
HAL Id: hal-01380349
https://hal.science/hal-01380349v3

Preprint submitted on 31 Aug 2017 (v3), last revised 22 Jan 2019 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some advances on the geometric non blow-up criteria of
incompressible flows

Léo Agélas

To cite this version:
Léo Agélas. Some advances on the geometric non blow-up criteria of incompressible flows. 2017.
�hal-01380349v3�

https://hal.science/hal-01380349v3
https://hal.archives-ouvertes.fr


Some advances on the geometric non blow-up criteria of

incompressible flows

Léo Agélas
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Abstract

One of the most challenging questions in fluid dynamics is whether the three-
dimensional (3D) incompressible Navier-Stokes, Euler and two-dimensional Quasi-
Geostrophic (2D QG) equations can develop a finite-time singularity from smooth
initial data. Recently, from a numerical point of view, Luo & Hou presented a
class of potentially singular solutions to the Euler equations in a fluid with solid
boundary [70, 71]. Furthermore, in two recent papers [85, 86], Tao indicates
a significant barrier to establishing global regularity for the three-dimensional
Euler and Navier-Stokes equations, in that any method for achieving this must
use the finer geometric structure of these equations. In this paper, we show
that the singularity discovered by Luo & Hou which lies right on the boundary
is not relevant in the case of the whole domain R

3. We reveal also that the
translation and rotation invariance present in the Euler, Navier-Stokes and 2D
QG equations and not shared by the averaged Navier-Stokes and generalised
Euler equations introduced respectively in [85, 86], is the key for the non blow-
up in finite time of the solutions. The translation and rotation invariance of
these equations which characterize their special geometric structures allowed
to establish a new geometric non blow-up criterion and to improve greatly the
Beale-Kato-Madja regularity criterion.

Keywords: 3D Euler equations; 3D Navier-Stokes equations; 2D
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Introduction

One of the most challenging questions in fluid dynamics is whether the in-
compressible 3D Navier-Stokes, Euler or 2D QG equations can develop a finite
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time singularity from smooth and bounded initial data. We know already that
the blow up of smooth solutions to the Navier-Stokes and Euler equations is5

controlled by the time integral of the maximum magnitude of the vorticity (see
[3, 54, 15], see also [12]). The Navier-Stokes and Euler equations describe the
motion of a fluid in the three-dimensional space. These fundamental equations
were derived over 250 years ago by Euler and since then have played a major role
in fluid dynamics. They have enriched many branches of mathematics, were in-10

volved in many areas outside mathematical activity from weather prediction to
exploding supernova (see for instance the surveys [20],[2]) and present important
open physical and mathematical problems (see [20]). Regarding the 2D Quasi-
Geostrophic (2D QG) equation, it appears in atmospheric studies. It describes
the evolution of potential temperature u on the two dimensional boundary of a15

rapidly rotating half space with small Rossby and Ekman numbers, for the case
of special solutions with constant potential vorticity in the interior and constant
buoyancy frequency (normalized to one), where equations in the bulk are com-
pressible Euler or Navier-Stokes equations coupled with temperature equation,
continuity equation, and equation of state.20

In the case of Navier-Stokes equations, for a long time ago, a global weak
solution u ∈ L∞(0,∞;L2(R3))3 and ∇u ∈ L2(R3 × (0,∞))3 was built by Leray
[65]. In particular, Leray introduced a notion of weak solutions for the Navier-
Stokes equations, and proved that, for every given u0 ∈ L2(R3)3, there exists a25

global weak solution u ∈ L∞([0,+∞[;L2(R3))3∩L2([0,∞[; Ḣ1(R3))3. Hopf has
proved the existence of a global weak solution in the general case R

d, d ≥ 2, [44].
Several ways are known to construct weak solutions ([32], [43], [33]), and mean-
while the regularity and the uniqueness of this weak solution has been known
for a long time ago for the two-dimensional case (see [64], [66], [68], [84]), in30

the three-dimensional case the problem remains widely open in spite of great
efforts made. On the uniqueness many works have been done (see [31],[36],
[72],[67],[34]). Concerning the regularity of weak solutions, in [80], it is proved
that if u is a Leray-Hopf weak solution belonging to Lq(]0, T ];Lq(R3))3 with
2
q + 3

q ≤ 1, 2 < p < ∞, 3 < q < ∞ , then the solution u ∈ C∞(R3×]0, T ])3. In35

[89] and [37], it is showed that if u is a weak solution in C([0, T ];L3(R3))3, then
u ∈ C∞(R3×]0, T ])3. The limit case of L∞([0, T ];L3(R3))3 has been solved in
[48]. Other criterion regularity can be found in [41, 43, 36, 51, 52, 4, 10, 92, 17].

In the case of Euler Equations, in the two dimension case, uniqueness and40

existence of classical solutions have been known for a long time ago (see [90,
91, 88, 29, 64]). However for the full three space dimensions, little is known
about smooth solutions apart from classical short-time existence and uniqueness.
Moreover, weak solutions are known to be badly behaved from the point of view
of Hadamard’s well-posedness theory (see for instance the surveys [28, 87]). Fur-45

ther, from the notion of weak solutions to the Euler equations introduced in [69]
called dissipative solutions, it was proven that they coincide with classical Eu-
ler solutions, when those exist. Zero-viscosity limits of Navier-Stokes equations
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have been shown to exist and to give Euler solutions in some more generalized
sense known as measure-valued Euler solutions (see [29]). Considerable efforts50

have also been devoted to the study of the regularity properties of the 3D Euler
equations. The main difficulty in the analysis lies in the presence of the nonlin-
ear vortex stretching term and the lack of a regularization mechanism. Despite
these difficulties, a few important partial results [3, 77, 30, 83, 18, 25, 35] have
been obtained over the years which have led to improved understanding of the55

regularity properties of the 3D Euler.

In the case of 2D QG equation, besides its direct physical significance [42, 74],
the 2D QG equation has very interesting features of resemblance to the 3D Euler
equation, being also an outstanding open problem of the finite time blow-up60

issue. In particular, one can derive a necessary and sufficient blow-up condition
for the 2D QG equation similar to the well-known Beale-Kato-Majda (BKM)
criterion (Beale-Kato-Majda [3]). More precisely, the solution to the 2D QG

equation (5) becomes singular at time T ∗ if and only if

∫ T∗

0

‖∇⊥u(t)‖L∞ dt =

+∞ (see [15]). Thus, ∇⊥u plays a role similar to the vorticity ω in the 3D Euler65

equations.
In the recent years, the 2D QG equation has been the focus of intense math-

ematical research [15, 22, 24, 11, 73, 21, 14], initiated by Constantin, Majda
and Tabak [15]. These latter showed that if the direction field ξ = ∇⊥u/|∇⊥u|
and the velocity v remain smooth in a region, then no finite-time singularity is70

possible in that region. A scenario for finite time blow up, a closing saddle, was
proposed and numerically investigated there. It was later proved by Cordoba
[22] that blow up does not happen in this scenario.

Besides the analytical results mentioned above, there also exists a sizable lit-75

erature focusing on the numerical search of a finite-time singularity for the 3D
Euler equations and 2D QG equation (see [40, 79, 9, 55, 56, 57, 58, 59, 60, 62,
75, 76, 15, 19, 21]). Although finite-time singularities were frequently reported
in numerical simulations of the Euler equations, most such singularities turned
out to be either numerical artefacts or false predictions, as a result of either80

insufficient resolution or inadvertent data analysis procedure (see [81, 45, 47]).

Recently, it was shown also in [85], a finite time blow up solution to an av-
eraged three-dimensional Navier-Stokes equations of type ∂tu = ∆u + B̃(u, u),
where B̃ is an averaged version of the Euler bilinear operator B, acting also on85

divergence free vector fields u and obeying as B to the cancellation property
〈B̃(u, u), u〉 = 0. This result suggests that any successful method to affirma-
tively answer to the Existence and Smoothness problem must either use finer
structure of B or else must rely crucially on some estimate or other property of
the Euler bilinear operator B that is not shared by the averaged operator B̃.90

Such additional structure exists for instance, the Euler equation has a vorticity
formulation involving only differential operators rather than pseudo-differential
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ones.
However, even this vorticity formulation is not a barrier to get a finite time

blow up solution. Indeed, it was shown in [86], finite time blowup solutions95

to the generalised Euler equations sharing with the Euler equation its main
features such as:

• vorticity formulation,

• energy conservation,

• Kelvin circulation theorem,
100

• vorticity-vector potential formulation viewed as the Generalised Biot-Savart,

• function space estimates for the vector potential operator.

