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Introduction

Ascending thoracic aortic aneurysms are focal dilatations of the aortic wall [START_REF] Ryan R Davies | Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size[END_REF][START_REF] Elefteriades | Natural history of thoracic aortic aneurysms: indications for surgery, and surgical versus nonsurgical risks[END_REF]. They may grow silently or may suddenly rupture or dissect, causing life-threatening internal bleeding. Studies have shown that the likelihood of rupture or dissection is greater than 30% when an aneurysm's diameter exceeds 6.0 cm [START_REF] Elefteriades | Natural history of thoracic aortic aneurysms: indications for surgery, and surgical versus nonsurgical risks[END_REF]. The mortality rate of ruptured thoracic aortic aneurysms is nearly 100% [START_REF] Ryan R Davies | Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size[END_REF][START_REF] Johansson | Ruptured thoracic aortic aneurysms: a study of incidence and mortality rates[END_REF]. Currently surgical intervention is indicated when the diameter of ATAAs is greater than 5.5 cm [START_REF] Katherine | Natural history of thoracic aortic aneurysms: size matters, plus moving beyond size[END_REF]. While size is a common criterion, there is a need for identifying better indicators in monitoring and evaluating ATAAs. From the standpoint of biomechanics, rupture propensity hinges on local mechanical conditions and micromechanical events leading to fracture initiation. However, our current knowledge on these subjects remains poor.

Several studies have investigated the mechanical properties, including rupture strength, of ATAA tissues. Vorp et al [START_REF] Vorp | Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta[END_REF], Iliopoulos et al [START_REF] Dimitrios C Iliopoulos | Regional and directional variations in the mechanical properties of ascending thoracic aortic aneurysms[END_REF], Choudhury et al [START_REF] Choudhury | Local mechanical and structural properties of healthy and diseased human ascending aorta tissue[END_REF] and Khanafer et al [START_REF] Khanafer | Determination of the elastic modulus of ascending thoracic aortic aneurysm at different ranges of pressure using uniaxial tensile testing[END_REF] measured the tensile properties using uni-axial tensile tests. They examined the regional and directional differences using specimens harvested from different locations and orientations, and reported moderate to significant differences in both stiffness and strength. Okamoto et al [START_REF] Ruth | Mechanical properties of dilated human ascending aorta[END_REF], Matsumoto et al [START_REF] Matsumoto | Biaxial tensile properties of thoracic aortic aneurysm tissues[END_REF], Azadani et al [START_REF] Ali N Azadani | Biomechanical properties of human ascending thoracic aortic aneurysms[END_REF] and Pham et al [START_REF] Pham | Biomechanical characterization of ascending aortic aneurysm with concomitant bicuspid aortic valve and bovine aortic arch[END_REF] investigated the bi-axial properties using bi-axial tension tests. They also reported regional and directional properties, and compared the properties of ATAAs caused by various diseases [START_REF] Matsumoto | Biaxial tensile properties of thoracic aortic aneurysm tissues[END_REF] or of different age groups [START_REF] Ruth | Mechanical properties of dilated human ascending aorta[END_REF]. Martin et al [START_REF] Martin | Predictive biomechanical analysis of ascending aortic aneurysm rupture potential[END_REF] developed a predictive model to assess the in vivo rupture risk of ATAAs based on the measured strength and estimated wall stress. Sugita et al [START_REF] Sugita | Evaluation of rupture properties of thoracic aortic aneurysms in a pressure-imposed test for rupture risk estimation[END_REF] used an inflation test to measure the bi-biaxial properties, and reported a strong correlation between strength and a characteristic stiffness modulus [START_REF] Sugita | Yielding phenomena of aortic wall and intramural collagen fiber alignment: Possible link to rupture mechanism of aortic aneurysms[END_REF]. On the related subject of abdominal aortic aneurysm (AAA) strength, Vorp's group [START_REF] Ml Raghavan | Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model[END_REF][START_REF] Vorp | Wall strength and stiffness of aneurysmal and nonaneurysmal abdominal aorta[END_REF] measured the tensile strength of AAA tissues. Vande Geest et al [START_REF] Geest | Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms[END_REF] developed a statistical model for estimating the distribution of AAA wall strength considering aneurysm size, local diameter, and local intraluminal thrombus thickness as well patient's age, gender, family history of AAA, smoking status. Regional variability of AAA tensile strength was reported in AAAs [START_REF] Madhavan L Raghavan | Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm[END_REF]. It was found that the strength of specimen strips at or close to rupture sites was mostly low.

