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Abstract

Nowadays, problems of congestion in urban areas due to the massive usage of cars, last-minute
travel needs and progress in information and communication technologies have fostered the rise
of new transportation modes such as ridesharing. In a ridesharing service, a car owner shares
empty seats of his car with other travelers. Recent ridesharing approaches help to identify inter-
esting meeting points to improve the efficiency of the ridesharing service (i.e., the best pick-up
and drop-off points so that the travel cost is competitive for both driver and rider). In particular,
ridesharing services, such as Blablacar or Carma, have become a good mobility alternative for
users in their daily life. However, this success has come at the cost of user privacy. Indeed in
current’s ridesharing services, users are not in control of their own data and have to trust the
ridesharing operators with the management of their data.

In this paper, we aim at developing a privacy-preserving service to compute meeting points
in ridesharing, such that each user remains in control of his location data. More precisely, we
propose a decentralized architecture that provides strong security and privacy guarantees without
sacrificing the usability of ridesharing services. In particular, our approach protects the privacy
of location data of users. Following the privacy-by-design principle, we have integrated existing
privacy enhancing technologies and multimodal shortest path algorithms to privately compute
mutually interesting meeting points for both drivers and riders in ridesharing. In addition, we
have built a prototype implementation of the proposed approach. The experiments, conducted on
a real transportation network, have demonstrated that it is possible to reach a trade-off in which
both the privacy and utility levels are satisfactory.

Keywords: Dynamic Ridesharing, Privacy Enhancing Technologies, Multimodal Shortest Path,
Secure Multiparty Computation, Private Set Intersection.

1. Introduction

The ubiquitous world in which we live has fostered the development of technologies that take
into account the context in which users are using them to deliver high quality services. For exam-
ple, by providing personalized services based on the positions of users, Location-Based Services
(LBS) Artigues et al. (2012); Quercia et al. (2010) have encouraged the emergence of ridesharing
services.
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In classical ridesharing services, the most studied problem is to assign riders to drivers given
various constraints or objectives Furuhata et al. (2013); Agatz et al. (2012). However, as stated
in Agatz et al. (2012); Stiglic et al. (2015), another problem arises when considering meeting
points between riders and drivers to satisfy more assignments or to produce better solutions with
respect to some objectives including the reduction of the travel time spent by the rider, the partial
use of the public transportation system or simply the walking distance before reaching the pick-
up location. Instead of putting the burden of finding the meeting points on the users, the system
itself should be able to identify the optimal meeting points to make the trip as short as possible
for both participants.

Recent academic research Bit-Monnot et al. (2013) has considered this issue for multimodal
transportation networks and proposed an exact method for automatically solving it on a central-
ized solver in polynomial time. In Varone and Aissat (2015), some heuristic approaches are also
proposed, that aim at reducing the computation time, by limiting the set of meeting points on the
rider itinerary.

The main limitation of the current ridesharing systems is related to the centralized nature of
their infrastructures. Indeed, most (if not all) existing ridesharing services rely on centralized
platforms in charge of collecting and storing potentially sensitive data from ridesharing users,
such as their positions and identities, to compute their itineraries. This situation could lead to
important damages to their privacy Furuhata et al. (2013); Cottrill and Thakuriah (2015). For
instance, a malicious person, hereafter referred to as the adversary, can use the location data
stored on the centralized platform to cause a privacy breach Gambs et al. (2011). In particu-
lar, this adversary can learn the Points Of Interests (POIs) of ridesharing users, compute their
mobility models to infer their future movements or even de-anonymize them in another location
dataset Gambs, Killijian and del Prado Cortez (2014). Centralized platforms are exposed to the
single point of failure problem (i.e, a privacy breach may lead to the violation of the privacy of
nearly all system’s users). We believe that it is of paramount importance to explore alternative
approaches to securely implement ridesharing services while preserving the privacy of users.

The ridesharing problem can be summarized as follows. We consider a driver and a rider,
each having their own origin and a destination (see Figure 1).

Figure 1: Meeting points for two users in a ridesharing system.

The driver is looking for a rider to pick-up and is willing to make a small detour while the
rider is looking for an itinerary in which he may use ridesharing as part of his journey. The
participants expect to get a response to their request as soon as possible. The objective of the
routing component of the ridesharing platform is to find for both of them a pick-up and drop-off

locations and optimal itineraries for their journeys. The optimization function considered is the
minimization of the arrival times of both users (i.e., the sum of their arrival times).

More precisely, in this work we focus on casual, one-time and irregular ridesharing scenarios.
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Irregular ridesharing scenarios differ from regular ones by the fact that in regular ridesharing
a trust is supposed to be already established between riders and drivers. Furthermore, in our
scenario, we expect an almost real-time response for a better user experience. In this context,
the objective of our approach is to help ridesharing users to synchronize their itineraries without
having to reveal the origins and destinations of their journeys.

Therefore, we propose a distributed architecture for privacy-preserving computation of in-
teresting meeting points for drivers and riders participating to a ridesharing system. More pre-
cisely, we show that designing multimodal routing algorithms with privacy in mind can greatly
enhance the privacy in ridesharing services. In particular, we follow the privacy-by-design prin-
ciple Cavoukian (2009), which recommends to integrate privacy as soon as the design phase of
the system (e.g., system structure, hardware design, data processing, applications, etc.) instead
of adding a posteriori mechanisms to enhance privacy once the system is already built and de-
ployed. To the best of our knowledge, our work is the first that uses private set intersection
conjointly with multimodal routing algorithms to design usable privacy-protection mechanisms
for ridesharing.

The remainder of this paper is organized as follows. In Section 2, we provide an overview
of the related literature. In Section 3, we introduce tools related to both cryptography and graph
theory that have been used in our approach. In Section 4, we detail how the system works.
In Section 5 and 6, we motivate and discuss security and privacy of the system as well as its
computational performance from both analytic and experimental points of view. In Section 7,
we discuss the scalability and real world implementation of the system. We conclude with a
summary of findings and future works in Section 8.