Then, it seems that there is no room left to establish global regularity of solu-
tions of 3D Euler equations. However, as it is mentioned in [86], there are two
properties of the Euler equations which are not obeyed by the generalised Euler
equations, namely translation invariance and rotation invariance.
Further, these symmetries basically determined the usual Biot-Savart law. In-
deed, in the theory of gauge fields for which gauge principle is applied to a
free-field Lagrangian, requiring it to have a symmetry, i.e. the gauge invari-
ance, the Euler equations are characterized by two relevant symmetry gauge
groups: a translation group and a rotation group. Indeed, Hamilton’s principle
together with isentropic material variations, gauge principle and the gauge-
covariant derivative ∇tv := Dtv + Ωv, with Ω a gauge field, lead to the Euler
equations of motion (see [49, 50]). The form of the gauge-covariant derivative
∇tv is deduced on the basis of the gauge principle by requiring it to be in-
variant with respect to Galilei and translational transformations, which yields
to Dtv = ∂tv + 1

2∇|v|2 and invariant with respect to rotational transforma-

tion SO(3) which yields to Ωv = Ω̂ × v where Ω̂ = ∇ × v (see [49, 50] for

more details). We thus obtain that the vorticity ω
def
= ∇× v is the gauge field

with respect to the gauge group SO(3). By taking the rotational of Equation
ω = ∇×v and by using the fact that ∇·v = 0, we derive the usual Biot-Savart
law, namely v = (−∆)−1∇× ω.
Thus, the special geometric structures of the Biot-Savart law are not shared
by the Generalised Euler equations introduced in [86]. Then, in this paper, we
exploit the special geometric structures of the Biot-Savart law to give strong
arguments in favour of a non blow-up in finite time of the 3D Euler, 3D Navier-
Stokes and 2D QG equations. Indeed, as it was shown in [16, 17], the use
of Biot-Savart law leads to rewrite the vorticity equation in the case of Euler
(ν = 0) and Navier-Stokes (ν > 0) equations as follows:

∂tω + (v · ∇)ω − ν∆ω = αω, (1)

where

α(x, t) =
3

4π
P.V.

∫

R3

(ŷ · ξ(x, t))det(ŷ, ξ(x+ y, t), ξ(x, t))|ω(x + y, t)|
dy

|y|3
, (2)
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with ŷ =
y

|y|
, ξ =

ω

|ω|
and det(a, b, c) is the determinant of the matrix with

columns a, b, c in that order. We thus notice from the expression of α that if
the direction of the vorticity, ξ varies mildly within a small region around x,105

then the singularity of the integrand in 2 will be mild. In this direction, some
studies indicate that the geometric regularity of the direction of vorticity can
lead to dynamic depletion of vortex stretching [17, 5, 6, 16, 18, 25, 27, 46, 26].
In particular, the recent results obtained in [25, 27, 46, 26] show that geometric
regularity of vortex lines, even in an extremely localized region containing the110

maximum vorticity can lead to depletion of nonlinear stretching, thus avoiding
finite time singularity formation of the 3D Euler equations or 2D QG equation.

But recently, a convincing numerical evidence for a singular solution to the
Euler equations has been found in a fluid with periodic boundary condition115

along the axial direction and no-flow boundary condition on the solid wall [71]
(see also [70]), for which the point of the potential singularity, which is also
the point of the maximum vorticity, is always located at the solid boundary.
We show however in this paper that such singularity can not exist in the whole
domain R

3. Indeed, in the whole domain of R
3 at any point of the maximum120

vorticity, q0 ∈ R
3, we get ∇|ω|(q0, t) = 0 for any time t before the alleged time

of singularity T ∗, then this result combined with the fact that the vorticity ω
is a divergence-free vector field, yields to ∇ · ξ(q0, t) = 0. However in [71], the
presence of a solid boundary and the fact that q0 the point of the maximum
vorticity is always located on the solid boundary, prevent to get ∇|ω|(q0, t) = 0125

and this allows to get ∇ · ξ(q0, t) ∼ (T ∗ − t)−2.9165 6= 0 as it is observed in their
numerical test. This latter is the main element used to invalidate the Deng-
Hou-Yu non-blowup criterion [25, 27].

Thus, in this paper, we reveal strong depletion in the nonlinear vortex130

stretching term αω appearing in the vorticity equation (1) by using both the
special geometric structures of the Biot-Savart law characterized by α (2) and
the fact that at the position of maximum of vorticity in R

3, q0 for a given time
t < T ∗, we get necessarily ∇|ω|(q0, t) = 0 and ∇ · ξ(q0, t) = 0. In this paper, we
establish new geometric criteria for non blow-up in finite time of the solutions135

of Navier-Stokes, Euler and 2D QG equations based on the regularity of the
direction of the vorticity ξ in regions containing the positions where the maxi-
mum of the magnitude of the vorticity is reached and shrinking to zero as time
tends to some T ∗ the alleged time of singularity.
Through our Theorem 4.1, we derive a regularity criterion which appears less140

restrictive than the Beale-Kato-Madja (BKM) regularity criterion type. This
regularity criterion may stand as great a improvement over the usual BKM reg-

ularity criterion which states that if

∫ T

0

‖ω(t)‖∞dt < +∞ then the solution

u ∈ C([0, T [;Hr(Rd)) with r > d
2 + 3 remains in Hr(Rd) up to time T . To get

these results, we had to overcome the obstruction that we do not know if there145

exists an isolated absolute maximum for the vorticity achieved along a smooth
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curve in time as it was assumed in Proposition 2.1 of [15] and also in [25, 27, 26]
(which assume that the position where the maximum of vorticity is reached, is
advected with the flow). Moreover, recent numerical experiments show that it
is not always the case (see [61], see also section 5.4.5 in [38]). We thus overcome150

this difficulty by using a result of Pshenichnyi concerning directional derivatives
of the function of maximum and the structure of a set of supporting functionals
[78].
Our geometric non blow-up criterion reveals the role of the geometric structures
of the Incompressible flows in the non blow-up in finite time of the solutions155

and presents the advantage to be established in an Eulerian setting in compar-
ison with all the recent geometric non blow-up criteria [18, 25, 27, 15] using
the Lagrangian formulation of Incompressible Inviscid Flows, which requires
much more computational effort as it is mentioned in [39] and in section 5.4.5
of [38]. Furthermore, due to the existence of hyperbolic-saddle singularities160

suggested by the generation of strong fronts in geophysical/meteorology obser-
vations (see [15, 22]), and antiparallel vortex line pairing observed in numerical
simulations and physical experiments, it was important to take them into ac-
count in our geometric non blow-up criterion. This is performed thanks to the
term Dd(ŷ, ξ(x + y, t), ξ(x, t)) (see (20),(21)) involved in the definition of the165

function Bd given at (62).
Then, the paper is organized as follows:

• In section 1 , we give some notations and definitions.

• In section 2, we recall some results about the local regularity of solutions
of Navier-Stokes, Euler and 2D QG equations.

170

• In section 3, we give the reason for which we can assume for any time t
that ‖ω(t)‖∞ > 0 without loss of generality.

• In section 4, through Theorem 4.1 deduced from Proposition 4.1, we estab-
lish a new geometric criterion for the non blow-up in finite time of the solu-
tions of 3D Navier-Stokes, 3D Euler and 2D QG equations. We show under175

a very weak assumption H (emphasized in the section 5) that their solu-

tions cannot blow up at a finite time T ∗ if

∫ T∗

0

Bd(t)‖ω(t)‖∞dt < +∞,

where Bd is smaller than one and is based on the regularity of the direc-
tion of the vorticity ξ in regions shrinking to zero as time tends to T ∗

and containing the positions where the maximum of the magnitude of the180

vorticity is reached (see definition of Bd at (62) using (20) and (21)).

• In section 5, through Lemma 5.1 we show that hypothesis H appearing in
the statement of Theorem 4.1 is a very weak assumption. Then, thanks
to Theorem 4.1 and Lemma 5.1, in Corollary 5.1 we release our geometric
criterion for the non blow-up in finite time of the solutions of 3D Navier-185

Stokes, 3D Euler and 2D QG equations. Then, we give some examples of
non blow-up in finite time of the solutions of 3D Navier-Stokes, 3D Euler
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and 2D QG equations by considering the most plausible blow-up rates for
‖ω(t)‖∞, ‖u(t)‖∞ and ‖∇ξ(t)‖∞.

Let us now introduce the 3D Navier-Stokes and Euler equations given by,

{

∂u

∂t
+ (u · ∇)u+ ∇p− ν∆u = 0,

∇ · u = 0,
(3)

in which u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) ∈ R
3, p = p(x, t) ∈ R and

ν ≥ 0 (ν = 0 corresponds to the Euler equations) denote respectively the
unknown velocity field, the scalar pressure function of the fluid at the point
(x, t) ∈ R

3 × [0,∞[ and the viscosity of the fluid,

with initial conditions,

u(x, 0) = u0(x) for a.e x ∈ R
3, (4)

where the initial data u0 is a divergence free vector field on R
3.190

Regarding the 2D QG equation (5) in R
2, it is given by







∂u

∂t
+ v · ∇u = 0,

v = −∇⊥(−∆)−
1
2u,

(5)

with initial data,
u(x, 0) = u0. (6)

Here ∇⊥ = (−∂x2 , ∂x1). For v we have also the following representation

v = −R⊥u, (7)

where we have used the notation, R⊥u = (−R2u,R1u) with Rj , j = 1, 2, for the
2D Riesz transform defined by (see e.g. [82])

Rj(u)(x, t) =
1

2π
P.V

∫

R2

(xj − yj)

|x− y|3
u(y, t) dy.