One of the challenges in the experimental study of ATAA properties is that the ATAA tissues are heterogeneous. ATAAs undergo continuous remodeling, and the properties are modulated by the local cellular activities underneath the pathological development [START_REF] Berillis | The role of collagen in the aortas structure[END_REF][START_REF] Jones | Alterations in aortic cellular constituents during thoracic aortic aneurysm development[END_REF]. Recent studies [START_REF] Davis | Pointwise characterization of the elastic properties of planar soft tissues: application to ascending thoracic aneurysms[END_REF][START_REF] Davis | Local mechanical properties of human ascending thoracic aneurysms[END_REF] by the authors indicated that there is a significant level of heterogeneity in ATAA samples of centimeter dimension, a typical size used in the aforementioned mechanical tests. When the material is not reasonably homogeneous, these tests no longer generate a uniform stress field in the center region of specimen. Thus, the measured stress and strain, which are ho-mogenized values, may not truly reflect the local values at the rupture site. For this and other reasons, it is not surprising that conflicting results were reported on the regional and directional stiffness and strength. In this regard, a fundamental limitation of the previous studies is the underlying assumption of tissue homogeneity. The assumption may be appropriate for estimating the global elastic properties, but not the local rupture conditions. Motivated by the need of delineating the local conditions, our laboratories have developed a method that can identify the tissue properties to a sub-millimeter resolution [START_REF] Davis | Pointwise characterization of the elastic properties of planar soft tissues: application to ascending thoracic aneurysms[END_REF][START_REF] Davis | Local mechanical properties of human ascending thoracic aneurysms[END_REF]. This method integrated Digital Image Correlation (DIC), inflation test and an inverse stress analysis methodology [START_REF] Lu | Inverse method of stress analysis for cerebral aneurysms[END_REF], enabling the identification of full-field stress, strain and mechanical properties without being limited by the complexity of the tissue heterogeneity. In a parallel study along the same line, a different analysis approach was employed [START_REF] Romo | In vitro analysis of localized aneurysm rupture[END_REF]. We have characterized the heterogeneous anisotropic properties of ten ATAA samples [START_REF] Davis | Local mechanical properties of human ascending thoracic aneurysms[END_REF]. The peak tension was also determined in all these tests. The availability of the field data enabled the investigation of the local conditions at the rupture sites and the exploration of possible link between elastic properties and rupture. In this paper, we report these findings.

Methods

Experiment

Nine ATAA sections were collected from seven patients undergoing elective surgery to replace their ATAA with a graft in accordance with a protocol approved by the Institutional Review Board of the University Hospital Center of St. Étienne and then tested according to our previously developed protocol for identifying the pointwise distribution of the mechanical properties of soft tissues using bulge inflation tests [START_REF] Davis | Pointwise characterization of the elastic properties of planar soft tissues: application to ascending thoracic aneurysms[END_REF]. Patients' information is briefly summarized in Table 1.

Specimens of approximately 4×4 cm 2 cut from the excised sections were clamped to an inflation device and inflated using water at a constant rate until rupture. Images of the outer surface were recorded every 3 kPa. Three dimensional displacement of the tissue surface was extracted using a commercial DIC software, ARAMIS (GOM, v. 6.2.0). A deforming NURBS surface that corresponds through all pressure states were derived from the DIC point clouds for the center region of each specimen. The size of mesh region is approximately 2.5×2.5 cm 2 . The surface deformation tensor, C, and the Cauchy-Green strain, E, were computed from the deforming NURBS meshes. The surface tension (the resultant stress over the wall thickness) at every Gauss point was computed using the inverse method in [START_REF] Lu | Inverse method of stress analysis for cerebral aneurysms[END_REF], which solved the equilibrium problem directly on a deformed Having obtained the stress and strain distributions at every pressure steps, the stress-strain curves at every Gauss point were collected. The stress-strain data were then fitted to a hyperelastic constitutive equation to identify the material parameters. The theoretical underpinnings and additional details of this pointwise identification approach can be found in [START_REF] Genovese | Digital image correlation-based pointwise inverse characterization of heterogeneous material properties of gallbladder in vitro[END_REF][START_REF] Lu | Pointwise identification of elastic properties in nonlinear hyperelastic membranes. Part I: Theoretical and computational developments[END_REF][START_REF] Zhao | Pointwise identification of elastic properties in nonlinear hyperelastic membranes. Part II: Experimental validation[END_REF][START_REF] Zhao | Characterizing heterogeneous properties of cerebral aneurysms with unknown stress-free geometry: A precursor to in vivo identification[END_REF].

