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We study the homogenization problem for the system of equations of dynamics of 
a mixture of liquid crystals with random structure. We consider a simplified form 
of the Ericksen–Leslie equations for an incompressible medium with inhomoge-
neous density with random structure. Under the assumption that randomness is 
statistically homogeneous and ergodic, we construct the limit problem and prove 
almost sure convergence of solutions of the original problem to the solution of 
the limit (homogenized) problem.
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1. Introduction

Asymptotic analysis and homogenization (cf. for example, [1–7]) are basic methods for
studying mathematical problems appearing in theory of media with nontrivial microstruc-
ture. These methods allow to simplify modeling of composites, skeletons, reinforced struc-
tures, perforated materials (porous media), cell-structures, bodies with concentrated masses,
stratified flow (of newtonian and nonnewtonian fluids), mixture of fluids with different
viscosity (density) or mixture of fluids and gas (fluids and solid particles), and many other.
One interesting example of nonnewtonian fluid is thermotropic nematic liquid crystals.
System of differential equations describing nematodynamics is a nonlinear second-order
Ericksen–Leslie system. Wherein, classical homogenization methods deal with periodic,
locally periodic, quasiperiodic structures and mixture of liquid crystals with different pa-
rameters are naturally nonperiodic.

Main interest of this paper is to study homogenization problem for Ericksen–Leslie
system with random rapidly oscillating density–function and velocity. The medium consists
of alternating microscopic drops of liquid crystals of different density, i.e. mixtures of liquid
crystals possessing different properties (see Figure 1).
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2244 G.A. Chechkin et al.

Figure 1. Microscopic structure of inhomogeneous nematic liquid crystal.

2. Weak solutions to the Ericksen–Leslie system

Assume that D is a bounded domain with smooth boundary ∂D, occupied by a liquid crystal.
The Ericksen–Leslie system of equations reads as follows:⎧⎪⎪⎨

⎪⎪⎩
ρ̇ = 0,
ρu̇i = ρFi + σ j i x j

,

ρ J n̈i = gi + π j i x j
,

div u = 0.

(2.1)

(cf. the deduction of this system, for example, in [8]). These equations express the laws
of mass conservation, linear and angular momenta, respectively, and the incompressibility
constraint. Here, the constant J > 0 is the moment of inertia of the molecule

Hereinafter, ‘dot’ denotes the total, covariant, or material derivative

ḟ = ∂ f

∂t
+ v · ∇ f

for any function f . In what follows, we use the notation ai x j := ∂ai

∂x j
for some vector

(a1, a2, a3). We adopt the Einstein convention of summation on repeated indices, regardless
of their position.

The unknowns of the system (1.1) are the mass density ρ, the Eulerian, or spatial velocity
vector field u = (u1,u2,u3), the director field n = (n1,n2,n3) defining the orientation of
the liquid crystal molecules in space (for instance for horizontal flow, we have horizontal
director for nematic calamitic and vertical for nematic discotic, see Figure 2), and the
pressure P .
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Applicable Analysis 2245

Figure 2. The structure of horizontal flow of nematic calamitic (left) and nematic discotic (right)
liquid crystals.

The functions Fi stands for the external volume forces, F = F(ρ,n,∇n) is the so-
called the Oseen–Zöcher–Frank free energy of the medium, the coefficients σi j , ωi , gi , πi j

depend on the unknowns ρ, u, n, P in accordance with the formulas

σi j = −Pδi j − ρ
∂F
∂ni x j

+ σ̂ j i ,

πi j = β j ni + ρ
∂F
∂ni x j

,

gi = γni − β j ni x j − ρ
∂F
∂ni

+ ĝi ,

σ̂ j i = μ1nknp Akpni n j + μ2n j Ni + μ3ni N j + μ4 Ai j + μ5n j nk Aki + μ6ni nk Ak j ,

ĝi = λ1 Ni + λ2n j Ai j ; (2.2)

moreover,

λ1 = μ2 − μ3, λ2 = μ5 − μ6 = −μ2 − μ3,

Ni = ṅi + ωki nk, Ai j = ui x j + u j xi

2
, ωi j = ui x j − u j xi

2
.

