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We consider complex-valued solutions of the conserved Kuramoto-Sivashinsky equation which describes the coarsening of an unstable solid surface that conserves mass and that is parity symmetric. This equation arises in different aspects of surface growth. Up to now, the problem of existence and smoothness of global solutions of such equations remained open in R d , d ≥ 1. In this article, we answer partially to this question. We prove the finite time blow up of complex-valued solutions associated to a class of large initial data, more precisely, we show that there is complex-valued initial data that exists in every Besov space (and hence in every Lebesgue and Sobolev space), such that after a finite time, the complex-valued solution is in no Besov space (and hence in no Lebesgue or Sobolev space).

Introduction

In this paper, we consider the conserved Kuramoto-Sivashinsky (cKS) equation described by the following partial differential equation,

∂ t v + ∆ 2 v + ∆|∇v| 2 = 0 (1) with initial condition v(0) = v 0 (2) 
on R d with solutions vanishing at infinity as |x| → ∞ or on the d-dimensional torus T d ≡ R d /(2πZ) d , with periodic boundary conditions and in this case we require in addition that v 0 is a periodic scalar function of period 2π with zero mean value, that is T d v 0 (x) dx = 0.

as a model for the boundaries of terraces in the epitaxy of Silicon [START_REF] Frisch | Effect of step stiffness and diffusion anisotropy on the meandering of a growing vicinal surface[END_REF]. It also describes the growth of an amorphous thin film by physical vapor deposition [START_REF] Raible | Amorphous thin film growth: Minimal deposition equation[END_REF] and [START_REF] Raible | Amorphous thin film growth: theory compared with experiment[END_REF]-in this case, conserved dynamics are obtained by transforming to a frame that translates upward with constant velocity.

For simplicity of presentation, we consider the rescaled version (1) with a dimensional length-scales. Sometimes the equation is considered with a linear instability +∆v , which leads to the formation of hills, and the Kuramoto-Shivashinky-type nonlinearity -|∇v| 2 leading to a saturation in the coarsening of hills (see [START_REF] Linz | Amorphous thin film growth: modeling and pattern formation[END_REF][START_REF] Raible | Amorphous thin film growth: theory compared with experiment[END_REF]). Both terms are neglected here. They are lower order terms not important for questions regarding regularity and blow up. Furthermore, the equation is usually perturbed by space-time white noise referred as η (see for instance [START_REF] Linz | Amorphous thin film growth: modeling and pattern formation[END_REF][START_REF] Raible | Amorphous thin film growth: theory compared with experiment[END_REF][START_REF] Raible | Amorphous thin film growth: Minimal deposition equation[END_REF]), which we also neglect here, although many results do hold for the stochastic PDE also (see [START_REF] Blömker | Markovianity and ergodicity for a surface growth PDE[END_REF]).

Previous work shows that numerical simulations based on (1) can be well fitted to experimental data, and that (1) adequately describes the phenomena of coarsening and roughening that are characteristic for the growth of corresponding surfaces on intermediate time scales [START_REF] Linz | Amorphous thin film growth: modeling and pattern formation[END_REF][START_REF] Raible | Amorphous thin film growth: theory compared with experiment[END_REF][START_REF] Stein | Amorphous molecular beam epitaxy: global solutions and absorbing sets[END_REF]. In particular, the characteristic statistical measures of the surface morphology such as the correlation length and the surface roughness calculated from the cKS model show very good agreement with available experimental data and, therefore, support the validity of this modeling approach (see [START_REF] Linz | Amorphous thin film growth: modeling and pattern formation[END_REF] for more details).

Nevertheless, without the existence of a unique solution there is no hope of guaranteeing that a numerical approximation is really an approximation in any meaningful sense, since it is not clear what is being approximated.

Thus, a crucial open problem for the cKS equation ( 1) is the fact that existence and uniqueness of global solutions is not known (see [START_REF] Blömker | Local existence and uniqueness in the largest critical space for a surface growth model[END_REF][START_REF] Blömker | Regularity and blow up in a surface growth model[END_REF]) even in the one dimensional case (see [START_REF] Blömker | Regularity and blow up in a surface growth model[END_REF] and references therein).

