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Introduction

The non-linear analysis of structural components working under complex loading program is nowadays an indispensable ingredient of a performance based design. Given this Email address: benkemoun@lmt.ens-cachan.fr (N. Benkemoun, J.-B. Colliat and A. Ibrahimbegovic) Preprint submitted to Elsevier October 14, 2016 current trend, it has become crucial to have accurate tools that improve the predictive capabilities of macroscopic constitutive equations and furnish a precise description of nonlinear response in structural analysis. At the structural scale, phenomenological models based on macroscopic quantities such as macroscopic stresses and strains and macroscopic laws placed in the thermodynamical framework are widely used. Considering cement-based materials such as concrete, there is an extensive literature [START_REF] Reynouard | Mechanical behavior of concrete[END_REF] dealing with its phenomenological constitutive behavior modelling ( [START_REF] Lubliner | Plasticity Theory[END_REF], [START_REF] Lemaitre | Mécanique des Matériaux Solides[END_REF]) according to different loading paths, for static or dynamical cases as well as several multi-physics coupling. However, because of their macroscopic nature, these models present difficulties in describing correctly the physical mechanisms (fracture, damage and transport mechanisms) taking place at finer scales and involving macroscopic observations. Moreover in the case of a complex loading program (e.g. non-proportional loading) they require to properly choose the criterion to use in relation with the studied material and the applied loading. This can lead to substantial difficulties when devising a successful identification procedure ( [START_REF] Kucerova | Novel anisotropic continuumdiscrete damage model capable of representing localized failure of massive structures[END_REF]) which would allow to obtain the correct range of all the model parameters. So, their predictive capability is rather limited for very different loading programs with respect to the one which was used in identification. That is why the main goal of this paper is to provide a novel version of a phenomenological constitutive anisotropic model for concrete based upon information coming from finer scales and the corresponding numerical testing. Namely, we first seek to quantify correspondingly the difference in behavior in tension and in compression, as well as the fracture energy accompanying each of different modes of failure. Second, we carry out large number of numerical tests to master the inelastic mechanism's evolution from finer scales and very different loading programs. The resulting constitutive model we propose on numerical testing can be considered as the most appropriate combination of multi-surface models for concrete combining Drucker-Prager for compression stress and Rankine for tensile stress [START_REF] Nechnech | An elasto-plastic damage model for plain concrete subjected to high temperatures[END_REF] with a damage model describing the localized failure of structure ( [START_REF] Brancherie | Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures[END_REF], [START_REF] Kucerova | Novel anisotropic continuumdiscrete damage model capable of representing localized failure of massive structures[END_REF]). The combination is not done in ad-hoc way, but constructed in accordance with a meso-scale representation of concrete distinguishing aggregates and cement paste [START_REF] Benkemoun | Modeling heterogeneous materials failure: 3D meso-scale models with embedded discontinuities[END_REF] and the result of computations corresponding to the chosen loading program. Therefore, the proposed model can account for several fine scale imprints such as compressive strength increase as a function of aggregate volume fraction or the fracture energy typical of failure mode. In this manner, we obtain a model capable of describing different failure modes, including the phenomena of localized failure which is of great interest for performance based design. This is also the main novelty of our present approach with relation to [START_REF] Benkemoun | Modeling heterogeneous materials failure: 3D meso-scale models with embedded discontinuities[END_REF] and [START_REF] Brancherie | Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures[END_REF], we now replace a meso-scale model by an equivalent macro-scale model where failure criteria parameters depend directly of meso-scale computations.

The outline of this paper is as follows. In Section 2, we give a brief description of the meso-scale model of concrete first developed in [START_REF] Benkemoun | Modeling heterogeneous materials failure: 3D meso-scale models with embedded discontinuities[END_REF] which is adapted to the present goal.

In Section 3, we turn to providing a detailed description of a failure surface obtained with meso-scale model computations.