The following conditions are imposed on the unknown functions:

ρ > 0, (2.3)

|n| ≡ 1. (2.4)
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2246 G.A. Chechkin et al.

It is convenient to consider, instead of the system (1.1), a modified and simplified system
introduced and studied in [9] (cf. also [10,11]). First of all, we exclude the condition (2.4)
and introduce, instead of (2.4), a penalty term. For this purpose, we set

F = |∇n|2 + α−1(|n|2 − 1)2,

where α is a small parameter. Introducing the penalty term, it is reasonable to put the
Lagrangian multipliers γ and β j equal to zero.

Then we assume that there are no external forces acting on the system. Moreover, since
the micro-inertia constant J is sufficiently small, we also equate it to zero.

Thus, we obtain the equations⎧⎪⎨
⎪⎩
ρ̇ = 0,
ρu̇i = σ j i x j

, div u = 0.

gi + π j i x j
= 0.

(2.5)

We supply this system of equations with the boundary conditions

u(x, t) = 0, n(x, t) = n0(x) for x ∈ ∂D (2.6)

and the initial conditions

u(x, 0) = u0(x), n(x, 0) = n0(x), ρ(x, 0) = p0(x). (2.7)

Hereinafter, we assume that the constants λi and μi satisfy the conditions

λ1 < 0, μ1 > 0, μ4 > 0, μ5 + μ6 > 0, (−λ1)
1
2 (μ5 + μ6)

1
2 > λ2 > 0. (2.8)

It is easy to see that

λ2
2 = δ|λ1|(μ5 + μ6) (2.9)

for some δ < 1.
Let us define the following functional spaces: The Sobolev space H 1

0 is the closure of

the set of functions from C∞
0 by the norm

(
||u||2L2

+ ||∇u||2L2

) 1
2
, Sol(D) = {v ∈ C∞

0 (D) :
div v = 0}, Sol(QT ) = {v ∈ C∞(QT ) : ∀t v(t, ·) ∈ Sol(D)}, where QT = (0, T )× D,
Sol2(D) is the closure of Sol(D) in the L2(D)-norm, Sol1

2(D) is the closure of Sol(D) in
the H1(D)-norm.

Definition 2.1 Weak solution to problem (2.5)–(2.7) is the triple (ρ,u,n), where ρ ∈
L∞(QT ), u ∈ L2((0, T ); Sol1

2(D)) ∩ L∞((0, T ); Sol2(D)), n ∈ L2((0, T ); H2(D)) ∩
L∞((0, T ); H1(D)), ω ∈ L2(QT ), if

(1) (ρ,u,n) satisfies the boundary and the initial conditions (2.6) and (2.7),
(2) the third equation in (2.5) holds almost everywhere,
(3) the first equation in system (2.5) holds in the sense of functionals in L2((0, T ),

H1(D)),
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Applicable Analysis 2247

(4) the second equation in (2.5) is understood as the integral identity∫
QT

(ρui,tϕ
i + ρu j uiϕi x j

) dxdt +
∫

D
ρ(x, T )ui (x, T )ϕi (x, T ) dx

=
∫

QT

σi jϕi x j
dxdt +

∫
D

p0u0iϕi dx ∀ϕ ∈ Sol(QT ). (2.10)

Remark 2.1 In the case λ2 = 0, the system satisfies the maximum principle, namely, if
|n0| � 1 on the boundary of a domain, then |n| � 1 in the entire domain and all the
integrals in the identity (2.10) are finite. In the general case, for n ∈ L2((0, T ); H2(D)) ∩
L∞((0, T ); H1(D)) it follows that n ∈ L8(QT ), which guarantees the existence of
integrals.