For the one dimensional case, existence of global weak solutions on bounded domains has been established in [START_REF] Blömker | Thin-film-growth models: roughness and correlation functions[END_REF][START_REF] Stein | Amorphous molecular beam epitaxy: global solutions and absorbing sets[END_REF]. The key point of the construction of global weak solutions lies on a L 2 -energy-type estimate deriving from the fact that, in this case, the nonlinearity in ( 1) is orthogonal to the solution itself in the sense of L 2 . For the two-dimensional case, the situation seems even worse, as the existence of global weak solutions could only be established in H -1 using the non-standard energy 2π 0 e v(x) dx (see [START_REF] Winkler | Global solutions in higher dimensions to a fourth order parabolic equation modeling epitaxial thin film growth[END_REF]). However, up to now, the question of global regularity for the cKS equation ( 1) is still open (see [START_REF] Blömker | Regularity and blow up in a surface growth model[END_REF][START_REF] Blömker | Local existence and uniqueness in the largest critical space for a surface growth model[END_REF] and references therein). Only existence, uniqueness and regularity of local solutions or global strong solutions with smallness condition on the initial data have been established in [START_REF] Blömker | Thin-Film-Growth-Models: On local solutions[END_REF][START_REF] Stein | Amorphous molecular beam epitaxy: global solutions and absorbing sets[END_REF] with initial values in W 1,q with q ≥ 2 for d = 1 and W 1,4 for d = 1, 2, 3 and later improved in [START_REF] Blömker | Regularity and blow up in a surface growth model[END_REF][START_REF] Blömker | Local existence and uniqueness in the largest critical space for a surface growth model[END_REF] for initial values in the critical Hilbert space H d/2 or in a critical space of BMO-type. The main difficulties for treating problem (1) are caused by the nonlinearity term ∆|∇v| 2 and the lack of a maximum principle. Due to its nonlinear parts, there are more difficulties in establishing the existence of global strong solutions. Then in [START_REF] Blömker | Rigorous Numerical Verification of Uniqueness and Smoothness in a Surface Growth Model[END_REF], numerical methods have been proposed for proving numerically ex-istence, uniqueness and smoothness of global solutions of [START_REF] Agélas | Global regularity of solutions of equation modeling epitaxy thin film growth in R d , d = 1, 2[END_REF].

As in [START_REF] Li | Blow ups of complex solutions of the 3d-Navier-Stokes system and renormalization group method[END_REF], in this paper, we omit the condition that v is the Fourier transform of a real-valued solution v of (1) in the d-dimensional space and consider it in the space of all possible complex-valued functions.

In this situation, we answer to the existence and smoothness problem for the cKS equation ( 1) by showing that for sufficiently large initial data, we get complex-valued solutions which blow up in finite time. More precisely, by borrowing the arguments used in [START_REF] Montgomery-Smith | Finite time blow up for a Navier-Stokes like equation[END_REF], in our Theorem 3.1 combined with Corollary 3.1, we show that there is complex-valued initial data that exists in every Triebel-Lizorkin or Besov space (and hence in every Lebesgue and Sobolev space), such that after a finite time, the solution is in no Triebel-Lizorkin or Besov space (and hence in no Lebesgue or Sobolev space). This finite time blow up result may suggest as it was shown in [START_REF] Agélas | Global regularity of solutions of equation modeling epitaxy thin film growth in R d , d = 1, 2[END_REF], that a better taking into account of the main physical phenomena and a better approximation of terms related to them in the surface growth mathematical model can help to get existence and uniqueness of global strong solutions for such equations as the ones modeling epitaxy thin film growth. The paper is organized as follows: In section 1, we give some notations. In section 2, we introduce the Banach spaces as the Hilbert spaces H s , Lebesgue spaces L p and Besov spaces B s p,q . In section 3, we prove our Theorem 3.1 with our Corollary 3.1. If we set u = -v and u 0 = -v 0 , we notice that u satisfies the following equivalent Equation to (1):

∂ t u + ∆ 2 u -∆|∇u| 2 = 0, (3) 
with initial condition

u(0) = u 0 . (4) 
Then, without loss of generality, in what follows, we will consider Equation (3) rather than (1).

