku for j ≥ 0.

By use of the previous operators, for any u ∈ S ′, we have the Littlewood-Paley decomposition
of u: namely, the equality u =

∑
j ∆ju holds true in S ′.

Let us recall the fundamental Bernstein’s inequalities.
1Throughout we agree that f(D) stands for the pseudo-differential operator u 7→ F−1

(
f(ξ)Fu(ξ)

)
.
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l:bern Lemma 3.1. Let 0 < r < R. A constant C exists so that, for any nonnegative integer k, any
couple (p, q) in [1,+∞]2 with p ≤ q and any function u ∈ Lp, we have, for all λ > 0,

supp û ⊂ B(0, λR) =⇒ ‖∇ku‖Lq ≤ Ck+1 λ
k+N

(
1
p
− 1
q

)
‖u‖Lp ;

supp û ⊂ {ξ ∈ RN | rλ ≤ |ξ| ≤ Rλ} =⇒ C−k−1 λk‖u‖Lp ≤ ‖∇ku‖Lp ≤ Ck+1 λk‖u‖Lp .

Let us now introduce the class of logarithmic Sobolev spaces, which naturally come into play
in the study of hyperbolic operators with low regularity coefficients (see [11], [6] and [7]). Let us
set Π(D) := log(2 + |D|), i.e. its symbol is π(ξ) := log(2 + |ξ|).

d:log-H^s Definition 3.2. For all (s, α) ∈ R2, we define the space Hs+α log(RN ) as Π−αHs(RN ), i.e.

f ∈ Hs+α log ⇐⇒ Παf ∈ Hs ⇐⇒ πα(ξ)
(
1 + |ξ|2

)s/2
f̂(ξ) ∈ L2 .

Obviously, for α = 0 one recovers the classical Sobolev space Hs.
We have the following dyadic characterization of these classes (see [19], Proposition 4.1.11),

which generalizes the classical property for the Hs scale.

p:log-H Proposition 3.3. Let s, α ∈ R. Then u ∈ S ′ belongs to the space Hs+α log if and only if:

(i) for all k ∈ N, ∆ku ∈ L2(RN );

(ii) set δk := 2ks (1 + k)α ‖∆ku‖L2 for all k ∈ N, the sequence (δk)k belongs to `2(N).

Moreover, ‖u‖Hs+α log ∼ ‖(δk)k‖`2 .

The previous proposition can be summarized by the equivalence Hs+α log ≡ Bs+α log
2,2 , where,

for any (s, α) ∈ R2 and 1 ≤ p, r ≤ +∞, the non-homogeneous logarithmic Besov space Bs+α log
p,r is

the subset of tempered distributions u for which

eq:log-Besoveq:log-Besov (14) ‖u‖
Bs+α log
p,r

:=
∥∥∥(2js (1 + j)α ‖∆ju‖Lp

)
j∈N

∥∥∥
`r
< +∞ .

In addition, we point out that an analogous characterization holds true also for Hölder classes:
namely, for any γ ∈ ]0, 1[ one has Cγ ≡ Bγ

∞,∞ = Bγ+0 log
∞,∞ .

We recall that the previous definition and properties do not depend on the choice of the cut-off
functions used in a Littlewood-Paley decomposition: in the logarithmic framework, this comes
from Lemma 3.5 of [9], which we recall here.

l:log-B_ind Lemma 3.4. Let C ⊂ Rd be a ring, (s, α) ∈ R2 and (p, r) ∈ [1,+∞]2. Let (uj)j∈N be a sequence
of smooth functions such that

supp ûj ⊂ 2j C and
∥∥∥(2js (1 + j)α ‖uj‖Lp

)
j∈N

∥∥∥
`r
< +∞ .

Then u :=
∑

j∈N uj belongs to Bs+α log
p,r and ‖u‖

Bs+α log
p,r

≤ Cs,α

∥∥∥(2js (1 + j)α ‖uj‖Lp
)
j∈N

∥∥∥
`r
.

This fact will be used freely throughout the paper.
Now we mention a couple of results which will be useful in the sequel. They are classical (see

[2], Chapter 2), and their extension to the logarithmic framework is proved in [9].

l:log-S_j Lemma 3.5. Fix (s, α) ∈ R2 and let u ∈ S ′ given.

(i) If the sequence
(
2js (1 + j)α ‖Sju‖L2

)
j∈N belongs to `2, then u ∈ Hs+α log and

‖u‖Hs+α log ≤ C
∥∥∥(2js (1 + j)α ‖Sju‖L2

)
j∈N

∥∥∥
`2
,

for some constant C > 0 depending only on s and α, but not on u.
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(ii) Suppose u ∈ Hs+α log, with s < 0. Then the sequence
(
2js (1 + j)α ‖Sju‖L2

)
j∈N ∈ `2, and∥∥∥(2js (1 + j)α ‖Sju‖L2

)
j∈N

∥∥∥
`2
≤ C̃ ‖u‖Hs+α log ,

for some constant C̃ > 0 depending only on s and α.

.

Observe that, in general, the second property fails in the endpoint case s = 0. Indeed, for
s = 0 one can only infer, for any α ≤ 0,∥∥∥∥∥

(
(1 + j)α ‖Sju‖L2

)
j∈N

∥∥∥∥∥
`∞

≤ C̃ ‖u‖
B0+α log

2,1
.

The second result we want to mention ia a sort of “dual” version of the previous lemma.

l:log-ball Lemma 3.6. Let B be a ball of RN and take s > 0 and α ∈ R. Let (uj)j∈N be a sequence of
smooth functions such that

supp ûj ⊂ 2jB and
(
2js (1 + j)α ‖uj‖L2

)
j∈N ∈ `2 .

Then the function u :=
∑

j∈N uj belongs to the space Hs+α log, and there exists a constant
C, depending only on s and α, such that

‖u‖Hs+α log ≤ C
∥∥∥(2js (1 + j)α ‖uj‖L2

)
j∈N

∥∥∥
`2
.

Once again, the previous statement is not true in the endpoint case s = 0: then, one can just
infer, for any α ≥ 0,

‖u‖
B0+α log

2,∞
≤ C

∥∥∥∥∥
(

(1 + j)α ‖uj‖Lp
)
j∈N

∥∥∥∥∥
`1

.

We now turn our attention to the study of the class of log-Lipschitz functions. We have given
the general definition in Definition 1.1; now, we restrict to the case Ω = RN , for some N ≥ 1.

Let us recall some properties which can be deduced by use of dyadic decomposition (see [10]
and [11] for the proof), and which are true in any dimension N ≥ 1.

p:dyadic-LL Proposition 3.7. There exists a positive constant C such that, for all a ∈ LL(RN ) and all
integers k ≥ 0, we have

‖∆ka‖L∞ ≤ C (k + 1) 2−k ‖a‖LL
‖a − Ska‖L∞ ≤ C (k + 1) 2−k ‖a‖LL

‖Ska‖Lip := ‖Ska‖L∞ + ‖∇Ska‖L∞ ≤ C (k + 1) ‖a‖LL .

r:LL_char Remark 3.8. By Proposition 3.3 of [10], the last property is a characterization of the space LL.

We conclude this part by showing continuity propertis of multiplication of Sobolev distribu-
tions by Hölder-type functions.

p:Hol-Sob Proposition 3.9. Let b ∈ Bγ+% log
∞,∞ , where γ > 0 and % ∈ R, or γ = 0 and % > 1. Then the

multiplication operator u 7→ b u is a continuous self-map of Hs+α log(RN ) if:

• |s| < γ, no matter the value of α ∈ R;

• s = γ and α < %− 1/2, or s = −γ and α > 1/2− %.
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Proof. We use Bony’s paraproduct decomposition (see [3], [2] and [19]) to write

b u = Tbu + Tub + R(b, u) = Tbu + T ′ub ,

where the previous operators are defined by the formulas

eq:paraprodeq:paraprod (15) Tbu =
∑
j

Sj−3b∆ju , R(b, u) =
∑
j

∑
|j−k|≤3

∆jb∆ku T ′ua =
∑
j

Sj+3u∆jb .

We remark that the conditions on γ and % imply the chain of embeddings Bγ+% log
∞,∞ ↪→ B0

∞,1 ↪→
L∞. Then, by classical properties of paraproduct, we immediately have that Tbu ∈ Hs+α log, with
the estimate ‖Tbu‖Hs+α log ≤ C ‖b‖L∞ ‖u‖Hs+α log .

Let us now focus on the case s > 0 (and then γ > 0), and let us consider the operator T ′ub.
For any j ∈ N, using Bernstein inequalities and definition (14), we deduce

‖Sj+3u∆jb‖L2 ≤ ‖Sj+3u‖L2 ‖∆jb‖L∞ ≤ C 2−jγ (j + 1)−% ‖u‖Hs+α log ‖b‖Bγ+% log
∞,∞

.

Since the term Sj+3u∆jb is supported in dyadic balls 2jB, we conclude by use of Lemma 3.6. We
point out that, for s = γ, the condition α < %− 1/2 is needed to have the right-hand side of the
previous inequality in `2.

For s ≤ 0 (and then γ can be taken even 0), instead, we employ the finer decomposition in
Tub+R(b, u). First of all, by Lemma 3.5 and (14) again, we have the estimate

‖Sj−3u∆jb‖L2 ≤ ‖Sj−3u‖L2 ‖∆jb‖L∞ ≤ C ‖u‖Hs+α log ‖b‖Bγ+δ log∞,∞
2−j(γ+s) (1 + j)−(α+%) ζj ,

for some
(
ζj
)
j
∈ `2 of unitary norm. Observe that, for s = 0, we have no more the presence

of
(
ζj
)
j
, but the right-hand side still belongs to `2, thanks to our hypotheses on γ, α and δ.

Since the generic term Sj−3u∆jb is supported in dyadic rings 2jC, from Lemma 3.4 we infer
‖Tub‖Hs+α log ≤ C ‖u‖Hs+α log ‖b‖Bγ+% log

∞,∞
.

For the remainder term, we use again Lemma 3.4: focusing just on the “diagonal” term
R0(b, u) =

∑
j ∆jb∆ju (the other ones being similar), we have to bound, for any ν ≥ 0, the

quantity 2sν (1 + ν)α ‖∆νR0(b, u)‖L2 . By use of Proposition 3.3 we have

‖∆νR0(b, u)‖L2 ≤
∑
j≥ν−3

‖∆jb∆ju‖L2 ≤ C ‖u‖Hs+α log ‖b‖Bγ+% log
∞,∞

∑
j≥ν−3

2−(γ+s)j (1 + j)−(α+%) ζj ,

where the sequence
(
ζj
)
j
is as above. Then, by Cauchy-Schwarz inequality we get

2sν (1 + ν)α ‖∆νR0(b, u)‖L2 ≤ C ‖u‖Hs+α log ‖b‖Bγ+% log
∞,∞

×

× 2sν (1 + ν)α

 ∑
j≥ν−3

2−2(γ+s)j (1 + j)−2(%+α)

1/2

,

and this completes the proof of the case s ≤ 0, and therefore of the proposition.

We point out that, by Proposition 3.7, one has LL ↪→ B1−log
∞,∞ . Hence, from the previous

statement, we immediately infer continuity properties of multiplication by log-Lipschitz functions,
which generalize Proposition 3.5 of [10] to the framework of logarithmic Sobolev spaces.

c:LL-H^s Corollary 3.10. Let a ∈ LL(RN ). Then the multiplication operator u 7→ a u is a continuous
map of Hs+α log(RN ) into itself if:

• |s| < 1, no matter the value of α ∈ R;

• s = 1 and α < −3/2, or s = −1 and α > 3/2.
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3.2 Paradifferential Calculus in the log-Lipschitz class
ss:paradiff

In our study, we need to resort to tools from Paradifferential Calculus, as introduced by J.-M.
Bony in the celebrated paper [3]. We refer to [2] (Chapter 2) for a complete treatement, and to
papers [18]-[21] for a construction depending on parameters. Here, we follow the approach of [19]
(see Chapters 4 and 5).

The first part of this section is devoted to recall basic properties: we adapt the classical con-
struction to consider symbols having log-Lipschitz smoothness with respect to the space variable,
and we define general paradifferential operators associated to them, for which we develop also a
symbolic calculus. In the final part, we consider the case of time-dependent symbols, which are
log-Lipschitz in t: at this point, time cannot be considered as a parameter anymore, and we need
to establish some properties for paradifferential operators whose symbols belong to this class.

