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A new path to the non blow-up of incompressible flows

Léo Agélas

Department of Mathematics, IFP Energies Nouvelles, 1-4, avenue de Bois-Préau, F-92852

Rueil-Malmaison, France

Abstract

One of the most challenging questions in fluid dynamics is whether the three-
dimensional (3D) incompressible Navier-Stokes, 3D Euler and two-dimensional
Quasi-Geostrophic (2D QG) equations can develop a finite-time singularity from
smooth initial data. Recently, from a numerical point of view, Luo & Hou
presented a class of potentially singular solutions to the Euler equations in a
fluid with solid boundary Luo and Hou (2014a,b). Furthermore, in two recent
papers Tao (2016a,b), Tao indicates a significant barrier to establishing global
regularity for the 3D Euler and Navier-Stokes equations, in that any method for
achieving this, must use the finer geometric structure of these equations. In this
paper, we show that the singularity discovered by Luo & Hou which lies right on
the boundary is not relevant in the case of the whole domain R3. We reveal also
that the translation and rotation invariance present in the Euler, Navier-Stokes
and 2D QG equations are the key for the non blow-up in finite time of the
solutions. The translation and rotation invariance of these equations combined
with the anisotropic structure of regions of high vorticity allowed to establish a
new geometric non blow-up criterion which yield us to the non blow-up of the
solutions in all the Kerr’s numerical experiments and to show that the potential
mechanism of blow-up introduced in Brenner et al. (2016) cannot lead to the
blow-up in finite time of solutions of Euler equations.
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1. Introduction1

The Navier-Stokes and Euler equations describe the motion of a fluid in the2

three-dimensional space. These fundamental equations were derived over 2503

years ago by Euler and since then have played a major role in fluid dynamics.4

They have enriched many branches of mathematics, were involved in many areas5

outside mathematical activity from weather prediction to exploding supernova6

(see for instance the surveys Constantin (2007),Bardos and Titi (2007)) and7

present important open physical and mathematical problems (see Constantin8

(2007)). Regarding the 2D Quasi-Geostrophic (2D QG) equation, it appears in9

atmospheric studies. It describes the evolution of potential temperature u on10

the two dimensional boundary of a rapidly rotating half space with small Rossby11

and Ekman numbers, for the case of special solutions with constant potential12

vorticity in the interior and constant buoyancy frequency (normalized to one),13

where equations in the bulk are compressible Euler or Navier-Stokes equations14

coupled with temperature equation, continuity equation, and equation of state.15

16

In the case of Navier-Stokes equations, for a long time ago, a global weak17

solution u ∈ L∞(0,∞;L2(R3))3 and ∇u ∈ L2(R3 × (0,∞))3 was built by Leray18

Leray (1934). In particular, Leray introduced a notion of weak solutions for the19

Navier-Stokes equations, and proved that, for every given u0 ∈ L2(R3)3, there20

exists a global weak solution u ∈ L∞([0,+∞[;L2(R3))3 ∩ L2([0,∞[; Ḣ1(R3))3.21

Hopf has proved the existence of a global weak solution in the general case Rd,22

d ≥ 2, Hopf (1951). Meanwhile the regularity and the uniqueness of this weak23

solution has been known for a long time ago for the two-dimensional case (see24

Ladyzhenskaya (1969), Lions and Prodi (1959), Lions (1969), Temam (1977)),25

in the three-dimensional case the problem remains widely open in spite of great26

efforts made. On the uniqueness many works have been done (see Furioli et al.27

(2000),Giga (1983), Monniaux (2000),Lions (1960),Gallagher and Planchon (2002)).28

Concerning the regularity of weak solutions, in Serrin (1962), it is proved29

that if u is a Leray-Hopf weak solution belonging to Lq(]0, T ];Lq(R3))3 with30

2
q

+ 3
q
≤ 1, 2 < p < ∞, 3 < q < ∞ , then the solution u ∈ C∞(R3×]0, T ])3. In31

Von Wahl (1986) and Giga (1986), it is showed that if u is a weak solution in32

C([0, T ];L3(R3))3, then u ∈ C∞(R3×]0, T ])3. The limit case of L∞([0, T ];L3(R3))333

has been solved in Iskauriaza et al. (2003). Other criterion regularity can also be34

found in He (2002); Heywood (1988); Giga (1983); Kato (1984, 1990); Beirão da Veiga35

(1995); Chae and Choe (1999); Zhou (2002); Constantin and Fefferman (1994).36

37
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In the case of Euler Equations, in the two dimension case, uniqueness and ex-38

istence of classical solutions have been known for a long time ago (see Yudovich39

(1963, 1995); Vishik (1999); DiPerna and Majda (1987); Ladyzhenskaya (1969)).40

However for the full three space dimensions, little is known about smooth solu-41

tions apart from classical short-time existence and uniqueness. Moreover, weak42

solutions are known to be badly behaved from the point of view of Hadamard’s43

well-posedness theory (see for instance the surveys De Lellis and Székelyhidi44

(2012); Villani (2008-2009)). Considerable efforts have been devoted to the45

study of the regularity properties of the 3D Euler equations. The main diffi-46

culty in the analysis lies in the presence of the nonlinear vortex stretching term47

and the lack of a regularization mechanism. Despite these difficulties, a few48

important partial results concerning the regularity of 3D Euler equations have49

been obtained over the years (see Beale et al. (1984); Ponce (1985); Ferrari50

(1993); Shirota and Yanagisawa (1993); Constantin et al. (1996); Deng et al.51

(2005); Gibbon and Titi (2013)).52

53

In the case of 2D QG equation, besides its direct physical significance Held et al.54

(1995); Pedlosky (1987), the 2D QG equation has very interesting features of re-55

semblance to the 3D Euler equation, being also an outstanding open problem of56

the finite time blow-up issue. In particular, one can derive a necessary and suffi-57

cient blow-up condition for the 2D QG equation similar to the well-known Beale-58

Kato-Majda (BKM) criterion (Beale-Kato-Majda Beale et al. (1984)). More59

precisely, the solution to the 2D QG equation (11) becomes singular at time T ∗
60

if and only if

∫ T∗

0

‖∇⊥u(t)‖L∞ dt = +∞ (see Constantin et al. (1994)). Thus,61

∇⊥u plays a role similar to the vorticity ω in the 3D Euler equations. In the62

recent years, the 2D QG equation has been the focus of intense mathemati-63

cal research Constantin et al. (1994); Córdoba (1998); Córdoba and Fefferman64

(2002); Chae (2003); Ohkitani and Yamada (1997); Constantin et al. (2012);65

Chae et al. (2012).66

67

Unfortunately despite of considerable efforts devoted to the regularity is-68

sue of the 3D Euler, 3D Navier-Stokes and 2D QG equations, standard scaling69

heuristics have long indicated to the experts that the identity energy, together70

with the harmonic analysis estimates available for the heat equation and for the71

Euler bilinear operator, are not sufficient by themselves if one wishes to improve72

the theory on the Cauchy problem for these equations. It seems crucial to use73

the specific structure of the nonlinear term in these equations, as well as the74

divergence free assumption. Indeed, some finite time blowup results have been75

established for various Navier-Stokes type equations (see Montgomery-Smith76

(2001); Gallagher and Paicu (2009); Li and Sinai (2008); Plecháç and Sverák77

(2003); Katz and Pavlovic (2005)). Nevertheless, for all of these Navier-Stokes78

type equations, the cancellation property of the Euler bilinear operator did not79

hold and for some, the energy identity did not hold (see Montgomery-Smith80

(2001); Gallagher and Paicu (2009); Li and Sinai (2008)).81
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However, recently it was shown also in Tao (2016a), a finite time blow up so-82

lution to an averaged three-dimensional Navier-Stokes equations of type ∂tu =83

∆u + B̃(u, u), where B̃ is an averaged version of the Euler bilinear operator84

B, acting also on divergence free vector fields u and obeying as B to the can-85

cellation property 〈B̃(u, u), u〉 = 0. This result suggests that any successful86

method to affirmatively answer to the Existence and Smoothness problem must87

either use finer structure of B or else must rely crucially on some estimate88

or other property of the Euler bilinear operator B that is not shared by the89

averaged operator B̃. Such additional structure exists for instance, the Euler90

equation has a vorticity formulation involving only differential operators rather91

than pseudo-differential ones.
92

However, even this vorticity formulation is not a barrier to get a finite time93

blow up solution. Indeed, it was shown in Tao (2016b), finite time blow-up solu-94

tions in the class of generalised Euler equations sharing with the Euler equation95

its main features such as: vorticity formulation, energy conservation, Kelvin96

circulation theorem, vorticity-vector potential formulation viewed as the Gen-97

eralised Biot-Savart, function space estimates for the vector potential operator.98

Then, it seems that there is no room left to establish global regularity of solu-99

tions of 3D Euler equations. However, as it is mentioned in Tao (2016b), there100

are two properties of the Euler equations which are not obeyed by the gener-101

alised Euler equations, namely translation invariance and rotation invariance.102

Further, these symmetries basically determined the usual Biot-Savart law (see103

Kambe (2003a,b)) which are thus not shared by the Generalised Euler equations104

introduced in Tao (2016b). Furthermore, as it was shown in Constantin (1994);105

Constantin and Fefferman (1994), the use of Biot-Savart law yield to rewrite106

the vorticity equation in the case of Euler (ν = 0) and Navier-Stokes (ν > 0)107

equations as follows:108

∂tω + (v · ∇)ω − ν∆ω = αω, (1)

where109

α(x, t) =
3

4π
P.V.

∫

R3

(ŷ · ξ(x, t))det(ŷ, ξ(x+ y, t), ξ(x, t))|ω(x + y, t)|
dy

|y|3
, (2)

with ŷ =
y

|y|
, ξ =

ω

|ω|
and det(a, b, c) is the determinant of the matrix with110

columns a, b, c in that order. We thus notice from the expression of α that if the111

direction of the vorticity, ξ varies mildly within a small region around x, then112

the singularity of the integrand in (2) will be mild.113

In this paper, we bring new insights which shed light on the mechanisms in-114

volved in the non blow-up of the solutions. We highlight through new geo-115

metric non blow-up criteria how the geometric regularity of the direction of116

vorticity combined with the anisotropic structure of the localized regions con-117

taining the positions where the maximum of the magnitude of the vorticity118

are reached, should prevent the formation of singularities. The novelty in119

the results of this paper lies on the use of the these two features in obtain-120
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ing geometric non blow-up criteria using the finer structure of the Euler bi-121

linear operator B. Up to now, many progress had been made to better take122

into account the geometrical properties and flow structures in the non blow-up123

criteria (see e.g Constantin and Fefferman (1994); Beirão da Veiga and Berselli124

(2009); Berselli (2009); Constantin (1994); Constantin et al. (1996); Hou and Li125

(2008); Deng et al. (2005, 2006a,b)). However none of these non blow-up cri-126

teria integrated both the geometric regularity of the direction of vorticity and127

the anisotropic structure of localized regions containing the positions where the128

maximum of the magnitude of the vorticity are reached. The most advanced129

non blow-up criteria were given in Deng et al. (2005, 2006a,b) and were estab-130

lished by using the Lagrangian formulation of the vorticity equation of the 3D131

Euler and 2D QG equations.132

However the results obtained in Tao (2016b) suggest that even the most ad-133

vanced non blow-up criterion Deng et al. (2005, 2006a) do not capture the finest134

structures of the the Euler bilinear operator B since it was shown in Tao (2016b)135

that there exist generalised Euler equations sharing the same property than Eu-136

ler equations as the Lagrangian formulation for their vorticity equations and for137

which their solutions blow up in finite time. Indeed, from Deng et al. (2005,138

2006a), one can observe that the Deng-Hou-Yu non-blowup criterion can be ap-139

plied to all the class of generalised Euler equations introduced in Tao (2016b).140

Then, in order to bring new insights in the investigation of whether the 3D141

incompressible Navier-Stokes, Euler and 2D QG equations can develop a finite-142

time singularity from smooth initial data, it was crucial to establish new non143

blow-up criteria which take into account the special structure of these equations144

not shared by the Generalised Euler equations.145

Then in our Theorem 7.1, under mild assumptions based on the anisotropic146

structure of regions of high vorticity, we show that the solutions of 3D Euler,147

3D Navier-Stokes and 2D QG equations cannot blow up at a finite time T ∗ if148

∫ T∗

0

Ad(t)

(

1 + log+

(

‖ω(t)‖∞
Ω(t)

))

dt <∞,

where the functions Ad and Ω satisfy:149

Ad(t) ≤ ‖∇ξ(t)‖∞

Ω(t) =
(T ∗ − t)−1

1 + log+((T ∗ − t)‖u(t)‖∞A0(t))

A0(t) ≤ ‖∇ξ(t)‖∞.

Note that ξ(t) is well defined only on O(t) the set of points x of Rd where150

ω(x, t) 6= 0 and then ‖∇ξ(t)‖∞ must be understood as ‖∇ξ(t)‖L∞(O(t)).151

In the case of 3D Euler equations and 2D QG equations by using their La-152

grangian formulation, in Theorem 7.2 we go further in the non blow-up criteria153

by showing under mild assumptions based on the anisotropic structure of re-154

gions of high vorticity, that their solutions do not blow up at a finite time T ∗
155
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if156

∫ T∗

0

Ad(t) dt <∞.