Some notations

For any x ∈ R d , we denote by {x} + the vector having for components the values max{x m , 0} for 1 ≤ m ≤ d. We denote by | • | the modulus of a complex number. We denote by • , the euclidean norm on C d defined for all x ∈ C d by

x =   1≤m≤d |x m | 2   1 2
. We denote by • ∞ , the infinity norm on

C d defined for all x ∈ C d by x ∞ = max 1≤m≤d |x m |. For x ∈ C d and r > 0, let B r (x) = {y ∈ C d : y -x ∞ ≤ r}.
Notice, here that the ball of C d is defined with the norm • ∞ and not with the euclidean norm of C d as it is usually the case. This change is made in order to deal with the periodic case also.

For any a ∈ R and r > 0, we denote with the same notation B r (a) the ball B r (A) where

A ∈ R d is such that for all 1 ≤ m ≤ d, A m = a.
For any x ∈ R d and y ∈ R d , we say that x ≤ y (resp.

x ≥ y) if for all 1 ≤ m ≤ d, x m ≤ y m (resp. x m ≥ y m ). For any x ∈ R d and a ∈ R, we say that x ≤ a (resp. x ≥ a) if for all 1 ≤ m ≤ d, x m ≤ a (resp. x m ≥ a).
For any function f defined on R d × R + , for any t ≥ 0, for a simplicity in the notation, we denote by f (t) the function x -→ f (x, t) defined on R d . Given an absolutely integrable function f ∈ L 1 (R d ), we define the Fourier transform f : R d -→ C by the formula,

f (ξ) = R d e -ix•ξ f (x) dx,
and extend it to tempered distributions. For a function f which is periodic with period 1, and thus representable as a function on the torus T d , we define the discrete Fourier transform f : Z d -→ C by the formula,

f (k) = T d e -ix•k f (x) dx,
when f is absolutely integrable on T d , and extend this to more general distributions on T d .

Some Banach spaces

We denote by S (R d ) the class of complex-valued tempered Schwartz functions on R d and by S (T d ) the space of complex-valued infinitely differentiable functions on T d . Its dual space S ′ (R d ) (resp. S ′ (T d )) is called the space of distributions. In particular, we recall the following two facts ( [START_REF] Schmeisser | Topics in Fourier analysis and function spaces, Math-ematik und ihre Anwendungen in Physik und Technik[END_REF])

• Any function f ∈ S (T d ) can be represented as f (x) = k∈Z d a k e ik•x for any x ∈ R d with (a k ) k∈Z d scalars such that sup k∈Z d (1 + |k|) m |a k | < ∞ for any m ∈ N.

In this case one has

a k = f (k) for each k ∈ Z d .
• Any function g ∈ S ′ (T d ) can be represented as

g(x) = k∈Z d a k e ik•x for any x ∈ R d (5) 
with (a k ) k∈Z d scalars such that sup

k∈Z d (1 + |k|) -m |a k | < ∞ for some m ∈ N.
In this case one has a k = g(k) for each k ∈ Z d .

Some Sobolev spaces

For s ∈ R, we define the Sobolev norm f H s (R d ) of a tempered distribution

f : R d -→ C by, f H s (R d ) = R d (1 + |ξ| 2 ) s | f (ξ)| 2 dξ 1 2
, and then we denote by H s (R d ) the space of tempered distributions with finite H s (R d ) norm, which matches when s is a non negative integer with the classical Sobolev space H k (R d ), k ∈ N. For s > -1 2 , we also define the homogeneous Sobolev norm,

f Ḣs (R d ) = R d |ξ| 2s | f (ξ)| 2 dξ 1 2
, and then we denote by Ḣs (R d ) the space of tempered distributions with finite Ḣs (R d ) norm. Similarly, on the torus T d and s ∈ R, we define the Sobolev norm

f H s (T d ) of a tempered distribution f : T d -→ C by, f H s (T d ) =   k∈Z d (1 + |k| 2 ) s | f (k)| 2   1 2
, and then we denote by H s (T d ) the space of tempered distributions with finite H s (T d ) norm. On the torus T d , for s > - 1 2 , we also define the homogeneous Sobolev norm,

f Ḣs (T d ) =   k∈Z d |k| 2s | f (k)| 2   1 2
, and then we denote by Ḣs (T d ) the space of tempered distributions with finite Ḣs (T d ) norm.

For any p ≥ 1, we denote by L p (R d ) the space of functions f : R d -→ C such that the norm,

f L p (R d ) := R d |f (x)| p dx 1 p < +∞.
For any p ≥ 1, we denote by L p (Z d ) the space of functions f : Z d -→ C such that the norm,

f L p (Z d ) :=   k∈Z d |f (k)| p   1 p < +∞.