A material model was adopted from the work of Gasser, Ogden, and Holzapfel (GOH) [START_REF] Gasser | Hyperelastic modelling of arterial layers with distributed collagen fibre orientations[END_REF][START_REF] Holzapfel | Constitutive modelling of arteries[END_REF] to describe the planar response of the ATAA tissue:

w = µ 1 2 (I 1 -ln I 2 -2) + µ 2 4γ ( e γ(I κ -1) 2 -1 ) (1) 
The tissue is modeled as a single layer composite material consisting of a matrix and angularly distributed fibers. The first term represents the response of elastin network and ground substances, and I 1 = tr C and I 2 = det C are the principal invariants of the deformation tensor. The second term, which dominates the energy, represents the contribution of collagen fibers, with I k being an anisotropic strain invariant

I κ = κI 1 + (1 -2κ)M • CM (2) 
In obtaining this invariant the fibers are assumed symmetrically distributed with respect to two mutually perpendicular directions. The parameter κ represents the dispersion of the angular distribution. The value of κ varies from 0 to 0.5. When κ = 0 all of the collagen fibers are perfectly aligned in the direction of M and when the fibers are uniformly distributed (isotropy), κ = 0.5. For 0 < κ < 0.5, the model is planar orthotropic with M being the major symmetry axis. The vector M will be called the fiber direction in the sequel. It should be noted that, unless κ = 0, this vector is not a bona fide fiber direction but the direction of the predominate distribution and consequently the highest stiffness. The vector M is parameterized by the angle it makes relative to the horizontal axis, and the angle was identified along with other constitutive parameters. When κ = 0.5, the angle becomes meaningless. This model was proved sufficient to recover the macroscopic behavior of the tissue [START_REF] Davis | Pointwise characterization of the elastic properties of planar soft tissues: application to ascending thoracic aneurysms[END_REF][START_REF] Davis | Local mechanical properties of human ascending thoracic aneurysms[END_REF].

Rupture site and rupture tension

The rupture tension is defined as the ultimate tension at the rupture site. Since it is unclear whether a component of the tension or the norm (i.e. the total) is a better index, both the norm and the component in the orifice normal direction are reported. The rupture site was identified from the photo image of the second last loading step (the one immediate preceding rupture), or the post rupture image if the one before does not show distinct cracks. The identification scheme is illustrated in Figure 1. The bounding coordinates of the orifice were measured in the DIC camera coordinate system. The average values of the horizontal and vertical directions were assumed to be the location of rupture initiation, that is the rupture site. Most specimens bore narrow elliptical cracks. There were two cases having symmetric ∧-shaped or curved orifices. For these cases, the center of symmetry was taken to be the rupture site. The scheme could induce uncertainties in the identified location. To alleviate the influence, the average tension in a small window containing the rupture site was used to determine the rupture tension. The window consists of a patch of 3×3 elements with the crack element in the middle, surrounded by eight elements (Figure1(b)). This 3×3 configuration is the second smallest topologically symmetric area in the hierarchy of mesh geometry. The size of the window is approximately 9 mm 2 . The same average was applied to all other rupture site variables.

Orifice orientation

In seven out of nine cases, the orifices were narrow straight slivers, enabling an easy definition of orientation. 

Toughness

Toughness, a measure of material's resistance to fracture, is the amount of energy needed to fracture a material.

It can be computed by accumulating the work done by the stress prior to fracture, viz.