These results are obtained after a fine analysis of the term α defined by (2) com-157

bined with some results based on the anisotropic structure of regions of high158

vorticity. Our analysis starts by considering at each time t ∈]0, T ∗[ the regions159

containing the positions where the maximum of the magnitude of the vorticity160

are reached and shrinking to zero as time tends to T ∗ the alleged time of singular-161

ity. More precisely, these regions are balls of radius ρ0(t) = O((T ∗− t)‖u(t)‖∞)162

and of center the position of a point where the maximum of the magnitude of163

the vorticity is reached. Inside these regions, we then consider the regions of164

high vorticity for which the magnitude of the vorticity is greater than some165

function Ω(t) such that Ω(t) &
(T ∗ − t)−1

1 + log+(ρ0(t)‖∇ξ(t)‖∞)
.166

In our analysis, to track in time the positions where the maximum of the mag-167

nitude of the vorticity is reached, we had to overcome the obstruction that168

we do not know if there exists an isolated absolute maximum for the vorticity169

achieved along a smooth curve in time as it was assumed in Proposition 2.1 of170

Constantin et al. (1994) and also in Deng et al. (2005, 2006a,b) (which assume171

that the position where the maximum of vorticity is reached, is advected with172

the flow). Moreover, recent numerical experiments show that it is not always the173

case (see Kerr and Bustamante (2012), see also section 5.4.5 in Grafke (2012)).174

We thus overcome this difficulty by using a result of Pshenichnyi concerning175

directional derivatives of the function of maximum and the structure of a set of176

supporting functionals Pshenichny (1971).177

Our analysis led first to the non blow-up criterion given by our Theorem 5.1,178

namely, the solutions of 3D Euler, 3D Navier-Stokes and 2D QG equations179

cannot blow up at a finite time T ∗ if180

∫ T∗

0

Ad(t)π(t) dt <∞, (3)

where the function π is given by:181

π(t)
def
= sup

x∈Θ(t)

sup
0<R≤ρ0(t)

1

Rd−1

∫

B(x,R)∩V(t)

|ω(z, t)| dz, (4)

with Θ(t)
def
= {x ∈ Rd; |ω(x, t)| = ‖ω(t)‖∞} and V(t)

def
= {z ∈ Rd; |ω(z, t)| ≥182

Ω(t)}.
183

In our Lemma 6.1, we thus derive a straightforward estimate of the function184

π(t), that is185

π(t) ≤ 3‖ω(t)‖∞ sup
x∈Θ(t)

|V(t) ∩B(x, ρ0(t))|
1
d . (5)

Thanks to the non blow-up criterion (3) and (5), we show the non blow-up186

in finite time of the solutions of Euler equations for Kerr’s numerical experi-187

ments Kerr (2005, 1998, 1997) without additional numerical tests as it was the188
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case in Deng et al. (2005, 2006a), just by using the anisotropic structure of re-189

gions of high vorticity whose the features are described in Kerr (2005, 1998,190

1997). Moreover, we show that the potential mechanism of blow-up introduced191

in Brenner et al. (2016) cannot lead to blow-up in finite time for Euler equa-192

tions. To go further in our estimate of the function π, we use some assumptions193

characterizing the anisotropic structure of regions of high vorticity whose the194

justifications are given at the begininig of subsection 7.2 and we show in Propo-195

sition 7.1 that196

π(t) . 1 + log+

(

‖ω(t)‖∞
Ω(t)

)

, (6)

which yield to Theorem 7.1.197

In the case of Euler equations and 2D QG equations by using their Lagrangian198

formulation, after a fine and sharp analysis of the expression of the function π199

(4) led thanks to our Lemmata 7.2,7.3 and 7.4, in Proposition 7.2 we go further200

in the non blow-up criteria by showing under mild assumptions based on the201

anisotropic structure of regions of high vorticity, that202

π(t) = O(1). (7)

We emphasize that according the ’thickness’ of the structure of regions of high203

vorticity that these two estimates (6) and (7) can be much better. Indeed204

from the analysis led in Kuznetsov and Ruban (2000); Kuznetsov et al. (2001)205

for the study of collapse of vortex lines and agrees with numerical experiments206

Agafontsev et al. (2015, 2017), we could expect that (see Remark 7.1)207

π(t) . Ω(t)−
1
2 ,

and then obtain in this case, the non blow-up in finite time of the solutions of208

Euler equations if209

∫ T∗

0

Ad(t)Ω(t)−
1
2 dt <∞. (8)

We point out also that our geometric non blow-up criterion reveals the role210

of the geometric structures of the Incompressible flows in the non blow-up in211

finite time of the solutions and presents the advantage to be established in an212

Eulerian setting in comparison with all the recent geometric non blow-up crite-213

ria Constantin et al. (1996); Deng et al. (2005, 2006a); Constantin et al. (1994)214

using the Lagrangian formulation of Incompressible Inviscid Flows, which re-215

quires much more computational effort as it is mentioned in Grafke and Grauer216

(2013) and in section 5.4.5 of Grafke (2012). Furthermore, due to the exis-217

tence of hyperbolic-saddle singularities suggested by the generation of strong218

fronts in geophysical/meteorology observations (see Constantin et al. (1994);219

Córdoba (1998)), and antiparallel vortex line pairing observed in numerical sim-220

ulations and physical experiments, it was important to take them into account221

in our geometric non blow-up criterion. This is performed thanks to the term222

Dd(ŷ, ξ(x+y, t), ξ(x, t)) (see (27),(28)) involved in the definition of the function223

Ad given at (39).
224

Then, the paper is organized as follows:
225
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• In section 2 , we give some notations and definitions.
226

• In section 3, we recall some results about the local regularity of solutions227

of Navier-Stokes, Euler and 2D QG equations.
228

• In section 4, we give the reason for which we can assume for any time t229

that ‖ω(t)‖∞ > 0 without loss of generality.
230

• In section 5, in Theorem 5.1, we establish a new geometric criterion for231

the non blow-up in finite time of the solutions of 3D Navier-Stokes, 3D232

Euler and 2D QG equations. We show that their solutions cannot blow up233

at a finite time T ∗ if
∫ T∗

0
Ad(t)π(t) dt < ∞, where Ad(t) is based on the234

regularity of the direction of the vorticity ξ in regions shrinking to zero as235

time tends to T ∗ and containing the positions where the maximum of the236

magnitude of the vorticity is reached (see definition of Ad at (39)).
237

• In section 6, we show the non-blowup in finite time of the solutions of238

the Euler equations in the numerical experiments considered these last239

years, by using inequality (5) about the function π (4) and the anisotropic240

structure of regions of high vorticity described in Kerr (2005, 1998, 1997).
241

• In section 7, we show the estimates (5), (6) and (7) concerning the function242

π defined by (4), and obtain new non blow-up criteria in Theorems 7.1243

and 7.2.244

Let us now introduce the 3D Navier-Stokes and Euler equations given by,245

{

∂u

∂t
+ (u · ∇)u+ ∇p− ν∆u = 0,

∇ · u = 0,
(9)

in which u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) ∈ R3, p = p(x, t) ∈ R and246

ν ≥ 0 (ν = 0 corresponds to the Euler equations) denote respectively the247

unknown velocity field, the scalar pressure function of the fluid at the point248

(x, t) ∈ R3 × [0,∞[ and the viscosity of the fluid,249

250

with initial conditions,251

u(x, 0) = u0(x) for a.e x ∈ R3, (10)

where the initial data u0 is a divergence free vector field on R3.252

253

Regarding the 2D QG equation in R2, it is given by254







∂u

∂t
+ v · ∇u = 0,

v = ∇⊥(−∆)−
1
2 u,

(11)

with initial data,255

u(x, 0) = u0. (12)
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Here ∇⊥ = (−∂x2 , ∂x1). For v we have also the following representation256

v = R⊥u, (13)

where we have used the notation, R⊥u = (−R2u,R1u) with Rj , j = 1, 2, for the257

2D Riesz transform defined by (see e.g. Stein (1970))258

Rj(u)(x, t) =
1

2π
P.V

∫

R2

(xj − yj)

|x− y|3
u(y, t) dy.

2. Some notations and definitions259

In this section, we assume that d ∈ N, d ≥ 2.260

For any vector x = (x1, x2, ..., xd) ∈ Rd, we denote by |x| the euclidean norm of261

x given by |x| =

√

√

√

√

d
∑

i=1

|xi|2. For any y ∈ Rd, y 6= 0, we denote by ŷ the unit262

vector ŷ = y
|y| . For any m−dimensional subset A of Rd, 1 ≤ m ≤ d, we denote263

by |A| its measure. We denote by M(Rd) the set of real square matrices of size264

d. We denote by Id the identity matrix of M(Rd). For any vector field v defined265

from Rd to Rd, we denote by ∇v the gradient matrix of v, the matrix of M(Rd)266

with ij−component,
∂vi

∂xj

for all 1 ≤ i, j ≤ d. For any real a, we denote by a+
267

the real defined by a+ def
= max(a, 0). For any function ϕ defined on Rd×[0,+∞[,268

for all t ≥ 0, we denote by ϕ(t) the function defined on Rd by x 7−→ ϕ(x, t). We269

denote by C∞
c (Rd) the space of infinitely differentiable functions with compact270

support in Rd. We denote by BC the class of bounded and continuous functions271

and by BCm the class of bounded and m times continuously derivable functions.272

For any R > 0 and x0 ∈ Rd, we denote by B(x0, R), the ball of Rd of center x0273

and radius R. For any R > 0, we denote by BR, the ball of Rd of center 0 and274

radius R.275

We denote by div the differential operator given by, div =

d
∑

i=1

∂

∂xi

.276

We denote A . B, B & A or A = O(B) the estimate A ≤ cB where c > 0 is an277

absolute constant. If we need c to depend on a parameter, we shall indicate this278

by subscripts, thus for instance A .s denotes the estimate A ≤ csB for some cs279

depending on s. We use A ∼ B as shorthand for A . B . A.
280

For any f ∈ Lp(Rd) (resp. Lp(Rd)d or Lp(Rd)d×d) with 1 ≤ p ≤ +∞, we281

denote by ‖f‖p and ‖f‖Lp, the Lp−norm of f .282

We denote by Hs(Rd) the Sobolev space J−sL2(Rd) where J = (1 − ∆)
1
2 . We283

denote by Hs
σ(R3) the Sobolev space Hs

σ(R3)
def
= {ψ ∈ Hs(R3)3 : divψ = 0}. In284

order to unify our notations with the two dimensional case 2D QG, we denote285

by Hs
σ(R2) the Sobolev space Hs(R2).

286

We denote by P the well-known 3D matrix Leray’s projection operator with287

components,
288
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Pi,j = δi,j −
∂

∂xi

∂

∂xj

∆−1 = δi,j −RjRk, (14)

where Rj are the Riesz transform given by Rj = ∂
∂xj

(−∆)−
1
2 =

1

4π

xj

|x|4
⋆ (see289

Stein (1970) for more details), ∆−1 is the inverse of Laplace operator given by290

∆−1 = −
1

4π|x|
⋆ , with ⋆ the convolution operator.

291

3. Local regularity of the solutions
292

In this section, we deal with the main result on local regularity of 3D Navier-293

Stokes and Euler equations in its general form. By introducing P the matrix294

Leray operator, Euler equations (9)-(10) can be re-written as follows,295

∂u

∂t
+ P(u · ∇)u = 0, (15)

with initial conditions,296

u(0) = u0. (16)

For u solution of (15)-(16), ω = ∇ × u the vorticity of u formally satisfies the297

vorticity equation,298

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u − ν∆ω = 0, (17)

with initial conditions,299

ω(0) = ω0,

where ω0 = ∇× u0 is the vorticity of u0.300

In the case of 2D QG equation, we get for u solution of (11), ω = ∇⊥u the301

vorticity of u formally satisfies the vorticity equation,302

∂ω

∂t
+ (v · ∇)ω − (ω · ∇)v = 0, (18)

with initial conditions,303

ω(0) = ω0,

where ω0 = ∇⊥u0 is the vorticity of u0.304

In the region where |ω| > 0, we define ξ the direction of the vorticity by ξ =
ω

|ω|
.

305
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3.1. Local regularity for 3D Navier-Stokes or 3D Euler equations
306

Assuming u0 ∈ Hr
σ(R3) with r >

5

2
, thanks to Theorem 3.5 in Kato and Ponce307

(1988), Theorem 1 in Bourguignon and Brezis (1974) (see also Theorem I in308

Kato and Ponce (1986) and the results obtained in Beale et al. (1984)), we de-309

duce that there exists a time T > 0 such that there exists an unique strong310

solution u ∈ C([0, T [, Hr
σ(R3)) ∩ C1([0, T [, Hr−2

σ (R3)) to the Navier-Stokes or311

Euler equations (15)-(16) and the energy equality holds for u, that means for312

all t ∈ [0, T [,313

‖u(t)‖2 + 2ν

∫ t

0

‖∇u(s)‖2
2 ds = ‖u0‖2. (19)

Moreover, if u 6∈ C([0, T ], Hr
σ(R3)), then we get (see Beale et al. (1984); Kato and Ponce314

(1988); Kozono and Taniuchi (2000)),315

∫ T

0

‖ω(t)‖∞dt = +∞. (20)

Notice thanks to Remark 3.7 in Kato and Ponce (1988), in the case of Euler316

equations, we get in addition that u ∈ C1([0, T [, Hr−1
σ (R3)). We retrieve the317

pressure p from the velocity u with the formula,318

p = −∆−1div((u · ∇)u).

Furthermore, we get the local estimate (21). Indeed, thanks to remark 4.4 in319

Kato and Ponce (1988), we get320

‖u(t)‖Hr ≤
‖u(t0)‖Hr

1 − c‖u(t0)‖Hr (t− t0)
with t0 < t < T, (21)

provided that 1 − c‖u(t0)‖Hr (t− t0) > 0, where c > 0 is a constant.
321

3.2. Local regularity for 2D QG equation
322

This subsection is devoted to the local well-posedness of the 2D QG equation323

with a characterization of the maximal time existence of strong solutions. By324

using the same arguments as the proof of Proposition 4.2 in Agélas (2016),325

we get that the Hs−norm of u is controlled by the integral in time of the326

maximum magnitude of the vorticity of u. A such Proposition has been proved327

in Constantin et al. (1994) for any integer s ≥ 3, but here we extend this result328

to all real s > 2. This improvement is obtained by using the logarithmic Sobolev329

inequality proved in Kozono and Taniuchi (2000); Kato and Ponce (1988) which330

requires only that s > 2 instead of using the one proved in Beale et al. (1984)331

as it is the case in Constantin et al. (1994) and which requires integer s ≥ 3.332

Then by using the same arguments as the proof of Proposition 4.3 in Agélas333

(2016), we get the following result which gives an improvement in comparison334

with Theorem 2.1 in Constantin et al. (1994):
335

Assuming u0 ∈ Hr(R2) with r > 2, we get that there exists a time T > 0336

such that there exists an unique strong solution u ∈ C([0, T [, Hr(R2)) to the337
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2D QG equation (11)-(12) and the energy equality holds for u, that means for338

all p ∈ [2,∞] and t ∈ [0, T [,339

‖u(t)‖p = ‖u0‖p. (22)

Moreover, if u 6∈ C([0, T ], Hr(R2)), then340

∫ T

0

‖ω(t)‖L∞dt = +∞. (23)

Owing to u ∈ C([0, T [, Hr(R2)) and thanks to Lemma X4 in Kato and Ponce341

(1988), from 2D QG (11), we get u ∈ C1([0, T [, Hr−1(R2)).342

Similarly as in (21), we have343

‖u(t)‖Hr ≤
‖u(t0)‖Hr

1 − c‖u(t0)‖Hr (t− t0)
for t0 < t < T, (24)

provided that 1 − c‖u(t0)‖Hr (t− t0) > 0, where c > 0 is a constant.
344

4. Assumption on the maximum vorticity
345

Let d ∈ {2, 3}, r >
d

2
+ 1 and u0 ∈ Hr

σ(Rd). Let T ∗ > 0 be such that there346

exists a unique strong solution u to the 3D Navier-Stokes, 3D Euler or 2D QG347

equations (9)-(10) in the class348

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−2(Rd)).

