
HAL Id: hal-01380163
https://hal.science/hal-01380163

Submitted on 30 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ImproteK: introducing scenarios into human-computer
music improvisation

Jérôme Nika, Marc Chemillier, Gérard Assayag

To cite this version:
Jérôme Nika, Marc Chemillier, Gérard Assayag. ImproteK: introducing scenarios into human-
computer music improvisation. ACM Computers in Entertainment, 2017, �10.1145/3022635�. �hal-
01380163�

https://hal.science/hal-01380163
https://hal.archives-ouvertes.fr

ImproteK: Introducing Scenarios into Human-Computer
Music Improvisation

JÉRÔME NIKA, IRCAM STMS Lab (CNRS, UPMC, Sorbonne Universités)
MARC CHEMILLIER, Cams, Ecole des Hautes Etudes en Sciences Sociales
GÉRARD ASSAYAG, IRCAM STMS Lab (CNRS, UPMC, Sorbonne Universités)

This article focuses on the introduction of control, authoring, and composition in human-computer music
improvisation through the description of a guided music generation model and a reactive architecture, both
implemented in the software ImproteK. This interactive music system is used with expert improvisers in
work sessions and performances of idiomatic and pulsed music and more broadly in situations of structured
or composed improvisation. The article deals with the integration of temporal specifications in the music
generation process by means of a fixed or dynamic “scenario” and addresses the issue of the dialectic between
reactivity and planning in interactive music improvisation. It covers the different levels involved in machine
improvisation: the integration of anticipation relative to a predefined structure in a guided generation process
at a symbolic level, an architecture combining this anticipation with reactivity using mixed static/dynamic
scheduling techniques, and an audio rendering module performing live re-injection of captured material in
synchrony with a non-metronomic beat. Finally, it sketches a framework to compose improvisation sessions
at the scenario level, extending the initial musical scope of the system. All of these points are illustrated by
videos of performances or work sessions with musicians.

Key Words and Phrases: Computer music, computational creativity, interactive music system, live
performance, human-computer music improvisation, composed improvisation, scenario, generative model,
pattern matching, prefix matching algorithm, mixed offline/online scheduling, discrete reactive system, beat
synchronization

This work was supported by the French National Research Agency project DYCI2 ANR-14-CE2 4-0002-01.
Authors’ addresses: J. Nika, IRCAM STMS Lab (CNRS, UPMC, Sorbonne Universités), Music Representa-
tions team, 1 place Igor Stravinsky, 75004 Paris, France; email: jerome.nika@ircam.fr; M. Chemillier, EHESS,
190 avenue de France, 75244 Paris Cedex 13, France; email: chemillier@ehess.fr; G. Assayag, IRCAM STMS
Lab (CNRS, UPMC, Sorbonne Universités), Music Representations team, 1 place Igor Stravinsky, 75004
Paris, France; email: gerard.assayag@ircam.fr.

http://dx.doi.org/10.1145/3022635
http://dx.doi.org/10.1145/3022635

2 J. Nika et al.

1. INTRODUCTION

Jazz, blues, or rock improvisation generally relies on a “chord progression” that defines
a harmonic structure; the baroque basso continuo leaves it to the performer to realize
the harmony by improvising with the right hand from the bass line written for the
left hand; improvisation is guided on different levels in the Indian raga (chaining
of delimited parts with different lengths and specific identities at the higher level,
evolution within each of these parts built from detailed descriptions in terms of
melody, tempo, or register). Such a formalized and temporally structured object—not
necessarily described with a harmonic vocabulary—can be found in various repertoires
of improvised performance.

Outside the musical scope, this notion can be transposed to commedia dell’arte,
where the “canovaccio” outlines the sequence of events and situations of the plot that
the representation will follow, or to the oral tradition of folktales or epic tales for which
the improvised narration is based on an outline made of elementary units, sometimes
associated to a set of established formulas defining a grammar of the narration.

The idea of a preexisting temporal structure guiding the improvised performance
is considered in the cognitive studies dealing with improvisation that address the
issue of planning associated with the need for reactivity characterizing improvisation.
This entity is broader than the formal scenario because it covers all the narrative
strategies of an improviser. For example, the notion of “plan” for Sloboda [1982] or
Shaffer [1980] is defined as an abstract object symbolizing the fundamental structure
of the performance, letting the finer dimensions to be generated or organized in due
time. Beyond the mere sequence of formalized constraints, Pressing [1984] introduces
the “referent” as an underlying scheme guiding or aiding the production of the musical
material. The referent extends to cognitive, perceptive, or emotional dimensions, and
its relation with the improvised behavior can be, among others, metaphoric, imitative,
allegoric, or antagonistic.

Human-computer improvisation systems generate music on the fly from a model and
external inputs, typically the output of an human musician’s live improvisation. In this
article, we present some music generation models and a scheduling architecture im-
plemented in the music improvisation system ImproteK, used in concerts by renowned
improvisers.1 This work introduces authoring and control in this process and combine
the ability to react to dynamic controls with that of maintaining conformity to a fixed
or dynamic temporal specification. The improvisation model presented here relies on a
“scenario” structure. As in the examples of improvisation styles previously mentioned,
this object does not carry the narrative dimension of the improvisation, that is, its
fundamentally aesthetic and non-explicit evolution, but is a sequence of formalized
constraints for the machine improvisation.

After presenting different approaches of guided improvisation and giving some back-
ground in Section 2, Section 3 introduces the general principle and the motivation of
the “scenario/memory” music generation model. Section 4 and Section 5 go deeper into
scientific and technical details.

Section 4 details the algorithms involved in the “scenario/memory” generation model.
They ensure the conformity of the machine improvisation to the specifications provided
by the scenario and introduce anticipation in the guided music generation process.

Section 5 describes how this generation model is used during a performance. It
shows how anticipation is combined with reactivity by embedding this offline model

1Compilation of short video excerpts: Video 0: www.youtube.com/watch?v=OhXf-1QpqEI. The links to the
complete videos are given in the following sections. See the descriptions of the videos in the appendix at the
end of the journal.

https://www.youtube.com/watch?v=OhXf-1QpqEI

ImproteK: Introducing Scenarios into Human-Computer Music Improvisation 3

into a reactive framework using a mixed offline/online architecture. This section also
describes the articulation of this reactive architecture with an audio rendering module
that enables the system to re-inject live audio material to generate improvisations
matching the scenario and synchronized with a non-metronomic pulse to adapt to the
environment.

Finally, Section 6 underlines the genericity of the scenario/memory approach and
widens to the issue of introducing authoring and control in human-computer music
improvisation by sketching a framework to compose improvisation sessions at the
scenario level.

2. RELATED WORKS AND BACKGROUND

We focus here on interactive music systems integrating a notion of guidance. A number
of existing improvisation systems drive the music generation processes by involving a
user steering their parameters. First, this user control can concern (low-level) system-
specific parameters. This is, for example, the case with Omax [Assayag et al. 2006b;
Lévy et al. 2012], which is controlled by an operator-musician steering the navigation
through a representation extracted in real time from the playing of a live musician,
or Mimi4x [François et al. 2013], which involves a user in the construction of the
performance by choosing the musical corpus and modifying the generation parameters.

We refer here to guided improvisation when the control on music generation follows
a more declarative approach, that is, specifying targeted outputs or behaviors using
an aesthetic, musical, or audio vocabulary independent of the system implementation,
whether this control is short term or long term (see Nika [2016] for a comprehensive
review).

On the one hand, guiding is seen as a purely reactive and step-by-step process. SoMax
[Bonnasse-Gahot 2014], for instance, translates the musical stream coming from an
improviser into activations of specific zones of the musical memory in regards to a
chosen dimension (for example, the harmonic background). VirtualBand [Moreira et al.
2013], emphasizing interaction and reactivity, also extracts multimodal observations
from the musician’s playing to retrieve the most appropriate musical segment in the
memory in accordance to previously learned associations. In the same line, Reflexive
Looper [Pachet et al. 2013] uses in addition some harmonic annotations in the research
criteria. It should be noticed that some systems do not use concatenative synthesis
of live or prerecorded musical material but generate improvisations from predefined
generative models with which a musician interacts during the performance. Among
them, Sioros and Guedes [2011a, 2011b] use a rhythmic analysis of the live inputs to
steer generative models with a focus on syncopation.