1. Some notations and definitions

In this section, we assume that d ∈ N, d ≥ 2.195

For any vector x = (x1, x2, ..., xd) ∈ R
d, we denote by |x| the euclidean norm

of x given by |x| =

√

√

√

√

d
∑

i=1

|xi|2. For any subset A of R
d, we denote by |A| its

d−dimensional measure. We denote by M(Rd) the set of real square matrices
of size d. We denote by Id the identity matrix of M(Rd). For any vector field
v defined from R

d to R
d, we denote by ∇v the gradient matrix of v, the matrix200
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of M(Rd) with ij−component,
∂vi

∂xj
for all 1 ≤ i, j ≤ d. For any real a, we

denote by a+ the real defined by a+ def
= max(a, 0). For any function ϕ defined

on R
d × [0,+∞[, for all t ≥ 0, we denote by ϕ(t) the function defined on R

d

by x 7−→ ϕ(x, t). We denote by C∞
c (Rd) the space of infinitely differentiable

functions with compact support in R
d. We denote by BC the class of bounded205

and continuous functions and by BCm the class of bounded and m times con-
tinuously derivable functions.
For any R > 0 and x0 ∈ R

d, we denote by B(x0, R), the ball of R
d of center x0

and radius R. For any R > 0, we denote by BR, the ball of R
d of center 0 and

radius R.210

We denote by div the differential operator given by, div =
d
∑

i=1

∂

∂xi
.

We denote A . D, the estimate A ≤ cD where c > 0 is an absolute constant.
For any f ∈ Lp(Rd) (resp. Lp(Rd)d or Lp(Rd)d×d) with 1 ≤ p ≤ +∞, we denote
by ‖f‖p and ‖f‖Lp, the Lp−norm of f .

We denote by Hs(Rd) the Sobolev space J−sL2(Rd) where J = (1 − ∆)
1
2 . We215

denote by Hs
σ(R3) the Sobolev space Hs

σ(R3)
def
= {ψ ∈ Hs(R3)3 : divψ = 0}. In

order to unify our notations with the two dimensional case 2D QG, we denote
by Hs

σ(R2) the Sobolev space Hs(R2).
We denote by P the well-known 3D matrix Leray’s projection operator with

components,
220

Pi,j = δi,j −
∂

∂xi

∂

∂xj
∆−1 = δi,j −RjRk, (8)

where Rj are the Riesz transform given by Rj = ∂
∂xj

(−∆)−
1
2 =

1

4π

xj

|x|4
⋆ (see

[82] for more details), ∆−1 is the inverse of Laplace operator given by ∆−1 =

−
1

4π|x|
⋆ , with ⋆ the convolution operator.

2. Local regularity of solution of 3D Navier-Stokes, Euler and 2D QG

equations
225

In this section, we deal with the main result on local regularity of 3D Navier-
Stokes and Euler equations in its general form. By introducing P the matrix
Leray operator, Euler equations (3)-(4) can be re-written as follows,

∂u

∂t
+ P(u · ∇)u = 0, (9)

with initial conditions,
u(0) = u0. (10)

8



For u solution of (9)-(10), ω = ∇ × u the vorticity of u formally satisfies the
vorticity equation,

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u − ν∆ω = 0, (11)

with initial conditions,

ω(0) = ω0,

where ω0 = ∇× u0 is the vorticity of u0.
In the case of 2D QG equation, we get for u solution of (5), ω = ∇⊥u the
vorticity of u formally satisfies the vorticity equation,

∂ω

∂t
+ (v · ∇)ω − (ω · ∇)v = 0, (12)

with initial conditions,

ω(0) = ω0,

where ω0 = ∇⊥u0 is the vorticity of u0.

In the region where |ω| > 0, we define ξ the direction of the vorticity by ξ =
ω

|ω|
.

2.1. Local regularity for 3D Navier-Stokes or 3D Euler equations
230

Assuming u0 ∈ Hr
σ(R3) with r >

5

2
, thanks to Theorem 3.5 in [54], Theorem

1 in [8] (see also Theorem I in [53] and the results obtained in [3]), we deduce that
there exists a time T > 0 such that there exists an unique strong solution u ∈
C([0, T [, Hr

σ(R3))∩C1([0, T [, Hr−2
σ (R3)) to the Navier-Stokes or Euler equations

(9)-(10) and the energy equality holds for u, that means for all t ∈ [0, T [,

‖u(t)‖2 + 2ν

∫ t

0

‖∇u(s)‖2
2 ds = ‖u0‖2. (13)

Moreover, if u 6∈ C([0, T ], Hr
σ(R3)), then we get (see [3, 54, 63]),

∫ T

0

‖ω(t)‖∞dt = +∞. (14)

Notice thanks to Remark 3.7 in [54], in the case of Euler equations, we get in
addition that u ∈ C1([0, T [, Hr−1

σ (R3)). We retrieve the pressure p from the
velocity u with the formula,

p = −∆−1div((u · ∇)u).

Furthermore, we get the local estimate (15). Indeed, thanks to remark 4.4 in
[54], we get

‖u(t)‖Hr ≤
‖u(t0)‖Hr

1 − c‖u(t0)‖Hr (t− t0)
with t0 < t < T, (15)

provided that 1 − c‖u(t0)‖Hr (t− t0) > 0, where c > 0 is a constant.

9



2.2. Local regularity for 2D QG equation
235

This subsection is devoted to the local well-posedness of the 2D QG equation
with a characterization of the maximal time existence of strong solutions. By
using the same arguments as the proof of Proposition 4.2 in [1], we get that the
Hs−norm of u is controlled by the integral in time of the maximum magnitude
of the vorticity of u. A such Proposition has been proved in [15] for any integer240

s ≥ 3, but here we extend this result to all real s > 2. This improvement is
obtained by using the logarithmic Sobolev inequality proved in [63, 54] which
requires only that s > 2 instead of using the one proved in [3] as it is the case
in [15] and which requires integer s ≥ 3. Then by using the same arguments
as the proof of Proposition 4.3 in [1], we get the following result which gives an245

improvement in comparison with Theorem 2.1 in [15]:
Assuming u0 ∈ Hr(R2) with r > 2, we get that there exists a time T > 0

such that there exists an unique strong solution u ∈ C([0, T [, Hr(R2)) to the
2D QG equation (5)-(6) and the energy equality holds for u, that means for all
p ∈ [2,∞] and t ∈ [0, T [,

‖u(t)‖p = ‖u0‖p. (16)

Moreover, if u 6∈ C([0, T ], Hr(R2)), then

∫ T

0

‖ω(t)‖L∞dt = +∞. (17)

Owing to u ∈ C([0, T [, Hr(R2)) and thanks to Lemma X4 in [54], from 2D QG
(5), we get u ∈ C1([0, T [, Hr−1(R2)).
Similarly as in (15), we have

‖u(t)‖Hr ≤
‖u(t0)‖Hr

1 − c‖u(t0)‖Hr (t− t0)
for t0 < t < T, (18)

provided that 1 − c‖u(t0)‖Hr (t− t0) > 0, where c > 0 is a constant.

3. Assumption on the maximum vorticity without loss of generality

Let d ∈ {2, 3}, r >
d

2
+ 1 and u0 ∈ Hr

σ(Rd). Let T ∗ > 0 be such that there

exists a unique strong solution u to the 3D Navier-Stokes, 3D Euler or 2D QG250

equations (3)-(4) in the class

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−2(Rd)).

Thanks to the results of the section 2, a such time T ∗ exists.
In this paper, we are concerned with the non blowup in finite time of the solu-
tions u at times such T ∗. Then, without loss of generality, in the whole of this
paper, we consider only times of existence T ∗ such that for all t ∈ [0, T ∗[,

‖ω(t)‖∞ > 0. (19)
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Indeed, let us assume that there exists t0 ∈ [0, T ∗[ such that ‖ω(t0)‖∞ = 0.
In the case of 2D QG equations (5), we get that ω(t0) ≡ 0 and then ∇u(t0) ≡ 0.
Since x 7→ u(t0, x) vanishes at infinity, then we get u(t0) ≡ 0. Then by using
inequality (18) concerning the local regularity, we deduce that u(t) ≡ 0 for all255

t ∈ [t0, T
∗[ and no blowup can occur at the time T ∗.

In the case of 3D Navier-Stokes or 3D Euler equations (3), by following step by
step the proof of Lemma 4 given in [25] but keeping the term ‖u(t)‖L2(R3) after
using the Cauchy-Schwarz inequality, we obtain for all t ∈ [0, T ∗[,

‖u(t)‖∞ . ‖u(t)‖
2
5
2 ‖ω(t)‖

3
5
∞

≤ ‖u0‖
2
5
2 ‖ω(t)‖

3
5
∞,

where we have used (13) for the last inequality. Then, we obtain that ‖u(t0)‖∞ ≡260

0 which implies that u(t0) ≡ 0. Then by using the inequality (15) of local reg-
ularity, we deduce u(t) ≡ 0 for all t ∈ [t0, T

∗[ and thus no blowup can occur at
the time T ∗.

4. Geometric properties for non blow-up of 3D Navier-Stokes, 3D

Euler and 2D QG equations in localized regions of maximum vor-265

ticity

Historically, non blow-up criteria for the incompressible Euler equations and
2D QG equations commonly focus on global features of the flow, such as norms of
the velocity or the vorticity fields. This comes at the disadvantage of neglecting
the structures and physical mechanisms of the flow evolution. A strategy for270

overcoming such shortcomings was established by focusing more on geometrical
properties and flow structures (see e.g. [18, 23]), such as vortex tubes or vortex
lines.