The initial conditions make sense since ρt , ut , and nt are elements of L2((0, T );
H−1(D)). The boundary conditions are understood in the sense of traces of functions.

For the Ericksen–Leslie system in the form (2.5)–(2.7), the following existence theorem
holds for the weak solution.

Theorem 2.1 Suppose that u0 ∈ Sol2(D), n0 ∈ H1(D), and n0
∣∣
∂D ∈ H

3
2 (∂D). Then

there exists a weak solution to the problem (2.5)–(2.7).

Proof The proof of the theorem can be proved similarly to [9–11] by the techniques from
[12], which is based on a modified method of Galerkin approximations.

First, we consider a sequence of embedded subspaces Vm ⊂ Sol1
2(D) ∩ C∞(D),

dim Vm = m, and construct a solution (ρm , um , nm) to the finite-dimensional problem
such that

um ∈ L2((0, t); Vm) satisfies (2.10) for almost all t < T and any test function ϕ ∈ Vm ;
nm satisfies almost everywhere an equation similar to the third equation in (2.5) with

um instead of u; moreover, nm = n0 at the initial time and on the boundary,
ρm is constant on the trajectories of the vector field um and satisfies the initial condition

ρm(x, 0) = p0(x).
The solution is looked for by the method of successive approximations and the fixed

point theorem, which guarantees the existence of a solution on a small time interval (0, T ).
Second, we deduce a priori estimates for the solutions, based on the energy inequality

(see similar technique in [9, Section 2]), which is obtained by differentiating the integral∫
D

(
ρm

2

∣∣um
∣∣2 + 1

2

∣∣∇nm
∣∣2 + ρmF(nm)

)
dx

with respect to t and further rearrangement of terms. We have∫
D

(
ρm

2

∣∣um
∣∣2 + 1

2

∣∣∇nm
∣∣2 + ρmF(nm)

)
dx

∣∣t
0 � −

∫
QT

(
μ1

(
Am

kpnm
k nm

p

)2

+ μ4

(
Am

i j

)2
)

dxdt −
∫

QT

(μ5 + μ6)

∣∣∣Am
i j n

m
i

∣∣∣2
dxdt +

∫
QT

λ1
∣∣N m

∣∣2 dxdt

+
∫

QT

2λ2 N m
j Am

i j n
m
i dxdt + Const(p0,u0,n0). (2.11)
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2248 G.A. Chechkin et al.

Now estimating the coefficient of λ2 on the right-hand side of (2.11). By the Cauchy
inequality,

λ2

∫
QT

2N m
j Am

i j n
m
i dxdt � λ2

( ∫
QT

∣∣∣Am
i j n

m
i

∣∣∣2
dxdt

) 1
2
( ∫

QT

∣∣N m
∣∣2 dxdt

) 1
2

,

keeping in mind the condition (2.9), we conclude that the right-hand side of this inequality
does not exceed

(1 − δ)(μ5 + μ6)

∫
QT

∣∣∣Am
i j n

m
i

∣∣∣2
dxdt + (1 − δ) |λ1|

∫
QT

∣∣N m
∣∣2 dxdt .

Finally, we derive∫
D

(
ρm

2

∣∣um
∣∣2 + 1

2

∣∣∇nm
∣∣2 + ρmF(nm)

)
dx

∣∣t
0

+
∫

QT

(
μ1

(
Am

kpnm
k nm

p

)2 + μ4

(
Am

i j

)2
)

dx

+
∫

QT

δ(μ5 + μ6)

∣∣∣Am
i j n

m
i

∣∣∣2
dxdt −

∫
QT

δλ1
∣∣N m

∣∣2 dxdt � Const(p0,u0,n0).