On the other hand, guiding means defining upstream temporal structures or de-
scriptions driving the generation process of a whole music sequence. Pachet and Roy
[2011], for instance, use constraints in such a music generation process. ReChord [Ra-
mona et al. 2015] is an offline engine based on chord progressions generating new
accompaniment tracks from a single recording of accompaniment, using concatenative
synthesis at the chord scale. More broadly, the general approach of the Flow Machines
project [Ghedini et al. 2016] is to apply a style (corpus) to a well-chosen structure (se-
quential content such as text or music) to generate creative objects. In the works of
Donzé et al. [2014], the concept of “control improvisation” [Fremont et al. 2014] applied
to music also introduces a guiding structure via a reference sequence and a number
of other specifications. This structure is conceptually close to the scenario used in our
approach. PyOracle [Surges and Dubnov 2013] proposes to create behaviour rules or
scripts for controlling the generation parameters of an improvisation generation using

4 J. Nika et al.

“hot spots” (single event targets). Wang and Dubnov [2014] extend this work in an of-
fline architecture using sequences instead of single events as query targets. This idea
of mid-term temporal queries shares common issues with the playing mode involving
a dynamic scenario presented in this article.

The purely reactive approach offers rich interaction possibilities but does not inte-
grate prior knowledge about the temporal evolution. On the other hand, steering music
generation with mid- or long-term structures enables anticipation but lacks reactivity
with regard to external or user controls. This article devises an architecture at an
intermediate level between the reactive and offline approaches to combine anticipa-
tions relative to a predefined plan and dynamic controls. The proposed architecture
is structured around an offline generation module based on a scenario, embedded in
a reactive framework steered by external events. The generation module is called to
produce short-term anticipations matching the scenario and may eventually rewrite
these anticipations over time according to incoming control events.

ImproteK, presented here, and Omax, Somax, and PyOracle belong to a family of
related researches and implementations on machine improvisation carried out at Ir-
cam (Institut de recherche et coordination acoustique/musique), UCSD (University of
California, San Diego), and EHESS (École des Hautes Études en Sciences Sociales).
They share a sequential model (that we call here “memory”) learned from live or offline
music streams that is explored interactively at performance time with various types
and degrees of constraints. Indeed, the generation model follows the work on statisti-
cal style modeling initiated in Assayag et al. [1999] and Dubnov et al. [1998] and its
implementation in the real-time improvisation system Omax [Assayag et al. 2006a,
2006b; Lévy et al. 2012]. A “beat,” long-term constraints, and a priori knowledge were
then introduced into the generation process with the first version of ImproteK [Nika
and Chemillier 2012] by means of a formalism conveying different musical notions
depending on the applications, like meter as regards rhythm or chord notation as re-
gards harmony, in the line of works on the use of chord progressions in improvisation
[Chemillier 2001, 2004, 2009]. The music generation model described in this article
generalizes these long-term constraints with the “scenario.”

The real-time architecture embedding the generation model is at the frontier be-
tween the offline and online paradigmatic approaches in computer music systems
regarding time management and planning or scheduling strategies. This frontier is
studied in current works in computer music such as that by Agostini and Ghisi [2013],
Echeveste et al. [2013a], Bresson and Giavitto [2014], and Bouche and Bresson [2015].
On the one hand, “offline” corresponds to computer-assisted composition systems
[Assayag 1998] where musical structures are computed following best effort strategies
and where rendering involves static timed plans. On the other hand, “online” corre-
sponds to performance-oriented systems [Dannenberg 1989] where the computation
time is part of the rendering.

3. A SCENARIO TO DEAL WITH CONFORMITY, ANTICIPATION, AND HYBRIDIZATION

The system described in this article is initially dedicated to the scope of “idiomatic”
music improvisation [Bailey 1993]. The improvisation process in such a formalized con-
text is modeled as re-injections, transformations, and recontextualizations of elements
that have been eared or played in a different context defined with the same vocabulary,
by analogy with a musician re-injecting a “cliche” when improvising over a given local
harmonic progression. In this view, musicality lies in the anticipated or unexpected
nature of these re-injections. This section introduces the musical motivations and the
principle of the scenario/memory generation model, which will be detailed in Section 4.

ImproteK: Introducing Scenarios into Human-Computer Music Improvisation 5

Fig. 1. An event: the elementary unit of the musical memory. It is constituted by a musical content annotated
by a label. The scenario guides the concatenation of these contents to generate the machine improvisation.

3.1. “Scenario” and “Memory”

The generation model articulates a scenario guiding the generation and a structured
and indexed memory in which musical sequences or events are searched and retrieved
to be transformed, rearranged, and reordered to create new improvisations:

—the scenario is a symbolic sequence guiding the improvisation and defined on an
appropriate alphabet (depending on the musical context),

—the memory is a sequence of contents labeled with a symbolic sequence defined over
this same alphabet.

The scenario can be any sequence defined over a chosen alphabet suitable for the mu-
sical context, for example, a harmonic progression in the case of jazz improvisation or
a discrete profile describing the evolution of audio descriptors to control concatenative
audio sound synthesis.

The musical memory used during an improvisation session is a store of continuous
musical sequences (e.g., MIDI2, audio, parameters for sound synthesis) represented
as sequences of events. An event (Figure 1) has a duration and is indexed by its po-
sition (index ∈ N), which will also be called date (both are equivalent since the time
from the beginning of the sequence is stored within each event). The memory can be
constituted online by recording the music played by the human co-improvisers during
a live performance (the way musical inputs from the musicians are segmented into
events, annotated, and learned in real time is described in Section 5.1) and/or offline
(from annotated material). All the sequences in the memory have to be segmented into
events annotated using the alphabet chosen for the scenario (e.g., harmonic labels) but
do not have to be created within the same source scenario (e.g., a set of recordings of
solos on different jazz standards, see Section 3.3).

In this context, “improvising” means navigating through the memory in a creative
way to collect some contiguous or disconnected sequences matching the successive parts
of the scenario and concatenating them to create a musical phrase. We will first consider
that an event in the memory matches a label of the scenario when the labels are equals.
Yet, the events in the memory can also be transformed to virtually increase the size of
the memory. The generic approach (equivalence classes on the labels associated with
transformations of the contents) will be developed in Section 6, and a first example will

2Musical Instrument Digital Interface, standard music technology protocol: https://www.midi.org.

6 J. Nika et al.

Fig. 2. Using the scenario to introduce anticipation in the music generation process.

be given in Section 3.3 with the case of transposition when the scenario is defined as a
harmonic progression.

3.2. Music Generation Guided by a Scenario: Combining Anticipation and Digression

Conformity. In first approach, the scenario ensures the conformity of the machine
improvisation regarding the stylistic norms and aesthetic values implicitly carried by
the musical idioms. Video 1 gives a first example of how the scenario/memory model
recontextualizes some subsequences of the memory to generate new musical sequences
matching the scenario.3 In this example of jazz co-improvisation, the solo played by the
musician is segmented in real time using beat markers and annotated with harmonic
labels so it can be immediately re-injected by the model to produce an improvisation
matching the scenario that is here a simple chord progression.

Anticipation. In the second approach, the scenario gives access to prior knowledge of
the temporal structure of the improvisation that is exploited to introduce anticipation
in the generation process, that is, to take into account the future of the scenario to
generate the current time of the improvisation. This point is particularly relevant in
the case of “hybrid” improvisation: when the scenario and the memory are different
sequences defined with the same alphabet (see an illustration with the example of jazz
improvisation in Section 3.3).

Digression. The scenario/memory model searches for the continuity of the musical
discourse by exploiting the similar patterns in the sequences and the ability to cre-
ate new content that goes beyond copy using the regularities in the memory (see the
algorithms in Section 4). This last condition maintains the coherence of the musical
discourse when digressing from the original material, that is, when non-contiguous
subsequences of the memory are chained in the machine improvisation. Figure 2 rep-
resents a step in the improvisation process. It combines anticipation and coherence
with the musical logic of the memory by searching for events ensuring both continuity
with the future of the scenario (red arrows) and continuity with the past of the memory
(black arrows).