2. Related work

In this section, we present an overview on privacy research in transportation applications,
before focusing on the computation of meeting points for ridesharing.

2.1. Privacy research in transportation

In Beresford and Stajano (2003), the authors define location privacy as preventing an un-
wanted entity to learn the past, present and future geographic position of an individual. Location
privacy methods have been classified in two main categories by Cottrill (2009) : policy-based
and technique-based approaches. Although policy-based approaches can deter an adversary from
committing a privacy breach due to the threat of heavy penalties, their actions are really visible
a posteriori, when the offense (i.e., privacy violation) is already committed. In the other hand,
technique-based approaches, such as the use of privacy enhancing technologies (PETs), help in
reducing the success rate of the adversary when performing an attack by the mean of several
techniques ranging from pseudonymization to advanced cryptographic primitives.

The main objective of these techniques is to prevent the adversary from learning the mobility
traces of users. We summarize in Table 1 the most commonly available techniques. Although
these techniques are quite generic, the specificity of the service considered impact the choice of
the method to adopt.

In previous works, following the privacy-by-design principle, a privacy-preserving mecha-
nism Sun et al. (2013) has been proposed to design fine-grained urban traffic modeling using
mobile sensors. The proposed method, which uses a combination of access control and sani-
tization through the so-called notion virtual trip line (VTL) zones, ensures the unlinkability of
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Method Description

Aggregation
Aggregate mobility traces over time and space to reduce individual
identification. Cohen et al. (2001); Castelluccia (2007)

Anonymity
k-anonymity requires that each equivalence class (i.e., a set of mobility traces
that are indistinguishable from each other) contains at least k records.
Sweeney (2002); Chen et al. (2013)

Cloaking
Blur the mobility traces of a user into a region with lower spatiotemporal
resolution. Gedik and Liu (2006); Cheng et al. (2006)

Encryption
Encrypt the mobility traces of a user before disclosing them.
Xi et al. (2014); Bilogrevic et al. (2014)

Geographical
masking

Perturb the original location through the addition of noise.
Armstrong et al. (1999); Kwan et al. (2004)

Mix zone

Mix-zones are regions wherein the locations of users are not recorded.
In addition, the pseudonym of a user entering this zone differs from the one
that he will have when he exits. The overall objective is to increase the
unlinkability of the user.Beresford and Stajano (2003); Freudiger et al. (2007)

Pseudonyms
Replace the identifier of a user with a pseudonym.
Bettini et al. (2009); Buttyán et al. (2007)

Table 1: Overview of main location privacy techniques.

mobility traces related to users (i.e., it is difficult for an adversary to assign traces to specific
users). The released information can then be used for transportation modeling purposes. In the
same line of work, authors in Ghasemzadeh et al. (2014) use anonymization techniques to con-
struct privacy-preserving passengers’ flow graph based on trajectory data. Another example of
transportation systems with privacy in mind can be found in Zangui et al. (2013) in which authors
have considered the value of privacy and proposed an opt-in approach to address location privacy
concerns when using vehicle-tracking technologies to classify users with respect to their travel
characteristics or attributes for a better congestion pricing policy. A survey in Fries et al. (2012)
ends up with the conclusion that PETs, especially aggregation and masking, turn out to be the
most appropriate way to protect the privacy of motorists when it comes to collecting travel times
and speeds. In another work Bilogrevic et al. (2014), the authors have proposed algorithms based
on homomorphic encryption schemes to find the optimal meeting point for a group of individu-
als while preserving their privacy. In Xi et al. (2014), the authors proposed a privacy-preserving
shortest path algorithm based on the use of a cryptographic primitive known as Private Infor-
mation Retrieval (PIR) Chor et al. (1998); Melchor et al. (2014). In this method, a user can
privately build his itinerary on a graph from an origin point to a destination point by interro-
gating a path reconstruction matrix computed on an unreliable server with the Floyd-Warshall
algorithm Floyd (1962). By doing so, the user can fully benefit fully from the navigation ser-
vice but avoid the disclosure of his location information. In a relatively similar workWu et al.
(2016), researchers have applied a graph compression algorithm on road networks to improve
PIR-based privacy-preserving shortest path computation’s runtime. Another line of research fo-
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cus on how to formally design optimal obfuscation mechanisms in a way that both privacy and
utility are satisfied. For instance, authors in Shokri et al. (2012) propose the optimal location-
privacy preserving mechanism that maximize the expected distortion that an adversary using the
optimal inference attack incurred when reconstructing the user location while heeding the user’s
service-quality requirement.

2.2. Meeting points for ridesharing

In a classical ridesharing the driver has to pick the rider at his origin and drop him off at his
destination Agatz et al. (2012). This strategy turns out to be inappropriate as it highly increases
the driver’s detour and authors in Stiglic et al. (2015) have shown that considering meeting
points other than origins and destinations improve the number of matching and thus the overall
functionality of the ridesharing system.

The most relevant work to our paper is by Bit-Monnot and co-authors Bit-Monnot et al.
(2013). They have solved the dynamic ridesharing problem presented in Section 1 by introducing
the 2 Synchronization Points Shortest Path problem (2SP-SP). In the 2SP-SP, given a multimodal
graph G = (V, E,Σ), a driver D and a rider R each having their respective origin (Od and Or),
destination (Dd and Dr) and departure time (td and tr), the objective is to find the optimal pick-
up point i and drop-off point j, such that the sum of arrival times for both users is minimized.
Several variants were studied, such as the situation in which there is no limitation on the detour
for both users and all points in the network may be a meeting point. In a second variant, the
authors introduce detour limitations for the rider. The proposed methods are based on several
shortest path algorithms, in forward or in backward search, in the multimodal context. The
main difficulty is related to the time-dependency, which impacts the performance of backward
search algorithms and the consistency between arrival times and cost (total travel time) on nodes
during the search. With this approach, the 2SP-SP is solved in polynomial time with worst
case complexity of O(|E| × |V |2). Considering detour limitations for the rider usually improves
significantly the efficiency of the method.