Besov spaces

We introduce the usual dyadic unity partition of Littlewood-Paley decomposition (see [START_REF] Bergh | Interpolation Spaces, An Introduction[END_REF][START_REF] Cannone | Harmonic Analysis Tools for Solving the Incompressible Navier-Stokes Equations[END_REF][START_REF] Chemin | Perfect Incompressible Fluids[END_REF][START_REF] Triebel | Theory of Function Spaces, Geest & Portig[END_REF] for more details). To this end, we take an arbitrary realvalued radial function ϕ in S (R d ) whose Fourier transform ϕ is non-negative and is such that,

supp ϕ ⊂ B 1 (3/2) and ϕ(ξ) ≥ 1 2 for ξ ∈ B 1 2 (3/2),
and define ϕ j (x) = 2 jd ϕ(2 j x) so that ϕ j (ξ) = ϕ(2 -j ξ) for j ∈ Z. We may assume,

∀ξ ∈ R d \{0}, j∈Z ϕ j (ξ) = 1.
For any f ∈ S ′ (R d ) or S ′ (T d ), we denote by ∆ j f , j ∈ Z, the function,

∆ j f := ϕ j ⋆ f. If f ∈ S ′ (R d ),
we notice that for all x ∈ R d and for all j ∈ Z,

∆ j f (x) = F -1 ( ϕ j f )(x) = R d ϕ j (ξ) f (ξ)e iξ•x dξ. (6) 
If f ∈ S ′ (T d ), using [START_REF] Blömker | Thin-film-growth models: roughness and correlation functions[END_REF] we notice that for all x ∈ R d and for all j ∈ Z,

∆ j f (x) = k∈Z d ϕ j (k) f (k)e ik•x . (7) 
Then a tempered distribution f belongs to the homogeneous Besov space Ḃs p,q (R d ) (resp. Ḃs p,q (T d )) modulo polynomials if and only if

f Ḃs p,q (R d ) < ∞ (resp. f Ḃs p,q (T d ) < ∞) where for Ω d = R d or T d , f Ḃs p,q (Ω d ) :=            j∈Z 2 jsq ∆ j f q L p (R d )   1 q if q < ∞ sup j∈Z 2 js ∆ j f L p (R d ) elsewhere, (8) 
and f = j∈Z ∆ j f ∈ S ′ /P m where P m is the space of polynomials of degree ≤ m and m = [s -d p ], the integer part of s -d p .

Blow up of complex-valued solutions of the cKS equation

We We set A = ∆ 2 . In either R d or T d , we let e -tA for t > 0 be the usual biharmonic heat semigroup associated to the biharmonic heat equation w t + Aw = 0 (see [START_REF] Gazzola | Some new properties of biharmonic heat kernels[END_REF], for an explicite form of its solution on R d ).

Then, we start with the definition of mild solutions of cKS Equation ( 3) obtained from Kato's semigroup approach [START_REF] Kato | Strong L p -solutions of the Navier-Stokes equation in R m , with applications to weak solutions[END_REF].

Definition 3.0.1. We say that u is a mild solution of cKS Equation (3

) if u is a solution to the equation u = G(u) where G : C([0, T ], X) → C([0, T ], X),
with X being a space of complex-valued tempered distributions on R d : for a.e t ∈ [0, T ]

G(u)(t) = e -tA u 0 + t 0 e -(t-s)A ∆|∇u(s)| 2 ds. ( 9 
)
The Kato's semigroup approach used to find a fixed point of G is to show that G is a contraction mapping on C([0, T ], X) or on some subset of C([0, T ], X). It turns out that the natural spaces in which to consider solutions are of the form C([0, T ], X), where X is a scale-invariant space (we call scale-invariant space, any Banach space X satisfying f (λ•) X = f X for all λ > 0): for instance the homogenenous Sobolev space Ḣ d 2 , Besov spaces Ḃ d p p,∞ for p < ∞ or the BMO-type spaces introduced in [START_REF] Blömker | Local existence and uniqueness in the largest critical space for a surface growth model[END_REF]. In fact, it can be shown (arguing similarly as in Frazier, Jawerth and Weiss in [START_REF] Frazier | Littlewood-Paley theory and the study of function spaces[END_REF]) that all scale-invariant spaces of distributions, that also contain all Schwartz functions, are contained in the Besov space Ḃ0 ∞,∞ . The main ingredient of the proof of the existence of blowing-up solutions as in [START_REF] Montgomery-Smith | Finite time blow up for a Navier-Stokes like equation[END_REF] consists in noticing that if the initial data has a positive Fourier transform, then that positivity is preserved for the solution at all further times. One can then use the Duhamel formulation of the solution and deduce a lower bound for the Fourier transform that blows up in finite time. Proof. To get the proof, we adapt the construction of [START_REF] Montgomery-Smith | Finite time blow up for a Navier-Stokes like equation[END_REF] to our case. We set w n = w 2 n with n ∈ N. We observe that w n+1 = w 2 n and then w n+1 = w n ⋆ w n . Since w is non-negative, has L 1 norm equal to 1 and is supported in

