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Abstract

In this paper, a meso-scale analysis is performed (1) to study the size effect on the nominal

stress at failure and, (2) to quantify the evolution of the fracture process zone (FPZ) in the

context of the tensile splitting test. The meso-structure is based on a two-phase 3D repre-

sentation of heterogeneous materials, such as concrete, where stiff aggregates are embedded

into a mortar matrix. In order to take into account these heterogeneities without any mesh

adaptation, a weak discontinuity is introduced into the strain field. In addition, a strong

discontinuity is also added to take into account micro-cracking. This model is cast into the

framework of the Enhanced Finite Element Method (E-FEM). Based on the Finite Element

simulations, size effect on the nominal stress at failure is numerically investigated and then

compared to the so-called Bažant size effect law. In addition, an analysis based on the

spatial distribution of the fracture energy is also regarded, leading to the 3D representation

of the FPZ and to its volume value estimation.

Keywords: Tensile splitting test; Meso-scale modelling; Size effect law; Fracture energy;

Finite Element Method

1. Introduction

Like all brittle-type failure of concrete, tensile splitting test failure can be expected to

exhibit a size effect. In general, size effect is studied in terms of nominal stress at failure σN
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versus size of the specimen. On one hand, the experimental works of Lundborg et al. [1],

Sabnis et al. [2], Hasegawa et al. [3], Chen et al. [4] and Ross et al. [5] all stress that the5

tensile splitting test strength depends on a characteristic dimension chosen as the cylinder

diameter. On the other hand, as pointed out in Bažant [6], this size effect on the nominal

stress can be approximately described by the so-called Bažant size effect law:

σN =
Bft√
1 + β

, (1)

where σN is the nominal stress at failure, ft is a strength parameter - for instance the direct

tensile strength -, β is the brittleness number equals to d
do
, B and do are empirical parameters10

and, d a characteristic dimension of the specimen (cylinder diameter for the tensile splitting

test). This law represents a gradual transition from the yield criterion at small sizes (β → 0),

at which there is no size effect, to the case of linear elastic fracture mechanics (LEFM) at

large sizes (β → ∞), at which the size effect is the strongest possible (see Fig. 1).

Figure 1: Bažant’s size effect law [6]

Nevertheless, in the context of the splitting tensile test, some researchers found some15

inadequacy when confronting the aforesaid experimental results with Bažant’s size effect

law. This inadequacy manifests itself through the appearence of an horizontal asymptote

for large cylinder size in the experimental results that the Bažant’s size effect law cannot

reproduce. Tang et al. [7] pointed out that Bažant obtained his law only for notched

specimens for which the notch size, seen as a flaw, was proportional to the characteristic20

dimension of the specimen. Consequently when applying the Bažant’s size effect law to
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unnotched specimens – tensile splitting test cylinders for instance – the above hypothesis

failed. The size of the characteristic flaw responsible for the crack propagation is in this case

independent from the specimen size. Note that in Bažant and Yavari [8], the authors have

derived a modification of eqn. (1) to take into account a size effect for unnotched specimen25

in the context of beam flexure.

In order to circumvent the aforesaid inadequacy in the context of the tensile splitting

test, researchers have proposed different approaches. For instance, Bažant et al. [9] and

Kim et al. [10] have derived modified size effect laws – based upon Bažant’s size effect

law – by incorporating functions f monotonically decreasing with the ratio between the30

characteristic flaw size a and the characterisitic dimension d (diameter of the cylinder). In

Bažant et al. [9], this decreasing is triggered by a threshold value of the characteristic

dimension d called dt. Finally these modified size effect laws are capable to mitigate the

downward trend of the size-effect curve – appearence of an horizontal asymptote for large

cylinder size –, observed experimentally for the tensile splitting test [9] 1. Unfortunately, it35

is very difficult to derive function f(a/d) exactly. Carpinteri et al. [11] have recoursed to the

concept of multifractality of the damaged material microstructure by means of the so-called

multifractal scaling law (MFSL). They propose to analyse the size effect with the MFSL on

the experimental tests of Hasegawa et al. [3] and Bažant et al. [9]. They obtain results in

good agreement with these experimental tests even when the horizontal asymptote appears40

for large cylinder size 2.