(2.12)

Then, from the equation

ni − ρ
∂F
∂ni

= − (
λ1ṅi + λ1umni xk + λ1ωki nk + λ2 Ai j n j

)
in view of known results [13, Section 6] and the inequality (2.12), we deduce

||nm ||W 0,2
2 (QT )

� Const (p0,u0,n0, T ) . (2.13)

The inequality (2.12) implies the time-global existence of solutions to finite-dimensional
problems and the ∗-weak precompactness in the corresponding spaces.

Passing to the limit and taking into account the Sobolev embedding theorem, we establish
the existence of a weak solution to the initial problem. We note that this solution satisfies
the energy inequality of type (2.12) and (2.13); moreover,

ess inf p0 � ρ � ess sup p0.

�

3. Randomness

Assume that (�,A, μ) is a probability space, i.e. the set � with σ -algebra A of its subsets
and σ -additive nonnegative measure μ on A such that μ(�) = 1.

Definition 3.1 A family of measurable maps Ty : � → �, y ∈ R3 we call a dynamical
system, if the following properties hold true:

(1) group property: Ty1+y2 = Ty1 Ty2 ∀y1, y2 ∈ R3; T0 = I d (I d is the identical
mapping);
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Applicable Analysis 2249

(2) isometry property (the mapping Ty preserves the measure μ on �): Ty A ∈ A,
μ(Ty A) = μ(A) ∀y ∈ R3, A ∈ A;

(3) measurability: for any measurable functions ψ(ω) on � the function ψ(Tyω) is
measurable on �× R3 and continuous in y.

Let Lq(�,μ) (q � 1) be the space of measurable functions integrable in the power q
with respect to the measure μ. If Uy : � → � is a dynamical system, then in the space
L2(�,μ) we define a parametric group of operators {Uy}, y ∈ R3 (we keep the same
notation) by the formula (Uyψ)(ω) := ψ(Uyω), ψ ∈ L2(�,μ).

From the condition (3) of the definition it follows that the group Uy is strongly contin-
uous, i.e. we have limy→0‖Uyψ − ψ‖L2(�,μ) = 0 for any ψ ∈ L2(�,μ).

Definition 3.2 Suppose that ψ(ω) is a measurable function on �. The function ψ(Tyω)

of y ∈ R3 for fixed ω ∈ � is called the realization of the function ψ .

The following assertion is proved, for instance, in [5,7].

Proposition 3.1 Assume thatψ ∈ Lq(�,μ), then almost all realizationsψ(Tyω)belong
to Lloc

q (R3).
If the sequence ψk ∈ Lq(�,μ) converges in Lq(�,μ) to the function ψ , then there

exists a subsequence k′ such that almost all realizations ψk′(Tyω) converges in Lloc
q (R3)

to the realization ψ(Tyω).

Definition 3.3 A measurable function ψ(ω) on � is called invariant, if ψ(Tyω) = ψ(ω)

for any y ∈ R3 and almost all ω ∈ �.

Definition 3.4 The dynamical system Ty is called ergodic, if any invariant function almost
everywhere coincides with a constant.

We denote by B the natural Borel σ -algebra of subsets of the space R3. Suppose that
�(y) ∈ Lloc

1 (R3).

Definition 3.5 We say that the function �(y) has a spatial average, if the limit

M(�) = lim
ε→0

1

|B|
∫

B
�

( y

ε

)
dy

does exist for any bounded Borel sets B ∈ B and does not depend on the choice of B, and
M(�) is called the spatial average value of the function �.

In equivalent form

M(�) = lim
t→+∞

1

|Bt |
∫

Bt

�(y) dy,

where Bt = {y ∈ R3 | y
t ∈ B}.

The following statement could be found, for instance, in [7].
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2250 G.A. Chechkin et al.

Proposition 3.2 Let the function �(y) have a spatial meanvalue in R3, and suppose
that the family {� ( y

ε

)
, 0 < ε � 1} is bounded in Lq(K) for some q � 1, where K is

compact in R3. Then �
( y
ε

)
⇀ M(�) weakly in Lloc

q (R3) as ε → 0.