3Video 1: www.youtube.com/watch?v=w17pFvrI06A. See the description of the associated artistic collabo-
ration in the online appendix section at the end of the journal.

https://www.youtube.com/watch?v=w17pFvrI06A

ImproteK: Introducing Scenarios into Human-Computer Music Improvisation 7

Finally, we will show in Section 6 that the scenario approach can be used to go beyond
simple conformity criteria and widens to the composition of improvised performance in
an idiomatic context or not.

3.3. Example of Jazz Improvisation

The example of jazz improvisation illustrates how anticipation can be used to create
“hybrid” improvisations and how a transformation such as transposition can be used to
virtually increase the size of the memory. In the case of a scenario defined as the chord
progression of a jazz standard and a memory recorded on different chord progressions,
the basic idea is the following: If the scenario requires a ii-V-I progression, retrieving
an instance of ii located in a ii-V-I progression, then an instance of V located in a V-I
progression is likely to produce a better result than the concatenation of an instance of
ii, an instance of V, and an instance of I independently retrieved in the memory.

Depending on the nature of the alphabet, adapted heuristics can be defined to com-
plete the generic algorithm. In this example, we define the scenario and the memory
on the alphabet constituted by the four notes chords deriving from the harmonization
of the major scale commonly found in jazz harmony. Figure 3 presents the possible
evolutions through the jazz standard “Blue in Green” (scenario) only using the longest
factors retrieved from the harmonic progression of “Autumn Leaves” (memory).

Here we define equivalence on the labels modulo transposition and the associated
transformation of the retrieved contents (see Section 6.1 for the generic approach).
When using a harmonic alphabet, more complex equivalences can be defined, for ex-
ample, transformations defined by chord substitution grammars [Chemillier 2004]. To
simplify the example in Figure 3, only the longest factors are represented: An arrow
leaving a state of the scenario points on the furthest state that can be reached following
a sequence extracted from the memory in its original or transposed state. The number
of sequences matching this longest path is given for each of the relevant transposi-
tions. In the case of jazz improvisation, transposition is an example of control on music
generation: Depending on the musical situation, one can sometimes prefer the longest
paths whatever necessary transposition jumps (which may introduce discontinuities)
and sometimes choose the paths minimizing the transpositions even if some progres-
sions or complete cadences that could be present in the memory with a different local
tonality may be dismissed.

Video 2a shows an example of such hybrid improvisations during a concert using an
early MIDI version of the system.4 The scenario is defined as a harmonic progression
and the memory is a heterogeneous sets of different jazz standards and ballads coming
from previous improvisation sessions with different musicians (in particular Bernard
Lubat and Jovino Santos Neto).

With an other approach, Video 2b shows the finale of an improvisation by pianist
Hervé Sellin playing with the system.5 Its musical memory contains different record-
ings by Billie Holiday, Edith Piaf, and Elisabeth Schwartzkopf (singing Puccini, Mozart,
and Mahler). The aim was here to create a quatuor with a live musician and a “virtual
trio” with a patchwork aesthetics.

4. SCENARIO/MEMORY MUSIC GENERATION ALGORITHMS

This section presents the algorithms involved in the scenario/memory generation
model introduced in the previous section. Section 4.1 outlines the general algorithm,

4Video 2a: www.youtube.com/watch?v=yY3B5qfFri8. See the description of the associated artistic collabo-
ration in the online appendix section at the end of the journal.
5Video 2b: www.youtube.com/watch?v=reJ-SiblCcs. See the description of the associated artistic collabora-
tion in the online appendix section at the end of the journal.

https://www.youtube.com/watch?v=yY3B5qfFri8
https://www.youtube.com/watch?v=reJ-SiblCcs

8 J. Nika et al.

Fig. 3. Example using a harmonic alphabet: covering “Blue in Green” using sequences in an interpretation
of “Autumn Leaves” (simplified representation: only the longest sequences).

Section 4.2 focuses on the prefix indexing algorithm handling the continuity with the
future of the scenario, and Section 4.3 explains how the continuity with the past of
the memory is obtained from the automaton structure chosen to learn the musical
material.

4.1. Overview of the Guided Music Generation Algorithm

4.1.1. Notations and Definitions. The scenario and the sequence of labels describing the
musical memory are represented as words on an alphabet A. Choosing an alphabet A
for the labels of the scenario and the memory sets the equivalence classes labeling the
musical contents in the memory (see Section 6 for some examples of alphabets).

Given a scenario S of length s, the letter at index T in S is denoted by S[T]. After
defining a temporal unit for the segmentation, S[T] is the required label for the time T

ImproteK: Introducing Scenarios into Human-Computer Music Improvisation 9

of the improvisation. Given a memory M of length m, the letter at index k in M is denoted
by M[k]. M[k] is the equivalence class labeling the musical event corresponding to the
date k in the memory M. In the following descriptions the memory will be assimilated
to the word M. The labels and contents in the the memory will be distinguished when
necessary using lowercase letters and uppercase letters, respectively. For example,
different musical contents B′, B′′, B′′′, . . . belonging to a same equivalence class b will
be labeled by b.

Finally, the machine improvisation, that is, the sequence of indexes of the events
retrieved in M and concatenated to generate the improvisation, will be denoted by
{iT }0≤T <s.

Using the usual vocabulary, the zero letter sequence is called the empty string and is
denoted by ε. A string x is a factor of a string y if there exist two strings u and v such
that y = uxv. When u = ε, x is a prefix of y; and when v = ε, x is a suffix of y.

4.1.2. Current Scenario at Date T. The scenario gives access to a prior knowledge of
the temporal structure of the improvisation to play. Anticipation can therefore be
introduced by taking into account the required labels for the future dates to generate
improvisation at current time T . The current scenario at date T , denoted by ST ,
corresponds to the suffix of the original scenario beginning at the letter at index T :
ST = S[T] . . . S[s − 1]. At each time T , the improvisation goes on from the last state
iT −1 retrieved in the memory, searching to match the current suffix ST of the scenario.

4.1.3. Anticipation and Digression: Definition of Index Sets. As introduced in Section 3.2, the
model combines anticipation by ensuring continuity with the future of the current
scenario ST and coherence with the musical logic of the memory M when digressing
by maintaining continuity with the past of the memory. To achieve this, we define the
following index sets of the memory M that are used in the scenario/memory generation
algorithm (Section 4.1.4):

FutureS(T) = Positions in M sharing a common future with the current scenario ST

= {k ∈ N | ∃ c f ∈ N, M[k] . . . M[k + c f − 1] ∈ Prefixes(ST)}, T ∈ [0, s[.

k ∈ FutureS(T) is the left position of a factor of M equal to a prefix of the current
scenario ST . M[k] shares a common future with S[T] and provides continuity with the
future of the scenario measured by the length c f of the prefix. The maximum length c f

associated to an index k ∈ FutureS(T) is denoted by c f (k, T).6

PastM(i) = Positions in M sharing a common past with the event M[i]
= {k ∈ N | ∃ cp ∈ [1, k], M[k − cp + 1] . . . M[k] ∈ Suffixes(M[0] . . . M[i])}, i ∈ [0, m[.

k ∈ PastM(i) is the right position of a factor of M equal to a suffix of M[0] . . . M[i]. M[k]
shares a common past with M[i] and provides continuity with the past of the memory
measured by the length cp of the suffix. The maximum length cp associated to an index
k ∈ PastM(i) is denoted by cp(k, i).7

ChainS,M(T , i) = Positions in M starting a sequence chaining with M[i] at time T

= Positions in M sharing a common future with the current scenario ST

and preceded by a sequence sharing a common past with the event M[i]
= {k ∈ N

∗ | k ∈ FutureS(T) and k − 1 ∈ PastM(i)}, T ∈ [0, s[, i ∈ [0, m[.

6See Section 4.2 for the algorithms to build FutureS(T).
7See Section 4.3 for the algorithms to build PastM(i).

10 J. Nika et al.

Fig. 4. Construction of ChainS,M(T , iT −1) = {k, k′}: Positions in M sharing a common future with the current
scenario ST and preceded by a sequence sharing a common past with the event M[iT −1].