On the basis of the experimental results of Hasegawa et al. [3], another suggestion has

been provided by Bažant [12] concerning the inadequacy of the Bažant’s size effect law in

the context of the tensile splitting test. The mode of failure might be shifted from brittle

to ductile mechanism when large cylinder are encountered. Indeed for large cylinder and

due to the size effect, the load peak producing this ductile mechanism of failure – through

1In fact a reversal of the size effect is even observed.
2Note that it is not the concern of this paper to debate which size effect law is the best between Bažant’s

size effect law and the multifractal scaling law developed by Carpinteri. For the readers interested in a

confrontation of these two laws, see Bažant and Yavari [8].
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frictional plastic slip line 3 – could be reached before the splitting load peak. Consequently,

because there is no size effect in ductile mechanism, an horizontal asymptote is observed in

the size-effect curve – nominal stress at failure σN versus size of the specimen – instead of a

decreasing of the nominal stress as predicted by Bažant size effect law. This consideration

leads to a formula still based on Bažant size effect law such as:

σN =
Bft√
1 + β

+ σy (2)

Finally, an alternative of the aforementioned argument is that the ductile mechanism

develops only after the splitting load peak while considering that the load responsible of the

ductile mechanism participates itself to the reach of the axial splitting load. In this case,

the proposed formula takes the form:

σN = max(
Bft√
1 + β

, σy) (3)

In the last decades, a step forward has been made regarding the study of the size effect

in concrete-like materials. Experimentally speaking, with the advent of displacement field

measurement techniques such as digital image correlation (DIC, see Sutton et al. [13]),

accessing to local quantities such as crack openings in volume of interest (VOI) became45

possible (see Corr et al. [14] for the original paper, Hild et al. [15] for the 3D extension

of the method (digital volume correlation, DVC) and Oliver-Leblond et al. [16] for 3D

deep reinforced concrete structures applications). Consequently these techniques allow to

characterize for instance the size of the fracture process zone (FPZ) and its correlation with

a characteristic dimension of a specimen. More recently, measures by acoustic emission50

(AE) techniques have proved their ability for visualizing and characterizing the FPZ in

concrete-like materials (see Otsuka and Date [17] and Landis [18] for the pionneering work,

Alam et al. [19] for a combined approach DIC/AE and Saliba et al. [20] for a study of

creep-damage coupling in concrete). For instance, in Alam et al. [19], the authors quantify

the length and the width of the FPZ in three notched beams (prepared in accordance with55

3located in small highly confined wedge-shaped zone under the loading platens
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RILEM recomandations of size effect method). In Haidar et al. [21], the authors propose

a correlation between the width of the FPZ measured by acoustic emission and parameters

pertaining to the description of size effect such as d0.

Numerically speaking, meso-scale models taking explicitely into account the microstruc-

ture of the specimen became more and more popular since the pioneering works of Schlangen60

and van Mier [22]. These models have demonstrated to be efficient in modelling important

features of the behavior of concrete-like materials, not only for mechanical aspects (Wriggers

and Moftah [23], Benkemoun et al. ([24], [25]), Pedersen et al. [26] and Roubin et al. [27])

but also for mass transport aspect (Jourdain et al. [28] and Nilenius et al. [29]). Concerning

the aformentionned size effect, Grassl et al. [30] have proposed a meso-scale model based65

on the work of Bolander and Saito [31] combined to a damage mechanics model to:

1. determine the FPZ of concrete subjected to tension (see Grassl and Jirsek [30])

2. investigate the size effect on the FPZ and on the nominal stress at rupture in the

context of (un)notched beams subjected to bending (see Grassl et al. [32] and Grégoire

et al. [33]).70

In Grassl et al. [30] and Grassl and Jirsek [32], the determination of the FPZ relies on

the study of dissipated energy densities (see, Jirsek and Grassl [34]) of multiple analyses

with randomly arranged aggregates leading to energy maps. Post-treatments of these maps

are then performed in order to compare quantitatively the results for different geometries

and levels of loading. Very recently, the community has been enlightened by the work of75

Grégoire et al. [35]. The authors propose to combine a numerical approach based on the

model of Grassl et al. [30] and an experimental approach based on the acoustic emission

(AE) technique in the context of (un)notched bending beams. They compare the energy

maps for both the AE and the numerical model.

Based on the aforementionned litterature review, the objective of this work is to con-80

tribute to the understanding of fracture processes in the tensile splitting test by numerically

investigating :

1. size effect on the nominal stress at failure
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2. the FPZ evolution.