T H = ∫ E f 0 T IJ dE IJ .
Here T IJ and E IJ are the components of the second Piola-Kirchhoff tension and Cauchy-Green strain, respectively, E f is the ultimate strain, and TH is the toughness. As the tension and strain values were made available at each Gauss point throughout the loading process, the stress work can be computed locally. A middle points rule was used for this computation:

W ≈ ns-1 ∑ k=1 ( T (k) IJ + T (k+1) IJ ) ( E (k+1) IJ -E (k) IJ ) 2 (3) 
where T IJ is a component of the second Piola-Kirchhoff tension, E IJ is a component of the surface strain, and ns is the number of loading steps. The stress work at the rupture site was used to determine the toughness. Again the values were computed by averaging the stress work in the local window.

3 Results

Orifice orientation vs fiber direction

In each specimen the fiber angle at the rupture site was identified , and then compared to the orifice orientation.

Figure 2 presents the result. A sharp linear relation (y = x) between the fiber angle and the orifice normal angle is observed, indicating that the orifice is perpendicular to the local fiber direction.

In addition, the direction of rupture propagation appears to correlate with the fiber direction as well. In a significant number of specimens the orifices appear to be preferentially transverse. This directional preference The angle was predicted from the acquired tension-strain data, not directly measured. Recall that in the GOH model the fiber vector M represents the direction of the highest stiffness. To verify whether the fiber direction was correctly described, we examined the directional stiffness of the tissue. The tension and strain at the rupture site were rotated to a local system in which the e 1 basis coincides with the fiber direction and e 2 the transverse direction. The rotated tension-strain curves of all cases were generated and examined. An example of such curves is shown in Figure 4. Note that the tension state is bi-axial; any component (say T 11 ) is a function of three strain components. The response functions are surfaces in a high dimensional space. The curves shown here are the projections of the response function into two-dimensional spaces. In all cases the T 11 curve lies above T 22 , indicating that the tension in the fiber direction is higher than that in the transverse direction in all load steps. Given that the strains are approximately equal-biaxial, the fact that T 11 is above T 22 indicates that the tissue is indeed stiffer in the identified fiber direction. Could it be that T 11 happens to be the principal tension so that the tissues were merely cleaving in the direction of maximum normal tension? We examined the principal directions and found that they do not coincide with the fiber direction in several cases. An example is shown in Figure 5. The principal directions were computed from the state prior to rupture. It is clear that the fiber directions are different from the principal directions. In particular, the principal direction is parallel to the orifice in the crack zone, indicating that the tissue did not fracture in the direction of maximum normal tension.

Strength and toughness

The norm of the rupture tension, T f , the component in the fiber direction, T n , the ultimate strain (norm), E f , the component in the fiber direction, E n , and the toughness TH are listed in Table 2. Note that the fiber direction can also be interpreted as the direction of orifice normal at rupture site. No significant relation is found between Patient To explore the correlation between rupture site and the peak tension or peak energy, we superimpose the identified rupture window on the tension and energy contours. Figure 6 presents two cases. The remaining seven cases are included in Figure 10 in the Appendix. The boxes are the local window defining the rupture site. It can be seen that for patient 1, both the peak tension and the peak energy coincide with the rupture location. For patient 2, however, the peak energy coincides with the rupture location while the peak tension does not. When the local rupture window encloses or overlaps the peak tension or peak stress red spots, we say that a match is found. The result of matching for all nine cases is reported in Table 3. It can be seen that the peak energy matches in six cases, whereas the peak tension matches in four cases. 

T f (N/mm) T n (N/mm) E f E n TH (N/mm) 1 
Energy (Y/N) Y Y N Y Y N Y Y N Tension (Y/N) Y N N Y Y N N Y N
Table 3: Rupture location vs the position of peak tension or peak energy: "Y" = match, and "N" = no match

Discussion

Most biomechanical studies on ATAA properties treated tested specimens as homogeneous. Mechanical properties were obtained from samples of centimeter size. Recent studies [START_REF] Davis | Pointwise characterization of the elastic properties of planar soft tissues: application to ascending thoracic aneurysms[END_REF][START_REF] Davis | Local mechanical properties of human ascending thoracic aneurysms[END_REF] by the authors showed that ATAA tissues are highly heterogeneous even at this size scale. At the presence of strong heterogeneities, homogenized stress and strain obtained from the uni-axial or bi-axial tests at centimeter scale may not be conclusive with regard to the local condition at rupture sites. To address this challenge, we investigated ATAA rupture characteristics at a millimeter scale. We identified the stress, strain, and properties distributions to within a submillimeter resolution. Based on field data of this resolution, we obtained rupture site values by averaging the field data in a local window of approximately 3×3 mm 2 . At this level of locality, the ATAA's rupture appears to exhibit some distinct characteristics and consistent patterns.

