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An efficient quadrature rule on the cubed sphere

Introduction

In this paper we consider quadrature rules for functions defined on the sphere. Let S 2 be the unit sphere, and let x ∈ S 2 → f (x) be a regular function. A quadrature rule Q(f ) is defined by ( 1)

I(f ) = S 2
f (x)dσ(x)

P p=1 w p f (x p ) = Q(f ),
where x p ∈ S 2 are the nodes and w p are the weights. The quest for rules of the form (1) has been a longstanding topic of interest. The classical setup of the problem consists in finding a minimal number P of nodes x p with the associated weights w p for (1) to be as exact as possible. More precisely, the problem is to determine the location on the sphere of a minimal number of nodes for the largest number of Spherical Harmonics to be exactly integrated. Recent works on this topic include [START_REF] Sloan | Extremal systems of points and numerical integration on the sphere[END_REF][START_REF] Keiner | Fast evaluation of quadrature formulae on the sphere[END_REF][START_REF] Ahrens | Rotationally invariant quadratures for the sphere[END_REF][START_REF] Fornberg | On spherical harmonics based numerical quadrature over the surface of a sphere[END_REF]. We also refer to the review paper [START_REF] Hesse | Numerical Integration on the Sphere[END_REF] and the references therein.

Here, we are interested in a slightly different question. Over the past 20 years, the Cubed Sphere (see Fig. 1) has become a popular spherical grid among researchers dealing with mathematical or physical models. In particular, in numerical climatology, the Cubed Sphere serves for various numerical schemes for time-dependent climate models on the sphere [START_REF] Lauritzen | A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid[END_REF][START_REF] Bao | A mass and momentum flux-form high-order discontinuous galerkin shallow water model on the cubed-sphere[END_REF][START_REF] Ullrich | High order finite-volume methods for the shallow-water equations on the sphere[END_REF]. In this context, accurately evaluating averaged quantities over the sphere such as mass, momentum, energy or total vorticity is particularly important. This is in particular the case for the finite difference scheme introduced in [START_REF] Croisille | Hermitian compact interpolation on the Cubed-Sphere grid[END_REF][START_REF] Croisille | Hermitian approximation of the spherical divergence on the Cubed-Sphere[END_REF]. This scheme uses discrete unknowns located at the nodes of the Cubed Sphere. For this scheme, it is therefore natural to have at hand a quadrature rule with nodes x p selected as the gripoints of the Cubed Sphere.

To fully determine such a rule, it remains to identify a set of suitable weights w p . A basic observation is that a particularly simple set of weights w p , described hereafter, provides a rule [START_REF] Ahrens | Rotationally invariant quadratures for the sphere[END_REF], which is exact for a proportion of 7/8 of all Spherical Harmonics. Furthermore, for the remaining 1/8 Spherical Harmonics not integrated exactly, fourth order accuracy convergence of the rule was Date: October 02, 2016. This work was performed during the master degree thesis of the first author at the Univ. Lorraine, Math. Dept., Institut Elie Cartan de Lorraine in Metz, France, during the second semester of the academic year 2015-2016. numerically obtained. This observation was the starting point of the present study. Building upon this first rule (called Q a ), we suggest a second rule Q b , which keeps the 7/8 property and appears to be remarkably accurate.

The outline of the paper is as follows. Section 2 gives the notation for the Spherical Harmonics and the Cubed Sphere. In Section 3, our first quadrature rule, called Q a , is introduced and the aforementioned 7/8 property is proved. This property is actually due to a set of combined symmetries shared by the Cubed Sphere and the Spherical Harmonics. In Section 4, we show how this property can serve to significantly enhance the selection of the weights associated with the nodes of the Cubed Sphere. This permits to define a second quadrature rule called Q b , which again uses the Cubed Sphere points as quadrature nodes. The weights w p are selected according to a specific least square problem. Numerical results show that the rule performs remarkably well compared to other spherical quadrature rules of the litterature.