Concrete is considered at the meso-scale as a two-phase material with stiff aggregates85

embedded into a mortar matrix. Consequently, the influence of the shape, the size, the

distribution and the mechanical properties of aggregates – playing a significant role on the

mechanical behavior of concrete (see Yaman et al. [36]) – is taken into account. Starting

from this point, a 3D Finite Element analysis relying on the work of Benkemoun et al. [24]

is conducted. First, size effect on the nominal stress at failure is regarded. We propose90

an approach where the characteristic dimension is the aggregates size rather than the size

specimen as it is usually done in the litterature (see Bažant et al. [9] for instance). This

choice is relevant regarding the non-adaptated meshing process (see Moës et al. [37]) re-

tained to mesh the microstructure. Second, we aim at a better understanding of the FPZ

evolution in the context of the tensile splitting test. In this sense, an analysis based on the95

spatial distribution of the fracture energy is derived. The volume of the FPZ VFPZ is thus

determined from this fracture energy field and is here defined as the volume of the specimen

inside which 95% of the total fracture energy is dissipated. We investigate a correlation

between the FPZ volume value, the aggregates size and the level of cracking.

This paper is as follows : In Section 1, we give a brief description of the meso-scale100

mechanical model. Then we present the numerical results of the tensile splitting test and

the investigation of the size effect on the nominal stress at failure. In Section 2, we present

the fracture energy analysis of the tensile splitting test. In a first time, we detail the

method conducted to perform this fracture energy analysis. In a second time, we present

the numerical results concerning both the FPZ volume value and the FPZ width value105

computation. Finally a discussion concerning the correlation between the FPZ volume

(width) value and the aggregate size is presented.

2. Numerical investigation of the size effect in the tensile splitting test

In this section, we give a brief description of the mechanical model. For the readers

interested in more details, a complete description of the model, its numerical implementation110
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and a number of illustrative examples of the model predictive capabilities can be found in

Benkemoun et al. [24].

2.1. Meso-scale mechanical model

The numerical model for the mechanical simulations is based upon a two-phase (stiff

aggregates embedded into a mortar matrix) quasi-brittle model capable of representing the115

behavior of concrete-like materials under complex loading paths. In order to take into

account the influence of the shape, the size, the distribution and the mechanical properties

of aggregates on the mechanical behavior of concrete, the mesoscale (Wriggers and Moftah

[23], Borja and Andrade [38]) is chosen to be the scale of computation. The numerical

approach we work with, at the mesoscale, is based upon a 3D lattice finite element model120

(Schlangen and van Mier [22], Schlangen and Garboczi [39], Yip et al. [40] and Lachihab

and Sab [41]) whose truss elements kinematics is enhanced by two discontinuities embedded

in the elements.

The first discontinuity is a weak discontinuity – continuous displacement field and dis-

continuous strain field (Ortiz et al. [42]) – introduced because of the non-adaptated meshing125

process (Moës et al. [37]). This process consists in a unique homogeneous mesh whose nodes

are placed independently from the morphology of the aggregates. A significant amount of

computation time is saved at this stage. However, some truss elements are cut into two

parts, each having different elastic properties (see Fig. 2 for a two-phase material). That’s

why in order to take into account this special kinematics in the truss elements, this weak130

discontinuity is introduced.

The second discontinuity is a strong discontinuity – discontinuous displacement field and

unbounded strain field (Simo et al. [43]) – introduced in order to represent micro-cracks that

may occur in any of different phases (aggregates or mortar matrix for two-phase materials)

and to capture the interface failure (debonding). Moreover, the key point pertains to strong135

discontinuities capability to model softening behavior without any mesh dependency which

is the major issue dealing with failure of quasi-brittle materials.

The weak discontinuity is present only for the truss elements split into two parts, each
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(a) Two-phase material (b) Non-conforming mesh discretisation

Figure 2: Two-phase material example in 2D with the mortar matrix in blue, one aggregate in green and

the interface in red. Non-conforming mesh discretisation gives three sets of truss elements: those entirely

inside the matrix (in blue with no weak discontinuity activated), those entirely in the aggregate (in green

with no weak discontinuity activated) and those split by a physical interface (in bold red) and for which the

weak discontinuity is activated.

having a different Young modulus. The strong discontinuity is introduced by means of a

yield function g which is triggered only in traction. Thus two constitutive models appear140

for a truss element: a continuum one (outside the discontinuity) which is elastic (see Figure

3(a)), and a discrete one (over the discontinuity) which is quasi-brittle (see Figure 3(b)).

We denote by tΓ the traction vector over the discontinuity and [|u|] the crack width which

belongs to the set of unknowns.