3.2.1 Symbols having log-Lipschitz regularity
sss:LL

Fix a cut-off function ψ ∈ C∞(RN × RN ) which verifies the following properties:

• there exist 0 < ε1 < ε2 < 1 such that

ψ(η, ξ) =

{
1 for |η| ≤ ε1 (1 + |ξ|)
0 for |η| ≥ ε2 (1 + |ξ|) ;

• for all (β, α) ∈ NN × NN , there exists a constant Cβ,α > 0 such that∣∣∣∂βη ∂αξ ψ(η, ξ)
∣∣∣ ≤ Cβ,α (1 + |ξ|)−|α|−|β| .

For instance, it is easy to verify (see Ex. 5.1.5 [19]) that

ψ(η, ξ) ≡ ψ−3(η, ξ) :=

+∞∑
k=0

χk−3(η)ϕk(ξ) ,

where χ and ϕ are the localization (in phase space) functions associated to a Littlewood-Paley
decomposition, satisfies the previous requirements.

Define now Gψ as the inverse Fourier transform of ψ with respect to the variable η:

Gψ(x, ξ) :=
(
F−1
η ψ

)
(x, ξ) .

We have the following result (see Lemma 5.1.7 of [19]).

l:G Lemma 3.11. For all (β, α) ∈ NN × NN , there exist constants Cβ,α > 0 such that:∥∥∥∂βx∂αξ Gψ(·, ξ)
∥∥∥
L1(RNx )

≤ Cβ,α (1 + |ξ|)−|α|+|β|∥∥∥∥| · | log

(
1 +

1

| · |

)
∂βx∂

α
ξ G

ψ(·, ξ)
∥∥∥∥
L1(RNx )

≤ Cβ,α (1 + |ξ|)−|α|+|β|−1 log(2 + |ξ|) .

Let us now take a symbol a = a(x, ξ): thanks to Gψ, we can smooth it out in the space
variable, and then define the paradifferential operator associated to a as the pseudodifferential
operator related to this smooth function.

First of all, let us specify the class of symbols we are interested in.

d:symbols Definition 3.12. Let X ⊂ L∞(RN ) a Banach space and fix (m, δ) ∈ R2.
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(i) We denote by Γm+δ log
X the space of functions a(x, ξ) which are locally bounded over RN×RN ,

of class C∞ with respect to ξ and which satisfy the following property: for all α ∈ NN and
all ξ ∈ RN , the map x 7→ ∂αξ a(x, ξ) belongs to X, and, for some Cα > 0,∥∥∂αξ a( · , ξ)

∥∥
X
≤ Cα (1 + |ξ|)m−|α| logδ(2 + |ξ|) .

(ii) Σm+δ log
X is the space of symbols σ ∈ Γm+δ log

X which satisfy the following spectral condition:
there exists a 0 < ε < 1 such that, for all ξ ∈ RN , the spectrum of the function x 7→ σ(x, ξ)
is contained in the ball {|η| ≤ ε (1 + |ξ|)}.

In a quite natural way, we can equip Γm+δ log
X with the family of seminorms

eq:L-inf_semeq:L-inf_sem (16) ‖a‖(m,δ)(X,k) := sup
|α|≤k

sup
RNξ

(
(1 + |ξ|)−m+|α| log−δ(2 + |ξ|)

∥∥∂αξ a( · , ξ)
∥∥
X

)
.

Tipically, X = L∞(RN ) or X = LL(RN ) for us. In the former case, for convenience we will
use the notations Γm+δ log

∞ , Σm+δ log
∞ and ‖ · ‖(m,δ)(∞,k). In the final part of the present section (see the

end of Paragraph 3.2.2), for the sake of generality we will consider also the case X = Bγ+% log
∞,∞ (RN )

(recall (14) for its definition).
In the particular case X = LL, we explicitly notice the following fact: for a ∈ Γm+δ log

LL , there
exists K > 0 such that, for all ξ ∈ RN and all y ∈ RN \{0}, one has

eq:LL_semeq:LL_sem (17) sup
RNx
|a(x+ y, ξ) − a(x, ξ)| ≤ K (1 + |ξ|)m logδ(2 + |ξ|) |y| log

(
1 +

1

|y|

)
.

Hence we can we set |a|LL = |a|(m,δ)(LL,0) to be the smallest constant K such that the previous

inequality holds true. In a quite natural way, we can also define the LL seminorms |a|(m,δ)(LL,k).

WhenX = Bγ+% log
∞,∞ , instead, we set Γm+δ log

γ+% log := Γm+δ log
X . Moreover, introducing a Littlewood-

Paley decomposition
(
∆ν

)
ν≥0

in the x-variable (not in ξ), we have

eq:B_semeq:B_sem (18) sup
RNx
|∆νa( · , ξ)| ≤ K (1 + |ξ|)m logδ(2 + |ξ|) 2−γν (1 + ν)−% ,

for a constant K > 0, for all ξ ∈ RN and all ν ≥ 0. Once again, in a natural way we can introduce
the seminorms ‖a‖(m,δ)(γ+% log,k).

Finally, we explicitly point out that, by spectral localization and Paley-Wiener Theorem, a
symbol σ ∈ Σm+δ log

X is smooth also in the x variable.

Now let us consider a symbol a ∈ Γm+δ log
X : we can associate to it a the classical symbol

according to the formula

eq:classical-symbeq:classical-symb (19) σψa (x, ξ) := (ψ(Dx, ξ) a ) (x, ξ) =
(
Gψ(·, ξ) ∗x a(·, ξ)

)
(x) .

The following proposition holds true.

p:par-op Proposition 3.13. Let (m, δ) ∈ R2.

(i) For X ⊂ L∞(RN ) a Banach space, the smoothing operator S : a(x, ξ) 7→ σa(x, ξ) maps
continuously Γm+δ log

X into Σm+δ log
X .

(ii) For a ∈ Γm+δ log
LL , then the difference symbol a − σa belongs to Γ

(m−1)+(δ+1) log
∞ .
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(iii) In particular, if ψ1 and ψ2 are two admissible cut-off functions, then the difference of the
two smoothed symbols, σψ1

a − σψ2
a , belongs to Σ

(m−1)+(δ+1) log
∞ .

Proof. The first property is classical. The second one immediately follows from the log-Lipschitz
continuity assumption and Lemma 3.11. The last statement is a straightforward consequence of
the previous ones.

We conclude this part by noting that, at this level, the time variable can be treated as a
parameter in the construction. In particular, the previous properties still hold true for symbols
in L∞

(
[0, T ]; Γm+δ log

X

)
.

3.2.2 Operators, symbolic calculus
sss:operators

As announced above, we can use the previous construction to associate to any symbol a(x, ξ),
which is non-regular in x, an operator: this will be the pseudodifferential operator associated to
the smooth symbol σψa .

Let us formalize the discussion: for a ∈ Γm+δ log
∞ , we define the paradifferential operator

associated to a via the formula

Tψa := σψa (x,Dx) : u 7−→ Tψa u(x) =
1

(2π)N

∫
RNξ

eix·ξ σψa (x, ξ) û(ξ) dξ .

r:p-prod Remark 3.14. Notice that, if f = f(ξ) is a Fourier multiplier, then Tf ≡ f(Dx) (see e.g. [19]).
Let us also point out that if a = a(x) ∈ L∞ and if we take the cut-off function ψ−3, then T

ψ
a

is actually the classical paraproduct operator, defined first in [3].

Let us recall some basic definitions and properties in Paradifferential Calculus. The corre-
sponding proofs in the logarithmic setting are analogous to the classical case, and they are not
detailed here.

d:op_order Definition 3.15. We say that an operator P is of order m + δ log if, for every (s, α) ∈ R2, P
maps Hs+α log into H(s−m)+(α−δ) log continuously.

With slight modifications to the proof of Proposition 2.9 of [21], stated for the classical Sobolev
class, we get the next fundamental result.

l:action Lemma 3.16. For all σ ∈ Σm+δ log
∞ , the corresponding operator σ( · , Dx) is of order m+ δ log.

The following result is an immediate consequence of the previous lemma and Proposition 3.13.

t:action Theorem 3.17. Given a symbol a ∈ Γm+δ log
∞ , for any admissible cut-off function ψ, the operator

Tψa is of order m+ δ log.

Notice that, in Lemma 3.16 and Theorem 3.17, the LL hypothesis is not necessary: these
results hold true if the symbol is even just L∞ with respect to x. On the contrary, we are going to
exploit the additional regularity in space in the next result. It states that the whole construction
does not depends on the cut-off function ψ.

p:act-psi Proposition 3.18. If ψ1 and ψ2 are two admissible cut-off functions and a ∈ Γm+δ log
LL , then the

difference Tψ1
a − Tψ2

a is of order (m− 1) + (δ + 1) log.

Therefore, changing the cut-off function ψ doesn’t change the paradifferential operator asso-
ciated to a, up to lower order terms. So, in what follows we fix the cut-off function ψ = ψ−3

(defined in Paragraph 3.2.1) and we will miss out the dependence of σa and Ta on it.
We want now to develop symbolic calculus in the LL class. A preliminary result is in order:

it can be viewed as a generalization of Proposition 3.7.
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l:ll-symb Lemma 3.19. Let a ∈ Γm+δ log
LL , and denote by σa the classical symbol associated to it via formula

(19). Then the following estimates hold true:∣∣∂αξ σa∣∣ ≤ Cα (1 + |ξ|)m−|α| logδ (2 + |ξ|)∣∣∣∂βx∂αξ σa∣∣∣ ≤ Cβ,α (1 + |ξ|)m−|α|+|β|−1 logδ+1 (2 + |ξ|) .

The constants Cα just depend on the quantities ‖a‖(m,δ)∞,k defined in (16), where |α| ≤ k.
The constants Cβ,α, instead, depend only on the quantities ‖a‖(m,δ)LL,k , where again |α| ≤ k.

The proof of the previous result is somehow classical, as it follows the same lines of Lemma
3.16 in [6] and Lemma 3.15 in [7]. Therefore we omit it.

From Lemma 3.19 we immediately deduce the following properties.

t:symb_calc Theorem 3.20. (i) Let us take two symbols a ∈ Γm+δ log
LL and b ∈ Γn+% log

LL and denote by Ta,
Tb the respective associated paradifferential operators. Then one has

Ta ◦ Tb = Ta b + R◦ .

The principal part Ta b is of order (m+ n) + (δ + %) log.
The remainder operator R◦ has order (m+ n− 1) + (δ + %+ 1) log.

(ii) Let a ∈ Γm+δ log
LL . The adjoint operator (over L2) of Ta is given by the formula

(Ta)
∗ = Ta + R∗ .

The order of Ta is still m+ δ log.
The remander operator R∗ has order (m− 1) + (δ + 1) log.

The last statement of this paragraph is a fundamental paralinearization result, in the general
instanceX = Bγ+% log

∞,∞ , which will allow us to treat both the first and lower order terms of operator
L in energy estimates. In order to give sense to all terms, we have to restrict to differential
operators, and then operator Ta reduces to the classical paraproduct operator (keep in mind also
Remark 3.14).

t:paralin Theorem 3.21. Let m ∈ N, and η ∈ NN of lenght |η| = m. Take a pair (γ, %) ∈ R2 such that
γ ≥ 0, and consider a function a ∈ Bγ+% log

∞,∞ , introduced in (14). Define the difference operator
D : u 7−→ a ∂ηxu − Ta∂

η
xu = a ∂ηxu − Ta ξηu.

(i) If s > m, then D maps continuously Hs+α log into Hγ+(%−h) log, for any h > 1/2.

(ii) If s = m and α ≥ 0, the previous statement remains true.

(iii) For any s ∈ ]m − γ,m[ (and then γ > 0) and any α ∈ R, D maps continuously Hs+α log

into Hσ+h log, where σ = s−m+ γ and h = α− δ + %.

The norms of the operators just depend on the quantity ‖a‖
Bγ+% log
∞,∞

.

Proof. We start by noticing that, according to (15), D(u) can be rewritten as

D(u) =
∑
ν≥0

∂ηx (Sν+3u) ∆νa = T ′∂ηxua = T∂ηxua + R(∂ηxu, a) .