Thanks to the results of the section 3, a such time T ∗ exists.349

In this paper, we are concerned with the non blowup in finite time of the solu-350

tions u at times such T ∗. Then, without loss of generality, in the whole of this351

paper, we consider only times of existence T ∗ such that for all t ∈ [0, T ∗[,352

‖ω(t)‖∞ > 0. (25)

Indeed, let us assume that there exists t0 ∈ [0, T ∗[ such that ‖ω(t0)‖∞ = 0.353

In the case of 2D QG equations (11), we get that ω(t0) ≡ 0 and then ∇u(t0) ≡ 0.354

Since x 7→ u(t0, x) vanishes at infinity, then we get u(t0) ≡ 0. Then by using355

inequality (24) concerning the local regularity, we deduce that u(t) ≡ 0 for all356

t ∈ [t0, T
∗[ and no blowup can occur at the time T ∗.357

By following step by step the proof of Lemma 4 given in Deng et al. (2005) but358

keeping the term ‖u(t)‖L2(Rd) after using the Cauchy-Schwarz inequality, we359

obtain for all t ∈ [0, T ∗[,360

‖u(t)‖∞ . ‖u(t)‖
2

d+2

2 ‖ω(t)‖
d

d+2
∞

≤ ‖u0‖
2

d+2

2 ‖ω(t)‖
d

d+2
∞ ,

(26)

where we have used (19) for the last inequality. Then thanks to (26) used with361

d = 3, we obtain that ‖u(t0)‖∞ ≡ 0 which implies that u(t0) ≡ 0. Then by using362

the inequality (21) of local regularity, we deduce u(t) ≡ 0 for all t ∈ [t0, T
∗[ and363

thus no blowup can occur at the time T ∗.
364

12



5. Geometric properties for non blow-up of the solutions
365

Historically, non blow-up criteria for the incompressible Euler equations and366

2D QG equations commonly focus on global features of the flow, such as norms367

of the velocity or the vorticity fields. This comes at the disadvantage of neglect-368

ing the structures and physical mechanisms of the flow evolution. A strat-369

egy for overcoming such shortcomings was established by focusing more on370

geometrical properties and flow structures (see e.g. Constantin et al. (1996);371

Cordoba and Fefferman (2001)), such as vortex tubes or vortex lines.
372

In particular, in Constantin et al. (1996, 1994) the authors showed that local373

geometric regularity of the unit vorticity vector can lead to depletion of the374

vortex stretching. They prove that if there is up to time T an O(1) region in375

which the vorticity vector is smoothly directed, i.e., the maximum norm of ∇ξ376

(here ξ =
ω

|ω|
, ω the vorticity) in this region is L2 integrable in time from 0377

to T , and the maximum norm of velocity in some O(1) neighbourhood of this378

region is uniformly bounded in time, then no blow-up can occur in this region379

up to time T .380

However, this theorem dealt with O(1) regions in which the vorticity vector is381

assumed to have some regularity, while in numerical computations, the regions382

that have such regularity and contain maximum vorticity are all shrinking with383

time (see Kerr (1993, 1995, 1997, 1998); Pelz (1997, 2001)).
384

Inspired by the work of Constantin et al. (1996, 1994), in Deng et al. (2005,385

2006a,b) the authors showed that geometric regularity of Lagrangian vortex386

filaments, even in an extremely localized region containing the maximum of387

vorticity which may shrink with time, can lead to depletion of the nonlinear388

vortex stretching, thus avoiding finite time singularity formation of the 3D Euler389

equations and 2D QG equations.
390

However, all the recent geometric constraints for non blow-up criteria of391

Euler and 2D QG equations based on local geometric regularity of Lagrangian392

vortex filaments Deng et al. (2005, 2006a,b) make the assumption that the po-393

sition where the maximum of vorticity is reached, is advected with the flow,394

however it is not always the case, as described in Kerr and Bustamante (2012)395

(see also section 5.4.5 of Grafke (2012)).
396

Then in our Theorem 5.1, we establish in an Eulerian setting a new geo-397

metric non blow-up criterion for the Navier-Stokes, Euler and 2D QG equations398

based on the regularity of the direction of the vorticity in extremely localized399

regions containing the positions where the maximum of the magnitude of the400

vorticity are reached and shrinking to zero as time increase to some T ∗ the al-401

leged time of singularity. Our Eulerian geometric non blow-up criterion should402

give also new impetus to the numerical experiments due to their ease of imple-403

mentation in comparison with Lagrangian geometric non blow-up criteria (see404

Grafke and Grauer (2013), see also section 5.4.5 of Grafke (2012)). Moreover405

our geometric non blow-up criterion is also valid for the Navier-Stokes equations406

that is not the case for the existing geometric non blow-up criteria obtained in407

Constantin et al. (1996); Deng et al. (2005, 2006a,b) based on a Lagrangian for-408
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mulation of Incompressible Inviscid Flows.
409

To obtain our Theorem 5.1, we begin with Lemma 5.1.
410

Lemma 5.1. Let d ∈ N∗, T > 0 and f ∈ C([0, T ];BC(Rd)) such that411

inf
t∈[0,T ]

‖f(t)‖∞ > 0 and for any t ∈ [0, T ], |f(x, t)| → 0 as |x| → +∞. Then412

there exists R > 0 such that for all t ∈ [0, T ], ‖f(t)‖∞ = sup
x∈BR

|f(x, t)|.
413

Proof. We set a = inf
t∈[0,T ]

‖f(t)‖∞ > 0. Since t 7→ f(t) is a continuous function414

from the compact [0, T ] into the metric space L∞(Rd) then it is uniformly415

continuous. Hence, there exists N ∈ N∗ such that for all t, t′ ∈ [0, T ], |t−t′| ≤ T
N

416

we have ‖f(t) − f(t′)‖∞ ≤
a

4
. We introduce the subdivision {ti}{i∈J0,NK} of417

[0, T ] defined by ti = i T
N

for i ∈ J0, NK. Since for any t ∈ [0, T ], |f(x, t)| → 0418

as |x| → +∞, then for each i ∈ J0, NK, there exists Ri > 0 such that for all419

|x| ≥ Ri, |f(x, ti)| ≤
a

4
. We set R = max

i∈J0,NK
Ri. Let t ∈ [0, T ] then there exists420

j ∈ J0, NK such that |t − tj | ≤
T
N

and hence for all |x| ≥ R ≥ Rj , we have421

|f(x, t)| ≤ |f(x, t) − f(x, tj)| + |f(x, tj)| ≤
a

2
≤

‖f(t)‖∞
2

. Then, we infer that422

for all t ∈ [0, T ], ‖f(t)‖∞ = sup
x∈BR

|f(x, t)|, which concludes the proof.
423

Before to prove Theorem 5.1, we need to introduce the following function424

Dd defined from Rd × Rd × Rd to R with d ∈ {2, 3} as follows: for d = 3,425

Dd(a1, a2, a3) = (a1 · a3)Det(a1, a2, a3).

The Det in Dd is the determinant of the matrix whose columns are the three426

unit column vectors a1, a2, a3. We observe that Det(a1, a2, a3) = a1 · (a2 × a3),427

then, we get428

Dd(a1, a2, a3) = (a1 · a3) a1 · (a2 × a3). (27)

and for d = 2,429

Dd(a1, a2, a3) = (a1 · a
⊥
3 ) (a2 · a

⊥
3 ), (28)

where for any z = (z1, z2) ∈ R2, z⊥ = (−z2, z1). We can notice that for430

d ∈ {2, 3} the function Dd is linear from its second variable.431

From (27) and (28) we get Dd(a1, a3, a3) = 0 then we deduce that for any432

a1, a2, a3 ∈ B(0, 1),433

|Dd(a1, a2, a3)| ≤ |a2 − a3|, (29)

and we get also434

|Dd(a1, a2, a3)| ≤ 1. (30)

Now, we turn to the proof of our Theorem.
435

Theorem 5.1. Let d ∈ {2, 3}, u0 ∈ Hr
σ(Rd) with r >

d

2
+ 3. Let T ∗ > 0 be436

such that there exists a unique strong solution u to the 3D Navier-Stokes, 3D437

Euler equations (9)-(10) or 2D QG equations (11)-(12) in the class438

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−2(Rd)). (31)
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Let ρ0 be the function defined from [0, T ∗[ to ]0,+∞[ for all t ∈ [0, T ∗[ by439

ρ0(t)
def
= 36(T ∗ − t)‖u(t)‖∞. (32)

Let A0 be the function defined from [0, T ∗[ to ]0,+∞[ for all t ∈ [0, T ∗[ by:440

A0(t)
def
= sup

x∈Θ(t)

sup
y∈B(0,ρ0(t))\{0}

Dd(ŷ, ξ(x + y, t), ξ(x, t))+

|y|
, (33)

where for any t ∈ [0, T ∗[441

Θ(t)
def
= {x ∈ Rd; |ω(x, t)| = ‖ω(t)‖∞}. (34)

Let Ω be the function defined from [0, T ∗[ to ]0,+∞[ by:442

Ω(t)
def
=

(T ∗ − t)−1

8(1 + log+(4ρ0(t)A0(t)))
. (35)

We introduce also the set of high vorticity regions defined for all t ∈ [0, T ∗[ by443

V(t)
def
= {z ∈ Rd; |ω(z, t)| ≥ Ω(t)}. (36)

Let π be the function defined from [0, T ∗[ to [0,+∞[, for all t ∈ [0, T ∗[ by444

π(t)
def
= sup

x∈Θ(t)

sup
0<R≤ρ0(t)

1

Rd−1

∫

B(x,R)∩V(t)

|ω(z, t)| dz. (37)

Let ρ be the function defined from [0, T ∗[ to [0,+∞[ for all t ∈ [0, T ∗[ by445

ρ(t)
def
= 4(d+ 1)cd(T

∗ − t)π(t), (38)

where cd = 3
4π

if d = 3, cd = 1
2π

else.446

Let Ad be the function defined from [0, T ∗[ to [0,+∞[ for all t ∈ [0, T ∗[ by447

Ad(t)
def
= sup

x∈Θ(t)

sup
y∈B(0,ρ(t))\{0}

Dd(ŷ, ξ(x+ y, t), ξ(x, t))+

|y|
. (39)

Then if there exists t1 ∈ [0, T ∗[ such that448

∫ T∗

t1

Ad(t)π(t) < +∞, (40)

then the solution u cannot blowup at the finite time T ∗.
449

Moreover, we have for all t ∈ [0, T ∗[ and x ∈ Θ(t),450

∇|ω|(x, t) = 0 and ∇ · ξ(x, t) = 0.
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Proof. Let 0 < T < T ∗. We want first to apply Lemma 5.1 to the function ω,451

then we check that the hypotheses of the Lemma are satisfied.452

Since u ∈ C([0, T ];Hr(Rd)) ∩ C1([0, T ];Hr−2(Rd)), then we infer that ω ∈453

C([0, T ];Hr−1(Rd)) ∩ C1(]0, T ];Hr−3(Rd)). Thanks to the Sobolev embedding454

Hs(Rd) →֒ BCm(Rd) for s >
d

2
+ m, m ∈ N and since r >

d

2
+ 3 we deduce455

that ω ∈ C([0, T ];BC2(Rd)) ∩ C1([0, T ];BC(Rd)). Thanks to (25), we get456

that inf
t∈[0,T ]

‖ω(t)‖∞ > 0. Moreover, since ω ∈ C([0, T ];Hr−1(Rd)) with r >457

d

2
+ 3, we have for any t ∈ [0, T ], |ω(x, t)| → 0 as |x| → +∞, the proof follows458

immediately by using the density of C∞
0 (Rd) in Hr−1(Rd) and the Sobolev459

embedding Hr−1(Rd) →֒ L∞(Rd) for r >
d

2
+ 3.

460

Then thanks to Lemma 5.1, there exists R > 0 such that for all t ∈ [0, T ],461

‖ω(t)‖∞ = sup
x∈BR

|ω(x, t)|. Then for all t ∈ [0, T ], the set Θ(t) defined by (34)462

can be rewritten as follows:463

Θ(t) = {x ∈ BR; |ω(x, t)| = ‖ω(t)‖∞}. (41)

We introduce the direction of the vorticity ξ =
ω

|ω|
defined on the non empty464

open set O
def
= {(x, t) ∈ Rd × [0, T ]; |ω(x, t)| > 0}.

465

We set υ = u in the case of 3D Navier-Stokes or 3D Euler equations and466

υ = R⊥u with ν = 0 in the case of 2D QG equation.
467

Then by multiplying (17) or (18) by ξ, we get that for all (x, t) ∈ O,468

∂|ω|

∂t
(x, t) + υ(x, t) · ∇|ω|(x, t) −(ω(x, t) · ∇)υ(x, t) · ξ(x, t)

−ν∆|ω|(x, t) + ν|ω(x, t)||∇ξ(x, t)|2 = 0.
(42)

We introduce the function ϕ defined for all t ∈ [0, T ] by469

ϕ(t)
def
= sup

x∈BR

|ω(x, t)|

and we search the expression of its derivative. For this, we use the main Theorem470

obtained in Pshenichny (1971) or Theorem 1 in Borisenko and Minchenko (1992)471

after verifying that the hypotheses of the Theorem are satisfied.472

Since ω ∈ C([0, T ];BC2(Rd)) ∩ C1([0, T ];BC(Rd)), then we deduce that |ω| ∈473

BC(O),
∂|ω|

∂t
∈ BC(O) and ∇2|ω| ∈ BC(O). Since for any t ∈ [0, T ], Θ(t) ⊂474

O × {t}, then, thanks to the results obtained in Pshenichny (1971) (see also475

Theorem 1 in Borisenko and Minchenko (1992)), by using also (41) we obtain476

the expression of the derivative of ϕ given for any t ∈ [0, T ] by,477

ϕ′(t) = sup
x∈Θ(t)

∂|ω|

∂t
(x, t). (43)
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Further for all x ∈ Θ(t) ⊂ BR, we have |ω(x, t)| = ϕ(t) = ‖ω(t)‖∞, we thus478

infer that479

∇|ω|(x, t) = 0 and ∆|ω|(x, t) ≤ 0. (44)

Therefore, we have for all x ∈ Θ(t),480

∂|ω|

∂t
(x, t) =

∂|ω|

∂t
(x, t) + υ(x, t) · ∇|ω|(x, t)

= (ω(x, t) · ∇)υ(x, t) · ξ(x, t) + ν∆|ω|(x, t) − ν|ω(x, t)||∇ξ(x, t)|2

≤ (ω(x, t) · ∇)υ(x, t) · ξ(x, t),
(45)

where we have used (42) for the second equality and (44) for the last inequality.481

We can notice that we get equality for (45) in the case of 3D Euler or 2D482

QG equations, since for these equations we have not the terms ν∆|ω|(x, t) and483

ν|ω(x, t)||∇ξ(x, t)|2.
484

Then using (45), from (43), we obtain,485

ϕ′(t) ≤ sup
x∈Θ(t)

(ω(x, t) · ∇)υ(x, t) · ξ(x, t),

which means that486

d

dt
‖ω(t)‖∞ ≤ sup

x∈Θ(t)

(ω(x, t) · ∇)υ(x, t) · ξ(x, t), (46)

where equality holds in the case of 3D Euler or 2D QG equations. We use487

now the function α introduced in Constantin (1994); Constantin and Fefferman488

(1994) for the 3D Navier-Stokes or 3D Euler equations and in Constantin et al.489

(1994) for the 2D QG equation, defined for all (x, t) ∈ O by,490

α(x, t) = cdP.V.

∫

Rd

Dd(ŷ, ξ(x+ y, t), ξ(x, t)) |ω(x + y, t)|
dy

|y|d
, (47)

where ŷ =
y

|y|
and in the case of 3D Navier-Stokes or 3D Euler equations for491

which d = 3, cd =
3

4π
and in the case of 2D QG equation for which d = 2,492

cd =
1

2π
. We use the fact that |ω(x + y, t)|ξ(x + y, t) = ω(x + y, t) and the493

fact that Dd is linear in comparison with its second variable, to rewrite (47) as494

follows:495

α(x, t) = cdP.V.