The yield function is such as:

g = tΓ − (σu − q), (4)

where q is the stress-like variable

q = k([|u|]); k([|u|]) = σu

(

1− exp

(

−[|u|] σu

Gf

))

. (5)

In summary, there are altogether eight model parameters: the Young modulus E⊕ for145

the mortar matrix and E⊖ for aggregates, for the continuum model and the ultimate tensile
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σ

ǫ

(a) behavior outside the discontinu-

ity

tΓ

[|u|]

σu

(b) behavior over the discontinuity

Figure 3: Elastic–quasi-brittle behavior [25]

strength before softening, σui
and the fracture energy, Gfi (i = 1, 2, 3 for respectively the

mortar matrix, aggregates and interfaces) for the discrete model. We note Gfi the area

under the curve tΓ − [|u|].
Having at end the weak and strong discontinuities definition, we now turn to a short

description of the mathematical framework and the solving procedure. The total strain is

written in the context of the EAS (Enhanced Assumed Strain, [44]) method such as:

ε = ∇
s
ū

︸︷︷︸

regular

+ ε̃
︸︷︷︸

weak

+ ε̂
︸︷︷︸

strong

, (6)

where ∇
s
ū is the symmetric gradient of the displacement field. As in Simo and Rifai [44],150

we refer to ε̃ and ε̂ as the enhanced parts of the strain field. The notation •̃ (resp. •̂) refers
to weak (resp. strong) discontinuity.

In the context of a truss element, ε̃ and ε̂ have the following form:

ε̃ = G
⊕/⊖
w [|ǫ|] and ε̂ = Gs[|u|], (7)

where G
⊕/⊖
w and Gs are enhanced functions. [|ǫ|] and [|u|] are the enhanced interpolation

parameters and belong to the set of unknowns.

This strain field (equation (6)) is then introduced in the Hu-Whasizu-de Veubeke1 vari-155

ational formulation (Hu, [46], Washizu, [47] and de Veubeke, [48]) leading to the Finite

Element problem to be solved in terms of the displacement field d and the enhanced inter-

polation parameters [|ǫ|] and [|u|] for the weak and strong discontinuities, respectively. The

1Fraeijs de Veubeke: neglected discoverer of the “Hu-Washizu Functional”, [45]
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solving procedure is achieved by a local-global solving process: [|ǫ|] and [|u|] are computed

by means of a return mapping algorithm (Simo and Hughes, [49]) and after a static conden-160

sation of [|ǫ|] and [|u|] (Wilson, [50]), the displacement field d is computed for each iteration

k + 1 of a typical time step n+ 1.

In the next section, we present the numerical simulations of the tensile splitting test.

2.2. Numerical simulations of the tensile splitting test

We propose to simulate the tensile splitting test by means of the Finite Element model165

developed in Benkemoun et al. [24].

2.2.1. Characteristic dimension d

In the aformentionned tensile splitting tests litterature, the scale range of the cylinders

diameter is in general very broad. In [9] it is 1:26 corresponding to tests conducted on

cylinders with a diameter = 19, 38, 76, 152, 254, and 508 mm. In [3], it is 1:30. These170

ranges are broader than in any previous tests (never over 1:16) so it is not surprising that

the limit of applicability of eqn. (1) has not been detected in the previous tests.

As we will see hereafter, in the context of the proposed numerical study, the scale range

is quite narrrow (1:4). Consequently, in a first attempt, we consider that the cylinders size

stay “far away” from the size where an horizontal asymptote appears. The assumption175

that eqn. (1) is still applicable is therefore justified. Eqn. (1) is thus considered for the

numerical analysis of the size effect on the nominal stress at failure. Consequently, the

characteristic dimension d of the specimen has to be selected. Usually in the litterature (see

[9] for instance) this characteristic dimension is chosen as the diameter Φ of the specimen.

The size effect is therefore studied by increasing Φ and then computing σN . For instance,180

in [9], tests are conducted on cylinders of diameters Φ = 19, 38, 76, 152, 254, and 508 mm.

In the proposed work, we investigate a slightly different method. Instead of choosing the

cylinder diameter Φ as the characteristic dimension d, we consider the aggregate diameter

D as the characteristic dimension d. Consequently, tests are conducted on cylinders with

a fixed diameter Φ. Nevertheless, for each of these cylinders the aggregate diameter D is185

increased. Five cylinders are tested, which geometrical characteristics are given in table 1.
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Cylinder Cylinder Cylinder Aggregate Aggregate Mesh

id. diameter [mm] thickness [mm] diameter [mm] volume fraction targeted on figure

S1 110 50 4 20% Fig. 5(a)

S2 110 50 8 20% Fig. 5(b)

S3 110 50 10 20% Fig. 5(c)

S4 110 50 14 20% Fig. 5(d)

S5 110 50 16 20% Fig. 5(e)

Table 1: Identification of the tested cylinders

We keep a constant volume fraction equals to 20 % and the size range is 1:4. As stressed

just before, due to the fact that the size range is narrow (1:4), the usual Bažant size effect

law (eqn. (1)) can be considered for the size effect study.