As illustrated in Figure 4, k ∈ ChainS,M(T , i) shares a common future with the current
scenario ST and is preceded by a sequence sharing a common past with the event at
index i. The indexes k in ChainS,M(T , i) are the left positions of sequences of length
c f (k, T) constituting possible fragments of improvisation starting at time T . Besides,
they offer smooth transitions from M[i] thanks to their common past of length cp(k, i),
assuming that jumps between two segments sharing a common past preserve a certain
musical homogeneity.

The sequences starting at positions k ∈ ChainS,M(T , i) can be simply copied.8 To
go beyond simple copy, k ∈ ChainS,M(T , i) can be used as a starting point to fol-
low an equivalent non-linear path using regularities of the memory to jump to other
zones sharing a common past with the previously retrieved slice. To cover both cases,
we define the set of possible continuations from the index i ∈ [0, m[in M at date
T ∈ [0, s[as

ContS,M(T , i) = Possible continuations from M[i] at time T

= Positions in M matching the label S[T] of the scenario and
preceded by a sequence sharing a common past with the event M[i]
= {k ∈ N

∗ | M[k] = S[T] and k − 1 ∈ PastM(i)}.
Finally, iT is chosen in ContS,M(T , iT −1).

4.1.4. Guided Generation Algorithm. The generation process is divided in phases con-
strained by suffixes of the scenario.9 Figure 5 gives an example of two consecutive
generation phases. Each phase consists in two successive steps involving the previ-
ously defined index sets.

1-Anticipation: Find an event in the memory sharing a common future with the
scenario while ensuring continuity with the past of the memory. 2-Copy or digression:
Retrieve the whole sequence (example of the phase ST , black) or use the regulari-
ties in the memory to follow an equivalent non-linear path (example of the phase
ST ′ , red).

8In this case, given k ∈ ChainS,M(T , i), ∀l ∈ [0, c f (k, T)[, iT +l = k + l.
9These navigation phases through the memory segment the algorithmic process of producing the improvisa-
tion, but they do not correspond in general to distinct musical “phrases.”

ImproteK: Introducing Scenarios into Human-Computer Music Improvisation 11

Fig. 5. Scenario/memory generation model: Example of two successive generation phases, ST (black) and
then ST ′ (red). The first one generates a fragment of improvisation starting from date T satisfying the
current scenario ST . At the end of this first phase, the prefix S[T] . . . S[T ′ − 1] of ST has been processed. A
new research phase over the suffix ST ′=S[T ′] . . . S[s−1] of S is then launched to complete the improvisation
up to T ′′ − 1. In the example of this second phase (red), the regularities in the memory indexed by the sets
PastM(i) are used to follow a non-linear path..

Formally, the generation algorithm is summarized in Algorithm 1 and consists in

(1) Anticipation: searching for a starting point (lines 3–8 in Algorithm 1, steps 1 in
Figure 5).

The search first looks for events in M sharing a common future with the current
scenario ST and a common past with the last retrieved index iT −1 in M, that is,
ChainS,M(T , iT −1). When none of the events in M can provide both continuity with
the future of the scenario and continuity with the past of the memory, only the first
criterion is searched, that is, the continuity with the future of the current scenario.
If no solution is found, then alphabet-dependent transformations are used (see
Section 6).

(2) Copy or digression: Navigating through the memory (lines 9–11 in Algorithm 1,
steps 2 in Figure 5). After finding a factor of M matching a prefix of ST , it can be
copied or used as a starting point to follow an equivalent non-linear path in the
memory using the continuations in ContS,M(T , iT −1) until launching a new phase
is necessary.

At each of theses steps, the concerned index sets are built and the selection among the
candidate positions is done in order to satisfy a set of secondary generation parameters
containing all the parameters driving the generation process that are independent from
the scenario: parametrization of the generation model and content-based constraints
to filter the set of possible results returned by the algorithm (see 5.1).

12 J. Nika et al.

ALGORITHM 1: Guided Generation Algorithm
Input: Scenario S of length s, Memory M of length m.
Output: {iT }0≤T <s, indexes of the slices retrieved in M and concatenated to generate the

improvisation.
1 T = 0;
2 while T < s do
3 /* Step (1): Starting point */
4 if T > 0 and ChainS,M(T , iT −1) 	= ∅ then
5 iT ← k ∈ ChainS,M(T , iT −1);
6 else
7 iT ← k ∈ FutureS(T) or alphabet-specific heuristics.
8 end
9 T ++;

10 /* Step (2): Navigation */
11 while T < s and ContS,M(T , iT −1) 	= ∅ do
12 iT ← k ∈ ContS,M(T , iT −1);
13 T ++;
14 end
15 end

4.2. Continuity with the Future of the Scenario

FutureS(T) (defined in Section 4.1.3) is the index set of M defined to deal with continuity
with the future of the scenario. This section gives an overview of the proposed algorithm
to build FutureS(T) and then ChainS,M(T , iT −1). The construction of FutureS(T) comes
down to the general problem of indexing the prefixes of a pattern X=X[0] . . . X[x − 1]
in a word Y=Y [0] . . . Y [y − 1].

4.2.1. Outline of the Algorithm. As illustrated in Figure 6, the algorithm for indexing
the prefixes of X in Y follows the outline of the classic algorithms for indexing the
occurrences of a pattern in a word: comparisons and calls to a failure function to shift a
sliding comparison window in such a way that redundant comparisons are avoided. The
algorithm presented below uses the failure function f of the Morris-Pratt algorithm
[Morris and Pratt 1970] that indexes the occurrences of the pattern X in Y by describing
the run of the deterministic finite automaton recognizing the language A∗X (where A
is the alphabet on which X and Y are defined) on the word Y . The algorithm for indexing
the prefixes of X in Y is divided into a preprocessing phase on the pattern X and a
searching phase represented in Figure 6. The preprocessing phase provides the tools
used in the searching phase: the failure function f and the function B defined below.

4.2.2. Preprocessing Phase. A proper factor of X is a factor of X that differs from X and
a border of a non-empty string X is a proper factor of X that is both a prefix and a suffix
of X. We define f as follows (see Crochemore et al. [2007] for the construction of the
borders table and f):

∀i ∈ [1, x], f (i) = length of the longest border of X[0] . . . X[i − 1], f (0) = −1.

f is used as a failure function in the algorithm: f computed on the pattern X indexes
some regularities in X that are used in the searching phase to shift the sliding window
from the last index i to a relevant index f k(i) so unnecessary comparisons are avoided
(last step in Figure 6).

f is defined in such a way that when a prefix is found during the searching phase, it
is the longest prefix of X at the concerned position of Y , and the indexes it covers will
not be visited during the following attempts. A shift of the sliding window has to be
valid, that is, it has to ensure that no prefixes are forgotten when sliding the window.

ImproteK: Introducing Scenarios into Human-Computer Music Improvisation 13

Fig. 6. Indexing the prefixes of a pattern X in a text Y .

Fig. 7. B(i): Sets of the lengths of the borders of X[0] . . . X[i]. The locations of the non-trivial occurrences of
all the prefixes of the pattern X in X itself are then deduced from B (rectangles).

We have therefore to signal the shorter prefixes that may be included in the previously
found longest prefix before sliding the window (third step in Figure 6). This consists in
reporting the relevant prefixes of X within X itself in this found prefix. In addition to
its use as a failure function, we therefore use f to obtain the locations of the prefixes
of X within X itself. To do so, we define the function B, with B(i) the set of the lengths
of all the borders of X[0] . . . X[i]:

∀i ∈ [1, x − 1], B(i) = {length of b | b border of X[0] . . . X[i]}.
As illustrated in Figure 7, the locations of prefixes of X within X itself and their

lengths are immediately deduced from B (rectangles in Figure 7), and B is directly

14 J. Nika et al.

obtained from f : Indeed, by a simple recurrence (see Crochemore et al. [2007]):

∀i ∈]1, x[, B(i − 1) = { f (i), f 2(i), . . . , f n(i) > 0}.
4.2.3. Searching Phase: Indexing the Prefixes of the Current Scenario ST in the Memory M.

Finally, with X = ST and Y = M, FutureS(T) is built as follows:

(1) Preprocessing phase, construction of f on ST , hence B.
(2) Searching phase, index the prefixes of ST in M:

Comparisons of the letters in ST and M, when ST [i] 	= M[j] and i > 0:
(a) (j − 1) is the right position of a prefix of length i of ST found in M:

(j − i) ∈ FutureS(T)
This is the longest prefix of ST in M ending in j − 1.