In particular, in [18, 15] the authors showed that local geometric regularity
of the unit vorticity vector can lead to depletion of the vortex stretching. They275

prove that if there is up to time T an O(1) region in which the vorticity vector is

smoothly directed, i.e., the maximum norm of ∇ξ (here ξ =
ω

|ω|
, ω the vorticity)

in this region is L2 integrable in time from 0 to T , and the maximum norm of
velocity in some O(1) neighbourhood of this region is uniformly bounded in
time, then no blow-up can occur in this region up to time T .280

However, this theorem dealt with O(1) regions in which the vorticity vector is
assumed to have some regularity, while in numerical computations, the regions
that have such regularity and contain maximum vorticity are all shrinking with
time (see [55, 56, 58, 59, 75, 76]).

Inspired by the work of [18, 15], in [25, 27, 26] the authors showed that geo-285

metric regularity of Lagrangian vortex filaments, even in an extremely localized
region containing the maximum of vorticity which may shrink with time, can
lead to depletion of the nonlinear vortex stretching, thus avoiding finite time
singularity formation of the 3D Euler equations and 2D QG equations.
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However, all the recent geometric constraints for non blow-up criteria of290

Euler and 2D QG equations based on local geometric regularity of Lagrangian
vortex filaments [25, 27, 26] make the assumption that the position where the
maximum of vorticity is reached, is advected with the flow, however it is not
always the case, as described in [61] (see also section 5.4.5 of [38]).

Then in our Theorem 4.1 obtained from our Proposition 4.1, we establish295

in an Eulerian setting a new geometric non blow-up criterion for the Navier-
Stokes, Euler and 2D QG equations based on the regularity of the direction of
the vorticity in extremely localized regions containing the position of maximum
vorticity and shrinking to zero as time increase to some T ∗ the alleged time
of singularity. Our Eulerian geometric non blow-up criterion should give also300

new impetus to the numerical experiments due to their ease of implementation
in comparison with Lagrangian geometric non blow-up criteria (see [39], see
also section 5.4.5 of [38]). Moreover our geometric non blow-up criterion is
valid also for the Navier-Stokes equations that is not the case for the existing
geometric non blow-up criteria obtained in [18, 25, 27, 26] based on a Lagrangian305

formulation of Incompressible Inviscid Flows.
We thus begin with Lemma 4.1.

Lemma 4.1. Let d ∈ N
∗, T > 0 and f ∈ C([0, T ];BC(Rd)) such that

inf
t∈[0,T ]

‖f(t)‖∞ > 0 and for any t ∈ [0, T ], |f(x, t)| → 0 as |x| → +∞. Then

there exists R > 0 such that for all t ∈ [0, T ], ‖f(t)‖∞ = sup
x∈BR

|f(x, t)|.
310

Proof. We set a = inf
t∈[0,T ]

‖f(t)‖∞ > 0. Since t 7→ f(t) is a continuous function

from the compact [0, T ] into the metric space L∞(Rd) then it is uniformly
continuous. Hence, there exists N ∈ N

∗ such that for all t, t′ ∈ [0, T ], |t−t′| ≤ T
N

we have ‖f(t) − f(t′)‖∞ ≤
a

4
. We introduce the subdivision {ti}{i∈J0,NK} of

[0, T ] defined by ti = i T
N for i ∈ J0, NK. Since for any t ∈ [0, T ], |f(x, t)| → 0315

as |x| → +∞, then for each i ∈ J0, NK, there exists Ri > 0 such that for all

|x| ≥ Ri, |f(x, ti)| ≤
a

4
. We set R = max

i∈J0,NK
Ri. Let t ∈ [0, T ] then there exists

j ∈ J0, NK such that |t − tj | ≤
T
N and hence for all |x| ≥ R ≥ Rj , we have

|f(x, t)| ≤ |f(x, t) − f(x, tj)| + |f(x, tj)| ≤
a

2
≤

‖f(t)‖∞
2

. Then, we infer that

for all t ∈ [0, T ], ‖f(t)‖∞ = sup
x∈BR

|f(x, t)|, which concludes the proof.
320

Before to prove Proposition 4.1, we need to introduce the following function
Dd defined from R

d × R
d × R

d to R with d ∈ {2, 3} as follows: for d = 3,

Dd(a1, a2, a3) = (a1 · a3)Det(a1, a2, a3).

The Det in Dd is the determinant of the matrix whose columns are the three
unit column vectors a1, a2, a3. We observe that Det(a1, a2, a3) = a1 · (a2 × a3),
then, we get

Dd(a1, a2, a3) = (a1 · a3) a1 · (a2 × a3). (20)
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and for d = 2,
Dd(a1, a2, a3) = (a1 · a

⊥
3 ) (a2 · a

⊥
3 ), (21)

where for any z = (z1, z2) ∈ R
2, z⊥ = (−z2, z1). We can notice that for

d ∈ {2, 3} the function Dd is linear from its second variable.
From (20) and (21) we get Dd(a1, a3, a3) = 0 then we deduce that for any
a1, a2, a3 ∈ B(0, 1),

|Dd(a1, a2, a3)| ≤ |a2 − a3|, (22)

and we get also
|Dd(a1, a2, a3)| ≤ 1. (23)

Before to prove Proposition 4.1, we need also the following Lemma.

Lemma 4.2. Let T > 0, a ∈ L1([0, T ],R+) and b ∈ L1([0, T ],R+). Let X ∈
C([0, T ],R+) ∩W 1,1([0, T ],R+) satisfying for a.e t ∈ [0, T ]

d

dt
X(t) ≤ a(t)X(t) + b(t)X(t)(1 + log+X(t)). (24)

Then for any t0 ∈ [0, T [ we get that for all t ∈ [t0, T ]

X(t) ≤ e
(1+log+ X(t0)+

R

t

t0
a(s) ds)e

R t
t0

b(τ)dτ

.

Proof. We multiply inequality (24) by 1{X(t)≥1}, to obtain with Y ≡ max(X, 1),
for a.e t ∈ [0, T ],

d

dt
Y (t) ≤ a(t)Y (t) + b(t)Y (t)(1 + logY (t)). (25)

Since Y ≥ 1, we can divide inequality (25) by Y (t) to obtain for a.e t ∈ [0, T ],

d

dt
(1 + logY (t)) ≤ a(t) + b(t)(1 + logY (t)). (26)

Thanks to Gronwall inequality, from (26) it is inferred that for any t0 ∈ [0, T [325

and for all t ∈ [t0, T ]

1 + logY (t) ≤ (1 + logY (t0))e
R

t

t0
b(τ)dτ

+

∫ t

t0

a(s)e
R

t

s
b(τ)dτ ds,

which yields to

1 + log+X(t) ≤ (1 + log+X(t0))e
R

t

t0
b(τ)dτ

+

∫ t

t0

a(s)e
R

t

s
b(τ)dτ ds. (27)

Since 1 + log+X(t) ≥ logX(t), we thus deduce that for all t ∈ [t0, T ],

X(t) ≤ e
(1+log+ X(t0))e

R t
t0

b(τ)dτ
+

R

t

t0
a(s)e

R t
s b(τ)dτ ds

≤ e
(1+log+ X(t0)+

R

t

t0
a(s) ds)e

R t
t0

b(τ)dτ

,

which concludes the proof.
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Now, we turn to the proof of our Proposition.

Proposition 4.1. Let d ∈ {2, 3}, u0 ∈ Hr
σ(Rd) with r >

d

2
+ 3. Let T ∗ > 0 be330

such that there exists a unique strong solution u to the 3D Navier-Stokes, 3D
Euler equations (3)-(4) or 2D QG equations (5)-(6) in the class

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−2(Rd)).

Let n ≥ 1 be a real. Let ρ be a bounded function defined on [0, T ∗] and not

vanishing on [0, T ∗[ for which we set ρ∞
def
= ‖ρ‖L∞([0,T∗]). Then we get that for

any t0 ∈ [0, T ∗[ and for all t ∈ [t0, T
∗[335

‖ω(t)‖∞ ≤ e
(1+log+ ‖ω(t0)‖∞+

R

t

t0
(nυdAd,n(s)+γdCd(s)) ds)e

R t
t0

υdCn,ρ Bd(τ)‖ω(τ)‖∞dτ

,

with

Ad,n(t)
def
= sup

x∈Ω(t)

sup
y∈B(0,1/‖ω(t)‖n

∞)\{0}

Dd(ŷ, ξ(x+ y, t), ξ(x, t))+

|y|
1
n

Bd(t)
def
= sup

x∈Ω(t)

sup
y∈B(0,ρ(t))\{0}

Dd(ŷ, ξ(x+ y, t), ξ(x, t))+,

Cd(t)
def
= min

(

‖u(t)‖∞
ρ(t)

,
‖u0‖2

ρ(t)
d
2 +1

)

,

(28)

where υd = π if d = 2 else υd = 1, γd = 10π if d = 2 else γd = 18, Cn,ρ =

log+ ρ∞ + n and Ω(t)
def
= {x ∈ R

d; |ω(x, t)| = ‖ω(t)‖∞}. Moreover, we have for
all t ∈ [0, T ∗[ and x ∈ Ω(t),

∇|ω|(x, t) = 0 and ∇ · ξ(x, t) = 0.