Last but not least, in the context of non-adaptated meshing process (see [37]), the choice190

of the aggregates diameter as the characteristic dimension is relevant.

1. All the computations are performed with the same mesh, eliminating bias that could

appear with different meshes and

2. because the aggregates are placed independently from the mesh, an important amount

of computation time is saved.195

Finally, as observed in Fig. 4, Φ and D have an inverse role. The highest value of D

corresponds to the lowest value of Φ and the lowest value of D corresponds to the highest

value of Φ. Consequently if we want to confront our size effect study to Bažant size effect

law – in which the nominal stress at failure σN decreases when the characteristic dimension

increases – eqn. (1) has to be slightly modified considering β now equals to do
D
. In this200

sense, 1/D and Φ now evolve with the same trend. Consequently the retained characteristic

dimension is 1/D for the numerical study in this paper.

2.2.2. Finite Element simulations results

The numerical simulations are performed by means of the meshes presented in Fig. 5.

Table 2 summarizes the mesoscale material properties pertaining to the mechanical model205
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Figure 4: Equivalence between the usual approach ([9] for instance) and the approach of this paper for the

caracterisation of the size effect

for the different phases. Note that the aggregates are stiffer than the mortar matrix and

remain in the elastic regime. The computation is made under displacement control at the

top of the cylinder according to the second spatial axis Y .

(a) S1 (b) S2 (c) S3

(d) S4 (e) S5

Figure 5: Plot of the meshes for the numerical simulations. The volume fraction is constant and equal to

20 %
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phase E (GPa) σu (MPa) Gf (J/m2)

mortar matrix 35 3 80

aggregates 100 elastic elastic

interfaces - 3 80

Table 2: Mesoscale material properties for the numerical simulations

Fig. 6 plots the macroscopic stress versus imposed displacement curves for each cylinder

Si. Three phases can be observed:210

• Phase I (pre-peak region) where a non-linear macroscopic behavior is obtained. In

this phase, diffuse crack (micro-cracks) are created in the mortar matrix and at the

interfaces aggregates/mortar matrix.

• Phase II (peak at rupture region) where the macroscopic ultimate tensile strength σmax

is reached. In this phase, the coalescence of the micro-cracks lead to a macroscopic215

crack (localized crack).

• Phase III (post-peak at rupture region) where a softening macroscopic behavior is

observed. In this phase, the deformation is mainly localized in the established macro-

crack.

By computing the area under these macroscopic curves for each imposed displacement220

increment ∆ū, we determine the cumulative total energy as shown in Fig. 7. This total

energy accounts for both the elastic energy and the dissipated energy through the fracture

process.

Fig. 8 show the crack pattern at the end of the numerical simulations. It corresponds

to the micro-cracked bar elements for which the strong discontinuity has been activated.225

As observed experimentally (see Fig. 9 for instance), we observe one macro-crack roughly

located in the plane Y − Z and passing around the aggregates. This macro-cracked is

sufficient to drive the macroscale response into the softening regime (see Fig. 6). We note

that the value of the maximum crack opening increases with the increase in the aggregate

diameter. This result is also observed in some experimental papers such as [51] and [52].230
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Figure 7: Cumulative total energy versus imposed displacement plots for each cylinder Si

2.3. Size effect in the tensile splitting test

Table 3 sums up the numerical results in terms of nominal stress at failure σN versus the

characteristic dimension 1/D. We remind that D is the aggregate diameter.

Regarding Table 3, we conclude that the value of σN decreases when the characteristic

dimension 1/D increases. These results are in agreement with the trend observed in exper-235

imental results conducted in [3] and [9] : the nominal stress at failure decreases when the
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(a) S1 (b) S2 (c) S3

(d) S4 (e) S5

Figure 8: Crack pattern at the end of the numerical simulations. Crack opening are given in mm.

Figure 9: Experimental results of the tensile splitting test (D = 110 mm and e = 50 mm).

Specimen S5 S4 S3 S2 S1

Char. dim. 1/D (mm−1) 0.0625 0.0714 0.1000 0.1250 0.2500

σN (MPa) 2.1100 2.0000 1.9530 1.9000 1.7000

Table 3: Nominal stress at failure σN from numerical simulations

characteristic dimension increases.

After rewritting the Bažant size effect law (eqn. (1)) with the modified β = do
D

and
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transforming it to a linear regression plot, we obtain:

Y = AX + C (8)

with Y = 1/(σN)
2, X = 1/D, C = 1/(Bft)

2 and, A = Cdo.