Meso-scale model for failure analysis of two-phase quasi-brittle material

In this section, we give a brief description of the meso-model of a typical two-phase composite material, such as concrete. For the readers interested in more details, a complete description of the model, its numerical implementation and a number of illustrative examples of the model predictive capabilities can be found in [START_REF] Benkemoun | Modeling heterogeneous materials failure: 3D meso-scale models with embedded discontinuities[END_REF].

Meso-model features

The numerical tool in [START_REF] Benkemoun | Modeling heterogeneous materials failure: 3D meso-scale models with embedded discontinuities[END_REF] is based upon a two-phase (aggregates melt into a mortar matrix) quasi-brittle finite element model capable of representing the behavior of concretelike materials under complex loading paths. In order to take into account the influence of the shape, the size, the distribution and the mechanical properties of aggregates on the mechanical behavior of concrete, the meso-scale is chosen to be the scale of computation.

This scale has been utilized by others researchers to account for heterogeneities in materials such as concrete [START_REF] Wriggers | Mesoscale models for concrete: Homogenisation and damage behaviour[END_REF] and soils [START_REF] Borja | Critical state plasticity, part VI: Meso-scale finite element simulation of strain localization in discrete granular materials[END_REF]. The meso-scale we work with to model two-phases quasibrittle material is based upon a 3D lattice finite element model [START_REF] Schlangen | Simple lattice model for numerical simulation of fracture of concrete materials and structures[END_REF], [START_REF] Schlangen | Fracture simulations of concrete using lattice models: computational aspects[END_REF], [START_REF] Yip | Automated modeling of three-dimensional structural components using irregular lattices[END_REF] and [START_REF] Lachihab | Aggregate composites: a contact based modeling[END_REF] whose truss elements kinematics is enhanced by two discontinuities.

The first discontinuity is based upon a weak discontinuity (continuous displacement field and discontinuous strain field) [START_REF] Hautefeuille | Failure model of heterogeneous structures using structured meshes and accounting for probability aspects[END_REF]. It is introduced because of the retained meshing process which relies on non-conforming mesh [START_REF] Moës | A computational approach to handle complex microstructure geometries[END_REF] where some truss elements are cut into two parts, each having different elastic properties. Considering a two-phase material example in 2D (Fig. 1(a)) with the mortar matrix in blue, one aggregate in green and the interface in red, the finite element discretization gives three sets of truss elements (Fig. 1(b)): those entirely inside the matrix (in blue) with no weak discontinuity activated, those entirely in the aggregate (in green) with no weak discontinuity activated and those split by a physical interface (in bold red) for which the weak discontinuity is activated. Non-conforming meshes provide the advantage to have a meshing process independent from the microstructure (positions of the aggregates and shapes), as well as the fixed size of the mesh in probability studies [START_REF] Hautefeuille | Failure model of heterogeneous structures using structured meshes and accounting for probability aspects[END_REF] of meso-structure for this kind of material. In the present work, this approach is applied to three dimensional domains. Fig. 2 represents a 0.1 m × 0.1 m × 0.1 m cube with 30 % of aggregates. We find again in blue the mortar matrix, in green the aggregates and in red the interfaces.

The second discontinuity relies upon a strong discontinuity (discontinuous displacement field and unbounded strain field) [START_REF] Simo | An analysis of strong discontinuities induced by strain-softening in rate independent inelastic solids[END_REF], [START_REF] Wells | Three-dimensional embedded discontinuity model for brittle fracture[END_REF], [START_REF] Oliver | From continuum mechanics to fracture mechanics: the strong discontinuity approach[END_REF]. It is introduced in order to represent micro-cracks that may occur in any of different phases (aggregates or mortar matrix for two-phase materials) and to capture the interface failure (debonding). Moreover, the key point pertains to strong discontinuities capability to model softening behavior without any mesh dependency [START_REF] Simo | An analysis of strong discontinuities induced by strain-softening in rate independent inelastic solids[END_REF], [START_REF] Oliver | Modelling strong discontinuities in solid mechanics via strain softening constitutive equations[END_REF] which is the major issue dealing with failure of quasi-brittle materials.