In Aissat and Oulamara (2014), the authors consider the 2SP-SP on road networks with
constraints to also limit the detour for the driver. They proposed heuristic methods based on
several shortest path algorithms and on a sub-graph of potential pick-up and drop-off points. In
another paper Varone and Aissat (2015), the multimodality is also taken into account for the
rider. More precisely, the authors propose to limit the meeting points on the rider path from his
origin to his destination and still consider the detour constraint for the driver.

In these seminal works, privacy-preserving constraints were not considered as each user com-
municates his full location information to a centralized server. In our work we consider the cen-
tralized exact approach from Bit-Monnot et al. (2013) as a baseline to compare our work against.

3. Requirements

In the proposed approach, we will use PETs and multimodal shortest path algorithms that we
briefly review in this section.

3.1. Secure multiparty computation

Secure Multiparty Computation (SMC) is a branch of cryptography that aims at computing a
function depending on the inputs of several parties in a distributed manner, so that only the result
of the computation is revealed while the inputs of each party remain secret Lindell and Pinkas
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(2009). The gold standard would be the existence of a trusted third party that would perform
the entire computation and returns the output to all the parties involved while erasing afterwards
his memory. In short, the objective of SMC is to achieve the same functionality but without
having access to this trusted third party. Yao first defined the two-party comparison problem,
now known as Yao’s Millionaires’ problem, and developed a provably secure solution for this
problem Yao (1986). Since this seminal work, a lot of works have been done in the field of secure
computation. SMC techniques are used for numerous tasks including coin-tossing, broadcasting,
electronic voting, electronic auctions, electronic cash, contract signing, anonymous transactions
and private information retrieval schemes. Hereafter, we focus solely on cryptographic primitives
for solving the private set intersection problem, which is the basis of our work.

3.2. Private set intersection

In the field of SMC, series of work have been done Freedman et al. (2004); Kissner and Song
(2005); Jarecki and Liu (2009); Hazay and Lindell (2008); De Cristofaro and Tsudik (2010);
Dong et al. (2013) on a cryptographic primitive called Private Set Intersection (PSI) and a vari-
ant known as Private Set Intersection Cardinality (PSI-CA). In these tasks, two parties jointly
compute respectively the intersection or the intersection’s cardinality of their private input sets
without leaking any additional information. Authors in Freedman et al. (2004) first introduced
PSI based on Oblivious Polynomial Evaluations. Additive homomorphic encryption is used to
obliviously evaluate a polynomial that represents a private input set. Following the same prin-
ciple, Kissner and Song (2005) explores the power of polynomial representation of multisets,
using operations on polynomials to obtain composable privacy-preserving multisets operations
such as set intersection, union, cardinality and over-threshold operations. A recent work Aguilar-
Melchor et al. (2016) introduced NFLlib, an optimized open-source C++ library designed to
handle polynomials over Zp[x]/(xn + 1). NFLlib includes optimized subroutines to perform
arithmetic operations over polynomials and allows to easily implement ideal lattice-based cryp-
tography. We rely on this library to implement PSI with linear complexity. Committed Oblivious
Pseudorandom Function Evaluation, another approach to implement PSI using secure pseudo-
random function evaluations, has been introduced by Hazay and Lindell (2008) and lately im-
proved by Jarecki and Liu (2009) and De Cristofaro and Tsudik (2010). Finally, another line
of work Dong et al. (2013) proposed Oblivious Bloom Intersection in which private input sets
are inserted in Bloom filters followed by the intersection of the Bloom filters. The proposed
approach run in linear time. However, the use of hash functions in Bloom filters leads to the
existence of false positives impacting the accuracy of Bloom filter-based PSI.

3.3. Multimodal routing

A multimodal network can be represented as a graph G = (V, E,Σ) and an automaton A =

(Q,Σ, δ, S , F) in which V is a set of vertices, E a set of edges and Σ a set of labels representing all
available transportation modes (e.g., walk, bike, car, public transportation . . . ). The automaton A
models the constraints of feasible paths corresponding either to physical constraints or to user’s
preferences. A consists of a finite setQ of states, the alphabet Σ, a transition function δ : Q×Σ→

P(Q), a set of initial states S and a set F of final states.
The computation on multimodal shortest paths rely on the Regular Language Constrained Short-

est Path Problem Barrett et al. (2000) that uses a regular language L to model constraints on
transportation modes. This algorithm implicitly constructs a product network G × A before
applying a Dijkstra algorithm on this product network. The considered shortest path problem
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remains polynomial and can be solved using a modified version of Dijkstra’s algorithm Dijkstra
(1959) known as DRegLC. In ridesharing systems, each user (i.e., driver and rider) has his own
automaton linked to his set of modes. More precisely, for the driver we consider Σd = { car }
and Σr =

{
walk, public transportation

}
for the rider. Based on these sets of modes, we have two

DRegLC algorithms : DRegLC
r for the rider and DRegLC

d for the driver.
We particularly rely on isochrones to compute potential meeting points. Given an origin

vertex s and a radius r, an isochrone is the set of vertices in the shortest-path-tree T rooted at
vertex s such that the path distance from root s to any other vertex v ∈ T is less or equal to
r. Isochrones are computed by the means of the DRegLC’s algorithm. For instance, Figure 2
shows 7 isochrones of radius ranging from 10 to 60 minutes for a rider starting his journey at our
laboratory LAAS-CNRS located at (43.563725, 1.476744) in Toulouse.

Figure 2: Example of isochrone.