First of all, we focus on the case of high regularity, i.e. s > m, or s = m and α ≥ 0. This in
particular implies that ∂ηxu ∈ L2, with ‖∂ηxu‖L2 ≤ C ‖u‖Hs+α log . Therefore, we can estimate

‖Sν−3∂
η
xu∆νa‖L2 ≤ C ‖Sν−3∂

η
xu‖L2 ‖∆νa‖L∞ ≤ C ‖u‖Hs+α log ‖a‖Bγ+% log

∞,∞
2−γν (1 + ν)−% .
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Thanks to Lemma 3.4, we immediately deduce that T∂ηxua ∈ Hγ+(%−h) log for all h > 1/2.
As for R, once again we can focus just on the diagonal terms R0(∂ηxu, a) =

∑
ν ∂

η
x∆νu∆νa.

For any k ∈ N, let us estimate

‖∆kR0(∂ηxu, a)‖L2 ≤ C
∑
ν≥k−3

‖∆ν∂
η
xu‖L2 ‖∆νa‖L∞

≤ C ‖u‖Hs+α log ‖a‖Bγ+% log
∞,∞

∑
ν≥k−3

2ν(m−s−γ) (1 + ν)−α−% ζν

≤ C ‖u‖Hs+α log ‖a‖Bγ+% log
∞,∞

 ∑
ν≥k−3

22ν(m−s−γ) (1 + ν)−2(α+%)

1/2

,

where, as usual, ‖ζν‖`2 = 1. Therefore, by Lemma 3.4 again, the remainder term R(∂ηxu, a) ∈
H(s−m+γ)+(α+%−h) log for all h > 1/2, which is in particular included in Hγ+(%−h) log. When s = m,
the same speech holds true for any α ≥ 0.

Now let us turn our attention to the case m − γ < s < m (and then γ > 0): for this, we
consider directly the operator T ′

∂ηxu
a. Since s−m < 0, we can apply Lemma 3.5 and estimate

‖Sν+3∂
η
xu∆νa‖L2 ≤ C ‖u‖Hs+α log 2ν(m−s) (1 + ν)−α ζν ‖a‖Bγ+% log

∞,∞
2−νγ (1 + ν)−% ,

where the sequence
(
ζν
)
ν
∈ `2 is as above. Thanks to this inequality and the fact that s−m+γ > 0

by hypothesis, Lemma 3.6 implies that T ′
∂ηxu

a belongs to H(s−m+γ)+(α+%) log.
The proof of the theorem is now completed.

We notice the following fact: if a ∈ W 1,∞ is Lipschitz, it is well-known that au − Tau ∈ H1

for any u ∈ L2 (see e.g. Theorem 5.2.8 of [19]). On the contrary, if we applied our result with
m = s = α = % = 0 and γ = 1, we would get just au− Tau ∈ H1−(1/2+δ) log for any δ > 0.

Motivated by this consideration, let us make a remark.

r:paralin Remark 3.22. Attaining the limit case h = 0 in points (i), (ii), and s = m − γ in point (iii),
would require further technical extensions of the theory, in the same spirit of Paragraph 5.2.4 of
[19], to functions a in logarithmic Hölder classes Bγ+% log

∞,∞ , where % 6= 0.
However, these adaptations go beyond the scopes of the present paper, and we decided not to

address these issues here in order to keep the presentation as coincise as possible. Indeed, due to
product properties (see Proposition 3.9) and loss of derivatives in the energy estimates, we will
always be far away from these endpoint cases, and the previous statement turns to be enough for
our scopes.

Before going further, let us remark that, at this level, time can be treated once again as
a parameter in the construction: for a symbol a = a(t, x, ξ) ∈ L∞

(
[0, T ]; Γm+δ log

∞
)
and u ∈

S ′([0, T ]× Rd), we set
(Tau) (t, · ) := Ta(t, · ,ξ)u(t, · ) .

As a consequence, all the properties stated above still hold true for the time-dependent operator,
at any time t ∈ [0, T ] fixed. Indeed, only regularity in space is used at this level.

3.2.3 The case of symbols which are log-Lipschitz in time
sss:LL-t

Now, we get closer to our hypotheses, and we introduce a new class of symbols, by imposing
additional regularity in the time variable.

d:symbol_t Definition 3.23. Let Y ⊂ L∞([0, T ]) a Banach space. For (m, δ) ∈ R2, we define YT
(
Γm+δ log
X

)
as the class of symbols a(t, x, ξ) ∈ L∞

(
[0, T ]; Γm+δ log

X

)
such that, for almost every (x, ξ) ∈

RN × RN , the map t 7→ a(t, x, ξ) belongs to Y .
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Analogously, we define the class YT
(
Σm+δ log
X

)
if, moreover, the spectral condition (in x) of

Definition 3.12 is verified for almost every (t, ξ) ∈ [0, T ]× RN .
We omit the subscript T whenever T = +∞.

For us YT will be always L∞([0, T ]) or LL([0, T ]).
In particular, when Y = LL, the previous definition implies that there exists a C0 > 0 for

which, for all (x, ξ) ∈ RN × RN and all 0 < τ ≤ T/2, one has

|a(t+ τ, x, ξ) − a(t, x, ξ)| ≤ C0 (1 + |ξ|)m logδ(2 + |ξ|) τ log

(
1 +

1

τ

)
.

As before, for such a symbol a we can then define the seminorm |a|LLt . Of course, higher order
seminorms (related to derivatives in ξ) can be defined, but they will not be used in our study, so
that we prefer to limit the presentation to this case.

r:LL Remark 3.24. We remark that the LL continuity of the symbol, separately with respect to time
and space variables, is enough to our scopes. This will be evident from our computations.

In order to perform energy estimates, for a symbol a as above we need to introduce a regular-
ization in time. So, take an even function ρ ∈ C∞0 (R), 0 ≤ ρ ≤ 1, whose support is contained in
the interval [−1, 1] and such that

∫
ρ(t)dt = 1, and define the mollifier kernel

ρε(t) :=
1

ε
ρ

(
t

ε

)
∀ ε ∈ ]0, 1] .

Let us fix a symbol a ∈ LLT
(
Γm+δ log
X

)
; if T < +∞, we extend this symbol out of [0, T ] (for

instance, by taking the constant values at the extremities of the interval), in such a way to get a
new symbol (which we will still denote by a) in the class LL

(
Γm+δ log
X

)
. Now, we smooth a out

setting, for all ε ∈ ]0, 1],

eq:a^eeq:a^e (20) aε(t, x, ξ) :=
(
ρε ∗t a( · , x, ξ)

)
(t) =

∫
Rs
ρε(t− s) a(s, x, ξ) ds .

Then, we have the following estimates (see e.g. [4], [10]).

l:LL-reg Lemma 3.25. Let a ∈ LL
(
Γm+δ log
X

)
. Then

(
aε
)
ε
is a bounded family in the same space. In

particular, Proposition 3.13 still holds true for aε, uniformly in ε ∈ ]0, 1].
In addition, there exist constants C > 0 such that, for all ε ∈ ]0, 1] and for all (t, x, ξ) ∈

R× RN × RN , one has

|aε(t, x, ξ)− a(t, x, ξ)| ≤ C |a|LLt ε log

(
1 +

1

ε

)
(1 + |ξ|)m logδ(2 + |ξ|)

|∂taε(t, x, ξ)| ≤ C |a|LLt log

(
1 +

1

ε

)
(1 + |ξ|)m logδ(2 + |ξ|) .

In the course of the proof, it will be fundamental to link the approximation parameter ε with
the dual variable, following the original idea of [4] (see also [6], [7], [8], [9], [10], [11], [25]). More
precisely, in [4] the authors took ε = 1/|ξ|: here, we make an analogous choice, but replacing |ξ|
by 〈ξ〉 :=

(
1 + |ξ|2

)1/2 (we need the new symbol to be defined for all ξ ∈ RN ).

p:Y-tilde Proposition 3.26. For a ∈ YT
(
Γm+δ log
X

)
, where Y ⊂ L∞([0, T ]) is a Banach space, we define

the new function
ã(t, x, ξ) := a1/〈ξ〉(t, x, ξ) .

Then ã is still a symbol in the class YT
(
Γm+δ log
X

)
, which is actually smooth in time.
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Proof. Proposition 3.22 of [9] proves that the convolution acts as an operator of order 0 + 0 log
in the time variable. We are going to show that this is true also with respect to ξ.

First of all, we notice that it is enough to consider the case a ∈ L∞T
(
Γ0+0 log
∞

)
: regularity in

time comes from Lemma 3.25, while the x variable does not play any role at this level.
For α = 0, the estimate of Definition 3.12 is immediate. Hence, let us consider the case |α| = 1:

by definitions we have

∂αξ ã(t, x, ξ) = ∂αξ 〈ξ〉
∫
ρ
(
(t− s)〈ξ〉

)
a(s, x, ξ) ds +

+ 〈ξ〉 ∂αξ 〈ξ〉
∫
ρ′
(
(t− s)〈ξ〉

)
(t− s) a(s, x, ξ) ds + 〈ξ〉

∫
ρ
(
(t− s)〈ξ〉

)
∂αξ a(s, x, ξ) ds .

The estimates for the first and last term are straightforward: thanks to the uniform bounds∣∣∂αξ a(t, x, ξ)
∣∣ ≤ Cα (1 + |ξ|)−|α| ,

(recall that we are taking a ∈ L∞T
(
Γ0+0 log
∞

)
only), we have to control∫

ρ
(
t 〈ξ〉

)
dt ≤ C / 〈ξ〉 ,

where we used the change of variable τ = 〈ξ〉 t and fact that
∫
ρ ≡ 1.

For the second term, we argue as above: by Young inequality, we are reconducted to consider
the L1 norm of the function

∣∣ρ′(〈ξ〉 t)∣∣ 〈ξ〉 |t|. Performing the same change of variable as before,
we get

〈ξ〉
∫ ∣∣ρ′(t 〈ξ〉)∣∣ |t| dt ≤ C / 〈ξ〉 ,

and this concludes the proof of the proposition.

Let us now focus on the case Y = LL. Up to extend the symbols out of [0, T ] as explained
above, without loss of generality we can focus just on the case T = +∞.

p:LL-tilde Proposition 3.27. Let a ∈ LL
(
Γm+δ log
X

)
. Then the following properties hold true.

(i) One has a− ã ∈ L∞
(
Γ

(m−1)+(δ+1) log
X

)
and ∂tã ∈ L∞

(
Γ
m+(δ+1) log
X

)
.

(ii) The smooothed (in x) symbol σã, defined by formula (19), belongs to LL
(
Σm+δ log
X

)
, and one

has the “commutation” formula σ̃a = σã. So, we adopt the notation σ̃a for it.

(iii) The smoothing operator (in time and space) S̃ : a(t, x, ξ) 7→ σ̃a(t, x, ξ) maps continuously
LL
(
Γm+δ log
X

)
into LL

(
Σm+δ log
X

)
.

(iv) The symbol σ̃a still satisfies the estimates of Lemma 3.19, uniformly in t. In addition,
one has σa − σ̃a ∈ L∞

(
Σ

(m−1)+(δ+1) log
X

)
and σ∂tã = ∂tσ̃a ∈ L∞

(
Σ
m+(δ+1) log
X

)
, with the

estimates, for some constants C just depending on |a|LLt,

|σa(t, x, ξ)− σ̃a(t, x, ξ)| ≤ C (1 + |ξ|)m−1 logδ+1(2 + |ξ|)
|∂tσ̃a(t, x, ξ)| ≤ C (1 + |ξ|)m logδ+1(2 + |ξ|) ,

and analogous formula for the higher order derivatives in ξ.

Proof. Assertion (i) comes from estimates in Lemma 3.25, while point (ii) is a direct consequence
of formula (19) and definition of ã (the integrals of the convolutions in time and space commute
between themselves).

20



Next, we notice that S̃ is a composition of the self-map a 7→ ã of LL
(
Γm+δ log
X

)
with the map

S : ã 7→ σ̃a which goes from the previous space into LL
(
Σm+δ log
X

)
: sentence (iii) follows.

Let us focus on assertion (iv): it basically relies on point (i) of the present proposition, and
in particular on the fact that the convolution acts as an operator of order 0. Then, the first
statement is immediate, the second one is implied by the linearity of operator S together with
Lemma 3.25. The formula for the time derivative derives directly from the definitions. Finally,
for the estimates one has to use Lemma 3.25 again.