The weak discontinuity is present only for the truss elements split into two parts, each having a different Young modulus. The strong discontinuity is introduced by means of a yield function Φ which is triggered only in traction. Thus two constitutive models appear for a truss element : a continuum one (outside the discontinuity : Fig. 3(a)), which is elastic, and a discrete one (at the discontinuity : Fig. 3(b)) which is quasi-brittle. This approach is called the "Discrete Strong Discontinuity Approach" and can be found in [START_REF] Dias-Da-Costa | A discrete strong discontinuity approach[END_REF]. We denote with t Γ the traction vector at the discontinuity and with [|u|] the crack opening. For the discrete model, the softening law is introduced in terms of the internal variable q by considering the exponential form,

q = k([|u|]); k([|u|]) = σ u 1 -exp -[|u|] σ u G f (1) 
The latter appears in the yield function which can be written as

Φ = t Γ -(σ u -q) (2) 
In summary, there are altogether eight model parameters:

1. the Young modulus E 1 for the mortar matrix and E 2 for aggregates for the continuum model, 2. the ultimate tensile strength before softening, σ u i and the fracture energy, G f i (i = 1, 2, 3 for respectively the mortar matrix, aggregates and interfaces) for the discrete model. We note that G f i as the area under the curve t

Γ -[|u|].
The mathematical framework for the introduction of these discontinuities in a finite element problem is the Hu-Washizu [START_REF] Washizu | Variational Methods in Elasticity and Plasticity[END_REF] three fields variational formulation discretized by using the Incompatible Modes method [START_REF] Simo | A class of mixed assumed strain methods and the method of incompatible modes[END_REF], [START_REF] Ibrahimbegovic | A modified method of incompatible modes[END_REF]. Among the different possibilities [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF], [START_REF] Strouboulis | The design and analysis of the Generalized Finite Element Method[END_REF] to discretized the deformation field, the "Enhanced Finite Element Method" (E-FEM) [START_REF] Ibrahimbegovic | Embedded discontinuity finite element method for modeling of localized failure in heterogeneous materials with structured mesh: an alternative to extended finite element method[END_REF] has been chosen. Practically, this means that the deformation field is enhanced by two functions : G This kind of discretization leads to the following system of equations to be solved : where A denotes the standard assembly operator ( [START_REF] Ibrahimbegovic | Non Linear Solid Mechanics : Theoretical Formulations and Finite Element Solution Methods[END_REF], [START_REF] Bathe | Finite Element Procedures[END_REF]).

               A n elm e=1 f int e (d, [|u|], [|ǫ|]) -f ext e = 0 -σ 1 (d, [|u|], [|ǫ|]) + σ 2 (d, [|u|], [|ǫ|]) = 0 ∀e ∈ [1, n elm ] θσ 1 (d, [|u|], [|ǫ|]) + (1 -θ)σ 2 (d, [|u|], [|ǫ|]) -t Γ = 0 ∀e ∈ [1, n elm ] t Γ -(σ u -q) = 0 ∀e ∈ [1, n elm ] (3) phase 1 phase 2 ℓ θℓ -1 θℓ 1 (1-θ)ℓ G ①/② 1
The first equation is the classical global equilibrium obtained for a finite element problem.