In further analysis, we use the Birkhoff theorem in the following form (see, for instance,
[5,7]):

Theorem 3.1 (Birkhoff ergodic theorem) Let Ty satisfy the Definition 3.1 and assume
that ψ ∈ Lq(�,μ), q � 1. Then for almost all ω ∈ �, the realization ψ(Tyω) has
the spatial meanvalue M(ψ(Tyω)). Moreover, the spatial meanvalue M(ψ(Tyω)) is a
conditional mathematical expectation of the function ψ(ω) with respect to the σ -algebra
of invariant subsets. Hence, M(ψ(Tyω)) is an invariant function and

E(ψ) ≡
∫
�

ψ(ω) dμ =
∫
�

M(ψ(Tyω)) dμ.

In particular, if the dynamical system Ty is ergodic, then for almost all ω ∈ � the following
formula

E(ψ) = M(ψ(Tyω))

holds true.

Definition 3.6 A random function ψ(y, ω) (y ∈ R3, ω ∈ �) is called statistically homo-
geneous, if the following representation ψ(y, ω) = �(Tyω) holds for some measurable
function � : � → R, where Ty is a dynamical system in �.

4. Homogenization

4.1. Statement of the problem

We consider functions pε(x, ω) := p0(
x
ε
, ω) and uε(x, ω) := u0(

x
ε
, ω) depending on a

small parameter ε and such that

(1) p0 and p0u0 are statistically homogeneous, i.e. p0(y, ω) = P0(Tyω),
(p0u0)(y, ω) = V0(Tyω), where P0 : � → R, V0 : � → R3 are measurable,

(2) Ty is ergodic dynamical system,
(3) p0 and p0u0 are almost surely uniformly bounded, i.e. ‖P0‖L∞(�,μ) < K1 < ∞,

‖V0‖L∞(�,μ) < K2 < ∞,
(4) almost surely P0(ω) � M1 > 0

Moreover, for almost all ω ∈ �we have the convergence pε ⇀phom
0 and pεuε ⇀vhom

0
weakly in L∞(D), where phom

0 = E (p0(y, ω)) = E (P0(ω)) , as ε → 0 and vhom
0 =

E (v0(y, ω)) = E (V0(ω)) , as ε → 0, respectively.

Remark 4.1 Since the dynamical system is ergodic, the invariant functions are ω-almost
everywhere constants and keeping in mind the Birkhoff theorem we conclude that phom

0
and vhom

0 are constants independent of y.
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Applicable Analysis 2251

To each initial distribution of densities pε and momenta pεuε we associate a triple of
random functions (ρε(x, t, ω),uε(x, t, ω),nε(x, t, ω)) that is a solution to the system (2.5)
with the initial conditions

ρε(x, 0, ω) = pε(x, ω), nε(x, 0, ω) = n0(x), ρεuε(x, 0, ω) = pεuε(x, ω). (4.1)

We study the behavior of the solution to this problem as the small parameter tends to
zero. In this section, we prove the following assertion.

Theorem 4.1 Suppose that pε for ε � 0, uε, and n0 satisfy the assumptions of
Theorem 2.1, the families pε and uε possesses properties (1)—(4), and the constants μi

satisfy the condition (2.8). In addition, assume that the limit problem has a unique weak
solution. Then the family of weak solutions (ρε,uε,nε) to the problem (2.5) and (4.1)
converges to the solution (ρhom,uhom,nhom) of the problem (2.5) and (2.6) with initial
conditions

uhom(x, 0) = vhom
0 (x)

phom
0 (x)

, nhom(x, 0) = n0(x), ρhom(x, 0) = phom
0 (x). (4.2)

in the following sense: for almost all ω ∈ �, we have

uε ⇀ uhom weakly in L2((0, T ); H1(D)),

nε ⇀nhom weakly in L2(0, T ; H2(D)),

ρε
∗
⇀ρhom *-weakly in L∞(QT ),

uε → uhom strongly in L3(QT ),

nε → nhom strongly in L8−δ(QT ), δ > 0.