Now, given a symbol a ∈ Y
(
Γm+δ log
X

)
, we define the paradifferential operator

eq:T-tildeeq:T-tilde (21) T̃a := Tã = σ̃a( · , Dx) .

Notice that properties (ii), (iii) of Proposition 3.27 still hold true even if we replace LL by a
generic Y , and in particular when Y = L∞. Therefore, fixing X = LL(RN ), from Theorem 3.20
we immediately get the following result.

t:symb_tilde Theorem 3.28. (i) If a ∈ L∞
(
Γm+δ log
LL

)
, then the operator T̃a is of order m+ δ log.

(ii) For a ∈ L∞
(
Γm+δ log
LL

)
and b ∈ L∞

(
Γn+% log
LL

)
, one has T̃a ◦ T̃b = T

ã b̃
+ R̃◦, where R̃◦ is of

order (m+ n− 1) + (δ + %+ 1) log.

(iii) For a ∈ L∞
(
Γm+δ log
LL

)
, denote by T̃ ∗a the adjoint of T̃a over L2. Then T̃ ∗a = T̃a + R̃∗, where

R̃∗ is of order (m− 1) + (δ + 1) log.

r:comp Remark 3.29. Thanks to point (iv) of Proposition 3.27, in point (ii) above we can substitute
T
ã b̃

by T̃a b, up to another remainder which is still of order (m + n − 1) + (δ + % + 1). But this
would require regularity in time, that we do not want to use at this level.

In the same way, we can see that also the analogous of Theorem 3.21 holds true for the operator
D̃ := a − T̃a, whenever a ∈ L∞

(
Γm+δ log
γ+% log

)
.

Finally, we take Y = LL and X = L∞ and we exploit regularity in time. Still by use of
Proposition 3.27, we get the following statement.

t:symb_time Theorem 3.30. Let a ∈ LL
(
Γm+δ log
∞

)
. Then the next properties are true:

• the operator Ta − T̃a is a remainder of order (m− 1) + (δ + 1) log;

• one has
[
∂t, T̃a

]
= T∂tã, and this is an operator of order m+ (δ + 1) log.

4 Well-posedness on the whole Rn

s:en-est
Thanks to the tools developed in the previous section, we are now able to prove Theorem 2.4, i.e.
energy estimates for the global in space problem. The first part of the present section is devoted
to this. In the estimates, we will keep track of the dependence of the different constants on the
log-Lipschitz seminorms of the coefficients of the operator and of the symmetrizer.

In the final part (see Subsection 4.3), we will show how to derive Theorem 2.6 from the bounds
of Theorem 2.4.

4.1 The energy
ss:energy

Let us start by defining the energy associated to our operator L. Roughly speaking, denoting by
S a microlocal symmetrizer for A, the leading idea is that the paradifferential operator TS is an
approximated symmetrizer for iTA, which represents the principal part of the operator L.

However, some “corrections” are needed. Indeed, on the one hand we need to smooth out the
coefficients with respect to time in order to be able to perform energy estimates. On the other
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hand, S is homogeneous of degree 0 in ξ, and in particular it can be singular in ξ = 0: therefore,
we have to cut off the low frequencies, borrowing somehow an idea from paradifferential calculus
with parameters (see e.g. [18], [21]).

So, let us proceed in the following way. First of all, given a symmetrizer S(t, x, ξ) for our
system, we smooth it out with respect to the time variable, according to the formula (20). Notice
that the approximated symmetrizer Sε still satisfies

0 < λ Id ≤ Sε(t, x, ξ) ≤ Λ Id

for any ε ∈ ]0, 1] and all (t, x, ξ) ∈ [0, T ]×Rnx×
(
Rnξ \ {0}

)
. In particular, the matrix symbol S1/2

ε

is well-defined.
Furthermore, let us immediately set (accordingly with the original choice of [4])

ε = 1/|ξ| ∀ |ξ| ≥ 1 .

Notice that, since |ξ| ≥ 1, it makes no special difference to take |ξ| or 〈ξ〉. Hence, in what follows
we will adopt the notations introduced in Paragraph 3.2.3.

Finally, let θ ∈ C∞0 (Rn) such that 0 ≤ θ ≤ 1, θ ≡ 1 in the ball B(0, 1) and θ ≡ 0 for |ξ| ≥ 2.
For any µ > 0, we set θµ(ξ) := θ(µ−1ξ), and we denote

Σ̃(t, x, ξ) := S̃1/2(t, x, ξ)
(
1− θµ(ξ)

)
.

For all (s, α) ∈ R2 fixed, we then define the quantities

Es,α[u] :=
∥∥∥T̃Σu

∥∥∥2

Hs+α log
+ ‖θµ(Dx)u‖2Hs+α log ,

where T̃Σ is the paradifferential operator associated to the just defined matrix symbol Σ̃, according
to the construction explained in Subsection 3.2 (see in particular Paragraph 3.2.3).

We now establish positivity estimates: we show that this property does not depend on the
considered Sobolev norm.

l:energy Lemma 4.1. (i) There exists a C0 > 0 (just depending on the constant K0 appearing in con-
dition (6) for S) such that, for any (s, α) ∈ R2 and any u ∈ S(Rn),

Es,α[u] ≤ C0 ‖u‖Hs+α log .

(ii) There exists µ0 ≥ 2 such that, for all µ ≥ µ0, the following property holds true: there exists
a Cµ > 0 for which, for all smooth u ∈ S(Rn),

‖u‖Hs+α log ≤ CµEs,α[u] .

The constant Cµ depends just on µ, on K0 and on K1 (recall conditions (6) and (7) for S);
in particular, it is independent of (s, α).

Proof. The first property is immediate, once noticing that Σ̃ is an operator of order 0 + 0 log, in
the sense of Definition 3.15.

So, let us focus on the second inequality: according to the decomposition

u =
(
1− θµ(Dx)

)
u + θµ(Dx)u ,

it is enough to prove it for the high frequency component
(
1− θµ(Dx)

)
u.

First of all, let us define ψµ(ξ) :=
(
1− θµ(ξ)

) (
1− θ(ξ)

)
: by the properties of the support of

θ, we easily infer that, for any µ ≥ 2, one has ψµ ≡
(
1− θµ

)
. Therefore, denoting

Ξ̃(t, x, ξ) := S̃−1/2(t, x, ξ)
(
1− θ(ξ)

)
,
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we deduce the equality Ξ̃ Σ̃ = Id ψµ = Id (1 − θµ), which in turn gives, by symbolic calculus
(recall Theorem 3.28),

eq:pos_higheq:pos_high (22)
(
1− θµ(Dx)

)
u = T

Ξ̃ Σ̃
u = T

Ξ̃
T

Σ̃
u + R̃u ,

where the remainder R̃ is given, at the principal order, by ∂ξΞ̃ ∂xΣ̃. Using again the function ψµ
defined above and introducing the matrix S̃′ = S̃1/2

(
1− θ

)
, it is easy to see that

R̃ u = R̃′
(
1− θµ(Dx)

)
u , with R̃′ ∼ ∂ξΞ̃ ∂xS̃

′ .

Let us come back to (22): since Ξ̃ is of order 0 + 0 log and R̃′ is of order −1 + log, we obtain∥∥(1− θµ(Dx)
)
u
∥∥
Hs+α log ≤ C1

∥∥∥T̃Σu
∥∥∥
Hs+α log

+ C2

∥∥(1− θµ(Dx)
)
u
∥∥
H(s−1)+(α+1) log ,

for some C1 (depending on |S̃|(0,0)
L∞,0) and C2 (depending also on |S̃|(0,0)

LL,0) large enough. Now, by
spectral properties and Proposition 3.3, we have∥∥(1− θµ(Dx)

)
u
∥∥2

H(s−1)+(α+1) log ≤
∑
k≥Kµ

22(s−1)k (1 + k)2(α+1)
∥∥∆k

(
1− θµ(Dx)

)
u
∥∥2

L2

≤ 2−2Kµ (1 +Kµ)2
∥∥(1− θµ(Dx)

)
u
∥∥
Hs+α log ,

where Kµ ∼ log2 µ. Therefore, if µ is large enough, such that C2 2−Kµ (1 + Kµ) ≤ 1/2, we can
abosorbe this term in the left-hand side of the previous inequality. This complete the proof of the
statement (ii), and so also of the lemma.

Now, let s ∈ ]0, 1[ be fixed. For β > 0, to be chosen in the course of the proof, we set

eq:seq:s (23) s(t) = s − β t ;

we then define the energies

E(t) := Es(t),0[u(t)] =
∥∥∥T̃Σu(t)

∥∥∥2

Hs(t)
+ ‖θµ(Dx)u(t)‖2Hs(t)eq:E (24)

Elog(t) := Es(t),1/2[u(t)] =
∥∥∥T̃Σu(t)

∥∥∥2

Hs(t)+(1/2) log
+ ‖θµ(Dx)u(t)‖2Hs(t)+(1/2) log ,eq:E_log (25)

where µ is fixed large enough, so that Lemma 4.1 holds true. In particular, we have

E(t) ∼ ‖u(t)‖2Hs(t) and Elog(t) ∼ ‖u(t)‖2Hs(t)+(1/2) log .

r:energy Remark 4.2. Let us point out that the “true” energy associated to our operator is E. The second
energy Elog is introduced because of a logarithmic loss of derivatives in the estimates for E, due
to the log-Lipschitz regularity of the coefficients and of the symmetrizer.

We conclude this part with an approximation result: we make a paralinearization of our
operator. In this way, we create remainders, which nonetheless are regular enough.

l:L->T Lemma 4.3. Let L be the operator defined by (3), and L̃ be given by (5). Then

eq:paralineq:paralin (26) Lu = ∂tu + i TAu + TBu + RLu ,

where RL maps continuously Hs+α log into Hs+(α−1) log for all 0 < s < γ and all α ∈ R.
Analogously, we can write L̃u = ∂tu + i TAu + TBu + R

L̃
u, where R

L̃
is continuous from

Hs+α log to Hs+(α−1) log for all −γ < s < 0 and all α ∈ R.
The operator norms of both RL and R

L̃
depend only on the constants K0, K1 and K2 appearing

in conditions (6)-(7)-(8).
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Proof. Let us focus on operator L first: decomposition (26) is easily obtained, if we set RL =
RA +RB, where we have defined

RA u :=

n∑
j=1

(
Aj − TAj

)
∂ju and RB u := (B − TB)u .

We observe that RA(t, x, ξ) =
∑

j

(
Aj(t, x)− TAj (t, x)

)
ξj is a symbol in the class L∞T

(
Γ1+0 log
LL

)
:

since LL ↪→ B1−log
∞,∞ , Theorem 3.21, point (iii), gives us

‖RA u‖Hs+(α−1) log ≤ C

(
sup
t∈[0,T ]

sup
1≤j≤n

‖Aj(t, · )‖LL

)
‖u‖Hs+α log

for any 0 < s < 1 and any α ∈ R. In particular, this is true for 0 < s < γ.
On the other hand, RB(t, x, ξ) belongs to L∞T

(
Γ0+0 log
γ+0 log

)
(actually, it does not even depend on

ξ). Then, point (i) of Theorem 3.21 (with e.g. the particular choice σ = s < γ) implies

‖RB u‖Hs+α log ≤ C

(
sup
t∈[0,T ]

‖B(t, · )‖Cγ
)
‖u‖Hs+α log .

This inequality completes the proof of the statement for RL.

Let us now deal with L̃: we start by observing that

L̃u = ∂tu +
n∑
j=1

∂j

((
Aj − TAj

)
u
)

+
n∑
j=1

∂j
(
TAju

)
+ TBu + RBu

= ∂tu + i TAu +
n∑
j=1

∂j

((
Aj − TAj

)
u
)

+
n∑
j=1

[
∂j , TAj

]
u + TBu + RBu .

Then, we just set R
L̃

:=
∑n

j=1 ∂j

((
Aj − TAj

)
u
)

+
∑n

j=1

[
∂j , TAj

]
u + RBu. Let us consider

each of its terms one by one.
RB is defined as before: this time, we apply item (iii) of Theorem 3.21 and we get, for any

−γ < s < 0 and any α ∈ R,

‖RB u‖H(s+γ)+α log ≤ C

(
sup
t∈[0,T ]

‖B(t, · )‖Cγ
)
‖u‖Hs+α log .