The second and the third ones are respectively the local equilibrium concerning the weak discontinuity enhancement and the strong discontinuity enhancement. Both are written in function of σ 1 and σ 2 which are the stresses in each subdomain of the element and t Γ , the traction vector at the discontinuity. We recall that the scalar value θ parameterizes the discontinuity spatial position. In (3), [|u|] and [|ǫ|] are the interpolation parameters corresponding to both strong and weak discontinuities. Note that [|u|] is nothing but the crack opening. These two parameters are defined independently for each element so that they are local quantities only. It is important to note that only the second equation of ( 3) is a linear equation. Moreover, the strong discontinuity is introduced only upon reaching a fracture criterion, so that the third and fourth equations in system (3) are not always present. Computational procedure used to obtain the solution of ( 3) is explained in details in [START_REF] Benkemoun | Modeling heterogeneous materials failure: 3D meso-scale models with embedded discontinuities[END_REF].

Illustrative validation examples

In this subsection, we present several illustrative examples and predictive features of the meso-scale model.

Exact solution of a 1D problem with weak discontinuity

This first validation concerns the ability of the function

G ①/② 1
to represent a finite jump in the deformation field (weak discontinuity) and the accuracy of the incremental value

∆[|ǫ|] (k+1) computation. Consider a bi-material bar (Ω = Ω 1 Ω 2 ) of length l = 2 with material modulus E 1 in Ω 1 and with E 2 in Ω 2 ,
where Ω 1 = (-1, θl e ) and Ω 2 = (θl e , 1). The interface Γ is located at x = θl e where l e is the length of one finite element. For the pure Dirichlet problem, with u = 0 at x = -1, u = 1 at x = 1, and no body forces, the exact displacement solution is given in [START_REF] Sukumar | Modeling holes and inclusions by level sets in the extended finite element method[END_REF] by :

u(x) =    (1 + x)α , -1 ≤ x ≤ θl e , 1 + E 1 E 2 (x -1)α , θl e ≤ x ≤ 1, (4) 
where

α = E 2 E 2 (1 + θl e ) -E 1 (θl e -1)
.

In this example, E 1 = 5 MPa and E 2 = 10 MPa. Numerical results are computed for a bar discretized with a structured mesh containing 20 finite elements with three different locations of the interface : θl e = 0.0025, 0.05 et 0.075. In Fig. 6, the finite element mesh and the interface are shown for θl e = 0.05. The numerical results for the relative error in as :

Ω 1 Ω 2
e = Ω (ǫ -ǫ h )E(ǫ -ǫ h )dΩ (6) 
where ǫ and ǫ h are respectively the deformation obtained thanks to the exact solution [START_REF] Kucerova | Novel anisotropic continuumdiscrete damage model capable of representing localized failure of massive structures[END_REF] and the deformation obtained with the finite element computation. E is the Young modulus depending on the position x. By analyzing the numerical results (Tab. 1, Fig. 7 et Fig. 8), one can note that the function

G ①/② 1
is the appropriate enrichment function to capture the jump in the Young modulus values at the interface θl e . This was reasonable to expect because we sought to preserve the equivalence between the structured mesh with E-FEM space and the exact mesh with standard FEM space in which the interface coincides with a node. Namely, our results are capable of reproducing the piecewise linear nature of the exact solution (4) thanks to the chosen enrichment function which is piecewise linear. 

Classical homogenization : comparison with Hashin-Shtrikman bounds for 3D case

In this example, we turn now to a weak discontinuity validation in three dimensions by exploring the Hashin-Shtrikman bounds.