Proof. Let 0 ≤ t0 < T < T ∗. We want to apply Lemma 4.1 to the function ω,
then we check that the hypotheses of the Lemma are satisfied.340

Since u ∈ C([0, T ];Hr(Rd)) ∩ C1([0, T ];Hr−2(Rd)), then we infer that ω ∈
C([0, T ];Hr−1(Rd)) ∩ C1(]0, T ];Hr−3(Rd)). Thanks to the Sobolev embedding

Hs(Rd) →֒ BCm(Rd) for s >
d

2
+ m, m ∈ N and since r >

d

2
+ 3 we deduce

that ω ∈ C([0, T ];BC2(Rd)) ∩ C1([0, T ];BC(Rd)). Thanks to (19), we get
that inf

t∈[0,T ]
‖ω(t)‖∞ > 0. Moreover, since ω ∈ C([0, T ];Hr−1(Rd)) with r >345

d

2
+ 3, we have for any t ∈ [0, T ], |ω(x, t)| → 0 as |x| → +∞, the proof follows

immediately by using the density of C∞
0 (Rd) in Hr−1(Rd) and the Sobolev

embedding Hr−1(Rd) →֒ L∞(Rd) for r >
d

2
+ 3.

Then thanks to Lemma 4.1, there exists R > 0 such that for all t ∈ [0, T ],
‖ω(t)‖∞ = sup

x∈BR

|ω(x, t)|. Then for all t ∈ [0, T ], the set Ω(t) defined just above350

(50) can be rewritten as follows:

Ω(t) = {x ∈ BR; |ω(x, t)| = ‖ω(t)‖∞}.
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We introduce the direction of the vorticity ξ =
ω

|ω|
defined on the non empty

open set O
def
= {(x, t) ∈ R

d × [0, T ]; |ω(x, t)| > 0}.
We set υ = u in the case of 3D Navier-Stokes or 3D Euler equations and

υ = −R⊥u with ν = 0 in the case of 2D QG equation.
355

Then by multiplying (11) or (12) by ξ, we get that for all (x, t) ∈ O,

∂|ω|

∂t
(x, t) + υ(x, t) · ∇|ω|(x, t) −(ω(x, t) · ∇)υ(x, t) · ξ(x, t)

−ν∆|ω|(x, t) + ν|ω(x, t)||∇ξ(x, t)|2 = 0.
(29)

We introduce the function ϕ defined for all t ∈ [0, T ] by ϕ(t)
def
= sup

x∈BR

|ω(x, t)|

and we search the expression of its derivative. For this, we use the main Theorem
obtained in [78] or Theorem 1 in [7] after verifying that the hypotheses of the
Theorem are satisfied.
Since ω ∈ C([0, T ];BC2(Rd)) ∩ C1([0, T ];BC(Rd)), then we deduce that |ω| ∈

BC(O),
∂|ω|

∂t
∈ BC(O) and ∇2|ω| ∈ BC(O). Since for any t ∈ [0, T ], Ω(t) ⊂ O,

then, thanks to the results obtained in [78] (see also Theorem 1 in [7]), we obtain
the expression of the derivative of ϕ given for any t ∈ [0, T ] by,

ϕ′(t) = sup
x∈Ω(t)

∂|ω|

∂t
(x, t). (30)

Further for all x ∈ Ω(t) ⊂ BR, we have |ω(x, t)| = ϕ(t) = ‖ω(t)‖∞, we thus
infer that

∇|ω|(x, t) = 0 and ∆|ω|(x, t) ≤ 0. (31)

Therefore, we have for all x ∈ Ω(t),

∂|ω|

∂t
(x, t) =

∂|ω|

∂t
(x, t) + υ(x, t) · ∇|ω|(x, t)

= (ω(x, t) · ∇)υ(x, t) · ξ(x, t) + ν∆|ω|(x, t) − ν|ω(x, t)||∇ξ(x, t)|2

≤ (ω(x, t) · ∇)υ(x, t) · ξ(x, t),
(32)

where we have used (29) for the second equality and (31) for the last inequality.
We can notice that we get equality for (32) in the case of 3D Euler or 2D
QG equations, since for these equations we have not the terms ν∆|ω|(x, t) and
ν|ω(x, t)||∇ξ(x, t)|2.

Then using (32), from (30), we obtain,360

ϕ′(t) ≤ sup
x∈Ω(t)

(ω(x, t) · ∇)υ(x, t) · ξ(x, t),

which means that

d

dt
‖ω(t)‖∞ ≤ sup

x∈Ω(t)

(ω(x, t) · ∇)υ(x, t) · ξ(x, t), (33)
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where equality holds in the case of 3D Euler or 2D QG equations.
We use now the function α introduced in [16, 17] for the 3D Navier-Stokes or 3D
Euler equations and in [15] for the 2D QG equation, defined for all (x, t) ∈ O
by,

α(x, t) = cdP.V.

∫

Rd

Dd(ŷ, ξ(x+ y, t), ξ(x, t)) |ω(x + y, t)|
dy

|y|d
, (34)

where ŷ =
y

|y|
and in the case of 3D Navier-Stokes or 3D Euler equations for

which d = 3, cd =
3

4π
and in the case of 2D QG equation for which d = 2,

cd = 1.
By using the Biot-Savart law (see [13]) for which in the case of Euler and

Navier-Stokes equations, we have365

υ(x, t) =
1

4π

∫

R3

y

|y|3
× ω(x+ y)dy,

and in the case of 2D QG equations, we get an equivalent formula

υ(x, t) = −

∫

R2

1

|y|
ω(x+ y, t)dy,

we deduce as in [16, 17] and [15] that for all (x, t) ∈ O

(ω(x, t) · ∇)υ(x, t) · ξ(x, t) = α(x, t)|ω(x, t)|.

Therefore, from (33), we deduce that for all t ∈ [0, T ],

d

dt
‖ω(t)‖∞ ≤ sup

x∈Ω(t)

α(x, t)|ω(x, t)|

=

(

sup
x∈Ω(t)

(α(x, t)

)

‖ω(t)‖∞,

(35)

where we have used the fact that for all x ∈ Ω(t), |ω(x, t)| = ‖ω(t)‖∞. We take

a smooth cutoff function χ : [0,+∞[7−→ [0, 1] such that |χ′| ≤
3

2
, χ(r) = 1 for

0 ≤ r ≤ 1 and χ(r) = 0 for r ≥ 2.
Let us estimate now α(x, t) for any t ∈ [t0, T ] and x ∈ Ω(t). We decompose
α(x, t) into two terms,

α(x, t) = I1 + I2 (36)

with,

I1 = cd

∫

Rd

Dd(ŷ, ξ(x + y, t), ξ(x, t))χ

(

2|y|

ρ(t)

)

|ω(x+ y, t)|
dy

|y|d
, (37)

and

I2 = cd

∫

Rd

Dd(ŷ, ξ(x+ y, t), ξ(x, t))

(

1 − χ

(

2|y|

ρ(t)

))

|ω(x+ y, t)|
dy

|y|d
. (38)
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Then, we bound the two terms I1 and I2. For the term I1, from (37) we get

I1 = I1,1 + I1,2, (39)

with

I1,1 = cd

∫

B(0,1/‖ω(t)‖n
∞)

Dd(ŷ, ξ(x+y, t), ξ(x, t))χ

(

2|y|

ρ(t)

)

|ω(x+y, t)|
dy

|y|d
(40)

and

I1,2 = cd

∫

B(0,1/‖ω(t)‖n
∞)c

Dd(ŷ, ξ(x+ y, t), ξ(x, t))χ

(

2|y|

ρ(t)

)

|ω(x+ y, t)|
dy

|y|d
.

(41)
For the term I1,1, on one hand we get

I1,1 ≤ cd

∫

B(0,1/‖ω(t)‖n
∞)

Dd(ŷ, ξ(x+ y, t), ξ(x, t))+

|y|
1
n

|ω(x+ y, t)|
dy

|y|d−
1
n

≤ cdAd,n(t)‖ω(t)‖∞

∫

B(0,1/‖ω(t)‖n
∞)

dy

|y|d−
1
n

.

On the other hand, we have

∫

B(0,1/‖ω(t)‖n
∞)

dy

|y|d−
1
n

= |B(0, 1)|

∫ 1/‖ω(t)‖n
∞

0

ds

s1−
1
n

=
n|B(0, 1)|

‖ω(t)‖∞
.

Therefore, with the fact that υd = cd|B(0, 1)| (since |B(0, 1)| = 4π
3 for d = 3

and |B(0, 1)| = π for d = 2), we deduce

I1,1 ≤ nυdAd,n(t). (42)

For the term I1,2, on one hand, from (41) we get370

I1,2 ≤ cd

∫

y∈Rd;1/‖ω(t)‖n
∞≤|y|≤ρ(t)

Dd(ŷ, ξ(x+ y, t), ξ(x, t))+ |ω(x+ y, t)|
dy

|y|d

≤ cdBd(t)‖ω(t)‖∞

∫

y∈Rd;1/‖ω(t)‖n
∞≤|y|≤ρ(t)

dy

|y|d

= cd|B(0, 1)|Bd(t)‖ω(t)‖∞ log+ (ρ(t)‖ω(t)‖n
∞) .