4. Proposed approach to solve the Privacy-preserving 2SP-SP

The privacy-preserving 2SP-SP problem, hereafter referred to as Priv-2SP-SP, can be con-
sidered as an instance of 2SP-SP with privacy constraints in addition to existing optimization
constraints. Priv-2SP-SP should allow us to produce solutions as close as possible to 2SP-SP’s
ones but without having to disclose the location information of any participant to a centralized
entity as well as to other users. In this section, we describe the core of our approach that com-
bines secure multiparty computation and multimodal routing to implement a ridesharing service
in a privacy-preserving manner.
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4.1. Overview of the approach

4.1.1. User-centric architecture
In our architecture, the decision taken to enhance privacy (e.g., hiding or perturbing location

data) is made locally by the user. The rationale behind this choice is principally related to privacy.
In fact, with this architecture, users have full control of their personal data and can decide the
granularity with which sensitive information are disclosed. As a consequence, the quality of the
service the user receives is dependent of the granularity of released information.

4.1.2. Functional model
We consider a pair composed of a driver D and a rider R wanting to ride together and who

have already been put in contact by an external third party. Each user has an origin and des-
tination location considered as being his private information. The driver will use his/her car
throughout the trip while the rider may begin his/her journey with public transportation and
walking mode, then will share a car with a driver to speed up the trip and joint his/her final
destination using the same mode as in the beginning. We assume that D and R have both the
same knowledge of the multimodal network G on which the trip will take place and that each
user has an automaton A to model his mobility constraints. They want to determine a pick-up
location and a drop-off location such that the trip is as cost effective as possible for both users
and without having to disclose their origin and destination locations to each other or to any third
party. For the sake of simplicity and to be in accordance with 2SP-SP, we assume that D and
R will start their journey at the same time but this assumption can easily be relaxed in practice
without impacting too much the performance.

4.1.3. Security
For us, the primary security requirement is the privacy of user data. More precisely, users

should be able to control their personal data and no user should be able to access the location
data of another user unless explicitly authorized. Users communicate over a secure channel and
have sufficient computing capabilities on their own platforms (e.g., personal computer or smart-
phone) to perform the tasks requiring local computations such as the cryptographic ones or the
computation of the isochrone.

4.1.4. Adversary model
We assume that the participants in the decentralized ridesharing system may be honest-but-

curious adversaries in the cryptographic sense. In practice, this means that they will follow the
directives of the established protocol while trying to infer additional information from the output
of the computation, its intermediary results and the ciphered inputs of other participants.

4.2. Brute-force approach

In the transportation network G = (V, E,Σ), all nodes reachable by both the rider and the
driver may be a potential pick-up or drop-off. We denote by V ′ this set of nodes (i.e., in practice
|V ′| is close to |V |). A naive method will consider all combinations of these two sets, which
corresponds to |V ′|2 solutions for the studied ridesharing problem. This method for computing
the potential sets will preserve the privacy of each user and shift the privacy-preserving constraint
on the second step dedicated to the selection of the best solution. However, computing all the
solutions will involve high running time to obtain the cost of the |V ′|2 solutions. More precisely,
this would be equal to |V ′|2 executions of a shortest path algorithm between the two potential sets
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plus 2 shortest path algorithms for each user to evaluate the cost from their origin to each node
in the potential pick-up set and from their destination to each node in the potential drop-off set.

4.3. Heuristic approach

To provide both privacy and efficiency, we propose another method to compute a set of po-
tential interesting pick-up (respectively drop-off) points. In this method, we consider that each
user computes by himself the two sets of potential meeting points. Then, the potential pick-up set
for the driver, Ld

up, and the potential pick-up set for the rider, Lr
up, are intersected to obtain the set

of shared potential pick-up points, Lup. The same intersection protocol is also used to produce
the set of shared potential drop-off points, Lo f f = Ld

o f f ∩ Lr
o f f . Afterwards, privacy-preserving

set intersection is used to reduce the amount of information exchanged between users.
Rather than working in a centralized way as in 2SP-SP, Priv-2SP-SP is a distributed ap-

proach and consists in three main steps: (1) local computation of potential meeting points (2)
secure computation of shared pick-up and drop-off and (3) selection of the best pick-up and
drop-off points. In Table 2, we summarize the notations used throughout the rest of the paper.

Symbol Meaning

u, d, r Ridesharing user, the driver, the rider
Ou, Du Origin of user u, destination of user u
Lu

up Set of potential pick-up locations for the user u
Lu

o f f Set of potential drop-off locations for the user u
Lup = Ld

up ∩ Lr
up Set of common pick-up locations both to the driver and the rider

Lo f f = Ld
o f f ∩ Lr

o f f Set of common drop-off locations both to the driver and the rider
m, n |Lup|, |Lo f f |

πi, j Path from location i to location j
costΣ(πi, j) Cost of the path πi, j using the set of modes Σ

Tripu(πi, j) Cost of the trip for the user u while taking the shared path πi, j

rku(πi, j) Rank of the path πi, j in the user’s sorted list of shared paths
scu(πi, j) Score given by the user to path πi, j

Table 2: Summary of notations.

Table 3 describes an overview of the proposed approach.

4.3.1. Local computation of potential ridesharing locations
To get the sets of potential pick-up and drop-off locations, each user computes two isochrones,

one from the origin location and the other from the destination location. Theses algorithms
(DRegLC

d for the driver and DRegLC
r for the rider) output the sets of potential pick-up and drop-

off locations for both the driver and the rider. In each set, each scanned vertex will be represented
with an unique and publicly available identifier as well as a confidential cost corresponding to
the time spend by the user to reach the vertex in question. This cost has to remain confidential
to avoid the possibility of triangulation attacks. In a triangulation attack, an adversary infers the
location of the user based on the travel costs needed by him to reach some locations.