At meso-scale for real concrete, we assume that the aggregates embedded in the mortar matrix exhibit an isotropic behavior because of their sizes and the material processing technique. In order to validate the meshing technique with non-conforming mesh used to represent two-phase material with aggregates embedded in a mortar matrix at meso scale, we rely upon the variational principle of Hashin and Shtrikman [START_REF] Hashin | A variational approach to the theory of the elastic behaviour of multiphase materials[END_REF]. This variational principle provides bounds for the effective properties of a composite that are in general more strict than the classical upper bound of Voigt and lower bound of Reuss [START_REF] Huet | An Integrated Approach of Concrete Micromechanics[END_REF]. These bounds are sensitive to specimen size and are strictly valid only when the body is assumed to be infinite, the microstructure isotropic and the effective responses are isotropic. The RVE used for the numerical analysis is a 0.1 m × 0.1 m × 0.1 m cube made of spherical aggregates melt into a mortar matrix. The aggregates size is ranging from 3 to 19 mm of diameter. Displacement boundary conditions are applied at the boundaries of this cube. On the face X = 0.1 m, a displacement of 10 -5 m is imposed in the X direction and faces X = 0 m, Y = 0 m and Z = 0 m are restrained respectively in the X, Y and Z directions. Tab. 2.2.2 gives the material data of the mortar matrix and aggregates and the effective Young modulus computed from the numerical simulations. Fig. 2.2.2 represents the effective Young modulus for the finite element model and its 3D Hashin-Shtrikman bounds for a volume fraction of aggregates ranging from 0 to 45 %. One can observe that the finite element model response is in-between Hashin-Shtrikman bounds, in spite of the fact that the sample is not of infinitely large size. This confirms its ability to correctly represent isotropic two-phases material by the chosen non-conforming mesh.

Mesh objectivity of computed response in localized failure

In this subsection, a strong discontinuity approach validation is proposed by exploring the mesh objectivity with respect to any choice of finite element discretization.

In order to illustrate the mesh objectivity in relation with the finite element discretiza- The load-imposed displacement response computed for two meshes is shown in Fig. 10. It can readily be seen that the global response is independent from the chosen mesh discretization. Indeed the dissipated energy during the loading program is the same whatever the number (and the size) of chosen elements. One can observe in Fig. 11 the computed displacement field at the end of the computation which is nearly identical for the two meshes.

Moreover, Fig. 12 shows values of displacement discontinuity or crack opening in the broken elements at the end of the computation which is again identical for the two meshes. In order to illustrate the capability of the model to represent failure mechanisms for concrete-like materials, we present two numerical simulations. The first one is a tension test and the second is the standard compression test. The specimen is 0.1 m × 0.1 m × 0.1 m cube with 24, 35 and 45 % of aggregates. Fig. 13 shows the response obtained both in tension and compression. One can observe a significant difference of behavior in tension and compression, which is one of the major characteristics related to quasi-brittle materials like concrete. Both the peak stresses as well as the amount of dissipated energy are much greater in compression than in tension. Moreover, it is important to observe the key role of aggregates in compression : a higher percent of aggregates tend to rise up the ultimate strength whereas in tension the ultimate strength is quasi-independent of this percentage increase (Fig. 13). 

Failure surfaces

In this Section, we show how to use this meso-scale model, in order to provide an original approach to obtain a failure surface taking into account heterogeneities and different process of cracking.

Literature review on failure surfaces

The failure surfaces proposed in the literature for a concrete-like material are generally based upon phenomenological models ( [START_REF] Nechnech | An elasto-plastic damage model for plain concrete subjected to high temperatures[END_REF], [START_REF] Pituba | An anisotropic damage model for the concrete[END_REF], [START_REF] Mazars | Application de la mécanique de l'endommagement au comportement non linéaire et à la ruine du béton de structure[END_REF], [START_REF] Nguyen | A coupled damage-plasticity model for concrete based on thermodynamic principles: Part i: model formulation and parameter identification[END_REF] and [START_REF] Reynouard | Mechanical behavior of concrete[END_REF]). The models of this kind rely upon a rigorous thermodynamics framework [START_REF] Ibrahimbegovic | Non Linear Solid Mechanics : Theoretical Formulations and Finite Element Solution Methods[END_REF], which is very well adapted to structural computation. Nevertheless, they require to properly identify and determine model parameters in relation with the studied material and the applied loading program. Thus the choice of model parameters must be made with a consistent calibration procedure (e.g. see [START_REF] Kucerova | Novel anisotropic continuumdiscrete damage model capable of representing localized failure of massive structures[END_REF]). In the case of a failure surface, this should include the calibration of the initial yield and damage surfaces that are in accordance with experiments, along with other parameters governing the evolutions of these surfaces. Moreover, because of their macroscopic nature, these models present difficulties in taking into account explicitly heterogeneities (e.g. aggregate shape, distribution, sizes and behavior) as well as the corresponding information at finer scales, which plays a fundamental role ( [START_REF] Yaman | Active and non-active porosity in concrete. part I: experimental evidence[END_REF]) in most of the physical phenomena observed at the macroscopic scale. In addition, in order to describe correctly physical mechanisms (as failure mechanisms, for example) taking place at finer scales and responsible of macroscopic observations, phenomenological models require again the identification of several parameters ( [START_REF] Nguyen | A coupled damage-plasticity model for concrete based on ther-modynamic principles: Part ii: non-local regularization and numerical implementation[END_REF]) and remain of fairly limited predictive capabilities outside of the given loading program.