The most striking pattern is that the cracks are preferentially transverse to the fiber direction -the direction of maximum stiffness. In all but one case the orifice normal is parallel to the local fiber direction. The cracks appear to propagate in the same pattern, resulting in curved orifices in some cases. The only exception to this directional pattern is patient 4, for which the post-rupture image, the fiber map and the contour of the dispersion parameter κ are shown in Figure 7. The orifice is roughly a prolate oval, seemingly parallel to the "fiber direction". A close look at the κ contour suggests that this sample is nearly isotropic in the center region where the crack initiated. It can be seen from Figure 7(c) that the κ value around the initial rupture site (the windowed region) is in the neighborhood of 0.47. Recall that a κ value of 0.5 indicates isotropy. The tension-strain curves in the fiber and transverse directions are very close (Figures 7(d) and (e)), confirming a near isotropy. Comparing with other cases this sample has the highest average κ value. When the material is nearly isotropic, the "fiber direction" becomes less meaningful, if not completely meaningless. Thus, this case is inconclusive. The seemingly conflicting orientation does not contradict the other cases. In contrast, it highlights the underlying role of fiber distribution. The observed directional preference has some implications. First, it is suggestive, albeit indirectly, of the rule of collagen microstructure in regulating ATAA tissue strength. Since the direction of maximum stiffness is the direction of predominate collagen recruitment, the present finding suggests that collagen recruitment is an important determinant of strength. This finding is also in line with the observation by Pichamuthu et al. [START_REF] Joseph E Pichamuthu | Differential tensile strength and collagen composition in ascending aortic aneurysms by aortic valve phenotype[END_REF],

who noted that differences in mechanical properties are not attributable to absolute collagen content but may be accounted for by microstructural changes in the collagen framework. It has been long known that collagen turnover is important for vessel wall repair and its degradation is believed to be associated with the rupture of aortic aneurysms [START_REF] Berillis | The role of collagen in the aortas structure[END_REF][START_REF] Humphrey | Mechanics,mechanobiology,andmodelingofhumanabdominalaorta and aneurysms[END_REF][START_REF] Jones | Alterations in aortic cellular constituents during thoracic aortic aneurysm development[END_REF]. Recently, some studies revealed structural anomalies in the collagen network of aneurysmal tissues. Figueiredo Borges et al [START_REF] De | Collagen is reduced and disrupted in human aneurysms and dissections of ascending aorta[END_REF] reported that collagen is reduced and disrupted in human aneurysms and dissections of ascending aorta. They found that while appearing as uniform lamellae in the control group, the collagen fibers are disrupted and irregular in ATAA tissues. Carmo et al. [START_REF] Carmo | Alteration of elastin, collagen and their cross-links in abdominal aortic aneurysms[END_REF] found that the collagen content in abdominal aortic aneurysms is significantly lower than in controls, but there is a significant increase of collagen cross-links. They suggested that in aneurysmal aortic walls old collagen accumulates cross-links while new collagen biosynthesis is somehow defective. Clearly, there is a need to investigate the correlation between the microstructure characteristics of collage network and rupture response.

Secondly, an anisotropic rupture criterion is needed for correctly predicting the crack initiation and propagation.

A criterion based on the maximum principal stresses is unlikely to be adequate because it does not account for the possible directional strength and biaxial coupling effects. Further work is needed to establish anisotropic rupture criterion appropriate to ATAA tissues.