(b) Use B to signal the shorter prefixes of ST in M[j − i] . . . M[j − 1].
(c) Go backward in ST with f to avoid unnecessary comparisons for the next

attempt.
(3) Combine with PastM(i) (Section 4.3) to get ChainS,M(T , i).

The positions and the lengths of the prefixes are recorded in a table. The lengths of the
prefixes correspond to the parameters c f introduced in Section 4.1.3.

To summarize, the searching phase indexes the prefixes of ST in M by signaling
some locations dismissed in the Morris-Pratt algorithm, without proceeding to extra
comparisons or moves backwards. This simple implementation justifies the choice of
the failure function of the Morris-Pratt algorithm. Indeed, although f is not optimized
(for example, in comparison to that of Knuth et al. [1977] or Boyer and Moore [1977]),
it enables us to move easily from the research of occurrences to the research of prefixes.
Furthermore, this algorithm runs in time �(m) and does not exceed 2 ∗ m− 1 compar-
isons, and the preprocessing phase runs in time �(s − T). This execution time and this
failure function proved to be suitable for our use case (this result is empirical: The
improvisation system in which this model is implemented has been used many times
during performances and work sessions with expert musicians). Indeed, the first fields
of musical experimentation with the model were jazz chord progressions, and processed
sequences contained therefore multiple regularities. Because of the harmonic rhythm
(generally two or four beats), they are often of form . . . x4y2z2x8 . . . (more details on the
first version of the algorithm in Nika and Chemillier [2014]).

4.3. Continuity with the Past of the Memory

Continuity with the past of the memory is handled with PastM(i) introduced in Sec-
tion 4.1.3. The sets PastM(i) are used both to filter the set of sequences sharing a com-
mon future with the current scenario to get the chaining sequences ChainS,M(T , i) (Sec-
tion 4.1.3) and to add non-linear paths to the set of possible continuations ContS,M(T , i)
when navigating through the memory (Section 4.1.3). This paragraph details how these
sets are obtained from the automaton structure chosen to learn the musical mem-
ory: the Factor Oracle (FO) automaton [Allauzen et al. 1999; Lefebvre et al. 2002]
(Figure 8).

This automaton was introduced to remedy the difficulty to build a deterministic finite
automaton recognizing the language constituted by the factors of a word. The FO built
on a word X is a deterministic finite automaton accepting at least the factors of X
(for each of these words, there exists at least one path labeled by it in the automaton,
leading to a final state). In the context of a musical application, this automaton presents
the advantage of keeping the sequential aspect of the temporally structured musical
memory and does not aggregate in the same state all the contents labeled by the same
equivalence class. Moreover, its construction algorithm (see Allauzen et al. [1999]) is

ImproteK: Introducing Scenarios into Human-Computer Music Improvisation 15

Fig. 8. Using the regularities of the memory (s suffix link function of the FO memory) to follow non-linear
paths (continuations) or chain disconnected sequences while preserving musical coherence.

incremental and linear in time in space. It is therefore particularly relevant for real-
time applications (see Assayag et al. [2006b] for the application of this automaton to
the issue of stylistic reinjection for human-computer music improvisation).

Like in most of the systems using the FO for music improvisation, the automaton
is not used here to proceed to proper pattern matching but in an indirect way: Some
construction links, the suffix links, carry the information to build the sets PastM(i).
The FO construction function, the suffix link function s, is used to index regularities in
the memory. The function s computed on a word X is defined as follows:

s(i) = leftmost position where a longest repeated suffix of X[1] . . . X[i] is recognized.

As illustrated in Figure 8, the suffix links index repeated patterns in the sequence
and guarantee the existence of common suffixes between the elements that they link.
These common suffixes are seen here as musical pasts shared by these elements:
s(i) ∈ PastM(i). The main postulate of the musical models using the FO is that following
non-linear paths using these links creates musical phrases proposing new evolutions
while preserving the continuity of the musical discourse, as studied in Assayag and
Dubnov [2004].

To summarize, this section extends the heuristics for improvisation, harmonization,
and arrangement proposed by Nika and Chemillier [2012] based on the FO naviga-
tion proposed in Assayag and Bloch [2007]. The navigation chains paths matching
the scenario in the automaton and alternates between linear progressions and jumps
following suffix links. The length of the common context between two musical events
in a sequence is computed in Assayag and Dubnov [2004] by embedding the method
introduced in Lefebvre and Lecroq [2000] (linear in time and space) in the construction
algorithm. The length of this context corresponds to the parameter cp (Section 4.1.3)
that quantifies the expected “musical quality” of a jump. According to empirical ob-
servations made during performances and work sessions with musicians, the subset
of PastM(i) reached by chaining calls to suffix links and reverse suffix links meets the
requirements for chaining sequences and digressing from the original sequences.

16 J. Nika et al.

Fig. 9. Possible interactions with the scenario during a performance.

5. AN INTERACTIVE MUSIC SYSTEM: FROM OFFLINE MUSIC GENERATION
WITH SPECIFICATION TO ONLINE GUIDED IMPROVISATION

5.1. An Interactive System: Anticipation and Reactivity

This section presents the general architecture of ImproteK used during performances
and the interactions with the scenario in a real-time context, as represented in Figure 9.
The system plays improvisations matching the scenario, and the music played by the
human co-improvisers is captured and added to its musical memory, which can also
contain offline material. The incoming stream is segmented using a chosen external
time source and is annotated by labels. If the scenario is a common referent for the
musicians and the machine, then the labels directly come from the scenario (Figure 9,
left). If the scenario is seen as a score for the machine only, then the labels come from
a chosen analysis (Figure 9, right).

The system reacts to the online control of some reactive inputs: the scenario itself and
secondary generation parameters. These secondary generation parameters correspond
to

—the parametrization of the generation model: contraints on the memory region, au-
thorized transformations, maximal/minimal length of the sequences retrieved in the
memory, measure of the linearity/non-linearity of the paths in the memory, that is,
constraints on the parameters c f and cp introduced in Section 4.1.3.

—user-defined content-based constraints to filter the set of sequences in the memory
matching the current scenario: for example, pitch interval, onset density, user-defined
thresholds or rules, and so on (see examples in video 3, Section 5.2.1).

The generic reactive mechanisms are described in Section 5.2 without focusing on
where the controls come from: depending on the musical project, they can be given to
an operator-musician controlling the system, launched by composed reactivity rules,
defined in a higher-level improvisation plan (see Nika et al. [2014]), or plugged into an
external listening module.

As introduced previously, ImproteK uses an external time source that is used as
a clock for the improvisation. This input is generic and can be plugged into a fixed
metronome, an irregular time track, or a non-metronomic beat coming from a beat
tracking system listening to the musician (the system includes a beat tracking module
described in Bonnasse-Gahot [2010]). Section 5.3 presents the audio rendering module
of the system that synchronises the live audio re-injections with a non-metronomic
beat.

ImproteK: Introducing Scenarios into Human-Computer Music Improvisation 17

Fig. 10. General architecture of the improvisation system.

5.2. Embedding an Offline Generation Model in a Reactive Architecture
to Combine Anticipation and Reactivity

The scenario/memory generation model presented in the previous section is static in the
sense that one run produces a whole timed and structured musical gesture satisfying
the designed scenario that will then be unfolded through time during performance.
It follows a compositional workflow (see Section 6.1) and can therefore be used to
generate sequences satisfying given specifications in an offline compositional process.
This section details its integration in a dynamic architecture to combine anticipation
and reactivity. This architecture manages the dynamic queries sent to the model to
generate and refine buffered anticipations in reaction to changes of the reactive inputs
introduced in Section 5.1, while maintaining coherence with its long-term horizon.

Figure 10 schematizes the general architecture of the system. Basically, the time
domain is where listening, planning, and rendering occur, while the symbolic domain
concerns the concurrent runs of the music generation model and the way they are
dynamically handled. The architecture articulates three main modules as follows:

—an improvisation handler (Sections 5.2.1 and 5.2.2), a reactive agent embedding the
memory and the mechanisms handling music generation, which manages reaction
and concurrency of the overlapping queries sent to the scenario/memory generation
model;

—a dynamic score (Section 5.2.3), a reactive program that manages the high-level
temporal specifications and synchronizes the generation and rendering processes
with the inputs from the environment;

—an improvisation renderer (Section 5.3) synchronizing the rendering of the generated
sequences with the environment and informing the dynamic score with time markers.