∫

Rd

Dd(ŷ, ω(x+ y, t), ξ(x, t))
dy

|y|d
. (48)

By using the Biot-Savart law (see Chorin and Marsden (1993)) for which in the496

case of Euler and Navier-Stokes equations, we have497

υ(x, t) =
1

4π

∫

R3

y

|y|3
× ω(x+ y)dy,
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and in the case of 2D QG equations, we get an equivalent formula498

υ(x, t) =
1

2π

∫

R2

1

|y|
ω(x+ y, t)dy,

we deduce as in Constantin (1994); Constantin and Fefferman (1994) and Constantin et al.499

(1994) that for all (x, t) ∈ O500

(ω(x, t) · ∇)υ(x, t) · ξ(x, t) = α(x, t)|ω(x, t)|.

Therefore, from (46), we deduce that for all t ∈ [0, T ],501

d

dt
‖ω(t)‖∞ ≤ sup

x∈Θ(t)

α(x, t)|ω(x, t)|

=

(

sup
x∈Θ(t)

(α(x, t)

)

‖ω(t)‖∞,
(49)

where we have used the fact that for all x ∈ Θ(t), |ω(x, t)| = ‖ω(t)‖∞. Let us502

estimate now α(x, t) for any t ∈ [0, T ] and x ∈ Θ(t). For this purpose, let us503

take t ∈ [0, T ] and x ∈ Θ(t), then we decompose the term α(x, t) as the sum of504

three terms,505

α(x, t) = I1 + I2 + I3 (50)

where,506

I1 = cd

∫

B(0,min(ρ(t),ρ0(t)))

Dd(ŷ, ω(x+ y, t), ξ(x, t))
dy

|y|d
, (51)

507

I2 = cd

∫

B(0,ρ0(t))∩B(0,min(ρ(t),ρ0(t)))c

Dd(ŷ, ω(x+ y, t), ξ(x, t))
dy

|y|d
(52)

and508

I3 = cd

∫

B(0,ρ0(t))c

Dd(ŷ, ω(x+ y, t), ξ(x, t))
dy

|y|d
. (53)

Then, we estimate the three terms I1, I2 and I3. For the term I1, from (51) we509

get510

I1 = cd

∫

B(0,min(ρ(t),ρ0(t)))

Dd(ŷ, ξ(x+ y, t), ξ(x, t))

|y|
|ω(x+ y, t)|

dy

|y|d−1

≤ cdAd(t)

∫

B(0,min(ρ(t),ρ0(t)))

|ω(x+ y, t)|

|y|d−1
dy

= cdAd(t)

∫

B(x,min(ρ(t),ρ0(t)))∩V(t)c

|ω(z, t)|

|x− z|d−1
dz

+ cdAd(t)

∫

B(x,min(ρ(t),ρ0(t))))∩V(t)

|ω(z, t)|

|x− z|d−1
dz

≤ cdAd(t)Ω(t)

∫

B(0,ρ(t))

dy

|y|d−1
+ cdAd(t)

∫

B(x,min(ρ(t),ρ0(t))))∩V(t)

|ω(z, t)|

|z − x|d−1
dz.
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Furthermore, we have511

∫

B(0,ρ(t))

dy

|y|d−1
= |B(0, 1)|ρ(t).

Therefore, by using the fact that cd|B(0, 1)| ≤ 1 (since |B(0, 1)| =
4π

3
for d = 3512

and |B(0, 1)| = π for d = 2), we deduce513

I1 ≤ Ad(t)Ω(t)ρ(t) + Ad(t)I1,1, (54)

where514

I1,1
def
= cd

∫

B(x,min(ρ(t),ρ0(t)))∩V(t)

|ω(z, t)|

|z − x|d−1
dz. (55)

Let ε(t)
def
=

π(t)

‖ω(t)‖∞
, then we have515

I1,1 ≤ cd

∫

B(x,ε(t))

|ω(z, t)|

|z − x|d−1
dz + cdI1,2, (56)

with516

I1,2
def
=

∫

B(x,ε(t))c∩B(x,min(ρ(t),ρ0(t)))∩V(t)

|ω(z, t)|

|z − x|d−1
dz. (57)

On one hand, we have517

cd

∫

B(x,ε(t))

|ω(z, t)|

|z − x|d−1
dz ≤ cd‖ω(t)‖∞

∫

B(x,ε(t))

dz

|z − x|d−1

= cd|B(0, 1)|‖ω(t)‖∞ ε(t)

≤ π(t).

(58)

On the other hand, we estimate I1,2.518

If V(t) = ∅ or min(ρ(t), ρ0(t)) ≤ ε(t) then from (57) we infer that I1,2 = 0.519

Let us assume now that V(t) 6= ∅ and min(ρ(t), ρ0(t)) > ε(t). Then, from (57)520

we get521

I1,2 =

∫ min(ρ(t),ρ0(t))

ε(t)

(

∫

∂B(x,R)∩V(t)

|ω(z, t)|
dγ(z)

|z − x|d−1

)

dR

=

∫ min(ρ(t),ρ0(t))

ε(t)

1

Rd−1

(

∫

∂B(x,R)∩V(t)

|ω(z, t)| dγ(z)

)

dR.

(59)

We introduce the function Ft defined from [0, ρ0(t)] to [0,+∞[ for all 0 ≤ R ≤522

ρ0(t) by523

Ft(R)
def
=

∫

B(x,R)∩V(t)

|ω(z, t)| dz. (60)
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We observe that
dFt

dR
(R) =

∫

∂B(x,R)∩V(t)

|ω(z, t)| dγ(z), then from (59) we get524

I1,2 =

∫ min(ρ(t),ρ0(t))

ε(t)

1

Rd−1

dFt

dR
(R) dR and by using an integration by parts we525

obtain526

I1,2 =
Ft(min(ρ(t), ρ0(t)))

min(ρ(t), ρ0(t))d−1
−
Ft(ε(t))

ε(t)d−1
+ (d− 1)

∫ min(ρ(t),ρ0(t))

ε(t)

Ft(R)

Rd
dR.

(61)

From (60), we notice that π(t) = sup
0<R≤ρ0(t)

Ft(R)

Rd−1
, then from (61) we deduce527

I1,2 ≤ π(t) + (d− 1)π(t)

∫ min(ρ(t),ρ0(t))

ε(t)

dR

R

= π(t)

(

1 + (d− 1) log

(

min(ρ(t), ρ0(t))

ε(t)

))

.

Therefore whatever the case we get528

I1,2 ≤ π(t)

(

1 + (d− 1) log+

(

min(ρ(t), ρ0(t))

ε(t)

))

. (62)

Since min(ρ(t), ρ0(t)) ≤ ρ(t) and thanks to (38) we get529

min(ρ(t), ρ0(t))

ε(t)
≤ 4(d+ 1)cd(T

∗ − t)‖ω(t)‖∞

≤ 4(T ∗ − t)‖ω(t)‖∞.

Therefore from (62) we infer530

I1,2 ≤ π(t)
(

1 + (d− 1) log+ (4(T ∗ − t)‖ω(t)‖∞)
)

. (63)

Thanks to (55)-(58) and (63), we get531

I1,1 ≤ π(t) + cdπ(t)(1 + (d− 1) log+(4(T ∗ − t)‖ω(t)‖∞)). (64)

Then thanks to (64), from (54) we obtain532

I1 ≤ Ad(t)(Ω(t)ρ(t) + π(t) + cdπ(t)(1 + (d− 1) log+(4(T ∗ − t)‖ω(t)‖∞))). (65)

By using the definition of the functions ρ and Ω, for which we have Ω(t)ρ(t) ≤533

4cd(d+ 1)π(t), from (65) we deduce534

I1 ≤ Ad(t)π(t)(4cd(d+ 1) + 1 + cd(1 + (d− 1) log+(4(T ∗ − t)‖ω(t)‖∞)))

≤ 6Ad(t)π(t)(1 + log+(4(T ∗ − t)‖ω(t)‖∞))).
(66)

20



For the term I2 given by (52), after using the change of variables z = x+ y,535

we decompose I2 as the sum of two terms I2,1 and I2,2 defined by536

I2,1 = cd

∫

B(x,ρ0(t))∩B(x,min(ρ(t),ρ0(t)))c∩V(t)c

Dd(ẑ − x, ω(z, t), ξ(x, t))
dz

|z − x|d

(67)
and537

I2,2 = cd

∫

B(x,ρ0(t))∩B(x,min(ρ(t),ρ0(t)))c∩V(t)

Dd(ẑ − x, ω(z, t), ξ(x, t))
dz

|z − x|d
.

(68)
Let us estimate the terms I2,1 and I2,2. For this purpose, we introduce the538

function γ defined for all t ∈ [0, T ∗[ by γ(t) = min
(

1
4A0(t)Ω(t)(T∗−t) , ρ0(t)

)

.539

From (67), we observe540

I2,1 ≤ cd

∫

B(x,ρ0(t))∩V(t)c

Dd(ẑ − x, ξ(z, t), ξ(x, t))+
|ω(z, t)|

|z − x|d
dz

≤ cdΩ(t)

∫

B(x,ρ0(t))

Dd(ẑ − x, ξ(z, t), ξ(x, t))+

|z − x|d
dz

= cdΩ(t)

∫

B(x,γ(t))

Dd(ẑ − x, ξ(z, t), ξ(x, t))+

|z − x|d
dz

+ cdΩ(t)

∫

B(x,ρ0(t))∩B(x,γ(t))c

Dd(ẑ − x, ξ(z, t), ξ(x, t))+

|z − x|d
dz.

(69)

Furthermore, on one hand, by (33) we have for all z ∈ B(x, γ(t)),541

Dd(ẑ − x, ξ(z, t), ξ(x, t))+ ≤ A0(t)|z − x|,

and hence, we obtain542

Ω(t)

∫

B(x,γ(t))

Dd(ẑ − x, ξ(z, t), ξ(x, t))+

|z − x|d
dz ≤ A0(t)Ω(t)

∫

B(x,γ(t))

dz

|z − x|d−1

= |B(0, 1)|A0(t)Ω(t)γ(t)

≤
|B(0, 1)|

4(T ∗ − t)
,

(70)
where we have used the definition of the function γ. On the other hand, since543
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|Dd(ẑ − x, ξ(z, t), ξ(x, t))| ≤ 1, we get544

∫

B(x,ρ0(t))∩B(x,γ(t))c

Dd(ẑ − x, ξ(z, t), ξ(x, t))+

|z − x|d
dz

≤

∫

B(x,ρ0(t))∩B(x,γ(t))c

dz

|z − x|d

= |B(0, 1)|

∫ ρ0(t)

γ(t)

ds

s

= |B(0, 1)| log

(

ρ0(t)

γ(t)

)

= |B(0, 1)| log+ (4ρ0(t)A0(t)Ω(t)(T ∗ − t)) ,
(71)

where we have used again the definition of the function γ. Owing to (70) and545

(71), from (69), we deduce546

I2,1 ≤ cd|B(0, 1)|

(

1

4(T ∗ − t)
+ Ω(t) log+ (4ρ0(t)A0(t)Ω(t)(T ∗ − t))

)

. (72)

For the term I2,2, if V(t) = ∅ or if ρ(t) ≥ ρ0(t) then from (68) we infer that547

I2,2 = 0. Let us assume now that V(t) 6= ∅ and ρ(t) < ρ0(t). Then, from (68)548

we get549

I2,2 = cd

∫ ρ0(t)

ρ(t)

(

∫

∂B(x,R)∩V(t)

|ω(z, t)|
dγ(z)

|z − x|d

)

dR

= cd

∫ ρ0(t)

ρ(t)

1

Rd

(

∫

∂B(x,R)∩V(t)

|ω(z, t)| dγ(z)

)

dR.

(73)

By using (60) and an integration by parts we obtain550

I2,2 = cd

(

Ft(ρ0(t))

ρ0(t)d
−
Ft(ρ(t))

ρ(t)d
+ d

∫ ρ0(t)

ρ(t)

Ft(R)

Rd+1
dR

)

. (74)

Since π(t) = sup
0<R≤ρ0(t)

Ft(R)

Rd−1
, then from (74) we deduce551

I2,2 ≤ cd

(

π(t)

ρ0(t)
+ dπ(t)

∫ ρ0(t)

ρ(t)

dR

R2

)

≤ cd(d+ 1)
π(t)

ρ(t)
,

where we have used the fact that ρ(t) < ρ0(t). Therefore whatever the case, we552

obtain that553

I2,2 ≤ cd(d+ 1)
π(t)

ρ(t)
. (75)

By using (38) the definition of the function ρ, from (75) we deduce554

I2,2 ≤
1

4(T ∗ − t)
. (76)
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Owing to (72) and (76), since also that I2 = I2,1 + I2,2 and cd|B(0, 1)| ≤ 1 we555

thus obtain556

I2 ≤
1

2(T ∗ − t)
+ Ω(t) log+ (4ρ0(t)A0(t)Ω(t)(T ∗ − t)) . (77)

For the term I3 given by (53), to obtain a precise non blowup criterion for 3D557

the Navier-Stokes, 3D Euler and 2D QG equations that could be used easily in558

numerical experiments, it was important to explicit the constant involved in the559

estimate of the term I3. For this purpose, we deal first with the case of the 3D560

the Navier-Stokes and 3D Euler equations, then after we consider the case of561

the 2D QG equations.562

In the case of the 3D Euler or 3D Navier-Stokes equations for which563

d = 3, we get D3(ŷ, ω(x + y, t), ξ(x, t)) = (ŷ · ξ(x, t))det(ŷ, ω(x + y, t), ξ(x, t)).564

Since det(ŷ, ω(x + y, t), ξ(x, t)) = (ξ(x, t) × ŷ) · ω(x + y, t) and ω(x + y, t) =565

∇y × u(x+ y, t), we deduce566

D3(ŷ, ω(x+ y, t), ξ(x, t)) = (ŷ · ξ(x, t))(ξ(x, t) × ŷ) · ∇y × u(x+ y, t).

Then, after using an integration by parts, from (53), we deduce,567

I3 = c3

∫

B(0,ρ0(t))c

∇y ×

(

(ŷ · ξ(x, t))(ξ(x, t) × ŷ)

|y|3

)

· u(x+ y, t) dy

− c3

∫

∂B(0,ρ0(t))

(

(ŷ · ξ(x, t))(ξ(x, t) × ŷ)

|y|3

)

· ŷ × u(x+ y, t) dγ(y).

(78)

After setting ψ(y) ≡
(ŷ · ξ(x, t))

|y|3
and V(y) ≡ (ξ(x, t)× ŷ), by using the following568

vectorial identity ∇× (ψV) = ∇ψ ×V+(∇×V)ψ, we obtain after elementary569

computations, that for all y 6= 0,570

∣

∣

∣

∣

∇y ×

(

(ŷ · ξ(x, t))(ξ(x, t) × ŷ)

|y|3

)∣

∣

∣

∣

≤

∣

∣

∣

∣

∇

(

ŷ

|y|3

)∣

∣

∣

∣

+
|∇y × (ξ(x, t) × ŷ)|

|y|3
.