On the other hand, we get

log+ (ρ(t)‖ω(t)‖n
∞) ≤ log+(ρ∞‖ω(t)‖n

∞)

≤ log+ ρ∞ + n log+ ‖ω(t)‖∞

≤ Cn,ρ(1 + log+ ‖ω(t)‖∞),
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where Cn,ρ = log+ ρ∞ + n. Then we deduce

I1,2 ≤ υdCn,ρ Bd(t)‖ω(t)‖∞(1 + log+ ‖ω(t)‖∞). (43)

By using (42) and (43), from (39) we deduce

I1 ≤ nυdAd,n(t) + υdCn,ρ Bd(t)‖ω(t)‖∞(1 + log+ ‖ω(t)‖∞). (44)

For the term I2, we use the fact that |ω(x + y, t)|ξ(x + y, t) = ω(x + y, t)
and the fact that Dd is linear in comparison with its second variable, then we
rewrite I2 to obtain from (38),

I2 = cd

∫

Rd

Dd(ŷ, ω(x+ y, t), ξ(x, t))

(

1 − χ

(

2|y|

ρ(t)

))

1

|y|d
dy. (45)

To obtain a precise non blowup criterion for 3D the Navier-Stokes, 3D Euler
and 2D QG equations that could be used easily in numerical experiments, it
was important to explicit the constant involved in the estimate of the term I2.
For this purpose, we deal first with the case of the 3D the Navier-Stokes and375

3D Euler, then after we consider the case of the 2D QG equations.

In the case of the 3D Euler or 3D Navier-Stokes equations for which
d = 3, we get D3(ŷ, ω(x + y, t), ξ(x, t)) = (ŷ · ξ(x, t))det(ŷ, ω(x + y, t), ξ(x, t)).
Since det(ŷ, ω(x + y, t), ξ(x, t)) = (ξ(x, t) × ŷ) · ω(x + y, t) and ω(x + y, t) =380

∇y × u(x+ y, t), we deduce

D3(ŷ, ω(x+ y, t), ξ(x, t)) = (ŷ · ξ(x, t))(ξ(x, t) × ŷ) · ∇y × u(x+ y, t).

Then, after using an integration by parts, from (45), we deduce,

I2 = c3

∫

R3

∇y ×

(

(ŷ · ξ(x, t))(ξ(x, t) × ŷ)

|y|3

(

1 − χ

(

2|y|

ρ(t)

)))

· u(x+ y, t) dy.

(46)

After setting ψ(y) ≡
(ŷ · ξ(x, t))

|y|3

(

1 − χ

(

2|y|

ρ(t)

))

and V(y) ≡ (ξ(x, t) × ŷ), by

using the following vectorial identity ∇ × (ψV) = ∇ψ × V + (∇ × V)ψ, we
obtain after elementary computations, that for all y 6= 0,

∣

∣

∣

∣

∇y ×

(

(ŷ · ξ(x, t))(ξ(x, t) × ŷ)

|y|3

(

1 − χ

(

2|y|

ρ(t)

)))∣

∣

∣

∣

≤

(
∣

∣

∣

∣

∇

(

ŷ

|y|3

)
∣

∣

∣

∣

+
2

ρ(t)|y|3

∣

∣

∣

∣

χ′

(

2|y|

ρ(t)

)
∣

∣

∣

∣

+
|∇y × (ξ(x, t) × ŷ)|

|y|3

)

1
{|y|≥

ρ(t)
2 }

.

We have

∣

∣

∣

∣

∇

(

ŷ

|y|3

)∣

∣

∣

∣

≤
3

|y|4
. Since the function χ′ is compactly supported in385

[1, 2] and |χ′| ≤ 3
2 , we get

1

ρ(t)

∣

∣

∣

∣

χ′

(

2|y|

ρ(t)

)
∣

∣

∣

∣

≤
3

2|y|
. Furthermore, we have

∇y × (ξ(x, t) × ŷ) = (∇y · ŷ)ξ(x, t) − (ξ(x, t) · ∇y)ŷ and then we deduce |∇y ×
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(ξ(x, t) × ŷ)| ≤ |∇ · ŷ| + |∇ŷ| ≤
3

|y|
. After gathering these results, we obtain

that for all y 6= 0,

∣

∣

∣

∣

∇y ×

(

(ŷ · ξ(x, t))(ξ(x, t) × ŷ)

|y|3

(

1 − χ

(

2|y|

ρ(t)

)))∣

∣

∣

∣

≤
9

|y|4
1
{|y|≥ ρ(t)

2 }
.

Therefore, from (46) we obtain

I2 ≤ 9c3

∫

y∈R3,|y|≥ ρ(t)
2

|u(x+ y, t)|

|y|4
dy. (47)

In the case of 2D QG equations for which d = 2, we get D2(ŷ, ω(x +390

y, t), ξ(x, t)) = (ŷ·ξ(x, t)⊥)(ω(x+y, t)·ξ(x, t)⊥). Since ω(x+y, t) = ∇⊥
y u(x+y, t),

we deduce

D2(ŷ, ω(x+ y, t), ξ(x, t)) = (ŷ · ξ(x, t)⊥)ξ(x, t)⊥ · ∇⊥
y u(x+ y, t).

Then, after using an integration by parts, from (45), we deduce,

I2 = −c2

∫

R2

curly

(

(ŷ · ξ(x, t)⊥)ξ(x, t)⊥

|y|2

(

1 − χ

(

2|y|

ρ(t)

)))

u(x+ y, t) dy,

(48)
where for any vector field F = (F1, F2) from R

2 to R
2, curlF = −∂2F1 + ∂1F2.

After setting ψ(y) ≡
(ŷ · ξ(x, t)⊥)

|y|2

(

1 − χ

(

2|y|

ρ(t)

))

and V(y) ≡ ξ(x, t)⊥, by

using the following vectorial identity curl(ψV) = ∇⊥ψ ·V+ψ curlV, we obtain395

after elementary computations, that for all y 6= 0,

∣

∣

∣

∣

curly

(

(ŷ · ξ(x, t)⊥)ξ(x, t)⊥

|y|2

(

1 − χ

(

2|y|

ρ(t)

)))
∣

∣

∣

∣

≤

(∣

∣

∣

∣

∇

(

ŷ

|y|2

)∣

∣

∣

∣

+
2

ρ(t)|y|2

∣

∣

∣

∣

χ′

(

2|y|

ρ(t)

)∣

∣

∣

∣

)

1
{|y|≥ ρ(t)

2 }
.

We have

∣

∣

∣

∣

∇

(

ŷ

|y|2

)∣

∣

∣

∣

≤
2

|y|3
. Since the function χ′ is compactly supported in

[1, 2] and |χ′| ≤ 3
2 , we get

1

ρ(t)

∣

∣

∣

∣

χ′

(

2|y|

ρ(t)

)∣

∣

∣

∣

≤
3

2|y|
. We thus deduce that for all

y 6= 0,

∣

∣

∣

∣

curly

(

(ŷ · ξ(x, t)⊥)ξ(x, t)⊥

|y|2

(

1 − χ

(

2|y|

ρ(t)

)))∣

∣

∣

∣

≤
5

|y|3
.

Therefore, from (48) we obtain

I2 ≤ 5c2

∫

y∈R2,|y|≥ ρ(t)
2

|u(x+ y, t)|

|y|3
dy. (49)
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Therefore, whatever the case considered, 3D Navier-Stokes, 3D Euler or 2D QG
equations, from (47) and (49) we deduce

I2 ≤ ηdcd

∫

y∈Rd,|y|≥
ρ(t)
2

|u(x+ y, t)|

|y|d+1
dy, (50)

where ηd = 9 if d = 3 and ηd = 5 if d = 2. Then from (50), we obtain

I2 ≤ ηdcd|B(0, 1)| ‖u(t)‖∞

∫ ∞

ρ(t)
2

ds

s2

= 2ηdυd
‖u(t)‖∞
ρ(t)

.

(51)

Furthermore, thanks to the Cauchy-Schwarz inequality and the energy equalities
(13), (16), from (50) we infer also

I2 ≤ ηdcd‖u0‖2

(

∫

y∈Rd,|y|≥ ρ(t)
2

dy

|y|2d+2

)
1
2

=
2

d
2 +1ηdcd|B(0, 1)|

1
2

(d+ 2)
1
2

‖u0‖2

ρ(t)
d
2 +1

.