As for the commutator term, we notice that
[
∂j , TAj

]
= ∂jσAj (t, x,Dx), where σAj (t, x, ξ) is

the classical symbol associated to Aj via formula (19). Therefore, by Lemma 3.19 we deduce that[
∂j , TAj

]
is an operator of order 0 + log, and then, for any (s, α) ∈ R2,

∥∥[∂j , TAj]u∥∥Hs+(α−1) log ≤ C

(
sup
t∈[0,T ]

sup
1≤j≤n

‖Aj(t, · )‖LL

)
‖u‖Hs+α log .

Finally, for any j, the operator Aj − TAj belongs to the class L∞T
(
Γ0+0 log
LL

)
: then again, point

(iii) of Theorem 3.21 gives us∥∥∥∂j((Aj − TAj
)
u
)∥∥∥

Hs+(α−1) log
≤ C

∥∥(Aj − TAj
)
u
∥∥
H(1+s)+(α−1) log

≤ C

(
sup
t∈[0,T ]

sup
1≤j≤n

‖Aj(t, · )‖LL

)
‖u‖Hs+α log

for any −1 < s < 0, and in particular for −γ < s < 0.
This completes the proof of the assertion for R

L̃
, and then also of the lemma.
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4.2 Energy estimates: proof of Theorem 2.4
ss:estimates

We are now ready to compute and estimate the time derivative of the energy. In a first moment,
we aim at proving bounds for the paralinearized operator

TLu := ∂tu + i TAu + TBu .

Notice that TLu = Lu − RLu and also TLu = L̃u − R
L̃
u.

In what follows, we will generically denote by CLL a multiplicative constant which depends on
the LL norms of the coefficients of A(t, x, ξ) and of the symmetrizer S(t, x, ξ), i.e. quantities K0

and K1 in (6)-(7), but not on s neither on u. On the other hand, we will use the generic symbol C
if the constant just depend on K0, i.e. the L∞ bounds of the coefficients and of the symmetrizer,
and on K2 in (8), i.e. the Hölder norms of B. Finally, we will use the notation Cp to denote a
constant which depends on the µ fixed for having the positivity estimates of Lemma 4.1.

l:est-T_L Lemma 4.4. Let
(
Aj
)

1≤j≤n and B be as in the hypotheses of Theorem 2.4. For any s ∈ R and
any β > 0, define s(t) by formula (23). Then, for any smooth u ∈ S

(
[0, T ]× Rn

)
we have

d

dt
E(t) ≤ C1E(t) + (C2 − C3 β) Elog(t) +

+ ‖θµ(D)TLu‖Hs(t)

(
E(t)

)1/2
+ 2

∣∣∣Re
(

Λs(t)(D) T̃Σ TLu , Λs(t)(D) T̃Σu
)
L2

∣∣∣ .
The constant C1 just depends on the µ fixed in the positivity estimates and on K0; C2 still depends
on µ and K0, and also on K1; finally, C3 depends only on K0.

Proof. We start by noticing that, for any v ∈ S(Rn), we have

d

dt
‖v‖2Hs(t) = s′(t)

∫
Rn

log
(
1 + |ξ|2

) (
1 + |ξ|2

)s(t) |v̂(ξ)|2 dξ ∼ s′(t) ‖v‖2Hs(t)+(1/2) log .

For notation convenience, we set Λ(D) := (1−∆)1/2, i.e. Λ(ξ) = 〈ξ〉 =
(
1 + |ξ|2

)1/2.
Recalling definition (24) of the energy E, we get:

d

dt
E(t) = s′(t) Re

(
log
(
Λ2(D)

)
Λs(t)(D) T̃Σu , Λs(t)(D) T̃Σu

)
L2

+

+ 2 Re
(

Λs(t)(D)T
∂tΣ̃

u , Λs(t)(D) T̃Σu
)
L2

+ 2 Re
(

Λs(t)(D) T̃Σ∂tu , Λs(t)(D) T̃Σu
)
L2

+

+ s′(t) Re
(

log
(
Λ2(D)

)
Λs(t)(D) θµ(D)u , Λs(t)(D) θµ(D)u

)
L2

+

+ 2 Re
(

Λs(t)(D) θµ(D)∂tu , Λs(t)(D) θµ(D)u
)
L2

= F1 + F2 + F3 + F4 + F5 .

First of all, let us consider the terms with s′(t): keeping in mind definitions (25) and (23), it
is easy to see that, for some constant just depending on the C0 appearing in Lemma 4.1,

est:s’est:s’ (27) F1 + F4 ≤ −C β Elog(t) .

On the other hand, Theorem 3.30 implies

est:F_2est:F_2 (28) |F2| ≤
∥∥∥T∂tΣ̃u∥∥∥Hs(t)−(1/2) log

∥∥∥T̃Σu
∥∥∥
Hs(t)+(1/2) log

≤ CLL‖u‖Hs+(1/2) log E
1/2
log ≤ CLLCpElog .

For both F3 and F5, we have to use the equation for TLu. We start by dealing with the low
frequencies term:

F5 = 2 Re
(

Λs(t)(D) θµ(D)∂tu , Λs(t)(D) θµ(D)u
)
L2

25



= 2 Re
(

Λs(t)(D) θµ(D) (TLu − i TAu − TBu) , Λs(t)(D) θµ(D)u
)
L2
.

First of all, Cauchy-Schwarz inequality immediately implies∣∣∣Re
(

Λs(t)(D) θµ(D)TLu , Λs(t)(D) θµ(D)u
)
L2

∣∣∣ ≤ ‖θµ(D)TLu‖Hs(t) E
1/2 .

As for the term with TA, we remark that, by spectral localization properties, one has

θµ(D)TiAu =
n∑
j=1

kµ∑
k=0

Sk−3

(
Aj(t, x)

)
∆k∂ju ,

for some kµ ∼ log2 µ. Hence, Bernstein inequalities immediately imply∣∣∣2 Re
(

Λs(t)(D) θµ(D)TiAu , Λs(t)(D) θµ(D)u
)
L2

∣∣∣ ≤ C ‖u‖Hs(t) E1/2 ≤ C CpE(t) ,

for a suitable constant C depending just on the L∞ norms of the Aj ’s. Exactly in the same way,
we get an analogous estimate for the TB term. In the end, putting these inequalities together, we
deduce the control

est:F_5est:F_5 (29) |F5| ≤ C CpE(t) + ‖θµ(D)TLu‖Hs(t)

(
E(t)

)1/2
+ CpCLLElog(t) .

Let us consider now the term F3, which we rewrite as

F3 = 2 Re
(

Λs(t)(D) T̃Σ (TLu − i TAu − TBu) , Λs(t)(D) T̃Σu
)
L2
.

We leave the TL term on one side: it will contribute to the last item appearing in our statement.
In addition, the term with TB is easy to control: since T̃Σ and TB are operators of order 0, we get∣∣∣Re

(
Λs(t)(D) T̃ΣTBu , Λs(t)(D) T̃Σu

)
L2

∣∣∣ ≤ C ‖u‖Hs(t) E1/2 ≤ C CpE(t) .

So, we have to focus just on the last term,

F̃3 := 2 Re
(

Λs(t)(D) T̃Σ TiAu , Λs(t)(D) T̃Σu
)
L2

:

we are going to make a systematic use of symbolic calculus, taking advantage of the properties
established in Theorems 3.20 and 3.28.

First of all, passing to the adjoints, we have the equality

F̃3 = 2 Re
(
T̃Σ Λ2s(t)(D) T̃Σ TiAu , u

)
L2

+ 2 Re
(
R1Λ2s(t)(D) T̃Σ TiAu , u

)
L2
,

where R1 is of order −1 + log. On the other hand, by Remark 3.14 we have T̃Σ Λ2s(t)(D) =
Λ2s(t)(D) T̃Σ + R2, where the operator R2 is a remainder of order 2s(t) − 1 + log. Therefore,
collecting the R1 and R2 terms into only one remainder R(u, u), which can be estimated as

est:remainderest:remainder (30) |R(u, u)| ≤ CLL ‖u‖Hs(t)+(1/2) log E
1/2
log ≤ CpCLLElog(t) ,

we can write

F̃3 = 2 Re
(

Λ2s(t)(D)T̃ΣT̃ΣTiAu, u
)
L2

+R(u, u) = 2 Re
(

Λ2s(t)(D)T
Σ̃2TiAu, u

)
L2

+R(u, u) .

Notice that, in the second step, we have included into R(u, u) another rest, depending on a
remainder R3 which can be still bounded as in (30).
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Now, we use the fact that, by definition, Σ̃2 = S̃
(
1 − θµ(ξ)

)2. Since, by Theorem 3.30,
the difference operator S − S̃ contributes to the estimates as another remainder, in the sense of
inequality (30), we arrive at the identity

F̃3 = 2 Re
(

Λs(t)(D)TS (1−θµ)2 TiAu , Λs(t)(D)u
)
L2

+ R(u, u) .

Finally, by symbolic calculus again, up to adding another remainder R4 of order 0 + log (recall
that A is of order 1), we get

F̃3 = 2 Re
(

Λs(t)(D)Ti SA (1−θµ)2u , Λs(t)(D)u
)
L2

+ R(u, u) .

At this point, we remark that Re
(
i SA

)
= 0, since S is a microlocal symmetrizer for A: then,

keeping in mind that ReP =
(
P + P ∗

)
/2, by symbolic calculus we deduce that

2 Re
(
Ti SA (1−θµ)2

)
= R5 ,

where also R5 is an operator of order 0 + log. In the end, putting all these informations together,
we find the estimate ∣∣∣F̃3

∣∣∣ ≤ CLLCpElog(t) ,

which in turn gives us

est:F_3est:F_3 (31) |F3| ≤ C CpE(t) + CpCLLElog(t) + 2
∣∣∣Re

(
Λs(t)(D) T̃Σ TLu , Λs(t)(D) T̃Σu

)
L2

∣∣∣ .
Therefore, collecting inequalities (27), (28), (29) and (31) completes the proof of the energy

estimates for the paralinearized operator TL.

r:s_values Remark 4.5. No restriction on s is needed at this level: its limitations derive just from product
rules (see Proposition 3.9) and from the analysis of remainders (see Lemma 4.3 above).

We complete now the proof of Theorem 2.4 in the case of operator L. Operator L̃ will be
matter of Remark 4.6 below.

It remains us to deal with the term TL in the estimates provided by Lemma 4.4. Recall that
TLu = Lu − RLu.

For the low frequencies term, it is an easy matter to see that

‖θµ(D)TLu‖Hs(t) ≤ ‖Lu‖Hs(t) + Cp ‖RLu‖Hs(t)−(1/2) log

≤ ‖Lu‖Hs(t) + Cp (CLL + C) ‖u‖Hs(t)+(1/2) log

where Cp is, as usual, a constant which depends on the positivity estimates. The presence of the
constant C in the last step is due to lower order terms, i.e. RB. Applying once more positivity
estimates, we finally arrive to the bound

est:low-freqest:low-freq (32) ‖θµ(D)TLu‖Hs(t) ≤ ‖Lu‖Hs(t) + Cp (CLL + C) Elog(t) .

We remark here that, up to let Cp depend also on s, the previous inequality holds true for any
s ∈ R: we have no need yet for using the condition 0 < s < γ.

As for the high frequencies term, since T̃Σ is an operator of order 0, we have the control

2
∣∣∣Re

(
Λs(t)(D) T̃Σ TLu , Λs(t)(D) T̃Σu

)
L2

∣∣∣ ≤ C ‖Lu‖Hs(t) E1/2 + C ‖RLu‖Hs(t)−(1/2) log E
1/2
log

≤ C ‖Lu‖Hs(t) E1/2 + C (CLL + C) ‖u‖Hs(t)+(1/2) log E
1/2
log ,
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where we have used also Lemma 4.3, and hence the restriction on s. Therefore, by positivity
estimates again we deduce

est:high-freqest:high-freq (33) 2
∣∣∣Re

(
Λs(t)(D) T̃Σ TLu , Λs(t)(D) T̃Σu

)
L2

∣∣∣ ≤ C ‖Lu‖Hs(t) E1/2 + Cp (CLL + C) Elog(t) .

Now, putting (32) and (33) into the inequality given by Lemma 4.4, we find

d

dt
E(t) ≤ C1E(t) + C3 ‖Lu‖Hs(t)

(
E(t)

)1/2
+
(
C4 − β

)
Elog(t) ,

where C1 is the constant given by Lemma 4.4, C3 > 0 depends on K0 and K1, but just via
positivity estimates, and C4 depends on K0, K1 and K2 not only via Lemma 4.1, but also via
Lemma 4.3.