B 1 2 ( 3 2 ) ∩ F d = {ξ ∈ F d : 1 ≤ ξ ≤ 2}
, then by using an induction argument, we deduce that for all n ∈ N, w n is also non-negative, has L 1 norm equal to 1 and is supported in {ξ ∈ F d : 2 n ≤ ξ ≤ 2 n+1 }. Let t ≥ 0. We will show now by induction that the proposition P(n) = { u(t) ≥ A 2 n α n (t) w n } is true for all n ∈ N, where {α n } n∈N is the sequence of functions defined for all s ≥ 0 by α n (s) = 2 

u = G(u) (10) 
where G(u) is given by ( 9), then after taking the Fourier transform of Equation ( 10), we deduce that for all ξ ∈ F d , u(ξ, t) = e -t|ξ| 4 u 0 (ξ) - 

We notice that ∇u(ξ, s) = iξ u(ξ, s). Since u(•, s) is supported in F d + , then we get ∇u(ξ, s) = i{ξ} + u(ξ, s) and therefore

-i ∇u(ξ, s) = {ξ} + u(ξ, s). (12) 
Since u(•, s) is non-negative, from [START_REF] Furioli | On the uniqueness in L 3 (R 3 ) of mild solutions for the Navier-Stokes equations[END_REF] we get -i ∇u(ξ, s) ≥ 0 and therefore we deduce, ( ∇u ⋆ ∇u)(ξ, s) = -((-i ∇u) ⋆ (-i ∇u))(ξ, s) ≤ 0.

Therefore, from [START_REF] Frazier | Littlewood-Paley theory and the study of function spaces[END_REF], we get u(ξ, t) ≥ e -t|ξ| 4 u 0 (ξ) which gives us u(ξ, t) ≥ 2 7 Ae -t|ξ| 4 w(ξ) and then u(ξ, t) ≥ 2 7 Ae -2 4 d 2 t w(ξ) since |ξ| ≤ √ d ξ ∞ and w is supported in {ξ ∈ F d : 1 ≤ ξ ≤ 2}. Hence, we get that the proposition P(0) is true. Let us assume that the proposition P(n) is true for a given n ∈ N. Then, let us show that P(n + 1) will be also true. From [START_REF] Frazier | Littlewood-Paley theory and the study of function spaces[END_REF], since u 0 = 2 7 A w ≥ 0, we have,

u(ξ, t) ≥ - t 0 e -(t-s)|ξ| 4 |ξ| 2 ( ∇u ⋆ ∇u)(ξ, s) ds. (14) 
Since P(n) is true, then from (12), we get -i ∇u(ξ, s)

≥ {ξ} + A 2 n α n (s) w n (ξ). Since w n is supported in {ξ ∈ F d : 2 n ≤ ξ ≤ 2 n+1 }, then we get -i ∇u(ξ, s) ≥ 2 n A 2 n α n (s) w n ( 
ξ) ≥ 0 (which means that each component of the vector is greater than 2 n A 2 n α n (s) w n (ξ) ≥ 0) and therefore we deduce,