That is why in this section, a new approach is presented: the coupling between the fine scale, here chosen as the meso-scale, where the quasi-brittle behavior is introduced, with the macroscopic scale, where the failure surface is obtained by the numerical computation of ultimate strength, is done naturally. Namely, every points of the surface take into account failure mechanisms taking place at the fine scale and the material heterogeneity. In this sense, a novel version of a phenomenological constitutive anisotropic model for concrete based upon information coming from finer scales is obtained. The proposed model can approximately be considered as the most appropriate combination of multi-surface models for concrete combining Drucker-Prager for compression stress and Rankine for tensile stress [START_REF] Nechnech | An elasto-plastic damage model for plain concrete subjected to high temperatures[END_REF] with a damage model describing the localized failure of structure ( [START_REF] Brancherie | Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures[END_REF], [START_REF] Kucerova | Novel anisotropic continuumdiscrete damage model capable of representing localized failure of massive structures[END_REF]). However, contrary to this classical combination, the proposed model can also provide the compressive strength related to the volume fraction, as well as the fracture energy corresponding to each particular failure mode.

Numerical loading program

In order to examine the ability of the Finite Element model to provide biaxial failure behavior characteristic of a heterogeneous material specimen, three concrete specimens with a plate form of 100 mm × 100 mm × 10 mm (Fig. 14) and a different volume fraction of aggregates (Table 3) were subjected to biaxial imposed displacements, producing the following stress combinations : compression-compression, tension-tension, compression-tension and tension-compression. Their uniaxial compressive strength values σ c i (i = 1, 2, 3) were taken from a uniaxial compressive test performed on each concrete specimens. In order to numerically cover the four regions (compression-compression, tension-tension, compression-tension and tension-compression), a circular loading program based upon the trigonometrical circle cos(α) 2 + sin(α) 2 = 1 was performed. This leads to couples of imposed displacements (u 1 = cos(α), u 2 = sin(α)) parameterized by the angle α. Displacements u 1 and u 2 are respectively applied to faces X = 100 mm and Y = 100 mm. Faces X = 0 mm, Y = 0 mm and Z = 0 mm are respectively blocked in X, Y and Z directions (Fig. 15).

Specimen i Volume fraction f i (%) Uniaxial compressive Size aggregates range strength σ c i (MP a) (mm) 
Tension is chosen as positive. Stress in the principal direction 1 (X direction) is called σ 1 , the one in the principal direction 2 (Y direction) σ 2 . In addition, the ultimate strength in the principal direction 1 is written σ1 and the one in the direction 2, σ2 . Finally, in the region of tension-compression, the value of the ultimate strength decreases in compression when the one in tension increases. In general, the failure pattern is perpendicular to the principal tension direction. Most of these tendencies described in this part are consistent with experimental results of [START_REF] Kupfer | Behavior of concrete under biaxial stress[END_REF], [START_REF] Carpinteri | Fracture Mechanics of Concrete[END_REF] and [START_REF] De | Étude expériementale du comportement mécanique d'un Béton Fibré à Ultra Hautes Performances (BFUHP) en traction biaxiale[END_REF]. For the regions of tension-tension, compression-tension and tension-compression, two phases of computed response can be observed. In the zone of compression-compression, a linear behavior is observed between σ1 /σ c 2 and σ2 /σ c 2 : cracks are prevented from opening (the loading in the Y direction tends to prevent the crack from opening in the X direction and the loading in the X direction tends to prevent the crack from opening in the Y direction), their influences is therefore less important than in the others cases of loading.