We have

∣

∣

∣

∣

∇

(

ŷ

|y|3

)∣

∣

∣

∣

≤
3

|y|4
. Furthermore, we have ∇y × (ξ(x, t) × ŷ) = (∇y ·571

ŷ)ξ(x, t)−(ξ(x, t)·∇y)ŷ and then we deduce |∇y×(ξ(x, t)× ŷ)| ≤ |∇· ŷ|+ |∇ŷ| ≤572

3

|y|
. After gathering these results, we obtain that for all y 6= 0,573

∣

∣

∣

∣

∇y ×

(

(ŷ · ξ(x, t))(ξ(x, t) × ŷ)

|y|3

)∣

∣

∣

∣

≤
6

|y|4
.

Therefore, from (78) we obtain574

I3 ≤ 6c3

∫

B(0,ρ0(t))c

|u(x+ y, t)|

|y|4
dy + c3

∫

∂B(0,ρ0(t))

|u(x+ y, t)|
dy

|y|3
dγ(y).

(79)
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In the case of 2D QG equations for which d = 2, we get D2(ŷ, ω(x +575

y, t), ξ(x, t)) = (ŷ·ξ(x, t)⊥)(ω(x+y, t)·ξ(x, t)⊥). Since ω(x+y, t) = ∇⊥
y u(x+y, t),576

we deduce577

D2(ŷ, ω(x+ y, t), ξ(x, t)) = (ŷ · ξ(x, t)⊥)ξ(x, t)⊥ · ∇⊥
y u(x+ y, t).

Then, after using an integration by parts, from (53), we deduce,578

I3 = −c2

∫

B(0,ρ0(t))c

∇⊥
y ·

(

(ŷ · ξ(x, t)⊥)ξ(x, t)⊥

|y|2

)

u(x+ y, t) dy

+ c2

∫

∂B(0,ρ0(t))

(

(ŷ · ξ(x, t)⊥)ξ(x, t)⊥

|y|2

)

· y⊥u(x+ y, t).

(80)

After setting ψ(y) ≡
(ŷ · ξ(x, t)⊥)

|y|2
and V(y) ≡ ξ(x, t)⊥, by using the following579

vectorial identity curl(ψV) = ∇⊥ψ · V + ψ curlV, we obtain after elementary580

computations, that for all y 6= 0,581

∣

∣

∣

∣

∇⊥
y

(

(ŷ · ξ(x, t)⊥)ξ(x, t)⊥

|y|2

)
∣

∣

∣

∣

≤

∣

∣

∣

∣

∇

(

ŷ

|y|2

)
∣

∣

∣

∣

≤
2

|y|3
.

Therefore, from (80) we obtain582

I3 ≤ 2c2

∫

B(0,ρ0(t))c

|u(x+ y, t)|

|y|3
dy + c2

∫

∂B(0,ρ0(t))

|u(x+ y, t)|

|y|2
dγ(y). (81)

Therefore, whatever the case considered, 3D Navier-Stokes, 3D Euler or 2D QG583

equations, from (79) and (81) we get584

I3 ≤ d(d− 1)cd

∫

B(0,ρ0(t))c

|u(x+ y, t)|

|y|d+1
dy + cd

∫

∂B(0,ρ0(t))

|u(x+ y, t)|

|y|d
dγ(y).

(82)
Then from (82), we obtain585

I3 ≤ cd‖u(t)‖∞

(

d(d− 1)

∫

B(0,ρ0(t))c

dy

|y|d+1
+

∫

∂B(0,ρ0(t))

dγ(y)

|y|d

)

= cd‖u(t)‖∞

(

d(d− 1)|B(0, 1)|

∫ +∞

ρ0(t)

ds

s2
+

|∂B(0, 1)|

ρ0(t)

)

≤ 9
‖u(t)‖∞
ρ0(t)

.

(83)

Then, owing to (66), (77) and (83), from (50) we deduce that for any t ∈ [0, T ]586

and x ∈ Θ(t),587

α(x, t) ≤ 6Ad(t)π(t)(1 + log+(4(T ∗ − t)‖ω(t)‖∞)))

+
1

2(T ∗ − t)
+ Ω(t) log+ (4ρ0(t)A0(t)Ω(t)(T ∗ − t)) + 9

‖u(t)‖∞
ρ0(t)

.

(84)
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By using (32), we deduce that for any t ∈ [0, T ] and x ∈ Θ(t),588

α(x, t) ≤ 6Ad(t)π(t)(1 + log+(4(T ∗ − t)‖ω(t)‖∞)))

+
3

4(T ∗ − t)
+ Ω(t) log+ (4ρ0(t)A0(t)Ω(t)(T ∗ − t)) .

(85)

Furthermore, thanks to (35) we get (T ∗ − t)Ω(t) log+ (4ρ0(t)A0(t)) ≤
1

8
and589

(T ∗− t)Ω(t) < 1 which implies that log+((T ∗− t)Ω(t)) = 0 and hence we obtain590

that for all t ∈ [0, T ∗[,591

(T ∗ − t)Ω(t) log+ (4ρ0(t)A0(t)Ω(t)(T ∗ − t))

≤ (T ∗ − t)Ω(t)(log+ (4ρ0(t)A0(t)) + log+ (Ω(t)(T ∗ − t)))

= (T ∗ − t)Ω(t) log+ (4ρ0(t)A0(t))

≤
1

8
.

Therefore from (85), we deduce that for any t ∈ [0, T ] and x ∈ Θ(t),592

α(x, t) ≤ 6Ad(t)π(t)(1 + log+(4(T ∗ − t)‖ω(t)‖∞)) +
7

8(T ∗ − t)
. (86)

Then from (49) we deduce593

d

dt
‖ω(t)‖∞ ≤

(

6Ad(t)π(t)(1 + log+(4(T ∗ − t)‖ω(t)‖∞)) +
7

8(T ∗ − t)

)

‖ω(t)‖∞,

(87)
which is valid for all t ∈ [0, T ] and T < T ∗ and then inequality (87) is valid for594

all t ∈ [0, T ∗[. Let t0 ∈ [0, T ∗[ such that595

4(T ∗ − t0) ≤ 1. (88)

Then we get that for all t ∈ [t0, T
∗[, 4(T ∗ − t) ≤ 1 and hence596

log+(4(T ∗ − t)‖ω(t)‖∞)) ≤ log+(4(T ∗ − t)) + log+ ‖ω(t)‖∞

= log+ ‖ω(t)‖∞.
(89)

Owing to (89), from (87) we deduce that for all t ∈ [t0, T
∗[597

d

dt
‖ω(t)‖∞ ≤

(

6Ad(t)π(t)(1 + log+ ‖ω(t)‖∞) +
7

8(T ∗ − t)

)

‖ω(t)‖∞. (90)

Thanks to Grönwall inequality, from (90) we deduce that for all t ∈ [t0, T
∗[,598

‖ω(t)‖∞ ≤ ‖ω(t0)‖∞e
R

t

t0

“

6Ad(τ)π(τ)(1+log+ ‖ω(τ)‖∞)+ 7
8(T∗

−τ)

”

dτ

=

(

T ∗ − t0

T ∗ − t

)
7
8

‖ω(t0)‖∞e
R

t

t0
6Ad(τ)π(τ)(1+log+ ‖ω(τ)‖∞) dτ

.

(91)
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Since the function z 7→ log+(z) is non-decreasing on ]0,+∞[, then after applying599

the function 1 + log+ to the inequality (91) and using the fact that log+(ab) ≤600

log+ a+ log+ b, we thus obtain that for all t ∈ [t0, T
∗[601

1 + log+ ‖ω(t)‖∞ ≤ 1 + log

(

(

T ∗ − t0

T ∗ − t

)
7
8

)

+ log+ ‖ω(t0)‖∞

+ 6

∫ t

t0

Ad(τ)π(τ)(1 + log+ ‖ω(τ)‖∞) dτ.

(92)

Since the function t 7→ log

(

(

T∗−t0
T∗−t

)
7
8

)

is increasing over [t0, T
∗[ then thanks602

to Gronwall Lemma, by (92) we deduce that for all t ∈ [t0, T
∗[,603

1 + log+ ‖ω(t)‖∞ ≤

(

log

(

(

T ∗ − t0

T ∗ − t

)
7
8

)

+ 1 + log+ ‖ω(t0)‖∞

)

e
6

R

t

t0
Ad(τ)π(τ)dτ

.

(93)
Since log ‖ω(t)‖∞ ≤ 1 + log+ ‖ω(t)‖∞, then from (93) we infer that for all604

t ∈ [t0, T
∗[,605

‖ω(t)‖∞ ≤ exp

((

log

(

(

T ∗ − t0

T ∗ − t

)
7
8

)

+ 1 + log+ ‖ω(t0)‖∞

)

e
6

R

t

t0
Ad(τ)π(τ)dτ

)

= exp
(

(

1 + log+ ‖ω(t0)‖∞
)

e
6

R

t

t0
Ad(τ)π(τ)dτ

)

(

T ∗ − t0

T ∗ − t

)
7
8 e

6
R t
t0

Ad(τ)π(τ) dτ

.

(94)

Let us assume that there exists t1 ∈ [0, T ∗[ such that
∫ T∗

t1
Ad(τ)π(τ) dτ <606

+∞. Then, in addition of (88), we choose t0 ∈ [t1, T
∗[ such that Mt0

def
=607

∫ T∗

t0
Ad(τ)π(τ) dτ < 1

6 log
(

8
7

)

. We thus get for all t ∈ [t0, T
∗[,608

7

8
e
6

R

t

t0
Ad(τ)π(τ)dτ

≤
7

8
e6Mt0 < 1.

Therefore with ηt0
def
= 7

8e
6Mt0 , from (94) we deduce that for all t ∈ [t0, T

∗[609

‖ω(t)‖∞ ≤ exp
((

1 + log+ ‖ω(t0)‖∞
)

e6Mt0

)

(

T ∗ − t0

T ∗ − t

)ηt0

. (95)

Since ηt0 < 1, from (95) we thus deduce that
∫ T∗

t0
‖ω(t)‖∞ dt < +∞. Since u ∈610

C([0, T ∗[;Hr
σ(Rd)) and thanks to the Sobolev embedding Hr(Rd) →֒ BC3(Rd)611

due to r >
d

2
+ 3, we infer that ω ∈ C([0, T ∗[;BC2(Rd)) which implies that612

∫ t0

0

‖ω(t)‖∞ dt < +∞. Therefore we deduce that

∫ T∗

0

‖ω(t)‖∞ dt < +∞.613

If u blows up at the finite time T ∗ then thanks to (20) and (23) we have614

26



∫ T∗

0

‖ω(t)‖∞ dt = +∞ which leads to a contradiction. Then, we deduce that u615

cannot blow up at the time T ∗ which concludes the first part of proof.616

Thanks to (44), we have already ∇|ω|(x, t) = 0. Since ∇ · ω = 0 and ω = |ω|ξ,617

then we get618

0 = ∇ · ω = |ω|∇ · ξ + ξ · ∇|ω|. (96)

However, for all x ∈ Θ(t), |ω(x, t)| = ‖ω(t)‖∞ > 0 and from (44), we have619

∇|ω|(x, t) = 0. Therefore, from (96), we deduce that for all t ∈ [0, T ] and620

x ∈ Θ(t),621

∇ · ξ(x, t) = 0, (97)

which completes the proof.
622

6. No blow up in finite time for numerical experiments
623

In this section, we show the non-blowup in finite time of the solutions of the624

3D Euler equations in the numerical experiments considered these last years.
625

First, we emphasize that the singularity discovered in Luo and Hou (2014b)626

which lies right on the boundary is not relevant in the case of the whole do-627

main R3. Indeed recently, the authors found a convincing numerical evidence628

for a singular solution to the Euler equations in a fluid with periodic boundary629

condition along the axial direction and no-flow boundary condition on the solid630

wall Luo and Hou (2014b) (see also Luo and Hou (2014a)), for which the point631

of the potential singularity, which is also the point of the maximum vorticity,632

is always located at the solid boundary. However thanks to Theorem 5.1, we633

deduce that such singularity can not exist in the whole domain R3. Indeed, in634

the whole domain of R3 at any point of the maximum vorticity, q0 ∈ R3, thanks635

to Theorem 5.1 we get ∇|ω|(q0, t) = 0 for any time t before the alleged time of636

singularity T ∗, then this result combined with the fact that the vorticity ω is a637

divergence-free vector field, yields to get ∇·ξ(q0, t) = 0 in Theorem 5.1. However638

in Luo and Hou (2014b), the presence of a solid boundary and the fact that q0639

the point of the maximum vorticity is always located on the solid boundary, pre-640

vent to get ∇|ω|(q0, t) = 0 and this allows to get ∇·ξ(q0, t) ∼ (T ∗−t)−2.9165 6= 0641

as it is observed in their numerical test. This latter is the main element used to642

invalidate the Deng-Hou-Yu non-blowup criterion Deng et al. (2005, 2006a).643

644

There have been many computational attempts to find finite-time singulari-645

ties of the 3D Euler and Navier-Stokes equations: see, e.g Melander and Hussain646

(1989); Kerr and Hussain (1989); Pumir and Siggia (1990); Kerr (1993); Grauer et al.647

(1998); Hou and Li (2006); Kerr (2005). One example that has been studied ex-648

tensively in these numerical investigations is the interaction of two perturbed an-649

tiparallel vortex tubes. All the subsequent calculations assumed an anti-parallel650

geometry, for which there are two symmetry planes. One in y−z is between the651

vortices and was called the ’dividing plane’. The other in x−z is at the position652

of maximum perturbation and was called the ’symmetry plane’. The difficulty653

faced in each computational attempts cited was to find a better initial condition654
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within this geometry (see Kerr (2006)). From these computational attempts, a655

numerical controversy takes place around the question to know whether or not656

there is finite-time blow-up of the solutions of Euler equations (see Kerr (2006)).
657

In this section, we propose an answer to this controversy by using our Theo-658

rem 5.1. By using the anisotropic structure of regions of high vorticity described659

in Kerr (2005, 1998), we show straightforward thanks to our Theorem 5.1 that660

the solutions of Euler equations cannot blow up in finite time in these numerical661

experiments Kerr (2005, 1998, 1997).662

For this purpose, we give a first bound of the function π defined by (37) in the663

following Lemma. The bound given in Lemma 6.1 of the function π is not a664

sharp bound but obtained without assumptions.
665

Lemma 6.1. Let d ∈ {2, 3}, u0 ∈ Hr
σ(Rd) with r >

d

2
+ 3. Let T ∗ > 0 be such666

that there exists a unique strong solution u to the 3D Navier-Stokes, 3D Euler667

equations (9)-(10) or 2D QG equations (11)-(12) in the class668

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−2(Rd)).

Under the definitions (32)-(37) in the Theorem 5.1, we have the following esti-669

mate: for all t ∈ [0, T ∗[670

π(t) ≤ 3‖ω(t)‖∞ sup
x∈Θ(t)

|V(t) ∩B(x, ρ0(t))|
1
d .