Now, we chose β > C4: then, setting e(t) :=
(
E(t)

)1/2, an application of Gronwall inequality
leads us to the estimate

e(t) ≤ M eQt
(
e(0) +

∫ t

0
‖Lu(τ)‖Hs(τ) dτ

)
,

for two positive constantsM and Q large enough. This completes the proof of the energy estimate
stated in Theorem 2.4, for operator L.

r:adj Remark 4.6. For operator L̃ one can argue in a completely analogous way. The only difference
is the presence of the remainder operator R

L̃
instead of RL, as stated in Lemma 4.3. However,

since the order of the two operators is the same, it is easy to see that the estimates do not change.

r:precise-est Remark 4.7. As already remarked in [11], we point out that, in fact, our proof gives a more
accurate energy estimate: namely,

sup
t∈[0,T∗]

‖u(t)‖Hs−βt +

(∫ T∗

0
‖u(τ)‖2

Hs−βτ+(1/2) log dτ

)1/2

≤est:precise-LL (34)

≤ C1 e
C2 T

(
‖u(0)‖Hs +

∫ T∗

0

∥∥Lu(τ)
∥∥
Hs−βτ dτ

)
for tempered distributions u as in the statement of Theorem 2.4. Moreover, if the last term is L2

in time, one can replace it by
∫ T∗

0

∥∥Lu(τ)
∥∥2

Hs−βτ−(1/2) log dτ .

r:t-LL Remark 4.8. A careful inspection of our proof reveals that we just used the property Aj ∈
L∞
(
[0, T ];LL(Rn;Mm)

)
, namely only LL regularity in x is exploited for the Aj ’s. On the con-

trary, for the symmetrizer S one needs log-Lipschitz continuity both in time and space variables.
Nonetheless, in general regularity of the symmetrizer is dictated by the regularity of the

coefficients (keep in mind the discussion in Example 2.3). Furthermore, hypothesis (7) is invariant
by change of coordinates, and then suitable for local analysis. This is why we required it.

4.3 Existence and uniqueness of solutions
ss:global_e

In this subsection, we prove Theorem 2.6, namely the existence and uniqueness of solutions to the
global Cauchy problem (10). For this, we will exploit in a fundamental way the energy estimates
of Theorem 2.4.

We will focus on the case of operator L, defined in (3). The same arguments hand over L̃, see
its definition in (5), rather directly.
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4.3.1 Regularity results, uniqueness
sss:global_reg

As done in [11] (see Definition 2.5 of that paper), for (σ, α) ∈ R2 and β > 0 fixed, let us define
the following spaces:

• Cσ+α log,β(T ) is the set of functions v on [0, T ], with values in the space of tempered distri-
butions, which verify the property

u ∈ C
(
[0, t];Hσ−βt+α log

)
for all t ∈ [0, T ];

• Hσ+α log,β(T ) is the set of functions w on [0, T ], with values in the space of tempered
distributions, such that

Λσ−βt(D) Πα(D)w(t) ∈ L2
(
[0, T ];L2(Rn;Rm)

)
,

where we used the notations Λ(D) = (1 −∆)1/2 and Π(D) = log(2 + |D|), introduced in
the previous paragraphs;

• Lσ+α log,β(T ) is the set of functions z on [0, T ], with values in the space of tempered distri-
butions, with the property

Λσ−βt(D) Πα(D) z(t) ∈ L1
(
[0, T ];L2(Rn;Rm)

)
.

All these spaces are endowed with the natural norms induced by the conditions here above.

To begin with, we deal with weak solutions to the Cauchy problem (10). More precisely, fix
γ ∈ ]0, 1[ and s ∈ ]0, γ[ as in the statement of Theorem 2.6, and take the positive constants β and
T∗ given by Theorem 2.4. For u0 ∈ Hs and f ∈ Ls,β(T∗), we are going to consider

u ∈ Hs,β(T∗)

such that the equation Lu = f is satisfied, together with the initial condition u|t=0 = u0, in the
sense of distributions.

We remark that, for such u, the product Aj(t, x) ∂ju is well-defined and belongs to the space
Hs−1,β(T∗) for all j (recall Corollary 3.10), and B(t, x)u belongs to Hs,β(T∗) (see Proposition 3.9).
Hence, the equation Lu = f makes sense in D′

(
]0, T∗[×Rn;Rm

)
.

Let us show now that it makes sense also to impose the initial condition u|t=0 = u0.

p:reg_global Lemma 4.9. Let γ and s be as above. Let u ∈ Hs,β(T∗) verify the equation Lu = f in D′ for
some f ∈ Ls,β(T∗).

Then one has u ∈ Cs−(1/2),β(T∗). In particular, the trace u|t=0 is well-defined in Hs−1/2(Rn),
and the initial condition in (10) makes sense.

Proof. The proof is somehow classical. Let us define v(t) := u −
∫ t

0 f(τ)dτ . Then, by hypotheses
it easily follows that

∫ t
0 f ∈ Cs,β(T∗), and hence v ∈ Hs,β(T∗).

On the other hand, from the arguments exposed before, we deduce that ∂tv =
∑

j Aj∂ju+Bu
belongs to the space Hs−1,β . Then, an easy interpolation implies that v ∈ Cs−(1/2),β , and therefore
so does u.

As a result of this lemma and the previous considerations, we have clarified the sense to give
to the Cauchy problem (10).

Next, let us state a “weak = strong” type result. Namely, we show that any weak solution
u is in fact the limit of a suitable sequence of smooth approximate solutions, in the norm given
by the left-hand side of inequality (9). In particular, this fact implies that u enjoys additional
smoothness and it satisfies the energy estimates stated in Theorem 2.4.
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th:w-s Theorem 4.10. Fix γ ∈ ]0, 1[ and 0 < s < γ. Let β > 0 and T∗ be the “loss parameter” and the
existence time given by Theorem 2.4, together with the constants C1 and C2.
Let u0 ∈ Hs(Rn;Rm), f ∈ Ls,β(T∗) and u ∈ Hs,β(T∗) be the corresponding weak solution to the
Cauchy problem (10).

Then one has u ∈ Cs,β(T∗), and u satisfies the energy inequality (9).

Proof. For ε ∈ ]0, 1], let us introduce the smoothing operators Jε(D) := (1− ε∆)−1/2, which are
Fourier multipliers associated to the symbols Jε(ξ) =

(
1 + ε|ξ|2

)−1/2.
Recall that they are operators of order −1, they are uniformly bounded from Hσ to Hσ+1 for

any σ ∈ R, and one has the strong convergence Jε(D)w −→ w in Hσ, for ε→ 0.
For any ε > 0, we set uε := Jε(D)u. Then, from the previous properties we deduce that the

family
(
uε
)
ε
is uniformly bounded in Hs+1,β(T∗) ↪→ L2

(
[0, T∗];H

1(Rn;Rm)
)
. Moreover, we have

that uε −→ u in Hs,β(T∗) for ε→ 0.
In addition, if we apply operator Jε(D) to the equation Lu = f , we deduce that the uε’s solve

the equation Luε = fε + gε, with fε = Jε(D)f and

def:g_epsdef:g_eps (35) gε :=

n∑
j=1

[
Aj(t, x), Jε(D)

]
∂ju +

[
B(t, x), Jε(D)

]
u .

By Lemma 4.6 of [11], it is easy to infer that fε −→ f in Ls,β(T∗) and gε −→ 0 in Hs,β(T∗), in
the limit for ε→ 0.

From this fact, Theorem 2.4 and Remark 4.7 together, we deduce the energy estimates

sup
t∈[0,T∗]

‖uε(t)‖Hs−βt +

(∫ T∗

0
‖uε(τ)‖2

Hs−βτ+(1/2) log dτ

)1/2

≤

≤ C1 e
C2 T

(
‖uε(0)‖Hs +

∫ T

0

(∥∥fε∥∥Hs−βτ +
∥∥gε∥∥Hs−βτ

)
dτ

)
.

By linearity of the equations, similar estimates are satisfied also by the difference δuε,η := uε−uη,
for all (say) 0 < η < ε ≤ 1, up to replace, in the right-hand side, uε(0), fε and gε respectively by
δuε,η(0) = uε(0)− uη(0), δfε,η = fε − fη and δgε,η = gε − gη.

Since δuε,η(0) −→ 0 in Hs, and so do δfε,η and δgε,η respectively in Ls,β(T∗) and in Hs,β(T∗),
we gather that

(
uε
)
ε
is a Cauchy sequence in Cs,β(T∗). Therefore, the limit u ∈ Hs,β(T∗) also

belongs to Cs,β(T∗), and it verifies the energy estimate (9).

The previous theorem immediately implies uniqueness of weak solutions.

c:w_uniq Corollary 4.11. Let γ and s be fixed as in the hypotheses of Theorem 4.10. Let u ∈ Hs,β(T∗) be
a weak solution to the Cauchy problem (10), with initial datum u0 = 0 and external force f ≡ 0.

Then u ≡ 0.

4.3.2 Existence of weak solutions
sss:weak

In order to complete the proof of Theorem 2.6, it remains us to prove existence of weak solutions.

p:w_existence Proposition 4.12. Fix γ ∈ ]0, 1[ and 0 < s < γ. Let β > 0 and T∗ be the “loss parameter” and
the existence time given by Theorem 2.4.

Then, for all u0 ∈ Hs(Rn;Rm) and f ∈ Ls,β(T∗), there exists a weak solution u ∈ Hs,β(T∗) to
the Cauchy problem (10).

Proof. For ε ∈ ]0, 1], let us introduce the smoothing operators Jε(D), of order −1, as done in the
previous proof. Denoting A(t, x,D) =

∑
j Aj(t, x)∂j , for any ε let us consider the linear system

of m ODEs
∂tuε = −A(t, x,D) Jε(D)uε − B(t, x) Jε(D)uε + f ,
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with initial datum (uε)|t=0 = u0.
For all ε fixed and all t, it is easy to see that the operators A(t, x,D)Jε(D) and B(t, x)Jε(D)

are bounded in L2. Moreover, by our hypotheses we have s > s− βT∗ > 0, so that we can solve
the previous system in C

(
[0, T∗];L

2(Rn;Rm)
)
by use of the Cauchy-Lipschitz Theorem, and find

a solution uε. On the other hand, the hypothesis over f implies that, for any t0 ∈ [0, T∗] fixed,
f ∈ L1

(
[0, t0];Hs−βt0

)
. Furthermore, by product rules (see Proposition 3.9 and Corollary 3.10),

the operators A(t, x,D)Jε(D) and B(t, x)Jε(D) are self-maps of Hs−βt0 into itself. Therefore, by
Cauchy-Lipschitz Theorem again and uniqueness part, we infer that u ∈ Cs,β(T∗) ↪→ Hs,β(T∗).

Notice however that this is not enough to get uniform bounds on the family (uε)ε, since we do
not know if we have enough regularity in order to absorbe, in energy estimates, the remainders
which require an additional (1/2) log-regularity (see the computations in Subsection 4.2 above).
Hence, we are going to argue in a slightly different way.

Let us define wε := Jε(D)uε: by the previous argument, wε is in L2
(
[0, T∗];H

1(Rn;Rm)
)
for

all ε ∈ ]0, 1]. Moreover, it satisfies

∂twε = − Jε(D)A(t, x,D)wε − Jε(D)B(t, x)wε + Jε(D) f

= −A(t, x,D)Jε(D)wε − B(t, x)Jε(D)wε + fε + hε ,

where fε = Jε(D)f as before, and hε is defined by the analogue of formula (35), but replacing u
by wε itself. Notice that Lemma 4.6 of [11] implies the inequality

‖hε‖Hs(t) ≤ C ‖wε‖Hs(t) ,

where s(t) = s− βt as above. Let us also remark that (wε)|t=0 = Λε(D)u0.
Then, we can apply energy estimates of Theorem 2.4 to wε. Indeed, Jε(ξ) being a scalar

multiplier, S(t, x, ξ) is still a microlocal symmetrizer for A(t, x, ξ)Jε(ξ). Moreover, Lemma 4.3
gives uniform bounds for the remainder operators A(t, x, ξ)Jε(ξ)−TA(t,x,ξ)Jε(ξ) and B(t, x)Jε(ξ)−
TB(t,x)Jε(ξ) in suitable functional spaces. Finally, Lemma 4.4 provides with uniform bounds for the
operators ∂t + TiA(t,x,ξ)Jε(ξ) + TB(t,x)Jε(ξ), since the symbols are uniformly bounded respectively
in the classes Γ1+0 log

LL and Γ0+0 log
γ+0 log.