The linear regression plot of eqn. (8) is shown in Fig. 10. It is apparent that the results

are in good agreement with the size effect law (eqn. (1)) with the modified β = do
D
. The240

regression analysis yields A = 0.5936 mm and C = 0.1997, from which do = 2.97 mm and

Bft = 2.24 MPa. The correlation coefficient of the regression is r = 0.972. Fig. 11 plots the

log–log version of Bažant size effect law with modified β = do
D

versus the numerical results.

It is worth noting that the numerical results follow well the trend of Bažant size effect law

and that no asymptotic behavior is observed. As stated before, this observation can be245

justifed by the narrow scale range (1:4).
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Figure 10: Bažant size effect law with modified β = do

D
versus numerical results (linear regression)

3. Fracture energy analysis of the tensile splitting test

In this Section, we introduce, first, the method conducted to perform the fracture energy

analysis. Second, we discuss the numerical results obtained with the method.
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Figure 11: Bažant size effect law with modified β = do

D
versus numerical results (log–log version)

3.1. Fracture energy analysis method250

The fracture energy is computed at the end of the mechanical Finite Element simulations.

For each time step and each bar element, we calculate the fracture energy value as the area

under the curve tΓ− [|u|] (see Fig. 3(b)). This fracture energy value is then set at the center

C of the corresponding bar element. Consequently, for each time step, a three dimensional

set of points placed in a (x, y, z) space is obtained with a fracture energy value associated255

to each of these points. The number of points is equal to the number of bar elements.

The (x, y, z) space is then discretized into a three dimensional grid of rectangular elements

with uniform dimensions in order to perform the fracture energy analysis. We see here the

fundamental role of the mechanical model furnishing the crack opening values for each bar

element and, thus allowing to compute the fracture energy values.260

We apply this method to the numerical simulations results obtained in Section 2.2. A

statistical approach relying on an energy-based criterion is performed in order to determine

the volume of the FPZ in relation with the aggregates size and the level of loading. The

volume of the FPZ VFPZ is determined from the fracture energy field and is here defined

as the volume of the specimen inside which 95% of the total fracture energy is dissipated265

(see the experimental work of Otsuka and Date [17]). The principle of the determination is
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described in Fig. 12.

To compute VFPZ, the fracture energy field is first interpolated over a 200 × 200 ×
40 three dimensional rectangular grid (see Grassl and Jirsek [30] for a similar approach in

2D). This grid corresponds to 1,600,000 rectangular elements. This size has been chosen270

in accordance to the number of bar elements (1,584,958) in the meshes used for the Finite

Element simulations and shown in Fig. 5. This interpolation allows the representation of

fracture energy fields as shown in Fig. 13(a) for example.

Then, the fracture energy is cumulated along direction x, for the different values of y

and on each slice of the cylinder defined by the altitude z. This yields a curve showing the275

evolution of the relative cumulated fracture energy along x. The values of x corresponding

to a relative cumulated fracture energy of 2.5% (xmin) and 97.5% (xmax) then allow the

determination of the width of the FPZ as a function of y: LFPZ (y) = xmax − xmin. By

integrating this function over y for each slice, we obtain the total volume of the FPZ. This

procedure is carried out for different time steps to determine the evolution of the volume of280

the FPZ for different imposed displacements.

3.2. Numerical results discussion

3.2.1. FPZ volume value (VFPZ)

Fig. 13 plots the 2D representation of the fracture energy for D = 4, 8, 10, 14 and 16

mm at the end of the computation. We show the results for cylinder slices located at the285

middle of the specimen (Z = 25 mm). We distinguish the elastic aggregates colored in black

- meaning that no fracture energy is dissipated - between the mortar matrix. We also see

that the fracture energy is mainly dissipated in a band whose width varies in relation with

the aggregates diameter.

Fig. 14 plots the evolution of VFPZ in relation with the imposed displacement for D =290

4, 8, 10, 14 and 16 mm. In these curves, three phases can be observed (for a correspondance

with the curves stress versus imposed displacement, see Fig. 6):

• Phase I where VFPZ rises rapidly in the pre-peak at rupture region. It is due to the

increase in diffuse cracks (micro-cracks) density. These micro-cracks nucleate at the

18



Figure 12: Determination of the volume of the FPZ (VFPZ)

interfaces aggregates/mortar and then propagate in these interfaces and in the mortar295

matrix.

• Phase II where VFPZ rises slowly in the peak at rupture region. It is due to the

coalescence of diffuse cracks (micro-cracks) leading to a localized crack (macro-crack).

In this phase, the fracture energy is mainly dissipated in the on-going macro-crack.

Somehow, some micro-cracks are still generated leading to a slight increase in VFPZ .300

• Phase III where an horizontal plateau is present in the post-peak region. This hor-

izontal plateau means that VFPZ does not increase and is stabilized. It is because

the fracture energy is dissipated in the existing macro-crack. This plateau appears at

about 85 % of post-peak loading.