Proof. For any t ∈ [0, T ∗[, x ∈ Θ(t) and 0 < R ≤ ρ0(t), we get671

1

Rd−1

∫

B(x,R)∩V(t)

|ω(z, t)| dz ≤
1

Rd−1
‖ω(t)‖∞|V(t) ∩B(x,R)|.

Furthermore, we have672

|V(t) ∩B(x,R)| = |V(t) ∩B(x,R)|
1
d |V(t) ∩B(x,R)|

d−1
d

≤ |V(t) ∩B(x,R)|
1
d |B(x,R)|

d−1
d

= |B(0, 1)|
d−1

d |V(t) ∩B(x,R)|
1
dRd−1

≤ 3|V(t) ∩B(x,R)|
1
dRd−1

where we have used the fact that |B(0, 1)| =

(

4π

3

)
2
3

if d = 3 or |B(0, 1)| = π
1
2673

if d = 2.674

Then, we deduce for that any t ∈ [0, T ∗[, x ∈ Θ(t) and 0 < R ≤ ρ0(t),675

1

Rd−1

∫

B(x,R)∩V(t)

|ω(z, t)| dz ≤ 3‖ω(t)‖∞ |V(t) ∩B(x,R)|
1
d . (98)

Owing to (98), we thus conclude the proof.
676
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Now, we can show straightforward thanks to Theorem 5.1 and Lemma 6.1677

that the solutions of Euler equations cannot blow up in finite time in the nu-678

merical experiments Kerr (2005, 1998, 1997).679

For this purpose, we recall that in the numerical experiments Kerr (2005, 1998),680

the author show that the blow-up rates at some time T ∗ the alleged time of sin-681

gularity, to be considered for ‖ω(t)‖∞, ‖u(t)‖∞ and ‖∇ξ(t)‖∞ in Kerr (2005,682

1998) are683

‖ω(t)‖∞ ∼ (T ∗−t)−1, ‖u(t)‖∞ ∼ (T ∗−t)−
1
2 and ‖∇ξ(t)‖∞ ∼ (T ∗−t)−

1
2 , (99)

for time t ∈ [t0, T
∗[ with t0 ∈ [0, T ∗[ sufficiently close to T ∗. Moreover for time684

t ∈ [t0, T
∗[ with t0 sufficiently close to T ∗, the author showed that the support685

of the maximum vorticity686

E(t) = {x ∈ R3, |ω(x, t)| ∼ ‖ω(t)‖∞}

is characterized by two length scales (T ∗ − t) and (T ∗ − t)
1
2 and its volume is687

bounded by688

|E(t)| . (T ∗ − t)2. (100)

Thanks to the blow-up rates (99), from (32) we get that for all t ∈ [t0, T
∗[689

ρ0(t) ∼ (T ∗ − t)
1
2 .

From (33), thanks again to (99) we have that for all t ∈ [t0, T
∗[690

A0(t) ≤ sup
x∈Θ(t)

‖∇ξ(t)‖L∞(B(x,ρ0(t)))

. (T ∗ − t)−
1
2 .

Then we deduce that for all t ∈ [t0, T
∗[691

A0(t)ρ0(t) . 1. (101)

Therefore thanks to (101), from the definition (35) of the function Ω, we deduce692

for all t ∈ [t0, T
∗[693

Ω(t) & (T ∗ − t)−1. (102)

Owing to (102) and since for all t ∈ [t0, T
∗[, ‖ω(t)‖∞ ∼ (T ∗ − t)−1 thanks to694

(99), for the set V(t) defined by (36) we deduce that for all t ∈ [t0, T
∗[695

V(t) = {x ∈ R3, |ω(x, t)| ∼ ‖ω(t)‖∞}.

Then thanks to (100) we get that for all t ∈ [t0, T
∗[696

|V(t)| . (T ∗ − t)2. (103)

Thanks to Lemma 6.1, inequality (103) and the fact that ‖ω(t)‖∞ ∼ (T ∗− t)−1
697

thanks to (99), for the function π defined by (37), we get that for all t ∈ [t0, T
∗[698

699

π(t) . (T ∗ − t)−
1
3 . (104)
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Furthermore, thanks to (99), for the function A3 defined by (39) for d = 3, we700

get that for all t ∈ [t0, T
∗[701

A3(t) ≤ ‖∇ξ(t)‖∞ . (T ∗ − t)−
1
2 . (105)

Owing to (104) and (105) we deduce that for all t ∈ [t0, T
∗[702

A3(t)π(t) . (T ∗ − t)−
5
6 . (106)

Then, we deduce703

∫ T∗

t0

A3(t)π(t) . (T ∗ − t0)
1
6 < +∞. (107)

Therefore, thanks to (107) and Theorem 5.1, we deduce that the solutions of704

the Euler equations considered for the numerical experiments Kerr (2005, 1998)705

cannot blow-up in finite time at the alleged time of singularity T ∗. If one con-706

siders the plausible scenario of blow up proposed in Brenner et al. (2016), one707

observed that we get also the blow-up rates (99) and the estimate (100) (see708

(Hormoz and Brenner, 2012, section 4)), hence the potential mechanism pro-709

posed for the blow-up in finite time of solutions of Euler equations in Brenner et al.710

(2016) cannot in fact lead to the blow-up in finite time of the solutions of Euler711

equations.712

713

7. Toward the non blowup in finite time of the solutions
714

In this section, under mild assumptions deriving from the structure of the715

regions of high vorticity, we obtain the non-blowup in finite time at some time716

T ∗ of the solutions of 2D QG, 3D Euler and 3D Navier-Stokes equations in the717

case where718

‖∇ξ(t)‖∞ ∼ (T ∗ − t)−γξ , 0 ≤ γξ < 1.

In the previous section, we have outlined that the estimate obtained in Lemma719

6.1 for the function π defined by (37) is not sharp, then in the subsection 7.2 we720

propose a better estimate for the function π and go further in the non blow-up721

criteria. However, before to deal with new non blow-up criteria in the subsection722

7.2 we need to introduce in the subsection 7.1 the Lagrangian flow map X and723

the definitions of vortex lines and vortex tubes in order to justify the assumption724

(121) used in Proposition 7.1 and for their use in Lemmata 7.2, 7.3, 7.4 and in725

the Proposition 7.2.
726

7.1. Lagrangian flow map, vortex lines and vortex tubes
727

Let d ∈ {2, 3}, u0 ∈ Hr
σ(Rd) with r >

d

2
+ 2. Let T ∗ > 0 be such that there728

exists a unique strong solution u to the 3D Euler equations (9)-(10) or 2D QG729

equations (11)-(12) in the class730

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−1(Rd)). (108)
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Solutions in this class exist thanks to section 3. We set υ = u in the case of 3D731

Euler equations and υ = R⊥u in the case of 2D QG equation.732

Owing to u ∈ C([0, T ∗[, Hr
σ(Rd)) ∩ C1([0, T ∗[, Hr−1(Rd)) with r >

d

2
+ 2733

and thanks to the L2−boundedness of the Riesz transforms, we infer that734

v ∈ C([0, T ∗[, Hr(Rd)) ∩ C1([0, T ∗[, Hr−1(Rd)) with r >
d

2
+ 2. Then by using735

the Sobolev embedding, Hm(Rd) →֒ BCn(Rd) with n = [m− d
2 ] and m > d

2 , we736

deduce that for any 0 < T < T ∗,
737

u ∈ BC1(Rd × [0, T ]), ∇u ∈ C([0, T ∗[;BC1(Rd)) (109)

and738

v ∈ BC1(Rd × [0, T ]), ∇v ∈ C([0, T ∗[;BC1(Rd)). (110)

In Proposition 7.1, in the case of 3D Euler equations and 2D QG equations, we739

give an estimate of the function π defined by (37). For this purpose, we need to740

give the definition of a vortex line and recall some results about the Lagrangian741

flow map.
742

We thus introduce the flow map X(α, τ, t) the particle path that passes by743

α ∈ Rd at time τ ∈ [0, T ∗[. That is for τ ∈ [0, T ∗[ fixed, X(α, τ, t) solves on744

[0, T ∗[ (see chapter 4 in Majda and Bertozzi (2002) for more details on the flow745

map X)746

∂X(α, τ, t)

∂t
= v(X(α, τ, t), t),

X(α, τ, τ) = α ∈ Rd,

(111)

Thanks to Cauchy-Lipschitz Theorem (see Theorems 2.2 and 2.13 in Teschl747

(2012)), for any α ∈ Rd and τ ∈ [0, T ∗[ thanks to (110) we get that there748

exists an unique solution X(α, τ, ·) ∈ C1([0, T ∗[) to equation (111). For all749

t ∈ [0, T ∗[ and τ ∈ [0, T ∗[, the map X(·, τ, t) defined by equation (111) is a750

volume preserving C1-diffeomorphism from Rd on itself. Indeed thanks to (110)751

and the Theorems 2.2, 2.10 and 2.13 in Teschl (2012), we deduce that for any752

t ∈ [0, T ∗[ and τ ∈ [0, T ∗[, X(·, τ, t) is a C1−diffeomorphism from Rd on itself753

with inverse X(·, t, τ), we notice also X ∈ C1(Rd × [0, T ∗[×[0, T ∗[). Moreover754

for any t ∈ [0, T ∗[ and τ ∈ [0, T ∗[, X(·, τ, t) is a volume preserving mapping755

thanks to Proposition 1.4 in Majda and Bertozzi (2002), for which we get756

det(∇αX(α, τ, t)) = 1. (112)

Furthermore, we have for all τ ∈ [0, T ∗[, t ∈ [0, T ∗[ and α ∈ Rd (see Proposition757

1.8 in Majda and Bertozzi (2002) or Proposition page 24 in Chorin and Marsden758

(1993) for Euler equations and see Deng et al. (2006b) for 2D QG equation),759

ω(X(α, τ, t), t) = ∇αX(α, τ, t)ω(α, τ). (113)

760

Recall that a vortex line in a fluid is an arc on an integral curve of the vorticity761

ω(x, t) for fixed t, and a vortex tube is a tubular neighborhood in Rd, d ∈ {2,762
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arising as a union of vortex lines. In what follows, we give a parametrization of763

vortex lines and vortex tubes.764

We set O
def
= {(x, τ ′) ∈ Rd × [0, T ∗[; |ω(x, τ ′)| > 0} and for any t ∈ [0, T ∗[,765

O(t)
def
= {x ∈ Rd; |ω(x, t)| > 0}. From (25), we get that for any t ∈ [0, T ∗[, O(t)766

is nonempty. Thanks to (109), we get that ω is continuous on Rd × [0, T ∗[ and767

then we deduce that O is an open subset of Rd × [0, T ∗[ and also that for all768

t ∈ [0, T ∗[, O(t) is an open subset of Rd. Notice thanks again to (109) that ξ and769

∇ξ are continuous on O. Then, we get that for all t ∈ [0, T ∗[, ξ(·, t) ∈ C1(O(t)).770

Then, for all t ∈ [0, T ∗[ and α ∈ O(t), we denote by xt(α, ·) : Jα,t 7−→ Rd the771

vortex line that passes through α at the time t and defined by the ordinary772

differential equation:773

∂xt(α, s)

∂s
= ξ(xt(α, s), t),

xt(α, 0) = α.

(114)

The set Jα,t ⊂ R not reduced to {0} denotes the maximal interval of existence of774

the unique solution xt(α, ·) of (114), this is ensured thanks to Cauchy-Lipschitz775

Theorem (see e.g Theorems 2.2 and 2.13 in Teschl (2012)). For any t ∈ [0, T ∗[,776

we introduce Ut = {(α, s) ∈ O(t) × R; xt(α, s) ∈ O(t)} the set of definition777

of the function xt. For any t ∈ [0, T ∗[ since ξ(·, t) ∈ C1(O(t)), then from778

Theorem 2.9 in Teschl (2012), we get that xt is continuous on Ut. We notice779

that Ut = x−1
t (O(t)) and hence we obtain that Ut is an open subset of O(t)×R.780

From Theorem 2.10 in Teschl (2012), we obtain that781

xt ∈ C1(Ut). (115)

Any vortex tube T at a time t ∈ [0, T ∗[ can be defined as T
def
= {xt(α, s);α ∈782

A0, s ∈ Iα,t ⊂ Jα,t} where A0 is a bounded smooth surface (resp. curve) of783

R3(resp. of R2) and for each α ∈ A0, Iα,t is an interval of R containing 0.
784

7.2. Anisotropic structure for the improvement of non blow-up criteria
785

In this subsection, in Proposition 7.1 we propose to show that the function786

π(t) defined by (37) involved Theorem 5.1 is bounded by C

(

1 + log+

(

‖ω(t)‖∞
Ω(t)

))

787

by using assumptions related to the anisotropic scaling in the collapse of regions788

of high vorticity containing the positions of the maximum vorticity. In Propo-789

sition 7.2, in the case of the Euler and 2D QG equations, we improve logarith-790

mically the result obtained in Proposition 7.1 by showing that the function π is791

bounded.792

These results come from the special feature of the structure of regions of high793

vorticity surrounding the peak of vorticity {y ∈ Rd; |ω(y, t)| & ‖ω(t)‖∞} ob-794

served in the numerical experiments Kerr (1998, 2005); Agafontsev et al. (2015,795

2017) and from analytical models (Agafontsev et al., 2017, section 3),796

(Majda and Bertozzi, 2002, sections 1.4 and 1.5), namely they are pancake-797

like structure characterized by two length scales whose one of it is bounded by798

O

(

1

‖ω(t)‖∞

)

and plays the role of the thickness of the pancake-like structure.799
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This suggests that for any t ∈ [t0, T
∗[ with t0 ∈ [0, T ∗[, x ∈ Θ(t), λ ≥ Ω(t) the800

set {y ∈ Rd; |ω(y, t)| ≥ λ} may be characterized by three length scales whose801

one of them is of order
1

λ
, where Ω and Θ are respectively defined by (35) and802

(34). Since for any 0 < R ≤ ρ0(t) the set Vλ,R(t)
def
= {y ∈ B(x,R); |ω(y, t)| ≥803

λ} ⊂ B(x,R), we thus expect that the set Vλ,R(t) may have two of its length804

scales of order R and the third one of order
1

λ
. Then we expect that for for any805

t ∈ [t0, T
∗[, x ∈ Θ(t), λ ≥ Ω(t) and 0 < R ≤ ρ0(t),806

|Vλ,R(t)| .t0

Rd−1

λ
. (116)

In Lemma 7.1 we give an argument in favour of the assumption (116) in the807

case of 3D Euler equations and 2D QG equation by using their Lagrangian808

structure. In Lemma 7.1, the property (P1) expresses the fact that we expect809

the length of any segment of a vortex line included in the structure Vλ,R(t)810

is bounded by O(R), since Vλ,R(t) ⊂ B(x,R). Furthermore property (P2)811

expresses the pancake structure of regions of high vorticity observed in numerical812

experiments. Indeed for the case of 3D Euler equations, if one assumes that813

the set V0
λ,R(t)

def
= X−1(Vλ,R(t), t0, t) is characterized by three length scales814

ℓ01, ℓ
0
2, ℓ

0
3 associated to three main directions orthogonal between them pairwise,815

then we should have for one of these length scales ℓ01 . ℓ0λ,R(t) or ℓ02 . ℓ0λ,R(t) or816