The generation model and the improvisation handler are implemented in the Open-
Music environment [Bresson et al. 2011]. The components involved in time domain are
implemented in the graphical programming environment Max [Puckette 1991] using
the synchronization strategies of the score follower Antescofo [Cont 2008] and its as-
sociated programming language [Echeveste et al. 2013a, 2013b] to write the dynamic
score.

5.2.1. Guided Improvisation as Dynamic Calls to an Offline Model: The Improvisation Handler.
In the scope of music improvisation guided by a scenario, a reaction of the system to
dynamic controls cannot be seen as a spontaneous instant response. The main interest

18 J. Nika et al.

of using a scenario is indeed to take advantage of this temporal structure to anticipate
the music generation, that is, to use the prior knowledge of what is expected for the
future in order to better generate at the current time.

Whether a reaction is triggered by a user control, by hard-coded rules specific to a
musical project, or by an analysis of the live output of a musician, it can therefore
be considered a revision of the mid-term anticipations of the system in the light of
new events or controls. To deal with this temporality in the framework of a real-time
interactive software, we consider guided improvisation as embedding an offline process
into a reactive architecture.

In this view, reacting amounts to composing a new structure in a specific timeframe
ahead of the time of the performance, possibly rewriting previously generated material.
When it is used offline, a whole musical sequence is generated through a single run
of the scenario/memory generation algorithm (Section 4.1.4) which chains linearly the
successive generation phases. Here, the generation process is segmented and non-linear
and involves concurrent generation phases that produce overlapping improvisation
fragments. Thanks to the scenario, music is produced ahead of the performance time,
buffered to be played at the right time or rewritten. For purposes of brevity (and far
from any anthropomorphism),

—anticipations will be used to refer to the current state of the already generated
musical material ahead of the performance time,

—intentions will be used to refer to the current state of the scenario and secondary
generation parameters ahead of the performance time.

In this framework, we call reaction an alteration of the intentions leading to a call
to the generation model to produce a fragment of improvisation starting at a given
position in the scenario. The evolving anticipations of the machine result from suc-
cessive or concurrent calls to the generation model. Introducing a reaction at a time
when a musical sequence has already been produced amounts then to rewrite buffered
anticipation. The rewritings are triggered when reactive inputs (Section 5.1) are mod-
ified, that is, by modifications of the intentions regarding the scenario itself or other
generation parameters. The different musical issues raised by these two cases are dis-
cussed in Section 6.2. Video 3 shows the anticipations being rewritten in two offline
simulations with different configurations regarding the scenario, the memory, and the
chosen reactive inputs.10

5.2.2. Concurrent and Overlapping Runs of the Generation Model. The improvisation handler
is a reactive agent embedding the scenario/memory generation model. It translates the
dynamic controls on the reactive inputs into reactive queries for the generation module.
A query launched by a reaction of the improvisation handler generates an improvisation
fragment starting at time q in the scenario.11 It triggers a run of the generation model
to output a sub-sequence (or a concatenation of sub-sequences) of the memory that

—matches the current state of the scenario from date q (i.e., a suffix Sq of the scenario),
—satisfies the current state of the set of generation parameters.

This mechanism can be time-triggered or event-triggered, that is, resulting respectively
from depletion of previously generated material or from modifications of the reactive
inputs.

10Video 3: www.youtube.com/watch?v=w8EWxFijB4Y. See the description of the associated artistic collab-
oration in the online appendix section at the end of the journal.
11q is the time at which this fragment will be played; it is independent of the current performance time and
the date at which the query is launched by the improvisation handler.

https://www.youtube.com/watch?v=w8EWxFijB4Y

ImproteK: Introducing Scenarios into Human-Computer Music Improvisation 19

Fig. 11. Reaction seen as rewriting previously generated and buffered anticipations. The live reactions
(modifications of the secondary generation parameters or of the scenario itself) trigger concurrent and over-
lapping queries sent to the offline generation model resulting in the generation of overlapping improvisation
fragments. The coherence between these fragments is maintained thanks to an execution trace.

As illustrated in Figure 11, the new improvisation fragment resulting from the
generation is sent to the buffered improvisation while the improvisation is being played.
The new fragments overwrite the previously generated material on the overlapping
time interval. The improvisation handler embeds an execution trace that records the
history of the paths in the memory and states of the generation parameters for the
last runs of the generation model so coherence between successive generations phases
associated to overlapping queries is maintained. This way, the process can go back to
an anterior state to ensure continuity at the tiling time q, the first position where the
generation phases overlap.

Anticipation may be generated without ever being played because it may be rewrit-
ten before being reached by the time of the performance. Similarly, an intention may
be defined but never materialized into anticipation if it is changed or enriched by a new
event before being reached by a run of generation. Indeed, if reactions are frequent or
defined with delays, it would be irrelevant to translate them into as many indepen-
dent queries leading to numerous overlapping generation phases. We then define an
intermediate level to introduce evolving queries, using the same principle for dynami-
cally rewriting intentions as that defined for anticipations. This aspect is dealt with by
handling concurrency and working at the query level when the improvisation handler
receives new queries while previous ones are still being processed by the generation
module. This way, if closely spaced in time queries lead to concurrent processing, re-
laying their runs of the generation model at the right time using the execution trace
enables to merge them into a dynamic query accumulating their features through time.
Concurrent queries are thus handled by means of a multi-thread architecture handling
concurrent accesses on the shared memory (see Nika et al. [2015]).

5.2.3. Dynamic Score. The dynamic score is a reactive program synchronizing the musi-
cal processes with the musical inputs and the control inputs, in particular the external
non-metronomic time source introduced in Section 5.1, to adapt to the fluctuating
tempo of the human co-improvisers. It is described in detail in Nika et al. [2014]. This
reactive program is at the interface between the environment and the improvisation

20 J. Nika et al.

Fig. 12. Generation model: symbolic mapping. Improvisation renderer: time mapping.

handler agent embedding the scenario/memory generation module. The role of the dy-
namic score is both upstream and downstream since it coordinates the calls to the
improvisation handler agent previously described and audio rendering.

On the one hand, it implements parallel processes listening to the musical inputs to
segment and label them for learning, reacting to controls, and launching the queries
to the improvisation handler. On the other hand, it receives the anticipated improvisa-
tions from the scenario/memory generation as portions of code that are executed in due
time. The dynamic score acts as a dynamic sequencer: The anticipated improvisation
fragments are received and buffered to be unfolded in the real time of the performance
and sent to the improvisation renderer.

5.3. Audio Rendering and Synchronization with a Non-Metronomic Beat

5.3.1. Live Audio Re-injection. The scenario/memory generation model proceeds to a sym-
bolic mapping between the units of the scenario and that of the memory. The audio
renderer presented here proceeds then to the elastic temporal mapping between the
symbolic improvisation fragments and the real time of performance.

The musical memory is recorded in an audio buffer, and an index of the time markers
corresponding to the events segmented by the external time source is built online in the
dynamic score (Section 5.2.3). This way, each unit of the symbolic sequences returned by
the generation model is associated to the corresponding dates to read in the buffer. The
system can therefore improvise by re-injecting live audio material, which is processed
and transformed online to match the scenario, in synchrony with a fluctuating pulse
(Figure 12).

Different voices constituting the machine improvisation are defined as different in-
stances of a same generic process running in parallel. This process continuously sends
the positions to read in the buffer via a phase vocoder, SuperVP [Depalle and Poirot
1991], whose re-synthesis of sound files can be modified by transformations such as
time stretching, pitch shifting, filtering, and so on. When two successive positions of
the scenario are mapped to discontiguous slices in the buffer, a crossfade effect is used
between a new voice instance and the previous one that is killed only after this relay.

5.3.2. Synchronization with a Non-Metronomic Beat. The synchronization with the environ-
ment and a fluctuating pulse is achieved by combining the synchronization strategies

ImproteK: Introducing Scenarios into Human-Computer Music Improvisation 21

Fig. 13. Tempo estimation, synchronization of the audio rendering with a non-metronomic beat.

of the dynamic score and the phase vocoder that enables time stretching with preser-
vation of the transient signal components [Röbel 2003].