These three phases are also observed in the experimental work of Alam et al. [19] for the305
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Figure 13: 2D fracture energy [J.m−2] for D = 4, 8, 10, 14 and 16 mm in cylinder slices located at Z = 25

mm at the end of the computation

fracture analysis of notched beams by means of DIC an AE. They also find that at about

80 % of post-peak loading, the FPZ evolution is stabilized.
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Finally, the correlation between the increase in micro-cracks density and VFPZ is illus-

trated in Fig. 15. This plot superimposes the cumulative micro-cracks density ρmc and VFPZ

in relation with the imposed displacement for D = 10 mm. We note nmc the number of310

micro-cracks. It is important to stress the fact that the representation of the cumulative

micro-cracks density ρmc is used as a similar tool as the accoustic events measured in the

experimental work of Alam et al. [19]. They both explain the cracking process (from diffuse

cracks to localized crack) with information coming from the fine scale.
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Figure 15: Evolution of VFPZ and ρmc in relation with the imposed displacement for D = 10 mm

Fig. 16 plots the relation between the FPZ volume value and the FPZ width value. We315

note a linear relation. Consequently, the FPZ width value can also be regarded to study the

FPZ evolution.

Regarding computations conducted in this paper, it is relevant to wonder if the computed

results are statically representative. Indeed as stated in Grassl et al. [30] and observed in

Fig. 19 for tensile fracture, the cracking process, - starting from micro-cracks nucleation320

to macro-crack formation -, in which most of the energy is dissipated, is predominantly

determined by the random arrangement of aggregates. Consequently, the crack paths in

concrete subjected to tension will differ significantly. This conclusion implies that a purely

deterministic meso-scale model, which does not consider the statistical variation of the
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fracture paths, cannot accurately describe the FPZ of concrete subjected to tension. Hence, a325

direct determination of the mean FPZ by meso-scale analysis requires averaging of the results

of meso-scale analyses. For D = 16 mm where the statistical variation is supposed to be the

most important, we present results obtained considering 10 realizations1 of microstructure.

Fig. 17 plots the mean value of VFPZ (Vm) and the range between the mean plus and minus

one standard deviation (σV m) by averaging 10 realizations.330

During the phase I, we observe a low standard deviation, showing that the arrangement

of the aggregates does not play any role on the size of the FPZ. This has to be linked to

the observation made on the volume of the FPZ determined for various sizes. Indeed, as

shown on figure 14 the different curves during phases I are nearly superimposed showing the

weak influence of the size of the aggregates. Thus the pre-peak behavior during the tensile335

splitting test seems to depend weakly on the size and on the arrangement of the aggregates.

After phase I, we observe that the standard deviation increases. The volume of the FPZ

begins to be sensitive to the arrangement of the aggregates from the phase II, showing the

1the number of realizations may appear rather small but regarding the computation time as well as the

computational power at the authors disposal, it is quite difficult to perform more realizations within a decent

time
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interaction between the aggregates and the mortar matrix. The standard deviation then

increases sharply at the beginning of phase III. So, the influence of the arrangement of the340

aggregates (as well as the influence of the size of the aggregates) increases as the imposed

displacement increases.As pointed out previously, the characteristics of the FPZ depend not

only on the size of the aggregates, but also on their arragement inside the specimen. However,

the volume of the FPZ during the phase III must be less sensitive to a random arrangement

of the aggregates for small sizes than for large sizes. This implies that to better investigate345

this phase, the mechanical calculation and the following analysis should be performed on

several arrangements randomly created with a number of random arrangements depending

on the size of the aggregates. The study of the evolution of the volume of the FPZ for

different sizes and arrangement thus shows that the study of the evolution of the volume of

th FPZ during the phases I and II can be made on a single random arrangement, whatever350

the size of the aggregate. These phases are the most important as they correspond to small

crack widths and thus are more representative of the behavior of a structure in a natural

environment. For the phase III, the results depend on the arrangement for large sizes and a

statistical study should be performed. Nevertheless, the present study will be made on the

basis of a single arrangement for each size even for the phase III.355

3.2.2. FPZ width value (LFPZ)

Fig. 18 plots the evolution of LFPZ in relation with the imposed displacement for D =

4, 8, 10, 14 and 16 mm. Considering the fact that the computation of LFPZ is performed

with the analysis of the fracture energy (as explained in the introduction of this part), it

is relevant to depict the evolution of this fracture energy by means of a 2D representation.360