(52)

Therefore owing to (51) and (52) we get that for all t ∈ [t0, T ]

I2 ≤ min

(

γd
‖u(t)‖∞
ρ(t)

, λd
‖u0‖2

ρ(t)
d
2 +1

)

, (53)

with γd
def
= 2ηdυd and λd = 2

d
2

+1ηdcd|B(0,1)|
1
2

(d+2)
1
2

. We observe that γd = 18 if d = 3

and γd = 10π if d = 2; λd = 18
(

6
5π

)
1
2 if d = 3 and λd = 10π if d = 2. Hence,

we get λd ≤ γd. Therefore, from (53) we get

I2 ≤ γd min

(

‖u(t)‖∞
ρ(t)

,
‖u0‖2

ρ(t)
d
2 +1

)

. (54)

Then, owing to (44) and (54), from (36) we deduce that for any t ∈ [t0, T ]
and x ∈ Ω(t),

α(x, t) ≤ nυdAd,n(t) + υdCn,ρ Bd(t)‖ω(t)‖∞(1 + log+ ‖ω(t)‖∞)

+γd min

(

‖u(t)‖∞
ρ(t)

,
‖u0‖2

ρ(t)
d
2 +1

)

.
(55)

Then from (35), after using (55) and (28), we obtain that for all t ∈ [t0, T ],

d

dt
‖ω(t)‖∞ ≤ (nυdAd,n(t)+γdCd(t))‖ω(t)‖∞+υdCn,ρ Bd(t)‖ω(t)‖2

∞(1+log+ ‖ω(t)‖∞).

(56)
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Thanks to Lemma 4.2, we obtain that for any t0 ∈ [0, T [ for all t ∈ [t0, T ],400

‖ω(t)‖∞ ≤ e
(1+log+ ‖ω(t0)‖∞+

R

t

t0
(nυdAd,n(s)+γdCd(s)) ds)e

R t
t0

υdCn,ρ Bd(τ)‖ω(τ)‖∞dτ

,

which concludes the first part of the proof. Thanks to (31), we have already
∇|ω|(x, t) = 0. Since ∇ · ω = 0 and ω = |ω|ξ, then we get

0 = ∇ · ω = |ω|∇ · ξ + ξ · ∇|ω|. (57)

However, for all x ∈ Ω(t), |ω(x, t)| = ‖ω(t)‖∞ > 0 and from (31), we have
∇|ω|(x, t) = 0. Therefore, from (57), we deduce that for all t ∈ [0, T ] and
x ∈ Ω(t),

∇ · ξ(x, t) = 0, (58)

which completes the proof.

We define on [0, T ∗] the function ρ such that:

If lim sup
t→T∗

(T ∗ − t)
d

d+2 ‖u(t)‖∞ < +∞

then for all t ∈ [0, T ∗], ρ(t) =
1

2γd
‖u(t)‖∞(T ∗ − t).

(59)

Otherwise if lim sup
t→T∗

(T ∗ − t)
d

d+2 ‖u(t)‖∞ = +∞

then for all t ∈ [0, T ∗], ρ(t) =
1

(2γd‖u0‖2)
2

d+2

(T ∗ − t)
2

d+2 ,
(60)

with γd = 10π if d = 2 else γd = 18.

Remark 4.1. In the case of the 2D QG equations, thanks to (16) used with
p = ∞, from (59) we get that the function ρ is defined for all t ∈ [0, T ∗] by
ρ(t) = 1

20π‖u0‖∞(T ∗ − t).
405

Thanks to Proposition 4.1, we obtain our Theorem.

Theorem 4.1. Let d ∈ {2, 3}, u0 ∈ Hr
σ(Rd) with r >

d

2
+ 3. Let T ∗ > 0 be

such that there exists a unique strong solution u to the 3D Navier-Stokes, 3D
Euler equations (3)-(4) or 2D QG equations (5)-(6) in the class

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−2(Rd)).

Let ρ be the bounded function defined on [0, T ∗] by (59) and (60). If there exists
n ≥ 1 and t1 ∈ [0, T ∗[ such that

∫ T∗

t1

Ad,n(t) dt < +∞ and

∫ T∗

t1

Bd(t)‖ω(t)‖∞ dt < +∞, (61)
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then the solution u cannot blowup at the finite time T ∗, where for all t ∈ [t1, T
∗[

Ad,n(t)
def
= sup

x∈Ω(t)

sup
y∈B(0,1/‖ω(t)‖n

∞)\{0}

Dd(ŷ, ξ(x+ y, t), ξ(x, t))+

|y|
1
n

Bd(t)
def
= sup

x∈Ω(t)

sup
y∈B(0,ρ(t))\{0}

Dd(ŷ, ξ(x+ y, t), ξ(x, t))+,

(62)

with Ω(t)
def
= {x ∈ R

d; |ω(x, t)| = ‖ω(t)‖∞}.
410

Moreover, we have for all t ∈ [0, T ∗[ and x ∈ Ω(t),

∇|ω|(x, t) = 0 and ∇ · ξ(x, t) = 0.

Proof. Let us assume that there exists n ≥ 1 and t1 ∈ [0, T ∗[ such that

(61) holds. We introduce the function Cd defined on [0, T ∗[ by Cd(t)
def
=

min

(

‖u(t)‖∞

ρ(t) , ‖u0‖2

ρ(t)
d
2

+1

)

for all t ∈ [0, T ∗[. Thanks to Proposition 4.1, we get

that for any t0 ∈ [0, T ∗[ and for all t ∈ [t0, T
∗[

‖ω(t)‖∞ ≤ e
(1+log+ ‖ω(t0)‖∞+

R

t

t0
(nυdAd,n(s)+γdCd(s)) ds)e

R t
t0

υdCn,ρ Bd(τ)‖ω(τ)‖∞dτ

,
(63)

where υd = π if d = 2 else υd = 1, γd = 10π if d = 2 else γd = 18, Cn,ρ =
log+ ρ∞ + n. By using the definition of the function ρ given by (59) and (60),
we observe that for any t0 ∈ [0, T ∗[ and for all t ∈ [t0, T

∗[
∫ t

t0

Cd(s) ds =
1

2γd

∫ t

t0

ds

T ∗ − s

=
1

2γd
log

(

T ∗ − t0
T ∗ − t

)

.

(64)

By using (64), from (63) we deduce that for any t0 ∈ [0, T ∗[ and for all t ∈ [t0, T
∗[

‖ω(t)‖∞ ≤ ψ(t0, t)

(

T ∗ − t0
T ∗ − t

)
1
2 e

R t
t0

υdCn,ρ Bd(τ)‖ω(τ)‖∞dτ

, (65)

where ψ(t0, t) ≡ e
(1+log+ ‖ω(t0)‖∞+

R

t

t0
nυdAd,n(s) ds)e

R t
t0

υdCn,ρ Bd(τ)‖ω(τ)‖∞dτ

.

Thanks to (61), we infer that lim
t0→T∗

∫ T∗

t0

Bd(τ)‖ω(τ)‖∞dτ = 0 and hence there

exists t2 ∈ [t1, T
∗[ such that

∫ T∗

t2

Bd(τ)‖ω(τ)‖∞dτ ≤
log(3

2 )

υdCn,ρ
. (66)

Owing to (66), by using (65) with t0 = t2 we obtain that for all t ∈ [t2, T
∗[,

‖ω(t)‖∞ ≤ ψ(t2, t)

(

T ∗ − t2
T ∗ − t

)
3
4

≤M

(

T ∗ − t2
T ∗ − t

)
3
4

,

(67)

22



where M
def
= ψ(t2, T

∗) < +∞ thanks again to (61). After integrating inequality
(67) over [t2, T ] with T ∈ [t2, T

∗[, we obtain

∫ T

t2

‖ω(t)‖∞ dt ≤ 4M(T ∗ − t2)
3
4 (T − t2)

1
4

≤ 4M(T ∗ − t2).

Therefore we deduce that

∫ T∗

t2

‖ω(t)‖∞ dt ≤ 4M(T ∗ − t2) < +∞. Since u ∈

C([0, T ∗[;Hr
σ(Rd)) and thanks to the Sobolev embedding Hr(Rd) →֒ BC3(Rd)415

due to r >
d

2
+ 3, we infer that ω ∈ C([0, T ∗[;BC2(Rd)) which implies that

∫ t2

0

‖ω(t)‖∞ dt < +∞. Therefore we get

∫ T∗

0

‖ω(t)‖∞ dt < +∞. If u blows up

at the finite time T ∗ then thanks to (14) and (17) we have

∫ T∗

0

‖ω(t)‖∞ dt =

+∞ which leads to a contradiction. Then, we deduce that u cannot blow up at
the time T ∗ which concludes the first part of proof. Thanks again to Proposition420

4.1, we get that for all t ∈ [0, T ∗[ and x ∈ Ω(t),

∇|ω|(x, t) = 0 and ∇ · ξ(x, t) = 0,

which completes the proof.

5. Some applications of our geometric non blow-up criterion

In this section, through Lemma 5.1 we show that the condition
∫ T∗

t1
Ad,n(t) dt <

+∞ appearing in the statement of Theorem 4.1 is a very weak assumption.425

Then, thanks to Theorem 4.1 and Lemma 5.1, in Corollary 5.1 we release our
geometric criterion for the non blow-up in finite time of the solutions of 3D
Navier-Stokes, 3D Euler and 2D QG equations. First, thanks to Theorem 4.1,
we emphasize that the singularity discovered by Luo & Hou in [71] which lies
right on the boundary is not relevant in the case of the whole domain R

3. In-430

deed, thanks to Theorem 4.1, in the whole domain of R
3 at any point of the

maximum vorticity, q0 ∈ R
3, we get ∇|ω|(q0, t) = 0 and ∇ · ξ(q0, t) = 0 for

any any time t before the alleged time of singularity T ∗. However in [71], the
presence of a solid boundary and the fact that q0 the point of the maximum
vorticity is always located on the solid boundary, prevent to get ∇|ω|(q0, t) = 0435

and this allows to get ∇ · ξ(q0, t) ∼ (T ∗ − t)−2.9165 6= 0 as it is observed in their
numerical test. This latter is the main element used to invalidate the Deng-
Hou-Yu non-blowup criterion [25, 27].