The Antescofo language includes specific variables whose updates are listened to like
the musical events coming from a musician in a performance of mixed music using score
following. This way, the system can synchronize with the updates of these variables the
same way it follows the tempo of a performer. When such a variable is declared with a
prior knowledge on the periodicity of its updates, a new tempo estimation is performed
every time it is modified using the algorithms introduced in Large [2001] and Large
and Jones [1999]. The dynamic adaptation of the speed for reading in the buffer to the
real time of the performance is thus done by binding a synchronization variable to the
external non-metronomic beat (Figure 13).

Video 4 illustrates the processes managing synchronized live audio re-injections
with examples of scat co-improvisations between a musician and the system.12 For all
of these improvisation sessions, the software starts with an empty musical memory and
improvises by re-injecting the live audio material, which is processed and transformed
online to match the scenario while being reactive to external controls.

6. SCENARII, SCENARIOS, AND “META-COMPOSITION”

In the video examples of the previous sections, the musical purpose of the scenario
was to ensure the conformity to the idiom it carried and to introduce anticipation in
the generation process. Other musical directions than improvisation in an idiomatic
context can be explored using the formal genericity of the couple scenario/memory and
the possibility to define dynamic scenarios. Defining scenarios described with other
idiomatic vocabularies, audio-musical descriptors, or any user-defined alphabet can
lead to approach new dimensions of guided interactive improvisation.

Rowe [1999] outlines that the delegation of some of the creative responsibility to a
computer and a performer when designing interactive musical systems pushes up mu-
sical composition “to a meta-level captured in the processes executed by the computer”

12Video 4: www.youtube.com/watch?v=MsCFoqnvAew. See the description of the associated artistic collab-
oration in the online appendix section at the end of the journal.

https://www.youtube.com/watch?v=MsCFoqnvAew

22 J. Nika et al.

and that “an interesting effect of this delegation is that it requires a very detailed spec-
ification of the musical decisions needed to produce a computer program at the same
time that the composer cedes a large measure of control over musical decision-making to
the human improviser.” This section underlines the genericity of the scenario/memory
approach and how it can be used to add a meta-level of authoring/composition in ad-
dition to that constituted by the design of the scenario itself. Section 6.1 sketches a
protocol to compose improvisation sessions. In this framework, musicians for whom
the definition of a musical alphabet and the design of scenarios for improvisation is
part of the creative process can be involved in this “meta-level” of composition, that is,
involved upstream to design a part of this “delegation.”

6.1. Typology of Alphabets: Idiomatic, Content-Based, User-Defined Arbitrary Alphabets

The generation module used in the system is implemented as a modular library extend-
ing this formal genericity in its implementation. It is designed to provide a protocol to
compose improvised performances so one can

(1) Define a segmentation unit and a musical alphabet for the labels.
(2) Define the properties of this alphabet, that is, equivalences between the labels.

These equivalences can be different for the comparisons memory/memory (involved
in learning) and the comparisons scenario/memory (involved in generation).

(3) Define transformation rules between the musical contents belonging to the different
equivalence classes.

(4) Compose at the structure level (that is, define a fixed or dynamic scenario).

Figure 14 gives two applications of this protocol with an idiomatic alphabet and a
content-based alphabet. The content-based alphabet is illustrated with the example of
a vector of chosen audio descriptors. Video 5 shows an example of improvisation using
a composed scenario (without pulse) using such a content-based alphabet.13 Video 6
shows an example of offline generation using the analysis of a target audio file as a
scenario.14

The idiomatic case is illustrated with a harmonic alphabet as in the example given in
Figure 3. It should be noted that this category can also cover specific metric structures,
clave patterns, musical accents, or any underlying structure materialized or not in the
music itself. It generalizes to purely arbitrary user-defined alphabets so a musician can
define her/his own grammar associated to specific online or offline musical material.
Video 7 illustrates this point with an extract of improvisation session based on a
scenario composed using an abstract alphabet.15

Transposition of the musical content or applying gain to the signal as in the examples
in Figure 14 are intuitive transformations when the chosen alphabet is respectively
harmonic or including a loudness descriptor. In the case of an arbitrary alphabet, this
mechanism can be used in a creative way to define equivalences modulo user-defined
transformations.

Drawing a distinction between these different alphabets is not only a technical ques-
tion: Running a generation model using regularities and common patterns in temporal
structures leads to different musical results depending on whether these temporal
structures describe an underlying formal evolution or the evolution of low-level signal

13Video 5: www.youtube.com/watch?v=mQeG2e7hPVQ. See the descriptions in the online appendix section
at the end of the journal.
14Video 6: www.youtube.com/watch?v=am_YDsu4Ko8. See the descriptions in the online appendix section
at the end of the journal.
15Video 7: www.youtube.com/watch?v=yW8PkIl4tDE. See the description of the associated artistic collabo-
ration in the online appendix section at the end of the journal.

https://www.youtube.com/watch?v=mQeG2e7hPVQ
https://www.youtube.com/watch?v=am_YDsu4Ko8
https://www.youtube.com/watch?v=yW8PkIl4tDE

ImproteK: Introducing Scenarios into Human-Computer Music Improvisation 23

Fig. 14. Towards a protocol to compose improvised performances.

features. Besides, these cases lead to differentiate the musical roles played by the sce-
nario. When the scenario is defined over an idiomatic or arbitrary alphabet describing
prior knowledge of an underlying structure, it represents a common referent for all
the musicians and the machine. Therefore no analysis mechanisms are needed to label
the live musical inputs since the machine shares a common plan with the musicians.
On the contrary, in the case of a content-based alphabet, an online or offline analysis
is required for learning the memory. The scenario may only describe the part of the
machine which improvises without prior knowledge of its musical inputs (video 5).
The typology of alphabets is thus strongly linked to the typology of scenarios that is
completed in the following paragraph.

6.2. Typology of Scenarios: Fixed or Dynamic Scenarios

The articulation between the formal abstraction of scenario and reactivity enables to
explore different musical directions with the same objects and mechanisms, providing
dynamic musical control over the improvisation being generated. In first approach,
we differentiate two playing modes depending on the hierarchy between the musical
dimension of the scenario and that of control. When scenario and control are performed
on different features of the musical contents, the model combines long-term structure

24 J. Nika et al.

with local expressivity (Section 6.2.1). When scenario and dynamic control act on the
same musical feature, it deals with dynamic guidance and intentionality (Section 6.2.2).

6.2.1. Long-Term Structure and Local Expressivity. We first consider the case where the
specification of a scenario and the reaction concern different features, conferring them
different musical roles (for example, defining the scenario as a harmonic progression
and giving real-time controls on density, designing the scenario as an evolution in
register and giving real-time controls on energy). In this case, a fixed scenario provides
a global temporal structure on a given conduct dimension, and the reactive dimension
enables us to be sensitive to another musical parameter. The controlled dimension has
a local impact and deals with expressivity by acting at a secondary hierarchical level
to filter dynamically the outputs resulting from the research on the fixed dimension
(for example, with instant constraints on timbre, density, register, syncopation, etc.).
This playing mode may be more relevant for idiomatic or composed improvisation with
any arbitrary vocabulary in the sense that a predefined and fixed scenario carries the
notions of high-level temporal structure and formal conformity to a given specification
anterior to the performance, as it is the case for example with a symbolic harmonic
progression.

6.2.2. Guidance and Intentionality. When specification and reaction act on the same mu-
sical dimension, the scenario becomes dynamic. A reaction does not consist in dynamic
filtering of a set of solutions as in the previous playing mode but in the modification
of the scenario itself. In this case, the current state of a dynamic scenario at each
time of the performance represents the short-term “intentionality” attributed to the
system, which becomes a reactive tool to guide the machine improvisation by defining
instant queries with varying time windows. The term “scenario” may be inappropriate
in this second approach since it does not represent a fixed general plan for the whole
improvisation session. Yet, whether the sequence guiding the generation is dynamic
or static (that is, whether the reaction impacts the guiding dimension or another one),
both cases are formally managed using the same mechanisms.