4.2. Proof of the main theorem

By the definition of a weak solution, (ρε,uε,nε) satisfies a.s. the integral identities∫
QT

(
ρui,tϕ

i + ρu j uiϕi x j

)
dxdt +

∫
D
ρuiϕi

∣∣∣
T

dx =
∫

QT

σi jϕi x j
dxdt +

∫
D

p0u0iϕi dx,

(4.3)∫
QT

(
gεi + πεj i x j

)
ψ dxdt = 0, (4.4)∫

QT

ρεẇ dxdt =
∫

D
ρεwdx

∣∣∣T

0
, (4.5)

where ϕ is an arbitrary vector in Sol(QT ), ψ ∈ L2(QT ), w ∈ H1(QT ).
The main goal is to prove the precompactness of the family of solutions in some function

spaces. For this purpose, we turn to the inequalities (2.12) and (2.13).
First of all, we note that ρε are a.s. essentially uniformly bounded and are a.s. uniformly

separated from zero in QT . Hence uε, nε are a.s. uniformly bounded in the L2(QT )– and
H1(QT )–norm.
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2252 G.A. Chechkin et al.

To estimate the gradient of the velocity vector, we consider the first term on the right-
hand side. The functional

f (u) =
(∫

|Ai j |2dx

) 1
2

defines the norm in C∞
0 (D). It is easy to verify that f (u) is equivalent to the H 1-norm.

Indeed, the inequality f (u) � C ||u||H1(Q) is obvious. The inverse inequality follows from
the estimate

||u1x ||22 + ||u2 y ||22 + ||u3z ||22 � f 2(u)

and the formula ∫
u2x u1 y dx =

∫
u2 yu1x dx,

which is valid for any function u ∈ C∞
0 .

Thus, the family of vector-valued functions uε is a.s. bounded in the H1-norm. There-
fore, we can select a sequence of solutions in such a way that for almost all ω ∈ � we
have

uεn ⇀ uhom in L2(0, T ; H1),

nεn
∗
⇀nhom in L2(0, T ; H2),

nεn
t ⇀ nhom

t in L2(Q),

ρεn
∗
⇀ρhom . (4.6)

Since the assumptions of Lemma 5.1 in [12] are satisfied a.s., the uniform boundedness of
uεn in L2(0, T ; Sol1

2) ∩ L∞(0, T ; Sol2) implies the strong convergence uεn → uhom in
L3(Q) for almost all ω ∈ �.

We prove the weak convergence of σ εi j , π
ε
i j , gεi . By the embedding theorem for Sobolev

spaces, we have

nε ∈ L2(0, T ; C(D)) ∩ L∞(0, T ; L6) ∩ L4(Q);
moreover,

nεn → nhom in L4(Q).

By the energy inequality (2.12), Aεn
kpnεn

k nεn
p are a.s. uniformly bounded in L2, and, by the

strong convergence of nεn a.s. in L4, we can assume that a.s. Aεn
kpnεn

k nεn
p ⇀ Ahom

kp nhom
k nhom

p .

This, in turn, guarantees the weak convergence of nεn
k nεn

p Aεn
kpnεn

i nεn
j to n0

kn0
p A0

kpn0
i n0

j in L1
for almost all ω ∈ �. The weak convergence of the remaining terms is proved in a similar
way.

Thus, we can conclude that a.s.

σ
εn
i j ⇀ σ hom

i j weakly in L1,

π
εn
i j ⇀ πhom

i j weakly in L2,

gεn
i ⇀ ghom

i weakly in L2.
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Passing to the limit in the identities (4.3)–(4.5), we find that the triple
(
ρhom,uhom,nhom

)
is a weak solution to the problem (2.5), (2.6), and (4.2). The theorem is proved.
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