Under the assumption of a blow-up in finite time at T ∗ of the solution u of440

3D Navier-Stokes, 3D Euler or 2D QG equations for which we suppose that
(68) holds, then thanks to Lemma 5.1, we obtain that the term Ad,n(t) de-
fined in (62) or again in (69), is L1−integrable over the time interval [0, T ∗],

23



which indicates that the condition
∫ T∗

t1
Ad,n(t) dt < +∞ for t1 ∈ [0, T ∗[ is not a

restrictive assumption.
445

Lemma 5.1. Let d ∈ {2, 3}, u0 ∈ Hr
σ(Rd) with r >

d

2
+ 3. Let T ∗ > 0 be such

that there exists a unique strong solution u to the 3D Navier-Stokes, 3D Euler
equations (3)-(4) or 2D QG equations (5)-(6) in the class

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−2(Rd)).

Suppose that there exist γ0 > 0, c0 > 0, γ1 ≥ 0, c1 > 0, n ≥ 1 such that
n > γ0+γ1−1

γ0
and t0 ∈ [0, T ∗[ such that for all t ∈ [t0, T

∗[,

‖ω(t)‖∞ ≥ c0(T
∗ − t)−γ0 and sup

x∈Ω(t)

‖∇ξ(t)‖L∞(B(x,1/‖ω(t)‖n
∞)) ≤ c1(T

∗ − t)−γ1 ,

(68)
with Ω(t) = {x ∈ R

d; |ω(x, t)| = ‖ω(t)‖∞}. Then we get

∫ T∗

t0

Ad,n(t) dt < +∞,

where

Ad,n(t)
def
= sup

x∈Ω(t)

sup
y∈B(0,1/‖ω(t)‖n

∞)\{0}

Dd(ŷ, ξ(x + y, t), ξ(x, t))+

|y|
1
n

. (69)

Proof. Thanks to (22), for all t ∈ [t0, T
∗[ and for all x ∈ Ω(t), we get for any

y ∈ B(0, 1/‖ω(t)‖n
∞)\{0},

|Dd(ŷ, ξ(x+ y, t), ξ(x, t))| ≤ |ξ(x + y, t) − ξ(x, t)|

≤ ‖∇ξ(t)‖L∞(B(x,1/‖ω(t)‖n
∞))|y|.

(70)

Then from (70) we get that for any y ∈ B(0, 1/‖ω(t)‖n
∞)\{0},

|Dd(ŷ, ξ(x+ y, t), ξ(x, t))|

|y|
1
n

≤ ‖∇ξ(t)‖L∞(B(x,1/‖ω(t)‖n
∞))|y|

1− 1
n

≤
‖∇ξ(t)‖L∞(B(x,1/‖ω(t)‖n

∞))

‖ω(t)‖n−1
∞

.

(71)

Then owing to (71), from (69) we infer that for all t ∈ [t0, T
∗[,

Ad,n(t) ≤
c1

cn−1
0

(T ∗ − t)
−(γ1−γ0(n−1))

. (72)

Since n >
γ0 + γ1 − 1

γ0
, we get γ1 − γ0 (n− 1) < 1. Therefore from (72) we450

deduce
∫ T∗

t0

Ad,n(t) dt < +∞,

which concludes the proof.
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Owing to Lemma 5.1, from Theorem 4.1 we get the following Corollary 5.1.

Corollary 5.1. Let d ∈ {2, 3}, u0 ∈ Hr
σ(Rd) with r >

d

2
+ 3. Let T ∗ > 0 be

such that there exists a unique strong solution u to the 3D Navier-Stokes, 3D455

Euler equations (3)-(4) or 2D QG equations (5)-(6) in the class

u ∈ C([0, T ∗[;Hr
σ(Rd)) ∩C1([0, T ∗[;Hr−2(Rd)).

Suppose that there exist γ0 > 0, c0 > 0, γ1 ≥ 0, c1 > 0, n ≥ 1 such that

n >
γ0 + γ1 − 1

γ0
and t0 ∈ [0, T ∗[ such that for all t ∈ [t0, T

∗[,

‖ω(t)‖∞ ≥ c0(T
∗ − t)−γ0 and sup

x∈Ω(t)

‖∇ξ(t)‖L∞(B(x,1/‖ω(t)‖n
∞)) ≤ c1(T

∗ − t)−γ1 ,

with Ω(t) = {x ∈ R
d; |ω(x, t)| = ‖ω(t)‖∞}. Then the solution u blows up at the

finite time T ∗ (i.e lim sup
t→T∗

‖u(t)‖Hr(Rd) = +∞) if and only if460

∫ T∗

t0

Bd(t)‖ω(t)‖∞ dt = +∞,

where
Bd(t)

def
= sup

x∈Ω(t)

sup
y∈B(0,ρ(t))\{0}

Dd(ŷ, ξ(x+ y, t), ξ(x, t))+, (73)

with ρ the function defined on [0, T ∗] by (59) and (60).

Proof. Thanks to Lemma 5.1, we infer

∫ T∗

t0

Ad,n(t) dt < +∞. (74)

where Ad,n is the function defined by (69). Let us assume that u blows up at the

finite time T ∗. If

∫ T∗

t0

Bd(t)‖ω(t)‖∞ dt < +∞, owing to (74) we infer thanks

to Theorem 4.1 that the solution u cannot blowup at the finite time T ∗ which

leads to a contradiction and hence

∫ T∗

t0

Bd(t)‖ω(t)‖∞ dt = +∞. Let us assume465

now that

∫ T∗

t0

Bd(t)‖ω(t)‖∞ dt = +∞. Thanks to (23), from (73), we deduce

that for all t ∈ [t0, T
∗[, 0 ≤ Bd(t) ≤ 1 which implies that

∫ T∗

t0

‖ω(t)‖∞ dt ≥

∫ T∗

t0

Bd(t)‖ω(t)‖∞ dt = +∞. Then, thanks to (14) and (17), we deduce that

the solution u blows up at the finite time T ∗. Then, we conclude the proof.
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Let us consider the function Φγ defined for all s ∈ [0, 1] by470

Φγ(s) =

(

log log

(

ee1

s

))−γ (

log

(

ee1

s

))−1

with γ > 1.

Then, we get that for any 0 < λ ≤ 1,

∫ λ

0

Φγ(s)

s
ds =







(

log log
(

ee1

s

))−γ+1

γ − 1







λ

0

=

(

log log
(

ee1

λ

))−γ+1

γ − 1
< +∞.

(75)

Thus if one considers for the 3D Navier-Stokes and 3D Euler equations, the most
plausible blow-up rates at a finite time T ∗ for ‖ω(t)‖∞, ‖u(t)‖∞ and ‖∇ξ(t)‖∞
namely (see [58, 59, 60, 61, 62]),

‖ω(t)‖∞ ∼ (T ∗ − t)−1, ‖∇ξ(t)‖∞ ∼ (T ∗ − t)−
1
2 and ‖u(t)‖∞ ∼ (T ∗ − t)−

1
2 ,

then thanks to Corollary 5.1 and (75), the solution u cannot blow up at the
finite time T ∗ if Bd(t) ≤ Φγ(T ∗ − t) for all t ∈ [t0, T

∗[ for some t0 ∈ [0, T ∗[475

such that T ∗ − t0 ≤ 1. We recall that Bd(t)
def
= sup

x∈Ω(t)

sup
y∈B(0,ρ(t))\{0}

Dd(ŷ, ξ(x+

y, t), ξ(x, t))+ with ρ defined by (59) since ‖u(t)‖∞ ∼ (T ∗ − t)−
1
2 which implies

that ρ(t) ∼ (T ∗ − t)
1
2 .

For the 2D QG equations, the numerical experiments performed in [26] on480

the hyperbolic saddle test case (a candidate for finite-time blow-up suggested in
[15]), indicate that the region of large vorticity ω in magnitude and the region
of large ∇ξ in magnitude are disjoints (see Fig.2-Fig.5 in [26]) and shrink to
zero as the time tends to the alleged time of singularity. This suggests that ∇ξ
remains bounded in regions where |ω| achieves its maximum and these regions485

shrink to zero as the time tends to the alleged time of singularity T ∗. If these
regions are contained in balls of radius of type O(ρ(t)), with ρ(t) given by
ρ(t) = 1

20π‖u0‖∞(T ∗ − t) thanks to Remark 4.1, we will get Bd(t) . ρ(t) and
hence thanks to Corollary 5.1, we will obtain that the solution u cannot blow

up at the finite time T ∗ if

∫ T∗

t0

(T ∗ − t)‖ω(t)‖∞ < +∞ for some t0 ∈ [0, T ∗[.
490
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