9



Priv-2SP-SP algorithm
Participants: driver D, rider R
Output: ideal pick-up and drop-off locations
1 - Local computation of potential ridesharing locations

- D: computes isochrones from origin and destination
and obtains Ld

up and Ld
o f f

- R: computes isochrones from origin and destination
and obtains Lr

up and Lr
o f f

2 - Secure collaboration to get common ridesharing locations
D and R use PSI to get Lup and Lo f f

3 - Computation of shared paths
- D: Computes the m ∗ n paths between Lup and Lo f f

−→ P =
{
πi, j

∣∣∣ i ∈ Lup, j ∈ Lo f f

}
,
{

costΣ
d
(πi, j)

∣∣∣∣ πi, j ∈ P
}

4 - Local computation of trip costs associated to the use of each shared path
- D: computes Tripd(πi, j) = costΣ

d
(πOd ,i) + costΣ

d
(πi, j) + costΣ

d
(π j,Dd )

- R: computes Tripr(πi, j) = costΣ
r
(πOr ,i) + costΣ

d
(πi, j) + costΣ

r
(π j,Dr )

5 - Update of scores associated to shared paths
- D computes scd(πi, j) = m ∗ n − rkd(πi, j) for each shared path πi, j.
- R computes scr(πi, j) = m ∗ n − rkr(πi, j) for each shared path πi, j.
- To obtain rku(πi, j) each user locally sorts the list of shared paths
according to Tripu(πi, j)
−→

{
scd(πi, j)

}
,
{

scr(πi, j)
}

6 - Election of ideal pick-up and drop-off locations
- D and R choose the path πi, j with the highest cumulative score.
−→ (i∗, j∗) = argmax(i, j) (scd(πi, j) + scr(πi, j)).

Table 3: Overview of the privacy-preserving approach for pick-up and drop-off computations.
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4.3.2. Intersection of potential meeting locations
Once potential ridesharing locations are locally identified, both users collaboratively com-

pute common pick-ups Lup and common drop-offs Lo f f with the PSI method. The private set
intersection is chosen instead of the regular set intersection to follow the data minimization prin-
ciple as recommended by the privacy-by-design approach Cavoukian (2009). Consequently, at
the end of this step users will get only common ridesharing locations. To achieve this goal, each
user constructs two private input sets. The first contains identifiers of potential pick-up locations
represented as integers while the second consists of identifiers of potential drop-off locations also
represented as integers. Then, the users encrypt the private inputs and launch the PSI method,
which results in the obtaining of Lup and Lo f f .

4.3.3. Computation of shared paths
In this step, the driver computes all the possible paths πi, j that are accessible by car between

Lup and Lo f f using DRegLC
d algorithms. This task requires the computation of min(m, n) DRegLC

d

algorithms to get all the m ∗ n paths between Lup and Lo f f . Each path πi, j is associated with a
unique identifier, a cost and two scores given by users. The scores that driver and rider associate
to each path πi, j are initialize to 0 at this step.

We deliberately leave the driver in charge of this computation for scenarios in which we
would like to take into account more complex itinerary’s constraints associated to the driver that
he only can express with his automaton (e.g., taking a particular highway or using a particular
parking station). In the absence of such constraint, both driver and rider can compute the shared
path locally.

If the number of common pick-up and drop-off locations is important, this step may result
in a high running time as it requires several multimodal shortest paths computation. To increase
the efficiency of the proposed approach, we consider that the two users iteratively compute the
intersection of their isochrone’s subsets by gradually growing the radius from rmin to r. Iterations
may stop as soon as a condition on the size of the intersection set is reached. This strategy helps
in reducing the number of shared paths computed.

4.3.4. Local computation of trip costs and ranks
Driver computes Tripd(πi, j) = costΣ

d
(πOd ,i) + costΣ

d
(πi, j) + costΣ

d
(π j,Dd ) for each path πi, j

locally. More precisely, he adds the private costs costΣ
d
(πOd ,i) and costΣ

d
(π j,Dd ), coming from the

local computations of isochrones, to the publicly available cost costΣ
d
(πi, j) to obtain Tripd(πi, j).

This cost is an estimation of the cost of his journey if he decides to take the path πi, j as a sub-path
in his trip. Finally, the driver sorts Tripd(πi, j) to obtain a rank rkd(πi, j) for each shared path.

The rider computes Tripr(πi, j) = costΣ
r
(πOr ,i)+costΣ

d
(πi, j)+costΣ

r
(π j,Dr ) following the same

approach as the driver, which leads to a ranking of each shared paths. Note, that in this step,
the rider needs to re-compute the cost from the drop-off locations to his destination due to the
time-dependency of his transportation network.

At the end of this step, the shared path πi, j such that Tripd(πi, j) (respectively Tripr(πi, j)) is
minimized will be the most relevant for the driver (respectively the rider).

4.3.5. Update of scores associated to shared paths
The driver outputs for each shared path πi, j a score scd(πi, j) = f (rkd(πi, j)) reflecting his

willingness to use it as a sub-path during the ridesharing trip. For simplicity we define the
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function f as:
f : P −→ N

πi, j 7−→ m ∗ n − rkd(πi, j)
The rider also outputs a score scr(πi, j) = g(rkr(πi, j)) for each shared path πi, j in which g is

defined as:
g : P −→ N

πi, j 7−→ m ∗ n − rkr(πi, j)
In both cases, the better the rank of a shared path is, the higher is the score associated with

this path. For simplicity, we design the rank conversion function as the complementary of the
rank. To improve the privacy, it would be possible to randomize this function to make it more
difficult for an adversary to infer the rank from the score. The conversion of the trip cost to a
score has the advantage of adding more privacy on the choice of each user because it discloses
less information than the trip cost itself.

4.3.6. Election of ideal pick-up and drop-off locations
In this step, each user communicates the score he attributes to each πi, j. Then, a simple voting

procedure is applied in which instead of taking into account the costs of journeys, the focus is
made on the scores only (i.e., the values of costs are kept confidential for privacy reasons).

Instead of using the simple voting procedure, other voting strategies would be possible pro-
vided that they are not computationally expensive. Note that the same procedure must be used
by the two users to obtain the same result on both. 2SP-SP sought to minimize the sum of the
costs of journeys while Priv-2SP-SP reduces the problem to the maximization of the scores.
To achieve this goal, each user selects the shared path πi, j such that (scd(πi, j) + scr(πi, j)) is max-
imized. More precisely, the pick-up and drop-off locations corresponding to the solution are
obtained in the following manner: (i∗, j∗) = argmax(i, j) (scd(πi, j) + scr(πi, j)).