Notation

Consider the reference

Cartesian frame R = (O, i, j, k) in R 3 . The unit sphere is S 2 = {x(x, y, z) ∈ R 3 /x 2 + y 2 + z 2 = 1}.
The Longitude-Latitude coordinate system is called

(λ, θ), with -π ≤ λ < π and -π/2 ≤ θ ≤ π/2. For n ≥ 0 and m with -n ≤ m ≤ n, the Spherical Harmonic Y m n : x ∈ S 2 → Y m n (x) ∈ C is defined by [9]: (2) Y m n (x) = (-1) m N |m| n P |m| n (sin θ)e imλ .
For 0 ≤ m ≤ n, the function x ∈ [-1, 1] → P m n (x) is the associated Legendre polynomial. It is defined in terms of the Legendre polynomial P n (x) = d n dx n (x 2 -1) n /(2 n n!) by the relation:

(3)

P m n (x) = (1 -x 2 ) m/2 d m dx m P n (x), 0 ≤ m ≤ n, x ∈ [-1, 1].
The Spherical Harmonics form an orthonormal basis of the space L 2 (S 2 ) and therefore ( 4)

I(Y m n ) = 0 if (n, m) = (0, 0), I(Y 0 0 ) = √ 4π. The normalisation constant N m n in (2) is (5) N m n = 2n + 1 4π (n -m)! (n + m)! 1 2
.

A quadrature rule is usually designed using the functions Y m n . The accuracy is measured by the order n such that the functions Y m n (x), |m| ≤ n, are integrated exactly. Our next ingredient is a particular grid of S 2 called the Cubed Sphere (see Fig. 1). The Cubed Sphere with parameter N consists of 6N 2 + 2 points located on six panels, called P k , (I) ≤ k ≤ (V I). These six panels can be matched to the six faces of the cube [-1, 1] 3 embedding the sphere. This fact is the reason of the terminology Cubed Sphere.

Each panel P k has a square like shape represented on Fig. 2. It is supplied with a coordinate system (ξ, η), whose coordinate lines are great circle sections. The coordinate lines ξ = 0, (resp. η = 0) represent the vertical (resp. horizontal) equatorial line at the center of P k . The function ϕ k is the bijective application defined by ( 6) For example for the panel P (I) , the point x(x, y, z) = ϕ (I) (ξ, η) satisfies the relations (7)

ϕ k : (ξ, η) ∈ [- π 4 , π 4 ] → x(ξ, η) ∈ P k .
         X = tan(ξ), Y = tan(η), X = y x , Y = z x , x 2 + y 2 + z 2 = 1.
Analog relations hold for the five other panels. On P k , the grid is defined by the (N + 1) 2 points (8)

s k i,j = ϕ k (i∆ξ, j∆η), -N/2 ≤ i, j ≤ N/2, where ∆ξ = ∆η = π/2N . 1 Finally the function (ξ, η) ∈ [-π 4 , π 4 ] → G(ξ, η) ∈ M 2 (R)
denotes the metric tensor defined by The function (ξ, η) → G(ξ, η) obviously does not depend on the panel. For, the panel P k is deduced from the panel P (I) by a fixed rotation of the cube, and ( 9) is invariant under this transformation. This metric tensor will serve in the next section. We refer to [START_REF] Ronchi | The Cubed Sphere: A new method for the solution of partial differential equations in spherical geometry[END_REF] for other properties of the Cubed Sphere.

3. A first quadrature rule 3.1. Derivation of the rule. In this section we introduce our first quadrature rule called Q a . It uses the points s k i,j of the Cubed Sphere as the nodes x p in (1). Let f : S 2 → R be a regular function defined on S 2 . Using the fact that the sphere S 2 is decomposed into the set of the six panels P k , (I) ≤ k ≤ (V I), we have ( 10)

I(f ) = S 2 f (x)dσ(x) = (V I) k=(I) P k f (x)dσ(x) I k (f )
.

Using on P k the change of variables x = ϕ k (ξ, η) gives by the chain rule [START_REF] Simmonds | A Brief on Tensor Analysis[END_REF], [START_REF] Lauritzen | A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid[END_REF] 

I k (f ) = (ξ,η)∈[-π 4 ; π 4 ] 2 (f • ϕ k )(ξ, η) | det G(ξ, η)|dξdη.
We denote

f k = f • ϕ k . The integral I k (f ) is approximated by Q k (f ) defined by (12) Q k (f ) = ∆ξ∆η N/2 i,j=-N/2 c i,j g i,j f k (ξ i , η j ),
where the weights g i,j are given by (13)

g i,j = | det G(ξ i , η j )|.
Furthermore, the coefficients c i,j are defined as follows:

• The internal points (i, j) with -N/2 < i, j < N/2, displayed with circles on Fig 2 are counted with coefficient c i,j = 1. • The edge points (i, j) with i = ±N/2 and -N/2 < j < N/2 or (i, j) with j = ±N/2 and -N/2 < i < N/2, displayed as squares on Fig. 2, are multiplied by the coefficient c i,j = 1/2. • The four corner values (i, j) ∈ {(-N/2, -N/2), (-N/2, N/2), (N/2, -N/2), (N/2, N/2)} displayed as pentagons on Fig. 2 are multiplied by the coefficient c i,j = 1/3. This convention is natural since each edge point belongs to two neighbor panels. It is therefore counted twice whence the coefficient 1/2. Similarly, each corner point is counted three times, and this gives a coefficient 1/3 at the panel level. The rule Q a is finally defined by ( 14)

I(f ) Q a (f ) = (V I) k=(I) Q k (f ).
Remark 3.1. In one dimension, the trapezoidal rule, expressed for f (x) defined on I = [0, 1], is given by: (15)

1 0 f (x)dx 1 N 1 2 f (0) + N -1 1 f (i∆x) + 1 2 f (1) .
On the panel P k , the formula (11) can be interpretated as the tensor product of the rule (15) on [-π/4, π/4] × [-π/4, π/4] applied to the integrand in [START_REF] Lauritzen | A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid[END_REF] except that the coefficient 1/3 is used at the corner points, instead of 1/4. In the case where nodes and/or weights have particular spherical symmetries, one expects some specific subset of the Spherical Harmonics to be integrated exactly. Building quadrature rules on the sphere using invariance of the nodes under a subgroup of SO 3 has been used by several authors. We refer to [START_REF] Mclaren | Optimal numerical integration on a sphere[END_REF] and the references therein. An important result in this direction is Sobolev's theorem, which states that a necessary and sufficient condition for a quadrature rule, invariant by a subgroup G of SO 3 (R), to be exact up to degree n is to be exact for all G-invariant Spherical Harmonics of degree ≤ n, [START_REF] Hesse | Numerical Integration on the Sphere[END_REF]. Our rules are not a direct consequence of this result and we will consider a different approach. In a first step, we identify without invoking the group of rotations of the cube, all Spherical Harmonics which are invariant under the rule Q a . Observe that the weights g i,j in (13) do not depend on the panel P k . Furthermore they satisfy the following invariance properties for -N/2 ≤ i, j ≤ N/2:

• Invariance by the rotation r of angle π/2, i.e:

(16)

g i,j = g -j,i ,
• Invariance by the symmetry s with respect to the first diagonal, i.e.:

(17) g i,j = g j,i .

Combining these two tranformations, it is easily seen that the coefficients g i,j also are symmetric with respect to the second diagonal and with respect to the coordinate lines i = 0 and j = 0, respectively. Otherwise stated, for -N/2 ≤ i, j ≤ N/2:

(18) g i,j = g -j,-i = g -i,j = g i,-j = g -i,-j .
For example for N = 8, the coefficients g i,j can be arranged as shown in Table 1, where the symmetry properties ( 16), ( 17) and ( 18) are represented with letters. For a Cubed Sphere with parameter N , the number of independent weights is given by the integer q N = (N + 2)(N + 4)/8. These weights correspond to the indices 0 ≤ j ≤ i ≤ N/2. They are displayed by boldface letters in Table 1. Table 1. Parameters of the weights in a typical panel P k in the Cubed Sphere with parameter N = 8. The independent parameters are displayed in boldface. The number of independent parameters is q N = (N +2)(N +4)/8. There is 15 independent parameters in this particular case. 

Y m n (x) = (-1) m N |m| n P |m| n (sin θ)e imλ , n ≥ 0, -n ≤ m ≤ n
The exact integration property stated of Prop. 3.1 is based on the fact that non zero values of Y m n (x) have their exact opposite on another part of the Cubed Sphere. This property is due to the symmetries [START_REF] Ullrich | High order finite-volume methods for the shallow-water equations on the sphere[END_REF]17) of the weights g i,j , and to the following relations:

(21) Y m n (λ + π, θ) = (-1) m × Y m n (λ, θ), (22) Y m n (λ, -θ) = (-1) n+m × Y m n (λ, θ), (23) Y m n λ + p π m , θ = (-1) p × Y m n (λ, θ).
with n > 0, m ∈ {-n, . . . , n}\{0}, p ∈ Z, and (λ, θ) ∈ [-π, π[× -π 2 ; π 2 . Note that (21) is a particular case of (23).