( ∇u ⋆ ∇u)(ξ, s) = -((-i ∇u) ⋆ (-i ∇u))(ξ, s) ≤ -d(2 n A 2 n α n (s)) 2 ( w n ⋆ w n )(ξ) = -d(2 n A 2 n α n (s)) 2 w n+1 (ξ). (15) 
Using [START_REF] Kato | Strong L p -solutions of the Navier-Stokes equation in R m , with applications to weak solutions[END_REF], from ( 14), we deduce

u(ξ, t) ≥ t 0 e -(t-s)|ξ| 4 |ξ| 2 d(2 n A 2 n α n (s)) 2 w n+1 (ξ) ds. (16) 
Since

w n+1 is supported in {ξ ∈ F d : 2 n+1 ≤ ξ ≤ 2 n+2 }, then we get 2 2(n+1) d ≤ |ξ| 2 ≤ 2 2(n+2) d, hence from (16) we get, u(ξ, t) ≥ d 2 2 4n+2 A 2 n+1 w n+1 (ξ) t 0 e -(t-s)2 4(n+2) d 2 α n (s) 2 ds = 2 14 d 2 2 4n+2 A 2 n+1 w n+1 (ξ) t 0 e -(t-s)2 4(n+2) d 2 e -2 n+5 d 2 s 1 {tn≤s≤t} ds ≥ 2 14 d 2 2 4n+2 A 2 n+1 w n+1 (ξ)e -2 n+5 d 2 t 1 {t≥tn} t tn e -(t-s)2 4(n+2) d 2 ds = 2 8 A 2 n+1 w n+1 ( 
ξ)e -2 n+5 d 2 t 1 {t≥tn} (1 -e -2 4(n+2) d 2 (t-tn) ).

However, for all t ≥ t n+1 , we have 1 -e -2 = A 2 n+1 w n+1 (ξ)α n+1 (t).

Then, we deduce that the proposition P(n + 1) is true. Therefore, we deduce that for all n ∈ N, for all ξ ∈ F d , u(ξ, t) ≥ A 2 n w n (ξ)α n (t). [START_REF] Li | Blow ups of complex solutions of the 3d-Navier-Stokes system and renormalization group method[END_REF] Thanks to [START_REF] Li | Blow ups of complex solutions of the 3d-Navier-Stokes system and renormalization group method[END_REF], we have for all j ∈ N, for all ξ ∈ F d , ϕ j (ξ) u(ξ, T d ) ≥ A 2 j ϕ j (ξ) w j (ξ)α j (T d ).

From Section 2.2, we notice that ϕ j (ξ) ≥ 1 2 for all ξ ∈ {ζ ∈ F d : 2 j ≤ ζ ≤ 2 j+1 } which is the support of w j and moreover w j is non-negative, then we deduce that for all ξ ∈ F d , ϕ j (ξ) w j (ξ) ≥ 1 2 w j (ξ). Therefore, we infer that for all j ∈ N, for all ξ ∈ F d ,

ϕ j (ξ) u(ξ, T d ) ≥ 1 2 A 2 j w j (ξ)α j (T d ) ≥ 0. ( 18 
)
Since for any j ∈ Z, ϕ j u ≥ 0 (thanks to ϕ ≥ 0 and u ≥ 0), then thanks to ( 6) and ( 7), we deduce that for all j ∈ Z, ∆ j u(0, T d ) = ∆ j u(T d ) L ∞ (R d ) . Moreover, we observe also that ∆ j u(0, T d ) = ϕ j u(T d ) L 1 (F d ) . Then for s ∈ R, we infer, Thanks to [START_REF] Montgomery-Smith | Finite time blow up for a Navier-Stokes like equation[END_REF], we infer,

u(T d ) Ḃs ∞,∞ (Ω d ) ≥ 1 2 sup j∈N 2 js A 2 j α j (T d ) w j L 1 (F d ) .
However, for any j ∈ N, w j L 1 (F d ) = 1 and since for all j ∈ N, T d > t j , we get α j (T d ) = 2 7 e -2 j+4 log(2)

  set Ω d = R d or Ω d = T d for the periodic case, F d = R d or F d = Z d for the periodic case. We set also F d + = (R + ) d or F d + = (Z + ) d for the periodic case.

Theorem 3 . 1 . 1 15d 2

 3112 Let d ∈ N * . Let w ∈ S (Ω d ) such that w is a real-valued function, w is non-negative, has L 1 norm equal to 1, and has support in B 1 2 ( 3 2 )∩ F d (so w is in every Triebel-Lizorkin or Besov space). Then if A > 2 16 15 , and if u is a mild solution to cKS Equation (3) whose Fourier transform is a non-negative real-valued function supported in F d + , with initial data u 0 = 2 7 Aw, then u(t) is not in any Triebel-Lizorkin or Besov space when t = T d := log(2 ).