So we find that
(
wε
)
ε
is a bounded family in Cs,β(T∗) ↪→ Hs,β(T∗), and consequently, up to

extraction of a subsequence, it weakly converges to some u in this space. On the other hand, by
the equation for wε (recall also product rules of Proposition 3.9 and Corollary 3.10), we easily
deduce that

(
∂twε

)
ε
is bounded in Cs−1,β(T∗), and hence the convergence holds true also in the

weak-∗ topology of H1
(
[0, T∗];H

s−βT∗−1(Rn;Rm)
)
↪→ C

(
[0, T∗];H

s−βT∗−1
)
. In particular, this

implies that (wε)|t=0 −→ u|t=0 in the distributional sense.
Thanks to these properties, it is easy to pass to the limit in the weak formulation of the

equations, obtaining thus that u solves the system Lu = f in a weak sense, with initial datum
u0. Finally, by uniform bounds we get u ∈ Hs,β(T∗), and this fact completes the proof of the
existence of a weak solution.

5 The local Cauchy problem
s:local

We prove here local in space existence and uniqueness of solutions. First of all, let us show that
it makes sense to consider the Cauchy problem for operator P on Σ: this is not clear a priori,
due to the low regularity framework.

Here below we will use the notations introduced in Subsection 2.2. In particular, recall that
we have set Ω≥ := Ω ∩ {ϕ ≥ 0} and Ω> := Ω ∩ {ϕ > 0}, where {ϕ = 0} is a parametrization of
the hypersurface Σ in Ω.

Recall that we have supposed that hypotheses from (H-1) to (H-5) (stated in Subsection 2.2)
hold true. In particular, P has log-Lipschitz first order coefficients and a γ-Hölder continuous
0-th order coefficient, and it admits a family of full symmetrizers, which are smooth in the dual
variable and log-Lipschitz in the z variable.
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5.1 Giving sense to the local Cauchy problem
ss:sense

We start by noticing that, for smooth u and v, with supp v compact in Ω≥, we can write the next
identity only formally, due to the low regularity of the coefficients:(

Pu , v
)
L2(Ω>)

−
(
u , P ∗v

)
L2(Ω>)

=
(
DΣu , Nν,P1v

)
L2(Σ)

,

where P ∗(z, ζ)v = −
∑

j ∂zj

(
A∗jv

)
+ B∗v is the adjoint operator of P , and we have defined

DΣu := u|Σ and Nν,P1v :=
n∑
j=0

νj DΣ

(
A∗jv

)
.

As above, ν is the normal to the hypersurface Σ, which determines the integration form on Σ.
Of course, the map z 7→ ν(z) 6= 0 is smooth on Σ.

In our framework the previous Green formula does not hold true a priori, due to the low
regularity of the coefficients. The first step of the proof to Theorem 2.10 is to justify it for smooth
enough functions. To begin with, let us study the regularity of the terms entering in the definition
of Pu and P ∗u: we have the following lemma.

l:reg_P Lemma 5.1. (i) For s ∈ ]1−γ, 1+γ[ and u ∈ Hs
loc(Ω≥), all the terms entering in the definition

of Pu are well-defined in Hs−1
loc (Ω≥).

(ii) For σ ∈ ]1 − γ, 1[ and v ∈ Hσ
loc(Ω≥), all the terms entering in the definition of P ∗v are

well-defined in Hσ−1
loc (Ω≥).

(iii) For s > 1/2 and u ∈ Hs
loc(Ω≥), the trace DΣu is well-defined in Hs−1/2

loc (Σ ∩ Ω).

(iv) For σ ∈ ]1/2, 1[ and v ∈ Hσ
loc(Ω≥), the normal trace Nν,P1v is well-defined in Hs−1/2

loc (Σ∩Ω).

Proof. We repeatedly use product rules stated in Proposition 3.9 and Corollary 3.10 above.
In a first time, let us focus on P : for all s ∈ ]0, 2[ , P1(z, ∂z)u belongs to Hs−1

loc (Ω≥). Now, by
the embedding Hs ↪→ Hs−1, if |s − 1| < γ we have that Bu ∈ Hs−1

loc (Ω≥). This completes the
proof of point (i).

Concerning P ∗, the argument is analogous: the principal part of P ∗u belongs to Hσ−1
loc (Ω≥)

whenever σ ∈ ]0, 1[ . The B∗u term can be treated exactly as before. Also (ii) is proved.
Points (iii) and (iv) are straightforward.

Following the discussion in [11], we remark that C∞0 (Ω>) is a dense subset of Hσ(Ω>) for
|σ| < 1/2, and that, when σ ∈ [0, 1/2[ and u ∈ Hσ(Ω>), the pairing

(
u , v

)
L2(Ω>)

for v ∈ L2

extends to the duality Hσ × H−σ. From this and Lemma 5.1, we deduce the next statement,
which tells us that Green formula makes sense for regular enough distributions.

l:duality Lemma 5.2. Let us fix 1/2 < γ < 1, and take s ∈ ]1/2, γ[ . For any u ∈ Hs
loc(Ω≥) and v ∈

Hs
comp(Ω≥), one has the equality

eq:by-partseq:by-parts (36)
(
Pu , v

)
H−σ×Hσ −

(
u , P ∗v

)
Hσ×H−σ =

(
DΣu , Nν,P1v

)
L2(Σ)

,

where σ = 1− s ∈ ]1− γ, 1/2[ (and in particular 0 ≤ σ < 1/2).

Proof. Since s > 1/2, we have Hs ↪→ H1−s. On the other hand, s belongs in particular to
]1− γ, 1[ , and then Lemma 5.1 applies.

To complete the proof, it is enough to remark that (see Lemma 1.3 of [11]) the Green’s formula(
∂ju , v

)
H−σ×Hσ = −

(
u , ∂jv

)
Hσ×H−σ +

(
νj DΣu , DΣv

)
L2(Σ)

,

holds true for any u ∈ H1−σ
loc (Ω≥) and v ∈ H1−σ

comp(Ω≥), whenever σ ∈ [0, 1/2[ .
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As the final step, we want to justify Green formula for distributions which are in the domain
of our operator. This is guaranteed by the next statement, which is the analogue to Proposition
1.4 of [11]. Thanks to this result, considering the Cauchy problem (CP ) under the hypotheses of
Theorem 2.10 makes sense.

p:extension Proposition 5.3. Let us define the set D(P ;Hs) :=
{
u ∈ Hs

loc(Ω≥)
∣∣Pu ∈ Hs

loc(Ω≥)
}
.

There exists a unique extension of the operator DΣ to the set D(P ) :=
⋃
s>1−γ D(P ;Hs),

which acts continuously from D(P ;Hs) into Hs−1/2
loc (Σ ∩ Ω) for all s ∈ ]1− γ, γ[ .

The same property holds true for the operator Nν,P1.
Furthermore, for all s0 ∈ ]1 − γ, 1/2[ such that s0 ≤ s, for all v ∈ H1−s0

comp(Ω≥), one has the
Green formula (

Pu , v
)
L2 −

(
u , P ∗v

)
Hs0×H−s0 =

(
DΣu , Nν,P1v

)
Hs−1/2×H1/2−s .

This proposition will be proved in the next subsection, and it will be derived by results on
the global Cauchy problem. Then, in order to give sense to the Cauchy problem, the microlocally
symmetrizability and hyperbolicity hypotheses are fundamental.

Let us notice here that, thanks to definitions, the properties for DΣ easily pass also on Nν,P1 .
We observe also that all the terms entering in the last formula have sense. Indeed, 1/2 < 1−s0 < γ
and hence, by Lemma 5.1, we get P ∗v ∈ H−s0comp(Ω≥), so that the pairing with u makes sense (recall
that s0 ≤ s). Moreover one has Nν,P1v ∈ H

1/2−s0
comp (Ω≥) ↪→ H

1/2−s
comp (Ω≥), and so also the last term

in the equality is fine.

5.2 Invariance by change of variables, and regularity results
ss:change

First of all, let us show here that our working hypotheses are invariant under smooth change of
coordinates.

Indeed, let z = ψ(y), for some ψ smooth, and denote f̃(y) = f ◦ ψ(y): derivatives change
according to the rule ∇zu ◦ ψ = t

(
∇zψ−1

)
◦ ψ · ∇yũ, namely

(
∂zju

k
)
◦ ψ =

m∑
h=1

∂zj
(
ψ−1

)h ◦ ψ ∂yh ũk ,
as well as covectors in the cotangent space, i.e. ζ̃(y) =

(
t∇zψ−1 · ζ

)
◦ ψ(y). As a consequence,

if we write the i-th component of our system Pu = f , that is to say

f i =
n∑
j=0

m∑
k=1

Aj,ik(z) ∂zju
k(z) +

m∑
k=1

Bik(z)u
k(z) ,

from the previous rules we obtain the expression in y coordinates:

f̃ i =

n∑
h=0

m∑
k=1

Mh,ik(y) ∂yj ũ
k(y) +

m∑
k=1

B̃ik(y) ũk(y) ,

where easy computations lead to the formula

Mh,ik(y) =
n∑
j=0

Ãj,ik(y) ∂zj
(
ψ−1

)h (
ψ(y)

)
.

Namely, we have proved that P̃ u = P̃ ũ, where we have defined the operator

P̃ v =
n∑
h=0

Mh ∂yhv + B̃v .
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Notice that P̃ has the same form as P , and the same regularity of its first and 0-th order coeffi-
cients. In addition, by Theorem 4.11 of [20] we deduce that it is still microlocally symmetrizable
in the sense of Definition 2.9. We can check this property also by direct computations: as a matter
of fact, in a very natural way, let us define

S̃(y, ζ̃) := S
(
ψ(y) ,

(
t∇zψ−1 · ζ

)
◦ ψ
)

Of course, all the properties of S hand over to S̃; the only thing we have to check is that S̃P̃1 is
self-adjoint, where we denote by P̃1 the principal part of P̃ . But this imediately follows from the
definitions and the transformation rules:(

S̃P̃1

)
(y, ζ̃) = S̃(y, ζ̃)

n∑
h=0

ζ̃hMh = S̃(y, ζ̃)
n∑
h=0

n∑
j=0

Ãj ∂zj
(
ψ−1

)h
ζ̃h

= S
(
χ(y),

(
t∇zψ−1 · ζ

)
◦ ψ(y)

) n∑
j=0

Aj
(
ψ(y)

) (
t∇zψ−1 · ζ

)
◦ ψ(y)

= (SP1)
(
χ(y),

(
t∇zψ−1 · ζ

))
.

Furthermore, as done in [11] (see Section 5), the Green formula (36) can be transported by ψ.
As a byproduct of this discussion, we get that our statements, and in particular Proposition 5.3,
are invariant by smooth change of variables.

Hence, we can reconduct the proof of Proposition 5.3 in the system of coordinates z = (t, x) ∈
]− t0, t0[×ω and ζ = (τ, ξ). In particular we will assume that Σ = {t = 0}, whose unit normal
is dt, and that z0 = 0. Moreover, by Proposition 4.12 of [20], up to shrink our domain we can
suppose that the full symmetrizer is positive in the direction dt at any point (t, x); by assumption
(13), we can also assume that A0(t, x) is invertible for any (t, x).

In the end, we can recast our operator in the form Lu = ∂tu +
∑

j Aj(t, x) ∂ju + B(t, x)u,
with existence of a microlocal symmetrizer (in the sense of Definition 2.1) S(t, x, ξ) = S(t, x, 1, ξ).

This having been established, we present a regularity result analogous to Proposition 4.9,
which will be needed in the proof of Proposition 5.3.

l:regularity Lemma 5.4. Let γ and s as in the hypotheses of Theorem 2.10. Let u ∈ Hs
(

]0, t0[×ω
)
such that

Lu ∈ L1
(
[0, t0];Hs(ω)

)
.

Then one has u ∈ C
(
[0, t0];Hs−1/2(ω)

)
. In particular, the trace u|t=0 is well-defined in

Hs−1/2(ω), and the initial condition in (CP ) makes sense.