We consider the four following cases. In each case, the approximate value

Q a (Y m n ) is compared to the exact integral I(Y m n ) in (4).
• Case n odd. In this case, if m is even, then the property (22) leads to (24)

Q (I) (Y m n ) = Q (II) (Y m n ) = Q (III) (Y m n ) = Q (IV ) (Y m n ) = 0,
due to opposite values of Y m n (λ, θ) for opposite values of θ, and to the properties g i,j = g i,-j of the weights. Moreover, due to the relation (22) and using the fact that the weights g i,j are identical on the six panels, we have ( 25)

Q (V ) (Y m n ) = -Q (V I) (Y m n ). This gives Q a (Y m n ) = 0. If m is odd, then the relation (21) leads to the relations (26) Q (I) (Y m n ) = -Q (III) (Y m n ), Q (II) (Y m n ) = -Q (IV ) (Y m n ).
We have used the relation g i,j = g -i,j and the fact that the weights g i,j are identical on each panel. Furthermore due to (21) and g i,j = g -i,-j (symmetry of the weights with respect to the center of each panel) we find

(27) Q (V ) (Y m n ) = Q (V I) (Y m n ) = 0.
Summing up over the six panels yields Q a (Y m n ) = 0 (exact value). • Case n even and m odd. In this case, n + m is odd, and then (22) shows that Q k (Y m n ) = 0 for the panels k = (I), (II), (III) and (IV ). This is due to the fact that the weights g i,j have the property g i,j = g i,-j . For the panels k = (V ) and k = (V I), we have Q k (Y m n ) = 0 due to (21) and g i,j = g -i,-j . Therefore Q a (Y m n ) = 0. • Case n even, m even and m ≡ 0 [START_REF] Croisille | Hermitian compact interpolation on the Cubed-Sphere grid[END_REF].

In this case, Q k (Y m n ) = 0 for the panels k = (V ) and k = (V I). This is due to (23) (take p = m 2 in this formula) and to the fact that the weights g i,j satisfy [START_REF] Ullrich | High order finite-volume methods for the shallow-water equations on the sphere[END_REF]. Moreover, again using (23) with p = m 2 , one has

Q (I) (Y m n ) = -Q (II) (Y m n ) and Q (III) (Y m n ) = -Q (IV ) (Y m n ). Note in addition that Q (I) (Y m n ) = Q (III) (Y m n ). This yields Q a (Y m n ) = 0.
• Case n even, m even and m ≡ 0 [START_REF] Croisille | Hermitian compact interpolation on the Cubed-Sphere grid[END_REF]. Note that Y 0 0 belongs to this case. In this case, (28)

Q (I) (Y m n ) = Q (II) (Y m n ) = Q (III) (Y m n ) = Q (IV ) (Y m n ).
This is due to the property (23). In addition, due to (22), ( 29)

Q (V ) (Y m n ) = Q (V I) (Y m n ),
In this case, a possible cancellation within the terms of the approximate integral Q a (Y m n ) could only occur between the contribution of panels (I), (II), (III) and (IV) on the one hand and the contribution of panels (V) and (VI) on the other hand. Such a cancellation does not occur in general. This explains why Q a (Y m n ) is not exact in this case.

Remark 3.2. The former three cases describe all together a proportion of (asymptotically) 7/8 of all Spherical Harmonics. The latter case corresponds to the remaining 1/8 Spherical Harmonics. 3.3. Numerical results. In this section we show numerical results obtained with the rule Q a . The functions f 1 , f 2 , f 3 and f 4 that are used to test numerical quadrature formula are the following, [START_REF] Fornberg | On spherical harmonics based numerical quadrature over the surface of a sphere[END_REF][START_REF] Beentjes | Quadrature on a spherical surface[END_REF].

(30)

                                         f 1 (x, y, z) = 1 + x + y 2 + x 2 y + x 4 + y 5 + x 2 y 2 z 2 , f 2 (x, y, z) = 0.75e -(9x-2) 2 /4-(9y-2) 2 /4-(9z-2) 2 /4 +0.75e -(9x+1) 2 /49-(9y+1)/10-(9z+1)/10 +0.5e -(9x-7) 2 /4-(9y-3) 3 /4-(9z-5) 2 /4 -0.2e -(9x-4) 2 -(9y-7) 2 -(9z-5) 2 , f 3 (x, y, z) = (1 + tanh(-9x -9y + 9z))/9, f 4 (x, y, z) = (1 + sign(-9x -9y + 9z))/9.
The exact values are given by:

(31)