The correlation between the energy concentration and the rupture location is also worth-noting. The curves in Figure 8 show two distinct tension-strain behaviors at rupture sites. Figure 8(a) presents a case wherein the tension at the rupture site is consistently higher than a randomly chosen, non-rupture site, over a similar strain range. A possible explanation of this result could be that local fragmentation or loss of elastin induces an earlier recruitment of collagen locally. This earlier recruitment means stiffer properties, locally high stress and higher strain energy. Figure 8(b) demonstrates a different behavior whereby the tension at the rupture site is lower than a non-rupture site but the ultimate strain is much higher, resulting a higher energy. These cases suggest that, when assessing rupture propensity at tissue scale, both stress and strain should be concurrently considered.

This conjecture is supported by a recent finding of Romo et al [START_REF] Romo | In vitro analysis of localized aneurysm rupture[END_REF]. They showed that rupture of the ATAA does not systematically occur at the location of maximum stress, but at a weakened zone where strain localization happened. The study embodied several limitations. First, all findings were based on macroscopic descriptions. The "fiber direction" is a model representation of structural features, but not a direct physical quantity measured from instruments. Although a strong relation was revealed between the fiber direction and rupture angle, the actual fiber structure was not examined. Future work is needed to link microstructural features, if any, to the macroscopic behavior. There is a pressing need to image the collagen microstructures in order to understand the mechanisms underlying this directional preference. Secondly, the layered structure of the ATAA wall was not considered.

The wall of the ATAA is composed of three distinct layers: the intima, media, and adventitia; each has different characteristics of collagen content and distribution. It has been reported that aortic dissection mostly initiates in the intima and media layers [START_REF] Roman W Desanctis | Aortic dissection[END_REF], indicating that the layered structure may play a role in determining the process of tissue failure. The interplay between the layers and rupture was not investigated. Moreover, there are no controls in the study, and thus it is unclear whether healthy ascending aorta follows the same or similar rupture pattern. The location of crack initiation was assumed at the geometric center of cracks identified from post-rupture images. This assumption could have been verified using a high-speed camera, which we plan to implement in future work. However, since the directional pattern is so pronounced as shown in Figures 3 and9, slight or even moderate variations in the crack site location will not change the linear correlation shown in Figure 2. In parallel, the rupture strength and toughness were averaged from a local window of 3×3 elements.

This would induce a certain level of uncertainties to the numerical values reported in Table 2. Nonetheless, the finding in Table 3 is unlikely to be affected in any significant manner if the window size is slightly different, as seen from the contours in Figures 6 and10. It should also be noted that wall tension (the stress resultant over the thickness) was reported instead of the stress, because the wall thickness was not measured at enough points. Related to this, the stress work gives the energy density per unit surface area, not per unit volume as typically specified in mechanics. Lastly, the data presented are limited by the small population size. More work is needed to confirm the observations.

In summary, the present study revealed some distinct features of ATAA rupture in vitro under the inflation protocol. The rupture appears to initiate at the position when the surface energy density reaches a threshold value.

The tissue fractures preferentially in the direction of the highest stiffness, generating orifices that are locally transverse to the fiber direction. In the future, we plan to conduct imaging studies on ATAA microstructure, combining our macroscopic analysis with microstructural interrogation. This multiscale approach may shed light on understanding the mechanisms of ATAA rupture, and hopefully may help to develop better means of risk assessment. 
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 1 Figure1(c) illustrates how the orientation was determined. The direction of crack propagation was manually identified, from which the normal direction was determined following the right-hand rule. For the ∧-shape orifices (Figures3 and 9(k)), each branch was treated as a single straight crack. The orientation of the orifice was characterized by the angle the normal makes to the horizontal direction.
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 9 Figure 9: Orifice orientation and predicted fiber direction
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 10 Figure 10: Rupture location and the sites of the peak tension and peak energy
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 2 Strength, ultimate strain, and toughness

		1.71	1.32	0.90 0.60	0.34
	2	1.12	0.91	0.26 0.19	0.07
	3	0.64	0.51	0.21 0.16	0.04
	4	1.44	1.08	0.30 0.19	0.10
	5(a)	0.75	0.56	0.38 0.25	0.07
	5(b)	0.62	0.52	0.16 0.09	0.02
	6	0.48	0.37	0.21 0.13	0.04
	7(a)	1.13	1.00	0.26 0.16	0.07
	7(b)	0.37	0.31	0.14 0.11	0.02
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Appendix Fiber orientation versus orifice angle