Proof. The proof goes along the lines of Lemma 2.2 of [11], so let us just sketch it. First of
all, we restrict our attention to the case [0, t0] × Rn, the other one being obtained working with
restrictions. In addition, we make use of the spaces Hs,σ

(
[0, T∗] × Rn

)
of Hörmander (see e.g.

Appendix B of [14]).
So, by hypothesis u ∈ Hs

(
[0, t0]×Rn

)
= Hs,0

(
[0, t0]×Rn

)
↪→ H0,s

(
[0, t0]×Rn

)
. From this,

we deduce that L1u =
∑

j Aj ∂ju ∈ H0,s−1
(
[0, t0] × Rn

)
. On the other hand, the same is true

also for the term Bu, since, by assumption, |s− 1| < γ (recall also Proposition 3.9).
Next, we notice that the hypothesis Lu ∈ L1

(
[0, t0];Hs(Rn)

)
implies that v(t) :=

∫ t
0 Lu(τ) dτ

belongs to C
(
[0, t0];Hs(Rn)

)
↪→ H0,s

(
[0, t0]× Rn

)
.

From the previous properties, we get that w := u − v ∈ H0,s
(
[0, t0] × Rn

)
, while its time

derivative ∂tw ∈ H0,s−1
(
[0, t0]×Rn

)
, because ∂tw =

∑
j Aj ∂ju + Bu. Therefore, by properties

of the Hörmander spaces we get w ∈ H1,s−1
(
[0, t0]×Rn

)
↪→ C

(
[0, t0];Hs−1/2(Rn)

)
(see Theorem

B.2.7 of [14]). As a conclusion, also u = w + v belongs to C
(
[0, t0];Hs−1/2(Rn)

)
.

We are now ready to prove Proposition 5.3.
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Proof of Proposition 5.3. We focus on uniqueness first. Notice that classical Green formula forces
the definition of DΣ to coincide with the usual trace operator for smooth functions. Let us
argue by contradiction and suppose that there exist two extensions D1

Σ and D2
Σ, and a tempered

distribution u ∈ D(P ) =
⋃
s>1−γ D(P ;Hs) such that D1

Σu = u1
0 and D2

Σu = u2
0, with u1

0 6= u2
0.

In the light of Lemma 5.2, we can suppose that u ∈ D(P ;Hs), with s ∈ ]1 − γ, 1/2]. Let us set
Pu = f ∈ Hs

loc(Ω≥) and δ :=
∥∥u1

0 − u2
0

∥∥
Hs−1/2 > 0.

Fix now ε > 0. By density of smooth functions, we can chose smooth g, v1
0 and v2

0 such that

‖f − g‖Hs(Ω≥) +
∥∥u1

0 − v1
0

∥∥
Hs−1/2(Σ∩Ω)

+
∥∥u2

0 − v2
0

∥∥
Hs−1/2(Σ∩Ω)

≤ ε .

Thanks to the previous discussion, we can work in local coordinates (t, x), and hence suppose
the following facts: first, that Σ = {t = 0}, and moreover that, in these coordinates, P takes
the form of L as defined in (3). Therefore, we can apply Theorem 2.6 to the initial data v1

0 and
v2

0 and external force g: we find two solutions v1 and v2 respectively, which belong to the space
C
(
[0, T∗];H

s(Rn;Rm)
)
and which solves the problems, for i = 1 , 2,

Lvi = g , vi|t=0 = vi0 .

Notice that, in particular, we get vi ∈ H0,s
(
[0, T∗] × Rn

)
, and then (by the equation) ∂tvi ∈

H0,s−1
(
[0, T∗] × Rn

)
, which implies vi ∈ H1,s−1

(
[0, T∗] × Rn

)
(see also the proof of Lemma 5.4

here above). Since s− 1 < 0, from this property it is easy to deduce that vi ∈ Hs,0
(
[0, T∗]×Rn

)
.

Remark that, up to shrink Ω≥ (i.e. take a smaller existence time T∗), we can also suppose that
vi ∈ Hσ,0

(
[0, T∗] × Rn

)
, with σ > 1/2. Furthermore, by linearity of L and Theorem 2.6 we infer

the estimates ∥∥u− vi∥∥
Hs ≤ C(ε) =⇒

∥∥v1 − v2
∥∥
Hs ≤ 2C(ε) .

But each vi is smooth, i.e. it belongs Hσ,0
(
[0, T∗]×Rn

)
with σ > 1/2, so that D1

Σv
i ≡ D2

Σv
i = vi0

for all i = 1 , 2. Hence, by continuity of the trace operator on smooth functions we deduce∥∥v1
0 − v2

0

∥∥
Hs−1/2 ≤

∥∥v1
0 − v2

0

∥∥
Hσ−1/2 ≤ C ′(ε) .

At this point, we write

δ =
∥∥u1

0 − u2
0

∥∥
Hs−1/2 ≤

∥∥u1
0 − v1

0

∥∥
Hs−1/2 +

∥∥v1
0 − v2

0

∥∥
Hs−1/2 +

∥∥v2
0 − u2

0

∥∥
Hs−1/2 ≤ 2ε+ C ′(ε) :

taking a ε > 0 small enough gives the contradiction, completing in this way the proof of the
uniqueness part.

Let us consider the problem of existence of the trace operator onto Σ. Once again, we work
in local coordinates z = (t, x), with z0 = 0 and Σ = {t = 0}, and the conormal given by
ν(t, x) = µ(x) dt, for a suitable positive function µ. By Lemma 5.4, we can define the trace
u|t=0 as a distribution in Hs−1/2(Σ): then, it is enough to check that, in this coordinates, Green
formula in Proposition 5.3 makes sense with DΣu = u|t=0. But from now on the arguments are
analogous to the discussion in Section 5 of [11]: so we omit them.

The proposition is now completely proved.

5.3 Proof of local existence and uniqueness
ss:proof_local

Now, we can turn our attention to the statements about existence and uniqueness of solutions to
the local Cauchy problem. Let us start with the proof of Theorem 2.10: it is analogous to the
one of [11] for wave operators, so let us just sketch it.
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Proof of Theorem 2.10. Up to a change of variables, we can suppose, as usual, that z0 = 0,
Σ = {t = 0}, with normal dt, and that the operator P , in these coordinates, assumes the form of
L = ∂t +

∑
j Aj ∂j + B.

Consider a smooth function Φ : R1+n
y −→ Ω such that Φ(y) = y for all y ∈ Ω1 ⊂ Ω, and

Φ(y) = z0 if |y| is large enough. Such a function can be built by taking Ω1 to be a ball centered
in z0 and working along radial directions emanating from z0, for instance.

Changing the coefficients of L according to the rule f ](y) := f
(
Φ(y)

)
, we are led to consider

a new operator L], such that L] ≡ L on Ω1, having coefficients with the same regularity as L and
admitting a full symmetrizer S](y, ζ) = S

(
Φ(y), ζ

)
which is positive in the directions ν

(
Φ(y)

)
.

Fix now a s ∈ ]1−γ, γ[ , and take another s1 ∈ ]1−γ, s[. Let us apply Theorem 2.4 to operator
L]: this provides us with a loss parameter β and with an existence time T = (s− s1)/β. Define
then Ω0 := Ω1 ∩ {|t| < T} and ω := Ω0 ∩ {t = 0}.

Let us take an initial datum u0 ∈ Hs(ω): by definition (11), it can be seen as the restriction
to ω of a u]0 ∈ Hs(Rn). In the same way, f ∈ Hs(Ω0 ∩ {t > 0}) is the restriction of a f ] ∈
Hs(R1+n ∩ {t > 0}), and in particular f ] ∈ L2

(
]0, T [ ;Hs(Rn)

)
.

Then, by use of Theorem 2.4 we solve the Cauchy problem

L]u] = f ] , u]|t=0 = u]0 :

we find a solution u] on [0, T ] × Rn which, in particular, belongs to L2
(
[0, T ];Hs1(Rn)

)
. But

from this fact together with Proposition 3.9 and by use of the equation, we deduce that ∂tu] ∈
L2
(
]0, T [ ;Hs1−1(Rn)

)
, which finally implies that u] ∈ H1,s1−1

(
[0, T ]×Rn

)
↪→ Hs1

(
[0, T ]×Rn

)
,

the inclusion following from the fact that s1 − 1 < 0.
Therefore, by restriction we infer the existence of a solution u to (CP ) in Ω0.

This having been proved, we turn our attention to the question of local uniqueness. We start
by establishing a result about propagation of zero across the surface {t = 0}.

l:0-prop Lemma 5.5. Let s > 1 − γ and Ω = ] − t0, t0[×ω for some t0 > 0 and ω ⊂ Rn neighborhood of
0. Suppose that u ∈ Hs(Ω ∩ {t > 0}) fulfills

eq:0-Cauchyeq:0-Cauchy (37) Lu = 0 , u|t=0 = 0 .

Denote by ue the extension of u by 0 on {t < 0}.
Then, there exists a neighborhood Ω1 ⊂ Ω of 0 such that ue ∈ Hs(Ω1) and Lue = 0 on Ω1.

Proof. Since u ∈ Hs(Ω∩{t > 0}), we have in particular that u ∈ L2
(
[0, t0];Hs

loc(ω)
)
, and therefore

ue belongs to L2
(
[−t0, t0];Hs

loc(ω)
)
.

On the other hand, ∂tu ∈ L2
(
[0, t0];Hs−1

loc (ω)
)
, with u|t=0 = 0. Hence, the (weak) derivative

∂tue is the extension of ∂tu by 0 for negative times (test it on functions of the form ∂tϕ). This
implies ∂tue ∈ L2

(
[−t0, t0];Hs−1

loc (ω)
)
, and therefore ue ∈ Hs

loc

(
] − t0, t0[×ω

)
(using the same

arguments as in the previous proof).
Finally, veryfing that Lue = 0 is an easy matter. Indeed, testing the equations on smooth

ϕ ∈ D
(

] − t0, t0[×ω
)
, the integral in time reduces on intervals of the form ]0, t1[ , because ue

vanishes for t < 0. But for t > 0, ue ≡ u, and u is a weak solution of Lu = 0 with u|t=0 = 0: this
entails that also the integral over ]0, t1[ is equal to 0.

From the previous result, we can deduce the local uniqueness of solutions, by mean of classical
convexification arguments.

Proof of Theorem 2.12. Once again, we can fix local coordinates for which Ω = ]− t0, t0[×ω and
Σ = {t = 0}. Suppose that u ∈ Hs

(
Ω ∩ {t > 0}

)
satisfies (37). Denoting by ue its extension by

0, priveded by Lemma 5.5, we know that ue is a Hs distribution on (say) ] − t1, t1[×ω1, for a
suitably small ω1 ⊂ ω, and in the same neighborhood Lue = 0.

36



We consider the change of variables ψ : (t, x) 7→
(
t̃, x̃
)
such that

t̃ := t + |x|2 and x̃ := x .

Notice that this map sends {t < 0} into
{
t̃ < |x̃|2

}
. Let us define ũ = ue ◦ψ and L̃ the operator

obtained by L under the transformation ψ.
Therefore, we have that ũ is defined in t̃ < t̃1, for a suitable t̃1 > 0, and ũ ≡ 0 in

{
t̃ < |x̃|2

}
.

Furthermore, up to take a smaller t̃1, we can suppose that L̃ is defined on a neighborhood Ω̃ of
the origin which contains the closed lens Θ :=

{
|x̃|2 ≤ t̃ ≤ t̃1

}
, and that L̃ũ ≡ 0 on Ω̃.

Now, we repeat the construction explained in the proof of Theorem 2.10 above. Namely, we
extend the coefficients of L̃ and we obtain an operator L], defined on the whole Rn+1, which
preserves the regularity of the coefficients and the microlocal symmetrizability assumption, and
which coincides with L̃ on a smaller neighborhood of Θ.

We also extend ũ to u]. Then, on the set ]−∞, t̃1[×Rn we get

L]u] = 0 , u] ∈ Hs , u]|{ t̃<|x̃|2 } = 0 .

In particular, u]|t̃=−δ = 0 for δ > 0 arbitrarly small. Therefore energy estimates of Theorem 2.4,

applied to L] and the initial time −δ (for δ small enough), guarantee that u] ≡ 0 untill a time
T̃0. In particular, this is true for ũ, and coming back to coordinates (t, x) implies that u ≡ 0 in a
neighborhood of the origin.
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