                   S 2 f 1 = 216π 35 , S 2 f 2 = 6.6961822200736179523 . . . , S 2 f 3 = 4π 9 , S 2 f 4 = 4π 9 .
The numerical results for several values of N (the total numbers of points for the discretisation of S 2 are precised) are displayed in Table 3. According to [START_REF] Fornberg | On spherical harmonics based numerical quadrature over the surface of a sphere[END_REF], we display the accuracy for the four test functions in (30), by retaining the worst case among 1000 random solid rotations operated on the argument (x, y, z) of these functions. On Fig. 3 the convergence rate is numerically evaluated as fourth order. The accuracy is excellent, compared to results reported elsewhere. For example, for a Cubed Sphere parameter N ≤ 12, which corresponds to a number of quadrature nodes on the sphere of 6N 2 + 2 ≤ 1000, the accuracy is of the same order as the one obtained with optimally selected quadrature nodes [START_REF] Fornberg | On spherical harmonics based numerical quadrature over the surface of a sphere[END_REF].

Remark 3.4. A proof of the fourth order accuracy of the rule Q a is not straightforward. In particular, it cannot be simply deduced from the accuracy of the trapezoidal rule in one dimension, since the rule Q a is not exactly a tensor product rule on each panel, see Remark 3.1.

4.

A second quadrature rule 4.1. General derivation. As shown in Prop. 3.1, the quadrature rule Q a in ( 14) is exact for a proportion of 7/8 of all Spherical Harmonics. However, it is not exact for the remaining 1/8 Spherical Harmonics. It is numerically observed to be fourth-order accurate, (see Fig. 3 and Remark 3.4). In this section we suggest a second quadrature rule, called Q b , whose nodes again are the points of the Cubed Sphere. It is designed as a perturbation of Q a . Similarly to Q a , the rule Q b is expressed as a sum of contributions of each panel P k (32) Table 3. Accuracy of the quadrature rule Q a for the test functions f 1 , f 2 , f 3 and f 4 in (30). The result corresponds to the worst case among 1000 randomly selected solid rotations operated on the argument (x, y, z) of the functions f 1 , f 2 , f 3 and f 4 . where the contribution of the panel

I(f ) Q b (f ) = (V I) k=(I) Q k,ε (f ), N Number of nodes |I(f 1 ) -Q a (f 1 )| |I(f 2 ) -Q a (f 2 )| |I(f 3 ) -Q a (f 3 )| |I(f 4 ) -Q a (f 4 )| 4 
P k is (33) Q k,ε (f ) = ∆ξ∆η N/2 i,j=-N/2 c i,j (g i,j + ε i,j )f k (ξ i , η j ), = Q k (f ) + ∆ξ∆η N/2 i,j=-N/2 c i,j ε i,j f k (ξ i , η j ).
Therefore the quadrature rule Q b (f ) is seeked in the form of a perturbation of Q a as:

(34) Q b (f ) = Q a (f ) + ∆ξ∆η (V I) k=(I) N/2 i,j=-N/2 c i,j ε i,j f k (ξ i , η j ).
If the symmetries ( 16) and ( 17) are imposed to the weights ε i,j , then by Prop. 3.1, the rule Q b is exact for the same Spherical Harmonics than the rule Q a . Let us call I the set of indexes (i, j) such that 0 ≤ j ≤ i ≤ N/2. This set is represented in Table 1 in boldface letters. Recall that 12) can be expressed as

|I| = q N = (N + 2)(N + 4)/8. The term Q k (f ) in (
(35) Q k (f ) = ∆ξ∆η (i,j)∈I g i,j f k i,j .
where f k i,j denotes, for (i, j) ∈ I and (I)

≤ k ≤ (V I) (36) f k i,j = c i,j (i ,j )/g i ,j =gi,j f k (ξ i , η j ).
With this notation, (33) can be expressed as

(37) Q k,ε (f ) = ∆ξ∆η (i,j)∈I (g i,j + ε i,j ) f k i,j .
4.2. Determining ε i,j . The question is now to evaluate suitable values of the q N unknowns (ε i,j ) (i,j)∈I . We denote by

ψ 1 = Y 0 0 , ψ 2 = Y 0 2 , ψ 3 = Y 0 4 , ψ 4 = Y 4 4 , .
. . , the sequence of the Spherical Harmonics Y m n with n even and m ≥ 0, m = 0 [START_REF] Croisille | Hermitian compact interpolation on the Cubed-Sphere grid[END_REF]. This is the set of 1/8 of all Spherical Harmonics not integrated exactly by the rule Q a . The set of equations determining the values ε i,j is defined as

(38) Q b (ψ l ) = I(ψ l ), 1 ≤ l ≤ p N .
The integer p N , to be determined, is the number of Spherical Harmonics of the preceding form taken in account in (38). Using (34), equation ( 38) is recast in the form:

(39)

(i,j)∈I   ∆ξ∆η (V I) k=(I) ( ψl ) k i,j   ε i,j = I(ψ l ) -Q a (ψ l ), 1 ≤ l ≤ p N .
Lemma 4.1. For each l ≤ 0, (I) ≤ k ≤ (V I) and (i, j) ∈ I,

(40) I(ψ l ) -Q a (ψ l ) ∈ R and (41) ( ψl ) k i,j ∈ R. Proof. Let ψ l = Y m n with n = 2n , m = 4m , 0 ≤ m ≤ n. The imaginary part of Y m n (x) is called H m n (x). According to (2), H m n (x) is expressed as (42) H m n (λ, θ) = N m n P m n (sin θ) sin(mλ).

The imparity with respect to the longitude variable λ gives (43)

H m n (-λ, θ) = -H m n (λ, θ), and to the relation g -i,j = g i,j imposes that the discrete integral of H m n on the panel 

P (k) with k = (I) is (44) Q k (H m n ) = 0.
Q (V ) (H n m ) = N/2 i,j=-N/2 c i,j g i,j (H m n ) (V ) (ξ i , η j ) = (i,j),j<-|i| c i,j g i,j (H m n ) (V ) (ξ i , η j ) + (i,j),i≥|j| c i,j g i,j (H m n ) (V ) (ξ i , η j ) + (i,j),j≥|i| c i,j g i,j (H m n ) (V ) (ξ i , η j ) + (i,j),i<-|j| c i,j g i,j (H m n ) (V ) (ξ i , η j )
The first term vanishes, due to (43) and the relation g -i,j = g i,j . The relations ( 22) and ( 23) imply that the three other terms also vanish. The argument is similar for the panel k = (V I). An analog argument shows that the imaginary part of ψk l,i,j ∈ R for all l ≥ 0, (i, j) ∈ I and (I) ≤ k ≤ (V I) also vanish. Therefore Q a (ψ l ) ∈ R and since I(ψ l ) ∈ R, (40) holds.

The set of relations (39) forms a linear system (46) Aε = b, Due to Lemma 4.1, the matrix A and the right-hand side b are real. The unknown vector is

(47) ε = (ε i,j ) (i,j)∈I ∈ R q N .
The integer p N is the number of Spherical Harmonics incorrectly integrated by the rule Q a , which are taken in account in (46). A relevant value of this integer has been determined numerically as follows. On Fig. 4 the error of the rule Q b is represented in function of the number of lines p N in (39) for Cubed Sphere parameters N = 4, N = 8 and N = 16, respectively. If we withdraw several pikes denoting a superconvergence effect, the curves can be considered as describing a monotonic increasing behaviour. In view of these results, we have selected the parameter value p N = N 2 /4 as a compromise.

With this choice, the matrix A in (46) is rectangular with

(48) A ∈ M p N ,q N (R), p N = N 2 /4, q N = (N + 2)(N + 4)/8.
For N ≥ 8, p N = N 2 /4 > q N N 2 /8, thus the system (46) is in general overdetermined. We solve (46) using the pseudo-inverse of Moore-Penrose [START_REF] Deuflhard | Numerical Analysis in Modern Scientific Computing[END_REF]Chap. 3,pp. 57sqq]. We have used the matlab routine pinv. Remark 4.2. Since the pseudo-inverse is used to solve the rectangular system (46), the identity (38) for the Spherical Harmonic ψ l , 1 ≤ l ≤ p N is not exactly satisfied, but only approximately. Therefore, strictly speaking, the rule Q b does not integrate all Spherical Harmonics up to a certain order. This is in contrast to the usual setting stated in [START_REF] Mclaren | Optimal numerical integration on a sphere[END_REF], [START_REF] Hesse | Numerical Integration on the Sphere[END_REF], [START_REF] Fornberg | On spherical harmonics based numerical quadrature over the surface of a sphere[END_REF]. However in practice, the accuracy of the rule Q b is remarkably good as will be seen in Section 4.5.