(mm)) G f (f 1 ) (J) G f (f 2 ) (J) G f (f 3 ) (J)
To conclude Section 3, one can say that Fig. 16 confirms the interest of concrete plasticity criterion, of multi-surface kind, with the compression described by Drucker-Prager kind of model [START_REF] Dolarevic | A modified three-surface elasto-plastic cap model and its numerical implementation[END_REF] and tension regime described by Rankine model [START_REF] Pearce | On multi-surfaces plasticity and rankine model[END_REF].

Conclusion

In this work, we proposed a novel constitutive model of plasticity suitable for describing the failure phenomena in two-phase composite materials, such as concrete with aggregates melt into a mortar matrix. Contrary to usual phenomenological models, the main features of the proposed model are not obtained from performing real experiments, but rather from numerical experiments carried out with a meso-scale Finite Element model. The mesomodel relies on a non-conforming mesh of spatial truss elements, representing aggregate, cement paste and interface so that some elements must be split into two parts. The latter requires introducing a weak discontinuity into the elements split by the phase interface, which provides an effective method to take into account inclusions without remeshing. Moreover, a strong discontinuity is introduced within each element at a particular instant of localized failure providing the capability to model crack opening. These key points provide an efficient tool to accomplish "virtual testing"; where changes in size, distribution and volume fraction of aggregates can easily be introduced.

Three types of concrete with different volume fractions (15 %, 35 % and 40 %) were tested.

For these three specimens, failure surfaces and failure modes according to different loading combinations were developed. One can note that in the region of compression-compression the ultimate strength rises up significantly with the percentage of inclusions whereas the three others regions are quasi independent of this percentage variation. It is important to stress the fact that the ultimate strength increase in relation to the uniaxial compression strength is dependant of the imposed displacements ratios in the region of compressioncompression, whereas the three others regions remain quasi independent of the same ratio.

These two points are often confirmed as major features of quasi-brittle materials such as concrete.

Finally, the most notable finding is that this approach can provide the sound definitions of the parameters governing the failure process, such as the fracture energy, the ultimate strength taking into account the heterogeneity and different process of cracking and that can be used to identify the parameters of phenomenological models as multi-surface models (e.g.

the combination of Rankine and Drucker-Prager criterion or the three-surface plasticity cap model [START_REF] Dolarevic | A modified three-surface elasto-plastic cap model and its numerical implementation[END_REF]). Once these phenomenological models are clearly identified, a structural analysis could be performed with the potential to provide more predictive results from the classical phenomenological models.

In the future explorations, we plan to study how to account for induced anisotropy in the process of cracking. Thus, the additional computations will be performed for the numerical loading program on pre-cracked specimen where the initial crack can be computed from drying and early age models of concrete [START_REF] Sa | Modélisation à l'échelle mesocopique du comportement hydro-mécanique des matériaux à matrice cimentaire[END_REF].
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 1 Figure 1: 2D discretization with a non-conforming mesh

Figure 2 :

 2 Figure 2: 3D domain for a typical two phases material: mortar matrix blue, aggregates green, red interfaces

Figure 3 :

 3 Figure 3: Elastic-quasi-brittle behavior

①/② 1 and G 2 .