By default, the election works in a fair manner by deciding that a score assigned to a given
path has the same weight for both parties. However, it is easy to design an unbalanced version
of this vote by using a positive multiplicative factor reflecting the importance given to one party
over the other. In this case, the best path will be the one such as α×scd(πi,j) + β×scr(πi,j) is
maximized with α and β representing respectively the influence of the driver and of the rider on
the choice of a shared path.

4.3.7. Waiting time
In the proposed approach, there is no guarantee that the waiting time of each participant at

the pick-up location will be the lowest one. To ensure that the waiting time meets the constraints
of the schedule of each user, one can rely on homomorphic encryption to check if |costΣ

d
(πOd ,i)−

costΣ
r
(πOr ,i)| ≤ max(wtd(i),wtr(i)), in which wtu(i) represents the maximal waiting time of user u

at the pick-up location i. To take into account the limitation of each user on the waiting time, in
this last step it is important to check if the waiting time corresponding to the best selected path is
valid using a secure comparison method. If this condition is not met (i.e., the time is not valid),
the users have to select a second path and so forth until the waiting time of the path considered
matches their constraints.
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5. Security and performance analysis

5.1. Security analysis

Since we solve Priv-2SP-SP by using a PSI method, the security of our scheme mainly
depends on the security of the PSI. In Freedman et al. (2004), the authors proved the security
of PSI in the semi-honest model. We recall hereafter the sketch of the scheme and the security
proof.

Consider a party A running a PSI method with another party B. To summarize A starts by
generating a public and private encryption keys of an homomorphic encryption scheme before
defining a polynomial whose roots are A’s inputs. Then, A sends the public key and the encryp-
tion of the polynomial coefficients to B. B, upon reception of these elements, evaluates in an
oblivious fashion the polynomial with his inputs and returns the result to A. Finally, A decrypts
an item if it is in the intersection of the two sets or a random number otherwise.

The correctness of the PSI method is ensured by the fact that it successfully evaluates with
high probability. The privacy of the input of A is guaranteed if the encryption scheme used is
semantically secure. Indeed in this case, the views of B for any two inputs of A are indistinguish-
able. The privacy of the input of B comes from the fact that for every party A′ operating in the
real world, there is a party A operating in the ideal model, such that for every input of B, the
views of the parties A and B in the ideal model are indistinguishable from the views of A′ and B
in the real world.

5.2. Privacy analysis

Even if the PSI method is secure, the context in which it is applied may help an honest-
but-curious adversary in inferring some information about users. For instance despite the fact
that the input data are encrypted, each user has access to the size of the ciphertexts, which can
indirectly disclose location information as we show hereafter. First, we look at three regions in
the Toulouse area: countryside, suburban and downtown areas. Then, we randomly generate in
each area 100 locations from which we launch 30 minutes isochrones for both rider and driver
to see how the number of potential ridesharing location varies from one location to another and
from one user to another. In Figure 3, we report on the cumulative distribution functions of the
isochrone’s size for each area and for each user.
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Figure 3: Inference analysis.

This analysis shows that drivers’ isochrones are more indistinguishable than riders’ ones.
Thus, the observation of input size (i.e., the size of isochrones) can help an adversary to guess
the region in the transportation graph in which the rider is located. This problem comes from
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the topology of the graph. In particular, for a rider it is much easier to reach any location from
downtown because of the high availability of public transportation, than from suburban or coun-
tryside areas. In our approach, we prevent this type of attack by fixing the size of isochrone for
each user in order to have an indistinguishability of both driver’s and rider’s isochrones. Another
information disclosed by the computation is the score that each user attributes to shared paths,
which is obtained by first converting the trip cost into rank and then to score. This transformation
adds more privacy because of the loss of information that it incurs.

5.3. Communication and computational complexities
The complexity of the proposed approach is directly proportional to the complexity of the

shortest path algorithms. More precisely, each participant runs 2 DRegLC algorithms to get their
potential pick-up and drop-off locations. Finding the common POIs using PSI has a linear com-
plexity in the size of the input sets. Once common pick-up and drop-off locations are discov-
ered, the participants run |V | DRegLC in the worst case to get all the |V |2 possible shared paths.
The scoring and ranking step requires the insertion of |V |2 paths into a binary heap. All these
steps lead to a global complexity of O

(
|V |×|E|× log |V |

)
. Finally, the communication complex-

ity is O
(
|V |× log |V |

)
as the identifier of each node may have to be exchanged after encryption.

The respective worst case complexities of the exact and centralized approach (2SP-SP) and the
privacy-preserving approach (Priv-2SP-SP) are summarized in Table 4.

Communication cost Computational complexity

2SP-SP O(1) O
(
|E|×|V |2

)
Priv-2SP-SP O

(
|V |× log |V |

)
O

(
|E|×|V |× log |V |

)
Table 4: Cost and runtime analysis.

6. Experiments

In this section, we report on the experiments that we have conducted to evaluate the effec-
tiveness of our approach.

6.1. Description of the dataset
The tests have been performed on 200 randomly generated instances of ridesharing prob-

lem using a multimodal transportation graph of the city of Toulouse in which we consider any
vertex as potential ridesharing location. The multimodal graph has been generated using Open-
streetmap’s1 data for the road network and Tisseo’s GTFS2 data for the public transportation
network. The resulting graph has the following characteristics: |V | = 75 837, |E| = 527 053,
Σ = {Walk, Car, Bus, Subway, Tramway}.

The multimodal routing algorithms have been implemented in C++ as well as the crypto-
graphic primitives using the NFLlib library Aguilar-Melchor et al. (2016). Experiments were
run on a virtual machine with 5GB RAM on a 2,9 GHz Intel Core i7 host machine.