For instance, Fig. 19 plots this fracture energy evolution in relation with the imposed

displacement for a slice at the middle of the specimen (Z = 25 mm), for D = 10 mm. We

can correlate Fig. 19 with the aforementionned phases (I, II, III):

• Phase I corresponds to fig. 19(a) to 19(d). We observe the development of a band

where the fracture energy is dissipated. This band can be correlated with LFPZ rises.365
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Figure 17: Mean value of VFPZ and range between the mean plus and minus one standard deviation by

avering 10 realizations

• Phase II corresponds to fig. 19(e) to 19(g). At the end of this phase, the width of

the band where the fracture energy is dissipated is almost stabilized. Nevertheless a

narrower band concentring a higher value of the dissipated energy is created (yellow

color in the figures with a value close to 70-80 J.m−2). This narrower band is related

with the macro-crack formation. In this phase, LFPZ rises slowly.370

• Phase III corresponds to fig. 19(h) to 19(j). In this phase, the width of the band

where the energy is dissipated is stabilized. It can be correlated to the fact that LFPZ

presents an horizontal plateau and consequently does not increase anymore.

The numerical values obtained for LFPZ (35.9, 37.8, 41.0, 43.77 and 43.18 mm) are in

accordance with the experimental results of Alam et al. [19]. In their work, the authors375

obtain values ranging from 50 to 80 mm.

3.2.3. FPZ volume (width) evolution versus the aggregate size

Fig. 20 plots the evolution of the FPZ volume (width) value in relation with the aggregate

diameter for ū = 0.25 mm. The value of the imposed displacement chosen for the plot is
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Figure 18: Evolution of the FPZ width value in relation with the imposed displacement for D = 4, 8, 10,

14 and 16 mm

such that the set of curves is located in phase III. Consequently, the size of the FPZ is380

stabilized and comparison can hold. Fig. 20 shows an increasing trend between the FPZ

volume (width) value and the aggregate diameter. We can conclude that the FPZ volume

(width) is correlated to the aggregate size. This conclusion can also be observed in Fig. 13.

We see that the fracture energy is mainly dissipated in a band whose width increases with

the aggregate diameter.385

These results are also in accordance with the experimental work of Otsuka and Date

[17]. Even if it is for the FCZ (Fracture Core Zone) - defined as the volume of the specimen

inside which 70 % of the total fracture energy is dissipated-, they show an increase in the

width of the FCZ with the increase of the maximum aggregate size.

4. Conclusion390

In the present work, a meso-scale analysis of the tensile splitting test was used to in-

vestigate the size effect on the nominal stress at failure σN and to determine the fracture

process zone of concrete, which is defined as the volume of the specimen inside which 95 %

of the total fracture energy is dissipated. The study resulted in the following conclusions:
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(b) ū = 0.045 mm
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(c) ū = 0.06 mm

X [mm]

Y
 [m

m
]

Fracture energy [J/m2]

 

 

0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

(d) ū = 0.105 mm
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(e) ū = 0.12 mm
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(f) ū = 0.18 mm
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(g) ū = 0.21 mm
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(h) ū = 0.225 mm
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(i) ū = 0.285 mm
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(j) ū = 0.3 mm

Figure 19: 2D fracture energy evolution [J.m−2] in relation with the imposed displacement for D = 10 mm

in a cylinder slice located at Z = 25 mm
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and 16 mm for ū = 0.25 mm

1. The size effect on the nominal stress at failure σN can be investigated by increasing the395

aggregate size instead of the specimen size considering a modified form of the Bažant

size effect law.

2. The fracture process zone evolution can be divided into three phases in relation with

the cracking process. The volume and the width of the fracture process zone increase

rapidly in the post-peak at rupture region (Phase I). The rate of increase is slowed400

down in the peak at rupture region (Phase II) and is stabilized in the post-peak at

rupture region (Phase III).

3. The volume and the width of the fracture process zone increase with the aggregate

size.

In the future works, mesoscale model results coupled to the fracture energy analysis405

method will be used to calibrate non-local macroscopic damage models (see for instance

Pijaudier-Cabot and Bažant, [53]). Indeed, the characteristic length parameter of these

models have been shown to be related to the width of the fracture process zone (see Grassl

et al. [30] or point 4 of the conclusion of [53]). In addition, even 3D non-local macroscopic

models could be calibrated regarding the fact that the volume of the FPZ is also calculated.410
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Last but not least, advanced macroscopic models such as the Thick Level Set model (see

Moes et al. [54]) with the following key-points:

• damage model with a non-locality treatment by means of a length scale,

• possibility of transition from damage to fracture,

could also be calibrated and applied to the study of the tensile splitting test at the macro-415

scopic scale.
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