 12 The first one is a weak discontinuity, introduced as a piecewise linear function over an element capturing the jump of the Young modulus in the deformation field. The second one is split into a constant function and a Dirac function capturing the unbounded nature of the strain field in presence of a strong discontinuity. One can observe these functions on Fig.4and Fig.5thanks to a zoom on a interface truss element (red bold elements on Fig.1(b) and Fig.2).
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 45 Figure 4: Enhanced deformation field for a two-phase truss element
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 6 Figure 6: Bi-material bar problem : mesh and interface position for θl e = 0.05

Interface location ξ

  Relative error in the energy norm 0.0025 1.3 × 10 -10 0.05 3.12 × 10 -10 0.075 3.18 × 10 -10
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 78 Figure 7: Exact and computed deformations fields for θl e = 0.0025
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 910 Figure 9: Hashin-Shtrikman, Voigt and Reuss bounds
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 1112 Figure 11: Displacement magnitude at the end of the computation: a) 260000 elements, b) 690000 elements
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 13 Figure 13: Macroscopic response in tension/compression
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 1415 Figure 14: Specimen and microstructure with 40 % of aggregates

Figure 16 :

 16 Figure 16: Failure surfaces for 15 % (diamond), 35 % (pentagon) and 40 % (triangle) of aggregates

Figure 17 :

 17 Figure 17: Evolution of σ 1 /σ c2 with respect to σ 2 /σ c2 , during the loading until failure (green points), in the case of 40 % of aggregates

Table 1 :

 1 Relative error in the energy norm for the bi-material bar problem

Table 3 :

 3 Specimen data

  The first one corresponding to a linear relation between σ1 /σ c 2 and σ2 /σ c 2 : cracking is not very present (few elements are broken) so a linear relation between the two ratios, driven by a macroscopic Poisson ratio, is still Combined regions (u 1 (mm),u 2 (mm)) σ1 (f 3 )/σ c 2 σ2 (f 3 )/σ c 2

	tension-tension	(0.01,0.0)	0.263	0.087
		(0.005,0.0087)	0.261	0.290
		(0.0087,0.005)	0.291	0.256
		(0.0,0.01)	0.100	0.291
		(0.0096,0.0026)	0.299	0.192
		(0.0026,0.0096)	0.196	0.289
		(0.0099,0.0013)	0.286	0.142
		(0.0038,0.0092)	0.235	0.290
		(0.01,0.01)	0.249	0.244
	compression-compression	(-0.06,0.0)	-1.400	-0.277
		(-0.03,-0.05)	-0.999	-1.372
		(-0.05,-0.03)	-1.327	-0.857
		(0.0,-0.06)	-0.280	-1.383
		(-0.058,-0.015)	-1.376	-0.553
		(-0.06,-0.06)	-1.195	-1.137
		(-0.015,-0.058)	-0.636	-1.449
	compression-tension	(-0.005,0.0087)	-0.266	0.249
		(-0.0087,0.005)	-0.537	0.123
		(-0.0071,0.0071)	-0.391	0.197
		(-0.0061,0.0079)	-0.415	0.224
	tension-compression	(0.005,-0.0087)	0.128	-0.517
		(0.0087,-0.005)	0.247	-0.255
		(0.0071,-0.0071)	0.198	-0.376
		(0.0061,-0.0079)	0.167	-0.446

Table 5 :

 5 Ratios of ultimate strength with respect to σ c2 along X and Y directions under different couples of imposed displacements for 40 % of aggregates

	Combined regions	(u 1 (mm),u 2

Table 6 :

 6 Values of fracture energy under particular couples of imposed displacements for 15 %, 35 % and 40 % of aggregates available. As for the second phase, it corresponds to a non-linear relation between the two ratios : cracking is then important and the behavior is no longer governed by a macroscopic

	Poisson modulus.

Combined regions

(u 1 (mm),u 2 (mm)) σ1 (f 1 )/σ c 2 σ2 (f 1 )/σ c 2 σ1 (f 2 )/σ c 2 σ2 (f 2 )/σ