1http://www.openstreetmap.org
2https://developers.google.com/transit/gtfs
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To generate a ridesharing instance, we choose at random an origin and a destination for a pair
of driver and rider. Both origins (respectively destinations) are chosen to geographically close in
the transportation network to reflect the spatial matching that we assumed to be pre-arrange in
our system assumption. More precisely, we create two groups each containing 100 instances of
ridesharing. In Table 5, we summarize the main characteristics of each group.

Group I Group II

Distance between the both origins (respectively destinations) 2000 m 800 m
Travel time for the rider alone 1h15min 2h
Travel time for the driver alone 19min 20min

Table 5: Instances characteristics.

The main difference between the two datasets is the proximity between the driver and the
rider. In the first group ridesharing candidates are more distant to each other. We launch the
proposed Priv-2SP-SP method with the generated instances as input and compare our results
to the optimal solutions obtained using the centralized method 2SP-SP proposed in Bit-Monnot
et al. (2013).

6.2. Experimental results
To qualitatively compare 2SP-SP and Priv-2SP-SP, we define a common ridesharing cost

as a function of the time each user spends to reach the pick-up location, the waiting time, the time
they spend together on the shared path and the time each of them uses to reach final destination
from the drop-off location. More formally the ridesharing cost value Rcost is:

Rcost = costΣ
d
(πOd ,U p∗ ) + costΣ

r
(πOr ,U p∗ )

+ |costΣ
d
(πOd ,U p∗ ) − costΣ

r
(πOr ,U p∗ )|

+ 2 ∗ costΣ
d
(πU p∗,O f f ∗ )

+ costΣ
d
(πO f f ∗,Dd ) + costΣ

r
(πO f f ∗,Dr )

Of course, other ridesharing cost functions can be defined but we believe that the one we propose
is quite natural.

We summarize the results obtained with this synthetic data in Table 6.

Rcost (s) Runtime (s)
Group I Group II Group I Group II

2SP-SP 3145.44 2872.03 1.09 0.75
Priv-2SP-SP 3283.53 2941.25 0.67 0.48

Table 6: Cost and runtime analysis.

On average over the 200 instances, the gap between the carpooling cost of Priv-2SP-SP and
2SP-SP is acceptable and there is no major difference between the two approaches regarding the
cost. More precisely, the average deviation compare to the centralized approach equals to 4.58%
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in group I and 2.52% in group II. In Table 7, we report on the gap (δ in percentage) between
2SP-SP and Priv-2SP-SP with regard to the ridesharing cost in both group I and group II.

δ = 0% δ ∈ ]0% , 5%] δ ∈ ]5% , 10%] δ ∈ ]10% , 20%]

Group I 16 55 20 9
Group II 30 58 10 2

Table 7: Gap analysis of ridesharing cost

With respect to the runtime, Priv-2SP-SP is more efficient than 2SP-SP. This observation
confirms our preliminary complexity analysis.

Figure 4 shows that in both group I and group II, Priv-2SP-SP is globally better than
2SP-SP from the runtime point of view.
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Figure 4: Runtime comparison in group I (left) and group II (right).

The two most time-consuming steps in Priv-2SP-SP are the PSI algorithm and the compu-
tation of shared paths. The execution time of the PSI depends on the size of the input data. Since
all the vertices of the graph are considered as potential ridesharing locations, the running time
measured represents the worst case scenario. An intuitive manner to decrease the runtime is to
reduce the number of potential ridesharing locations. For instance, this could be done by using
predefined ridesharing locations or by grouping geographically close positions into one location.

In addition to this runtime analysis, we report in Table 8 some characteristics of the rideshar-
ing solutions that we consider important.

In this table, we report on the average value of the size of common pick-up and drop-off

locations for the Priv-2SP-SP approach, the similarity between 2SP-SP and Priv-2SP-SP

solutions with respect to the proximity of pick-up locations on the one hand and the proximity of
drop-off locations on the other, the waiting time of both driver and rider, the detour of the driver,
and finally, the gain in time of the rider when he use ridesharing as an alternative transportation
mode.

This analysis reveals that the size of common pick-up and drop-off locations remains rea-
sonable and that it is sufficient to obtain meeting points close to optimal meeting points. More
precisely, the average distance between ridesharing locations is 230.06 meters for pick-ups and
202.13 meters for drop-offs in group I. In group II, values are 103.42 meters for pick-ups and
99.23 meters for drop-offs.

Waiting times at the pick-up are very short for both driver and rider in both 2SP-SP and
Priv-2SP-SP approaches with an advantage for 2SP-SP. While we consider this gap acceptable,
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Observation Group I Group II

Pick-ups size 23 15
Drop-offs size 17 14

Distance between
pick-ups (m) 230.06 103.42

Distance between
drop-offs (m) 202.13 99.23

Driver’s
waiting time

2SP-SP

Priv-2SP-SP

2.23%
6.44%

2.09%
5.64%

Rider’s
waiting time

2SP-SP

Priv-2SP-SP

0.33%
0.16%

0.32%
0.24%

Driver’s detour
2SP-SP

Priv-2SP-SP

53.46%
51.29%

30.33%
30.29%

Rider’s gain
2SP-SP

Priv-2SP-SP

231.06%
210.75%

444.99%
437.84%

Table 8: Characteristics of ridesharing solutions.

users can use the strategy we define in Section 4 to securely check the waiting time and accept
or reject a solution.

We obtain driver’s detour and rider’s gain by computing the gap between their respective
original trip cost (i.e., the time it takes to do the origin destination trip alone) and the effective
ridesharing cost (i.e., the time each user spends while using ridesharing). Our results show an
important gain in travel time for the rider (a reduction of 50 minutes in group I and 1 hour and
36 minutes in group II) against a slightly longer trip for the driver (an extra traveling time of 8
minutes in group I and 5 minutes in group II). In real world, the driver’s detour will be offset by
the rider’s fare.