ℓ03 . ℓ0λ,R(t) (117). Let us say that ℓ01 . ℓ0λ,R(t). Assuming that during the time817

between t0 and t ∈]t0, T
∗[ the set V0

λ,R(t) becomes a pancake-shaped structure,818

we thus expect that ℓ02 . R or ℓ03 . R since Vλ,R(t) ⊂ B(x,R). Let us say that819

ℓ02 . R. For the last length scale ℓ03, we just expect that ℓ03 = O(1).820

In the case of 3D Euler equations, we thus expect that |V0
λ,R(t0)| . ℓ0λ,R(t)R.821

In the case of 2D QG equations, we will have only the two length scales ℓ01 and822

ℓ03 and then we expect that |V0
λ,R(t0)| . ℓ0λ,R(t). Then Lemma 7.1 gives an823

explanation of assumption (116).
824

Lemma 7.1. Under the definitions (31)-(35) in the Theorem 5.1, we assume825

that there exists t0 ∈ [0, T ∗[ such that for any t ∈ [t0, T
∗[, 0 < R ≤ ρ0(t)826

and λ ≥ Ω(t) the sets Vλ,R(t)
def
= {y ∈ B(x,R); |ω(y, t)| ≥ λ} and V0

λ,R(t)
def
=827

X−1(Vλ,R(t), t0, t) satisfy:
828

(P1) |Lt ∩ Vλ,R(t)| . R for any vortex line Lt at time t,
829

(P2) |V0
λ,R(t)| . ℓ0λ,R(t)Rd−2 where830

ℓ0λ,R(t)
def
= sup

Lt0⊂T (t0)

|Lt0 ∩ V0
λ,R(t)| (117)

and T (t0) denotes the set of all vortex lines Lt0 at time t0.831

Then, we get that for any t ∈ [t0, T
∗[832

|Vλ,R(t)| . ‖ω(t0)‖∞
Rd−1

λ
.
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Proof. Let us take t ∈ [t0, T
∗[. If |Vλ,R(t)| = 0 the proof follows immedi-833

ately. Then we assume that |Vλ,R(t)| > 0 . We have |Vλ,R(t)| = |V0
λ,R(t)| since834

X(·, t0, t) is a volume preserving C1−diffeomorphism from Rd to Rd, then we835

get |V0
λ,R(t)| > 0 and Property (P2) yields to836

|Vλ,R(t)| . ℓ0λ,R(t)Rd−2. (118)

Furthermore for any vortex line Lt0 at time t0, we notice X(Lt0∩V
0
λ,R(t), t0, t) =837

Lt ∩ Vλ,R(t) where Lt is the vortex line at time t defined by Lt = X(Lt0 , t0, t).838

Then, for any vortex line Lt0 at time t0 such that |Lt0 ∩ V0
λ,R(t)| > 0, by using839

the equation just below of (3.12) in Deng et al. (2005) and the definition of the840

set Vλ,R(t), we obtain841

|Lt ∩ Vλ,R(t)|

|Lt0 ∩ V0
λ,R(t)|

≥
λ

‖ω(t0)‖∞
. (119)

By using Property (P1), for any vortex line Lt0 at time t0 such that |Lt0 ∩842

V0
λ,R(t)| > 0, we deduce from (119) that

R

|Lt0 ∩ V0
λ,R(t)|

&
λ

‖ω(t0)‖∞
which843

implies844

R

ℓ0λ,R(t)
&

λ

‖ω(t0)‖∞
. (120)

Therefore by using (120), from (118) we thus infer |Vλ,R(t)| . ‖ω(t0)‖∞
Rd−1

λ
,845

which concludes the proof.
846

Thanks to assumption (116), we obtain the following Proposition 7.1.
847

Proposition 7.1. Let d ∈ {2, 3}, u0 ∈ Hr
σ(Rd) with r >

d

2
+ 3. Let T ∗ > 0 be848

such that there exists a unique strong solution u to the 3D Navier-Stokes, 3D849

Euler equations (9)-(10) or 2D QG equations (11)-(12) in the class850

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−2(Rd)).

Under the definitions (32)-(37) in the Theorem 5.1, we assume that there exists851

t0 ∈ [0, T ∗[ such that for any t ∈ [t0, T
∗[, x ∈ Θ(t), we get that for all λ ≥ Ω(t)852

and 0 < R ≤ ρ0(t)853

|{y ∈ B(x,R); |ω(y, t)| ≥ λ}| .t0

Rd−1

λ
. (121)

Then we get that for all t ∈ [t0, T
∗[854

π(t) .t0 1 + log+

(

‖ω(t)‖∞
Ω(t)

)

.
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Proof. We have for all t ∈ [t0, T
∗[, x ∈ Θ(t) and 0 < R ≤ ρ0(t)855

∫

B(x,R)∩V(t)

|ω(z, t)| dz =

∫

B(x,R)∩V(t)

∫ |ω(z,t)|

0

dλ dz

= Ω(t)|B(x,R) ∩ V(t)| +

∫

B(x,R)∩V(t)

∫ |ω(z,t)|

Ω(t)

dλ dz

= Ω(t)|B(x,R) ∩ V(t)| +

∫

{z∈B(x,R), Ω(t)<λ<|ω(z,t)|}

dλdz

= Ω(t)|B(x,R) ∩ V(t)|

+

∫

[Ω(t),‖ω(t)‖∞]

|{z ∈ B(x,R); |ω(z, t)| > λ}| dλ,

where we have used Fubini-Tonelli Theorem. Thanks to (121) we deduce that856

for all t ∈ [t0, T
∗[, x ∈ Θ(t) and 0 < R ≤ ρ0(t)857

∫

B(x,R)∩V(t)

|ω(z, t)| dz .t0 R
d−1

(

1 +

∫

[Ω(t),‖ω(t)‖∞]

dλ

λ

)

= Rd−1

(

1 + log+

(

‖ω(t)‖∞
Ω(t)

))

.

(122)

Owing to (122), we thus conclude the proof.
858

Remark 7.1. The analysis led in Kuznetsov and Ruban (2000); Kuznetsov et al.859

(2001) for the study of collapse of vortex lines and agrees with numerical exper-860

iments Agafontsev et al. (2015, 2017) suggests that the thickness of the regions861

of high vorticity {y ∈ B(x,R); |ω(y, t)| ≥ λ} is
1

λ
3
2

and since these regions are862

included in the ball B(x,R), we expect that |{y ∈ B(x,R); |ω(y, t)| ≥ λ}| .t0863

Rd−1

λ
3
2

. Then under this assumption and by using the same arguments as previ-864

ously, we obtain865

π(t) . Ω(t)−
1
2 .

Thanks to Theorem 5.1 and Proposition 7.1 we obtain Theorem 7.1.
866

Theorem 7.1. Let d ∈ {2, 3}, u0 ∈ Hr
σ(Rd) with r >

d

2
+ 3. Let T ∗ > 0 be867

such that there exists a unique strong solution u to the 3D Navier-Stokes, 3D868

Euler equations (9)-(10) or 2D QG equations (11)-(12) in the class869

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−2(Rd)).

Under the definitions (32)-(35) in the Theorem 5.1, we assume that there exists870

t0 ∈ [0, T ∗[ such that for any t ∈ [t0, T
∗[, x ∈ Θ(t), we get that for all λ ≥ Ω(t)871

and 0 < R ≤ ρ0(t)872

|{y ∈ B(x,R); |ω(y, t)| ≥ λ}| .t0

Rd−1

λ
.
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Then if there exists t1 ∈ [t0, T
∗[ such that873

∫ T∗

t1

Ad(t)

(

1 + log+

(

‖ω(t)‖∞
Ω(t)

))

dt < +∞,

then the solution u cannot blowup at the finite time T ∗ where874

Ad(t)
def
= sup

x∈Θ(t)

sup
y∈B(0,ρ(t))\{0}

Dd(ŷ, ξ(x + y, t), ξ(x, t))+

|y|

ρ(t) = O

(

(T ∗ − t)

(

1 + log+

(

‖ω(t)‖∞
Ω(t)

)))

.

Remark 7.2. Under the considerations of Remark 7.1, the non blow-up of the875

solutions of Euler equations is obtained if there exists t1 ∈ [t0, T
∗[ such that876

∫ T∗

t1

Ad(t)Ω(t)−
1
2 dt < +∞.

Now, in the case of Euler equations and 2D QG equations by using their877

Lagrangian formulation, after a fine and sharp analysis of the expression of π878

(37) we go further in the non blow-up criteria by showing in Proposition 7.2879

under mild assumptions based on the anisotropic structure of regions of high880

vorticity, that π(t) = O(1). For this purpose, we need the Lemmata 7.2, 7.3881

and 7.4.882

Lemma 7.2. Let d ∈ {2, 3}, u0 ∈ Hr
σ(Rd) with r >

d

2
+ 3. Let T ∗ > 0 be such883

that there exists a unique strong solution u to the 3D Navier-Stokes, 3D Euler884

equations (9)-(10) or 2D QG equations (11)-(12) in the class885

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−2(Rd)).

Let A0 be a smooth surface of R3 with boundary if d = 3 or a curve of R2 if886

d = 2. For any t0 ∈ [0, T ∗[, let A(t0, t)
def
= X(A0, t0, t) be the evolution of A0887

through the flow map X from the time t0 to t, for any t ∈ [0, T ∗[. For any888

t0 ∈ [0, T ∗[ and t ∈ [0, T ∗[, let889

Γ(t0, t)
def
=

∫

A(t0,t)

|ω(y, t) · nt(y)| dσ(y),

where nt(·) denotes a unit normal vector of A(t0, t).890

Then for any t0 ∈ [0, T ∗[ we get that Γ(t0, ·) is constant over [0, T ∗[, that is to891

say for all t ∈ [t0, T
∗[,892

Γ(t0, t) = Γ(t0, t0).

Proof. Thanks to Lemma 5 and Remark 3 of Schmidt and Schulz (2010) (see893

also (4.9) chapter 9 in Delfour and Zolésio (2011)) and Lemma 7 of Schmidt and Schulz894

(2010), we infer that for any t0 ∈ [0, T ∗[ and t ∈ [0, T ∗[895

∫

A(t0,t)

|ω(y, t) · nt(y)| dσ(y) =

∫

A0

|ω(X(α, t0, t), t) · (∇X(α, t0, t))
−T

n(α)| dσ(α),
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where n is a unit normal vector of A0. Thanks to (113), we infer that for any896

α ∈ A0, t0 ∈ [0, T ∗[ and t ∈ [0, T ∗[897

ω(X(α, t0, t), t) · (∇X(α, t0, t))
−T

n(α) = ω(α, t0) · n(α).

Therefore, we thus obtain that for any t0 ∈ [0, T ∗[ and t ∈ [0, T ∗[898

∫

A(t0,t)

|ω(y, t) · nt(y)| dσ(y) =

∫

A0

|ω(α, t0) · n(α)| dσ(α),

which concludes the proof.
899

Lemma 7.3. Let d ∈ {2, 3}, u0 ∈ Hr
σ(Rd) with r >

d

2
+ 3. Let T ∗ > 0 be such900

that there exists a unique strong solution u to the 3D Navier-Stokes, 3D Euler901

equations (9)-(10) or 2D QG equations (11)-(12) in the class902

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−2(Rd)).

Let t ∈ [0, T ∗[ and Tt a vortex tube at this time. Let At and Bt be two connected903

smooth orientable surfaces of R3 (resp. curves of R2 if d = 2) with boundary904

such their boundary encircle the vortex tube Tt and such that any vortex line of905

the vortex tube Tt intersects both At and Bt once each of them.906

Then we get907

∫

At

|ω(y, t) · nt(y)|dσ(y) =

∫

Bt

|ω(y, t) · ñt(y)|dσ̃(y),

where nt and ñt are respectively the unit normal vector varying smoothly on the908

surfaces (resp. curves if d = 2) At and Bt, oriented to be outward to the portion909

of the tube Tt delimited by At and Bt.910

Proof. For any x ∈ At, we denote by Tt(x) the vortex line passing through x911

at time t, we get Tt(x) ⊂ Tt and there exists an unique yx,t ∈ Bt such that912

Tt(x) ∩ Bt = {yx,t}. We thus introduce the function Φt defined from At to913

Bt for all x ∈ At by Φt(x) = yx,t. Since any vortex line of the vortex tube914

Tt intersects both At and Bt once each of them and since also At and Bt are915

smooth surfaces (smooth curves if d = 2), we infer thanks also to (115) that the916

function Φt is a homeomorphism from At to Bt.917

We introduce the pairwise disjoints subsets of At, namely A+
t

def
= {y ∈ At;ω(y, t)·918

nt(y) > 0}, A−
t

def
= {y ∈ At;ω(y, t) · nt(y) < 0} and A0

t
def
= {y ∈ At;ω(y, t) ·919

nt(y) = 0}. By the Sobolev embedding Hr−1(Rd) →֒ BCmr (Rd), mr =920

[r−1− d
2 ] ≥ 2, we get ω(t) ∈ BCmr (Rd). Then A+

t and A−
t are open subsets of921

the surface (curve if d = 2) At and thus they are also smooth surfaces (smooth922
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curves if d = 2). On one hand, we have923

∫

At

|ω(y, t) · nt(y)|dσ(y) =

∫

A+
t

|ω(y, t) · nt(y)|dσ(y) +

∫

A−

t

|ω(y, t) · nt(y)|dσ(y)

+

∫

A0
t

|ω(y, t) · nt(y)|dσ(y)

=

∫

A+
t

ω(y, t) · nt(y)dσ(y) −

∫

A−

t

ω(y, t) · nt(y)dσ(y),

(123)
where we have used the definition of the sets A+

t , A−
t and A0

t . Since Φt is a924

homeomorphism from At to Bt, we get that Φt(A
+
t ) ⊂ Bt, Φt(A

−
t ) ⊂ Bt and925

Φt(A
+
t ) ∩ Φt(A

−
t ) = ∅. On the other hand, thanks to Helmholtz’s first vortex926

Theorem (see e.g (Wu, 2018, chapter 2)), we have927

∫

A+
t

ω(y, t) · nt(y)dσ(y) = −

∫

Φt(A
+
t )

ω(y, t) · ñt(y)dσ̃(y), (124)

and928
∫

A−

t

ω(y, t) · nt(y)dσ(y) = −

∫

Φt(A
−

t )

ω(y, t) · ñt(y)dσ̃(y). (125)

Then owing to (124) and (125), from (123) we deduce929

∫

At

|ω(y, t) · nt(y)|dσ(y) = −

∫

Φt(A
+
t )

ω(y, t) · ñt(y)dσ̃(y)

+

∫

Φt(A
−

t )

ω(y, t) · ñt(y)dσ̃(y),

which implies930

∫

At

|ω(y, t) · nt(y)|dσ(y) ≤

∫

Bt

|ω(y, t) · ñt(y)|dσ̃(y). (126)

It remains to show that931

∫

Bt

|ω(y, t) · ñt(y)|dσ̃(y) ≤

∫

At

|ω(y, t) · nt(y)|dσ(y). (127)

By introducing the pairwise disjoints subsets of Bt, namely B+
t

def
= {y ∈ Bt;ω(y, t)·932

ñt(y) > 0}, B−
t

def
= {y ∈ Bt;ω(y, t) · ñt(y) < 0} and B0

t

def
= {y ∈ Bt;ω(y, t) ·933

ñt(y) = 0} and using the fact that Φ−1
t is a homeomorphism from Bt to At,934

we deduce with the same arguments used to get (126), inequality (127). Then,935

owing to (126) and (127) we conclude the proof.
936

Before to turn to the proof of Lemma 7.4, Proposition 7.2 and Theorem 7.2,937

we need to introduce some definitions. Let r > d
2 + 3 and T ∗ > 0 be such938
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that there exists an unique strong solution u to the 3D Navier-Stokes, 3D Euler939

equations (9)-(10) or 2D QG equations (11)-(12) in the class940

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−2(Rd)).