Remark 4.3. As mentionned in Remark 3.3, the funtion Y 0 2 is exactly integrated by the rule Q a . Therefore this function could be withdrawn from the series of functions ψ l in (38). It corresponds to a null line in (46). However keeping it does not prevent the generalized inverse to be used to solve the linear system. Remark 4.4. An important question is whether or not the matrix A in (46) is full rank. This problem is open for the moment. Preliminary numerical experiments suggest that the matrix A may be not full rank for small values of the parameter N , which means for a coarse Cubed Sphere (N ≤ 12), and becomes full rank for larger values of N . This question requires further theoretical and numerical investigation. In practice however, we never observed so far numerical ill-conditionning effects of the matrix A when solving the linear system (46). We observe on Fig. 6 what is expected: when the Spherical Harmonic Y m0 n0 is not taken in account in the matrix A in (46), formulas Q a and Q b give indiscernable results. In the contrary, from the ) is slightly greater than with Q a (Y 16 24 ). This is probably due to the least square method, which solves "in the mean" (38) and gives a value of ε with a lack of accuracy for Y 16 40 for the particular value N = 16. Note that this phenomenon is unusual among all the Spherical Harmonics that have been tested. It does not impact the efficiency of the rule Q b , as will be seen in Section 4.5. In the contrary, we also observe the opposite behaviour of rule Q b compared to rule Q a : for a Spherical Harmonic Y m0 n0 not taken in account in (38), a more accurate value with Q b (Y m0 n0 ) than with Q a (Y m0 n0 ) can be obtained. Overall, it is observed that the rules Q a and Q b give similar results for the Spherical Harmonics not taken in account in the interpolation in (39), (or equivalently, in the matrix A in (46)). Furthermore, the rule Q b permits to integrate up to machine accuracy the Spherical Harmonics taken in account in (39). The greater is N , the more Spherical Harmonics can be taken in account in the matrix A. The former observation (for Spherical Harmonics not taken in account) is important in practice, since it indicates that the rule Q b preserves the good convergence properties of the rule Q a when N increases for all the functions Y n m with n ≥ n 0 , a fixed value.

4.5. Numerical results. In Table 4, numerical results obtained with the rule Q b (32) applied to the set of test functions (30) are reported. As in Table 3, the worst case among 1000 randomly selected solid rotations is retained.

According to results displayed in Table 4 and Fig. 7, the quadrature rule Q b is much more accurate than Q a . Indeed, for a very coarse Cubed Sphere with parameter N 6, the machine accuracy is reached ( 10 -15 ) for the functions f 1 , f 3 and f 4 . The remarkable accuracy for f 1 , f 3 and f 4 can be explained as follows. Since f 1 is a polynomial, only the first Spherical Harmonics are useful, and therefore when the parameter p N is such that p N ≥ 9, all Spherical Harmonics entering the decomposition of f 1 are integrated exactly by the rule Q b . The functions f 3 and f 4 illustrate the accuracy power of the rule Q b , which is due to the symmetry properties [START_REF] Ullrich | High order finite-volume methods for the shallow-water equations on the sphere[END_REF]17,18) combined with the good integration of Y 0 0 . Indeed, as mentioned in [START_REF] Beentjes | Quadrature on a spherical surface[END_REF], the Spherical Harmonics entering the decomposition of f 3 are limitated to Y 0 0 and Y m n with n odd. Thus it is sufficient for a rule to integrate exactly Y 0 0 since the Spherical Harmonics with an odd degree are exactly integrated thanks to the symmetries of the weights (7/8 property). The same observation holds for f 4 . Consequently, from the moment than p N ≥ 1, the rule Q b already gives much better results than the rule Q a simply because Y 0 0 is the first Spherical Harmonic taken in account in the matrix A.

In the case of f 2 , the improvement is less drastic. This is due to the fact that there are Spherical Harmonics entering the decomposition in Spherical Harmonics of f 2 , which are not taken in account in the matrix A in (46). Therefore the error decreases progressively. However the decreasing rate is remarkably fast: the slope shown in Fig. 7 is numerically evaluated as -13, instead of -4 for the rule Q a (see Fig. 3). Overall, as observed in Table 4, the level of accuracy obtained with the rule Q b are excellent when compared with quadrature rules using optimally selected set of nodes, [START_REF] Fornberg | On spherical harmonics based numerical quadrature over the surface of a sphere[END_REF]. Table 4. Accuracy of the quadrature rule Q b for the test functions f 1 , f 2 , f 3 and f 4 in (30). The machine accuracy is reached from a number of quadrature nodes as low as 218 for the functions f 1 , f 3 and f 4 . The results correspond to the worst case among 1000 randomly selected solid rotations applied to the arguments (x, y, z) of the functions f 1 , f 2 , f 3 and f 4 . 