6.3. Limitation of driver’s detour

In our experiments, the driver detour is not constrained and the objective is to reduce to
total travel time for both users. Nevertheless, we can evaluate the number of solutions having a
limited (reasonably) detour for the driver comparatively to his shortest path from his origin to his
destination. In Table 9, we show the number of solutions having a driver’s detour less or equal
to 1.2 (respectively 1.4) times the origin-destination shortest path.

1.2×SPP 1.4×SPP
Group I Group II Group I Group II

Nb solutions 2SP-SP 26 43 49 77

Nb solutions Priv-2SP-SP 29 42 53 79

Table 9: Feasible solutions with a limited driver’s detour.
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The proposed privacy-preserving approach is globally better than 2SP-SP when it comes to
driver’s detour. In addition, the better is the spatial matching (i.e, the distance between the driver
and the rider at both origin and destination) the smaller is the detour and the better is the quality
the solution in a broader sense.

To reduce the driver’s detour in our solutions, while still preserving privacy, we proposed
another variant of our approach. In this variant, the driver’s isochrones are replaced by the set
of vertices reached during a goal-directed shortest path algorithm (A∗). This algorithm can be
parameterized by the speed of the driver. When this speed decreases, the set of reached vertices is
close to the driver shortest path. In Table 10, we summarize our results considering four different
speeds: 10m/s, 15m/s, 20m/s and 25m/s. For simplicity, we consider only instances of group I
for this particular aspect.

cost gap detour-driver (s) gain-rider (s) runtime (s)

A∗ − 10 44.80% 25.78% 125.17% 0.684

A∗ − 15 17.39% 41.57% 173.87% 0.465

A∗ − 20 9.17% 48.32% 195.05% 0.452

A∗ − 25 6.17% 50.88% 205.53% 0.481

Table 10: Results for the A∗ variants.

Using the A∗ variants instead of isochrone computation for the driver lead to reduce his detour
especially when the algorithm A∗ is limited by a low speed. However, this detour limitation is at
the detriment of the rider that has fewer gain, and leads to an increasing of the total ridesharing
cost. Moreover, using a low speed in A∗ variants increases the runtime as it is more difficult to
obtain common meeting points.

In Table 11, we give the number of solutions having a limited detour for each of A∗ variants.

1.2×SPP 1.4×SPP

Nb solutions A∗ − 10 47 79

Nb solutions A∗ − 15 31 57

Nb solutions A∗ − 20 30 53

Nb solutions A∗ − 25 29 53

Table 11: Feasible solutions with a limited driver’s detour - A∗ variants.

The only variant having a great impact on the number of solutions with a limited detour is
the A∗ − 10 variant, the three other ones produce approximately the same number of solutions as
the original method (i.e., using isochrone computation).
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7. Discussion

7.1. Scalability

In our experiments, we have considered the multimodal graph of Toulouse, a 118.3 km2 large
city, with 75837 vertices and 527053 edges. As shown in Section 5, the computational complex-
ity of our approach is O

(
|E|×|V |× log |V |

)
. More generally, we can consider the computational

complexity as O
(
|E|×|N |× log |V |

)
in which N represents the set of potential ridesharing loca-

tions. We conduct the experiments with the worse case scenario in which N = V . The reduction
of N to a set of user-defined ridesharing locations, highly desirable in practice, will make the
algorithm more scalable as both the runtime required by the computation of shared paths and the
runtime of the private set intersection grow with N.

7.2. Real world implementation

All our experiments have been done in simulation mode on virtual machines. In contrast in
the real world, we can rely on a publish/subscribe model to match drivers and riders in the first
place and then a peer-to-peer communication will start between each couple of rider and driver
to run the proposed scheme and obtain meeting and arriving points. In Figure 5, we present a
global architecture of the system. Our solution can be implemented with the existing network
infrastructure and the current mobile technologies.

Personal	  Cloud	  

Smartphone	  

Wearable	   Smartphone	  

Rider Driver 

	  
Embedded	  Calculator	  	  

	  

Figure 5: System architecture.

For the rider, wearable like smart watch can be used as user interface, smartphone will be
used for computations and P2P communications and finally the most computationally expensive
routines will be delegated to a remote personal cloud.

For the driver, computations can be balanced between an embedded processor on the car and
a smartphone that will also take care of P2P communications.

7.3. The case of malicious adversary

While we have considered in our system the honest-but-curious adversary model, it is inter-
esting to see how one can deal with malicious adversary’s behavior. In contrast to honest-but-
curious ones, malicious adversaries may cheat arbitrarily during the running of the protocol, for
instance he may try to inject forged inputs like a fake isochrone to leak information about users.
To thwart such kind of attack, one can rely on a privacy-preserving location proof system Zhu
and Cao (2011); Gambs, Killijian, Roy and Traoré (2014) that by allowing to securely prove a
location will serve as a mean to provide validate certificates on isochrones.
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8. Conclusion

In this paper, we have proposed a distributed and secure algorithm enabling users of rideshar-
ing services to interact in a private manner. We rely on local computations, secure multiparty
computation (especially private set intersection) and multimodal routing algorithms, to obtain a
ridesharing itinerary for users. Our results and analysis show that privacy enhancing technologies
can help in solving the ridesharing problem while respecting the privacy of users and obtaining
results qualitatively comparable to the one obtained from conventional centralized infrastruc-
tures. For the ridesharing application, the proposed privacy-preserving approach does not impact
significantly the quality of the solutions with regard to optimal ones while leading to a lower
running time as an additional benefit.

Our future work will investigate the generic version of ridesharing problem, involving mul-
tiple drivers and multiple riders, and study the corresponding privacy-preserving matching prob-
lem. Finally in a broader context, we will also explore how secure multiparty computation tech-
niques can be used to solve other mobility problems. For instance in a geosocial network, one
could be interesting in finding a common meeting points for a set of users by combining multi-
modal routing algorithm with their social preferences. Another application concerns the trans-
portation of goods transportation in which different companies want to collaboratively manage
the transportation of their goods to reduce costs without disclosing their private information such
as their exact resources.
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