For any t ∈ [0, T ∗[ and any vortex tube Tt at time t, we define by941

S(Tt) the set of the connected smooth orientable surfaces of R3 (curves of R2
942

if d = 2) with boundary that is intersected only once by any vortex line of Tt943

and such that their boundary encircle the vortex tube Tt.944

We define also the function ΓTt
defined from S(Tt) to [0,+∞[ for all A ∈ S(Tt)945

by946

ΓTt
(A)

def
=

∫

A

|ω(y, t) · n(y)|dσ(y). (128)

Thanks to Lemma 7.3, we deduce that for any t ∈ [0, T ∗[ and any vortex tube947

Tt at time t948

ΓTt
is constant over S(Tt). (129)

Owing to (129), for any t ∈ [0, T ∗[ and any vortex tube Tt at time t, we define949

Γabs(Tt) that we call the absolute strength of the vortex tube Tt by950

Γabs(Tt)
def
= ΓTt

(A0), (130)

with A0 an arbitrary element of S(Tt). As vortex tube moves with the fluid951

characterized by the flow map X (thanks to Helmholtz’s first vortex Theorem),952

then for any vortex tube Tt at a time t ∈ [0, T ∗[, we deduce that X(Tt, t, τ) is953

a vortex tube at time τ for any τ ∈ [0, T ∗[.954

Thanks to Lemma 7.2, we infer that for any t ∈ [0, T ∗[ and any vortex tube Tt955

at time t,956

Γabs(Tt) = Γabs(X(Tt, t, τ)) for any τ ∈ [0, T ∗[, (131)

which means that the absolute strength of any vortex tube Tt at a time t ∈957

[0, T ∗[ moving with the fluid does not change with the time.
958

Lemma 7.4. Let d ∈ {2, 3}, u0 ∈ Hr
σ(Rd) with r >

d

2
+ 3. Let T ∗ > 0 be such959

that there exists a unique strong solution u to the 3D Navier-Stokes, 3D Euler960

equations (9)-(10) or 2D QG equations (11)-(12) in the class961

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−2(Rd)).

Let t ∈ [0, T ∗[ and Tt a vortex tube at time t defined by Tt
def
= {xt(α, s);α ∈962

At, s ∈ Jt} with At a connected smooth orientable surface of R3 (curve of R2 if963

d = 2) with boundary and Jt an interval of R containing 0 such that
964

• Jt ⊂
⋂

α∈At

Jα,t,

965

• any vortex line of the tube Tt intersects At only once, i.e966

∀β ∈ At, {xt(β, s); s ∈ Jβ,t} ∩ At = {β}. (132)
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Then we have967

∫

Tt

|ω(z, t)| dz = |Jt|Γabs(Tt).

Proof. If Jt = 0 then the result follows immediately. Therefore we assume that968

Jt 6= {0}. For any s ∈ Jt, we define the smooth surface of R3 (curve of R2 if969

d = 2) with boundary,970

At(s)
def
= {xt(α, s);α ∈ At}.

Due to the definition of the vortex tube Tt, we get that for any s ∈ Jt, the971

boundary of At(s) encircles the vortex tube Tt. Thanks to (114), we get972

∫

Tt

|ω(z, t)| dz =

∫

s∈Jt

∫

At(s)

|ω(y, t)| |nt(s) · ξ(y, t)| dσ(α)ds,

where nt(s) is a unit normal vector of At(s). Since ω(y, t) = |ω(y, t)|ξ(y, t) then973

we obtain974

∫

Tt

|ω(z, t)| dz =

∫

s∈Jt

∫

At(s)

|ω(y, t) · nt(s)| dσ(α)ds

=

∫

s∈Jt

ΓTt
(At(s)) ds.

(133)

We show now that for any s0 ∈ Jt, any vortex line of the vortex tube Tt975

intersects At(s0) only once. For this purpose, let α1 ∈ At(s0). Thanks to976

Cauchy-Lipschitz Theorem (see e.g Theorem 2.2 in Teschl (2012)) used for (114),977

we deduce that there exists an unique β1 ∈ At such that α1 = xt(β1, s0).978

Suppose for a contradiction that979

{xt(β1, s); s ∈ Jβ1,t} ∩ At(s0) 6= {α1}.

Then there exists α2 6= α1 such that α2 ∈ {xt(β1, s); s ∈ Jβ1,t}∩At(s0). There-980

fore we get that α2 = xt(β1, s2) with s2 ∈ Jβ1,t, s2 6= s0 since α2 6= α1. We981

get also that there exists an unique β2 ∈ At such that α2 = xt(β2, s0) where982

β2 6= β1 since α2 6= α1. We thus infer that983

xt(β1, s2) = xt(β2, s0). (134)

By the maximality of xt, from (134) we infer that s2 − s0 ∈ Jβ1,t and β2 =984

xt(β1, s2 − s0) which implies {β1, β2} ⊂ {xt(β1, s); s ∈ Jβ1,t} ∩ At. This latter985

contradicts (132). Therefore, we deduce that986

{xt(β1, s); s ∈ Jβ1,t} ∩ At(s0) = {α1}.

This means that the vortex line of the vortex tube Tt passing through α1 ∈987

At(s0) intersects At(s0) only once, which matches to our desired result. Then988

we get that for any s ∈ Jt, At(s) ∈ S(Tt) and hence thanks to (129) and (130),989

from (133) we obtain

∫

Tt

|ω(z, t)| dz = |Jt|Γabs(Tt). Then we conclude the990

proof.
991
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Proposition 7.2. Let d ∈ {2, 3}, u0 ∈ Hr
σ(Rd) with r >

d

2
+ 3. Let T ∗ > 0 be992

such that there exists a unique strong solution u to the 3D Navier-Stokes, 3D993

Euler equations (9)-(10) or 2D QG equations (11)-(12) in the class994

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−2(Rd)).

Under the definitions (32)-(37) in the Theorem 5.1, we assume that there exists995

t0 ∈ [0, T ∗[ such that for any t ∈ [t0, T
∗[, x ∈ Θ(t) and 0 < R ≤ ρ0(t) there996

exists a vortex tube TR
x,t defined by TR

x,t

def
= {xt(α, s);α ∈ AR

x,t, s ∈ IR
x,t} with997

AR
x,t a connected smooth orientable surface of R3 (curve of R2 if d = 2) and IR

x,t998

an interval of R containing 0 such that:
999

(P1) V(t) ∩B(x,R) ⊂ TR
x,t.1000

(P2) any vortex line of the tube TR
x,t intersects AR

x,t only once.
1001

(P3) |IR
x,t| . R

1002

(P4) Γabs(T
R
x,t) . υ(t0)R

d−2 where υ(t0) > 0 is a real which depend only on1003

t0 (and have the characteristic of a velocity).
1004

Then we get that for all t ∈ [t0, T
∗[1005

π(t) . υ(t0).

Proof. Let t ∈ [t0, T
∗[, x ∈ Θ(t) and 0 < R ≤ ρ0(t). Thanks to property (P1)1006

we have1007
∫

B(x,R)∩V(t)

|ω(z, t)| dz ≤

∫

TR
x,t

|ω(z, t)| dz. (135)

Furthermore, thanks to property (P2) and Lemma 7.4 we get1008

∫

TR
x,t

|ω(z, t)| dz = |IR
x,t|Γabs(T

R
x,t). (136)

Thanks to the properties (P3) and (P4), from (136) we deduce1009

∫

TR
x,t

|ω(z, t)| dz . Rd−1
υ(t0). (137)

Owing to (137), from (135) we infer1010

∫

B(x,R)∩V(t)

|ω(z, t)| dz . Rd−1
υ(t0). (138)

From the definition (37) of the function π, thanks to (138) we thus deduce that1011

for all t ∈ [t0, T
∗[1012

π(t) . υ(t0),

which concludes the proof.
1013
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In the two following Remarks, we give explicit values for υ(t0).1014

Remark 7.3. In the case of 2D QG equation for which d = 2, we have that for1015

all t ∈ [t0, T
∗[,1016

π(t) . ‖u0‖∞,

if we replace the hypothesis (P4) by the assumption that the real-valued function1017

ω(·, t) · n keeps a constant sign over AR
x,t, where n is a unit normal vector1018

varying smoothly on AR
x,t.1019

Indeed in this case, we get
∫

AR
x,t

|ω(α, t) · n(α)| dα =
∣

∣

∣

∫

AR
x,t
ω(α, t) · n(α) dα

∣

∣

∣
1020

and furthermore thanks to Stokes Theorem we have
∫

AR
x,t
ω(α, t) · n(α) dα =1021

u(α2, t) − u(α1, t) where α2 and α1 are the two endpoints of the line segment1022

AR
x,t. We thus infer

∫

AR
x,t

|ω(α, t) · n(α)| dα ≤ 2‖u(t)‖∞ = 2‖u0‖∞ thanks to1023

(22) and then we take υ(t0) = ‖u0‖∞. Then with the properties (P1)-(P3), we1024

thus obtain that for all t ∈ [t0, T
∗[, π(t) . ‖u0‖∞.

1025

Remark 7.4. For any t ∈ [t0, T
∗[, x ∈ Θ(t) and 0 < R ≤ ρ0(t) let us assume1026

that there exists t1 ∈ [0, t0] depending on t, x and R such that for the vortex tube1027

TR
x,t1

def
= X(TR

x,t, t, t1) at time t1 we have1028

inf
A∈S(TR

x,t1
)
|A| . Rd−2,

then Property (P4) holds with υ(t0) = ‖ω‖L∞(Rd×[0,t0]). Indeed thanks to (131)1029

we have1030

Γabs(T
R
x,t) = Γabs(T

R
x,t1

).

Furthermore, thanks to (129) and (130), we deduce that1031

Γabs(T
R
x,t1

) = inf
A∈S(TR

x,t1
)

∫

A

|ω(y, t1) · n(y)|dσ(y)

≤ ‖ω(t1)‖∞ inf
A∈S(TR

x,t1
)
|A|

. ‖ω‖L∞(Rd×[0,t0])R
d−2.

Therefore, we deduce that Γabs(T
R
x,t) . ‖ω‖L∞(Rd×[0,t0])R

d−2 which matches1032

with Property (P4) for υ(t0) = ‖ω‖L∞(Rd×[0,t0]).1033

Then thanks to Theorem 5.1 and Proposition 7.2 we deduce Theorem 7.2.
1034

Theorem 7.2. Let d ∈ {2, 3}, u0 ∈ Hr
σ(Rd) with r >

d

2
+ 3. Let T ∗ > 0 be1035

such that there exists a unique strong solution u to the 3D Navier-Stokes, 3D1036

Euler equations (9)-(10) or 2D QG equations (11)-(12) in the class1037

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−2(Rd)).
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Under the definitions (32)-(36) in the Theorem 5.1, we assume that there exists1038

t0 ∈ [0, T ∗[ such that for any t ∈ [t0, T
∗[, x ∈ Θ(t) and 0 < R ≤ ρ0(t) there1039

exists a vortex tube TR
x,t defined by TR

x,t

def
= {xt(α, s);α ∈ AR

x,t, s ∈ IR
x,t} with1040

AR
x,t a connected smooth orientable surface of R3 (curve of R2 if d = 2) and IR

x,t1041

an interval of R containing 0 such that:
1042

(P1) V(t) ∩B(x,R) ⊂ TR
x,t.1043

(P2) |IR
x,t| . R

1044

(P3) any vortex line of the tube TR
x,t intersects AR

x,t only once.
1045

(P4) Γabs(T
R
x,t) . υ(t0)R

d−2 where υ(t0) > 0 is a real depending only on t01046

(and have the characteristic of a velocity).
1047

Then if there exists t1 ∈ [t0, T
∗[ such that1048

∫ T∗

t1

Ad(t) dt < +∞,

then the solution u cannot blowup at the finite time T ∗ with1049

Ad(t)
def
= sup

x∈Θ(t)

sup
y∈B(0,ρ(t))\{0}

Dd(ŷ, ξ(x + y, t), ξ(x, t))+

|y|

ρ(t) = O((T ∗ − t)υ(t0)).
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1998.1209

47



R. M. Kerr. Euler singularities and turbulence. In 19th ICTAM Kyoto ’96,1210

Elsevier Science, 1997.
1211

E. A. Kuznetsov and V. P. Ruban. Collapse of vortex lines in hydrodynamics.1212

J. Exp. Theor. Phys., 91(4):775–785, 2000.
1213

E. A. Kuznetsov, O. M. Podvigina, and V. A. Zheligovsky. Numerical evidence1214

of breaking of vortex lines in an ideal fluid. In K. Bajer and H. K. Moffatt,1215

editors, Tubes, Sheets and Singularities in Fluid Dynamics, pages 305–316.1216

NATO ARW, Kluwer Academic Publishers, 2001.
1217

D. S. Agafontsev, E. A. Kuznetsov, and A. A. Mailybaev. Development of high1218

vorticity structures in incompressible 3d euler equations. Phys. Fluids, 271219

(085102), 2015.
1220

D. S. Agafontsev, E. A. Kuznetsov, and A. A. Mailybaev. Asymptotic solution1221

for high-vorticity regions in incompressible three-dimensional euler equations.1222

J. Fluid Mech., 813, 2017.
1223

T. Grafke and R. Grauer. Finite-time euler singularities: A lagrangian perspec-1224

tive. Appl. Math. Lett., 26:500–505, 2013.
1225

E. Stein. Singular Integrals and Differentiability Properties of Functions. Prince-1226

ton NJ: Princeton University Press, 1970.
1227

T. Kato and G. Ponce. Commutator estimates and the euler and navier-stokes1228

equa- tions. Commun. Pure Appl. Math., 41(7):891–907, 1988.
1229

J.P Bourguignon and H. Brezis. Remarks on the euler equation. J. Funct. Anal.,1230

15:341–363, 1974.
1231

T. Kato and G. Ponce. Well-posedness of the euler and navier-stokes equations1232

in the lebesgue spaces lps(r2). Rev. Mat. Iberoam., 2:73–88, 1986.
1233

H. Kozono and Y. Taniuchi. Bilinear estimates and critical sobolev inequality1234

in bmo, with applications to the navier-stokes and the euler equations. RIMS1235

Kokyuroku, 1146:39–52, 2000.
1236
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