Conclusion

A new approach to numerical quadrature on the sphere is introduced. The quadrature nodes are the points of the Cubed Sphere. Two rules, called Q a and Q b , are introduced. Both of them satisfy the 7/8 property which states that 7/8 of all Spherical Harmonics are integrated exactly. The first rule Q a is an analog of the trapezoidal rule on the sphere. The second rule Q b , is an enhancement of the rule Q a , and provides a remarkable accuracy on a set of test functions [START_REF] Fornberg | On spherical harmonics based numerical quadrature over the surface of a sphere[END_REF][START_REF] Beentjes | Quadrature on a spherical surface[END_REF]. The rule Q b is efficient not only when applied to regular functions, but also when applied to irregular functions as the function f 4 in (30), which uses the sign function in its definition. Further studies are ongoing to better understand the mathematical properties of the rules Q a and Q b .

Figure 1 .

 1 Figure 1. The Cubed Sphere with a grid parameter of N = 16. The total number of gridpoints is 6 × N 2 + 2 = 1538 in this case.

Figure 2 . 3 . 2 .

 232 Figure 2. The points of a typical panel of the Cubed Sphere are classified in three categories: (i) Circles correspond to internal points; (ii) Squares correspond to edge points ; (iii) Pentagons correspond to corner points
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 332 One may wonder if the Spherical Harmonics of this latter category (the remaining 1/8 Spherical Harmonics) are effectively inexactly integrated by the rule Q a for all integers n even and m ≡ 0[START_REF] Croisille | Hermitian compact interpolation on the Cubed-Sphere grid[END_REF]. This question is unanswered for now. In fact, it happens that the function Y 0 (n, m) = (2, 0)) is exactly integrated by the rule Q a . Prop. 3.1 therefore only describes a sufficient condition for the exactness of the rule Q a .

Figure 3 .

 3 Figure 3. Quadrature error for the test functions f 1 , f 2 , f 3 and f 4 obtained with rule Q a in function of the total number 6N 2 + 2 nodes. Fourth-order accuracy is observed in the four cases. The worst case among 1000 randomly selected solid rotations on the argument (x, y, z) of the functions is displayed.

Furthermore

  the relation (23) with p = ±2m , m = 4m gives the relation (44) on the two panels k = (II) and k = (IV ). Next, (21) yields (44) for the panel k = (III). Consider now the panel k = (V ). The value Q (V ) (H n m ) can be decomposed in four terms each of them corresponding to an angular sector, in the form (45)

Figure 4 . 4 . 4 .

 444 Figure 4. Quadrature error in Log scale for the test functions f 1 , f 2 and f 3 in function of the number p N of the Spherical Harmonics taken in account in (38) defining the rule Q b .

Figure 5 .

 5 Figure 5. Maximum of the parameters |ε i,j | in (46) with respect to N , the parameter of the Cubed Sphere. The magnitude of (ε i,j ) (i,j)∈I behaves numerically as 1/N 2 .

Figure 6 .

 6 Figure 6. Integration errors in function of N , the parameter of the Cubed Sphere, for the three Spherical harmonics Y 8 16 , Y 4 24 and Y 16 40 . The LogLog scale is used. The thin curve with × symbols corresponds to the rule Q a . The bold curve with * symbols corresponds to the rule Q b .

N

  Number of nodes pN |I(f1) -Q b (f1)| |I(f2) -Q b (f2)| |I(f3) -Q b (f3)| |I(f4) -Q b (f4)|

Figure 7 .

 7 Figure 7. Quadrature error for the test functions f 1 , f 2 , f 3 and f 4 obtained with the rule Q b in function of the number 6N 2 + 2 of quadrature nodes on the sphere.

Table 2 .

 2 Number of quadrature nodes in function of the parameter N of the Cubed Sphere.

	Cubed Sphere parameter N	4	8	16	32	64
	Number of quadrature nodes in a panel (= (N + 1) 2 )	25 81	289 1089 4225
	Number of quad. nodes on S 2 (= 6N 2 + 2)	98 386 1538 6146 24578
	Number of independent weights q N = (N + 2)(N + 4)/8 6	15	45	153	561

Table 2

 2 displays typical values of the integer q N and of the number of quadrature nodes for a series of values of N . Under the assumptions (16-17) on the weights, the following statement holds:

	Proposition 3.1. The quadrature rule (14) associated with the nodes of the Cubed Sphere s k i,j and
	with a set of weights g k i,j satisfying (16-17) is exact for all Spherical Harmonics Y m n (x) such that
	• n odd,
	• n even and m not a multiple of 4.
	Proof. The Spherical Harmonic Y m n is given by (see (2)):
	(20)

We assume for simplicity that N is an even integer.