2 n+1 j=1 2 - 1 15d 2 )

 2212 7 e -2 n+4 d 2 s 1 {s≥tn} with {t n } n∈N the sequence defined by t 0 = 0 and t n = log(2) d 4j for all n ≥ 1. Notice that the sequence {t n } n∈N is increasing and lim n→∞ t n = log(2 = T d which implies that for all n ∈ N, t n < T d . Let us show that the proposition P(n) is true for n = 0. Since

t 0 e

 0 -(t-s)|ξ| 4 |ξ| 2 ( ∇u ⋆ ∇u)(ξ, s) ds.

  d ) Ḃs ∞,∞ (Ω d ) := sup j∈Z 2 js ∆ j u(T d ) L ∞ (R d ) = sup j∈Z 2 js ϕ j u(T d ) L 1 (F d ) .

  4(n+2) d 2 (t-tn) ≥ 1 2 , since t n+1 -t n ≥ 155 log(2) d 2 2 -4(n+2). Then, we deduce,u(ξ, t) ≥ 2 7 A 2 n+1 w n+1 (ξ)e -2 n+5 d 2 t 1 {t≥tn+1}
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= 2 7 (e -16 log(2) 15 ) 2 j . Then, we deduce that,

15

Therefore, we deduce that if A > e 16 log(2) 15

= 2 16 15 then u(T d ) Ḃs ∞,∞ (Ω d ) = ∞, which allows us to conclude the proof.

or X R the scale-invariant space of BMO-type introduced in [START_REF] Blömker | Local existence and uniqueness in the largest critical space for a surface growth model[END_REF] with value in C. Let w be as in Theorem 3.1 and let A > 2 16 15 . Then there is no mild solution u to the cKS Equation ( 3), with

Proof. Here, we use the same arguments as in [START_REF] Montgomery-Smith | Finite time blow up for a Navier-Stokes like equation[END_REF]. Notice that [START_REF] Blömker | Markovianity and ergodicity for a surface growth PDE[END_REF]. By the semigroup methods of [START_REF] Kato | Strong L p -solutions of the Navier-Stokes equation in R m , with applications to weak solutions[END_REF], we know from [START_REF] Blömker | Local existence and uniqueness in the largest critical space for a surface growth model[END_REF][START_REF] Blömker | Regularity and blow up in a surface growth model[END_REF] for which their result extends straight forward to complex-valued solutions, that there is a number ǫ > 0, depending only upon u(t) X d , such that for every

where on [t, t + ǫ], v is obtained as the fixed point of the iterated sequence {v (n) (• -t)} n∈N defined by v (0) = 0 and for all n ∈ N by

Then, after taking the Fourier transform of [START_REF] Raible | Amorphous thin film growth: Minimal deposition equation[END_REF], we obtain for all σ ∈ [0, ǫ] and

Thus, if u(t) is a non-negative real-valued function supported in F d + then from the equation ( 20) just above, by using an induction argument, we infer that for all n ∈ N, for all σ ∈ [0, ǫ], v (n) (σ) is also a non-negative real-valued function supported in F d + which implies that for all s ∈ [t, t + ǫ], v(s) is a non-negative real-valued function supported in F d + . Furthermore, by the uniqueness results similar as the ones obtained in [START_REF] Blömker | Regularity and blow up in a surface growth model[END_REF][START_REF] Furioli | On the uniqueness in L 3 (R 3 ) of mild solutions for the Navier-Stokes equations[END_REF][START_REF] Kato | Strong L p -solutions of the Navier-Stokes equation in R m , with applications to weak solutions[END_REF], we get that for all s ∈ [t, t + ǫ], u(s) = v(s). Therefore, we deduce that for every t ∈ [0, T d ], if u(t) is a nonnegative real-valued function supported in F d + then for all s ∈ [t, t + ǫ], u(s) is a non-negative real-valued function supported in F d + . Since u(0) = u 0 = 2 7 Aw and w is a non-negative real-valued function supported in F d + , then we infer that for all s ∈ [0, T d ], u(s) is a non-negative real-valued function supported in F d + . Then by Theorem 3.1, u(T d ) is not in any Triebel-Lizorkin space or Besov space, and hence in particular is not in X d , which concludes the proof.