7. CONCLUSION

We presented a guided generation model and a reactive architecture introducing au-
thoring and control in an interactive music improvisation process. Both are imple-
mented in the improvisation system ImproteK, whose development process integrates
frequent interactions with numerous expert musicians through concerts, work sessions,
and filmed listening sessions and interviews (see Nika [2016]).

This system is based on a music generation model guided by a formal scenario.
It uses the prior knowledge of this temporal structure to introduce anticipation in
the music generation process. In this framework, improvising means articulating this
scenario with an annotated online or offline memory, both sequences being represented
as words defined on the same alphabet. The generation process follows the scenario
while maintaining coherence with the musical logic of the memory by exploiting similar
patterns in the sequences as well as their regularities to create new contents beyond
simple copy. At the algorithmic level, the current works concern the optimization of
the research and their integration into a unified process to deal with the general issue
raised by the musical application: Find optimal/creative paths in a text (memory)
being guided by a word-constraint (the scenario) and take advantage of regularities
to go beyond the concatenations of independent similar patterns. For example, some
regularities in the memory provided by its automaton structure are not used in the
prefix indexing step of the generation algorithm. Both pattern indexing and research for
regularities will therefore be refined to benefit from each other (respectively exploring

ImproteK: Introducing Scenarios into Human-Computer Music Improvisation 25

heuristics based on Crochemore et al. [2013a] and Alstrup et al. [2004]; Crochemore
et al. [2013b]).

We presented the embedding of this offline generation module in a reactive frame-
work steered/controlled by external events. This architecture combines dynamic con-
trols and anticipations relative to a predefined or dynamic plan. Concurrent queries
launched to the generation module produce short-term anticipations matching the sce-
nario that are refined as the performance goes. The reactive architecture described
in this article proposes a model to answer the question “how to react?” but does not
address the question “when to react and with what musical response?” Indeed, the
model defines the different types of reactions that have to be handled and how it can
be achieved. It chooses to offer genericity so reactions can be launched by an operator
using customized parameters or by a composed reactivity defining hard-coded ruled
specific to a particular musical project. Yet integrating approaches such as reactive
listening could enable the system to have reactions launched from the analysis of live
musical inputs. As a first step, an architecture was sketched to address the playing
mode introduced in Section 6.2.1 [Chemla-Romeu-Santos 2015]: guiding the machine
improvisation along two dimensions by associating an anticipation module based on
the work presented in this article and a reactive listening module [Bonnasse-Gahot
2014].

Finally, based on the genericity of both the formal model and the implementation, we
sketched a protocol to compose improvisation sessions or offline pieces at the scenario
level. Thanks to this genericity, future works will include chaining agents working on
different musical features. Other perspectives suggest to make use of such procedural
and reactive music generation to produce evolving and adaptive soundscapes, embed-
ding it in any environment generating changing parameters while including a notion
of plot (for example, in interactive installations or video games, defining a composed
dimension using the scenario of the generation model, and an interactive dimension
plugged to the reactive inputs of the architecture). As regards musical perspectives,
new collaborations will be initiated to experiment with the system in various musical
contexts, from improvisation on jazz standards to composed or controlled improvisation
situations where defining an alphabet and a grammar is part of the creative process.

ACKNOWLEDGMENTS

We thank Jean Bresson, José Echeveste, Dimitri Bouche, Jean-Louis Giavitto, and Arshia Cont for fruitful
discussions and all the musicians who contributed to this project. We also thank the anonymous reviewers
for their comments that greatly contributed to improving the quality of this article.

REFERENCES

Andrea Agostini and Daniele Ghisi. 2013. Real-time computer-aided composition with bach. Contemp. Music
Rev. 32, 1 (2013), 41–48.

Cyril Allauzen, Maxime Crochemore, and Mathieu Raffinot. 1999. Factor oracle: A new structure for pattern
matching. In SOFSEM 99: Theory and Practice of Informatics. Springer, 758–758.

Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. 2004. Nearest common ancestors: A survey
and a new algorithm for a distributed environment. Theory Comput. Syst. 37, 3 (2004), 441–456.

Gérard Assayag. 1998. Computer assisted composition today. In Proceedings of the1st Symposium on Music
and Computers. Corfu.

Gérard Assayag and Georges Bloch. 2007. Navigating the oracle: A heuristic approach. In International
Computer Music Conference. Copenhagen, 405–412.

Gérard Assayag, Georges Bloch, and Marc Chemillier. 2006a. Omax-ofon. In Proceedings of the Sound and
Music Computing Conference (SMC’06).

Gérard Assayag, Georges Bloch, Marc Chemillier, Arshia Cont, and Shlomo Dubnov. 2006b. Omax brothers:
A dynamic topology of agents for improvization learning. In Proceedings of the 1st ACM Workshop on
Audio and Music Computing Multimedia. ACM, 125–132.

26 J. Nika et al.

Gérard Assayag and Shlomo Dubnov. 2004. Using factor oracles for machine improvisation. Soft Comput. 8,
9 (2004), 604–610.

Gérard Assayag, Shlomo Dubnov, and Olivier Delerue. 1999. Guessing the composer’s mind: Applying univer-
sal prediction to musical style. In Proceedings of the International Computer Music Conference. 496–499.

Derek Bailey. 1993. Improvisation: Its Nature and Practice in Music. Da Capo Press.
Laurent Bonnasse-Gahot. 2010. Donner à omax le sens du rythme: Vers une improvisation plus riche avec

la machine. Ecole des Hautes Etudes en Sciences Sociales, Technical Report.
Laurent Bonnasse-Gahot. 2014. An update on the somax project. Ircam-STMS, Internal Report ANR Project

Sample Orchestrator 2, ANR-10-CORD-0018 (2014).
Dimitri Bouche and Jean Bresson. 2015. Planning and scheduling actions in a computer-aided music com-

position system. In Proceedings of the Scheduling and Planning Applications Workshop (SPARK’15).
Robert S. Boyer and J. Strother Moore. 1977. A fast string searching algorithm. Commun. ACM 20, 10 (1977),

762–772.
Jean Bresson, Carlos Agon, and Gérard Assayag. 2011. Openmusic. Visual programming environment for

music composition, analysis and research. In Proceedings of the ACM MultiMedia 2011 (Opensource
Software Competition).

Jean Bresson and Jean-Louis Giavitto. 2014. A reactive extension of the openmusic visual programming
language. J. Vis. Lang. Comput. 4, 25 (2014), 363–375.

Marc Chemillier. 2001. Improviser des séquences d’accords de jazz avec des grammaires formelles. In Proc.
of Journées D’informatique Musicale. Bourges, 121–126. (English summary).

Marc Chemillier. 2004. Toward a formal study of jazz chord sequences generated by steedman’s grammar.
Soft Comput. 8, 9 (2004), 617–622.

Marc Chemillier. 2009. L’improvisation musicale et l’ordinateur. Terrain 53, “Voir la musique” (2009), 67–83.
Axel Chemla-Romeu-Santos. 2015. Guidages De L’improvisation. Master’s thesis. Master ATIAM–Ircam,

UPMC.
Arshia Cont. 2008. Antescofo: Anticipatory synchronization and control of interactive parameters in com-

puter music. In Proceedings of the International Computer Music Conference.
Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. 2007. Algorithms on Strings. Cambridge

University Press.
Maxime Crochemore, Lucian Ilie, Costas S. Iliopoulos, Marcin Kubica, Wojciech Rytter, and Tomasz Waleń.

2013a. Computing the longest previous factor. Eur. J. Combin. 34, 1 (2013), 15–26.
Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Marcin Kubica, Alessio Langiu, Solon P.

Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. 2013b. Order-preserving suffix trees
and their algorithmic applications. Arxiv:1303.6872 (2013).

Roger Dannenberg. 1989. Real-time scheduling and computer accompaniment. In Current Directions in
Computer Music Research. Vol. 225–261. MIT Press.

Philippe Depalle and Gilles Poirot. 1991. A modular system for analysis, processing and synthesis of sound
signals. In Proceedings of the International Computer Music Conference. International Computer Music
Association, 161–164.

Alexandre Donzé, Rafael Valle, Ilge Akkaya, Sophie Libkind, Sanjit A. Seshia, and David Wessel. 2014.
Machine improvisation with formal specifications. In Proceedings of the 40th International Computer
Music Conference (ICMC’14).

Shlomo Dubnov, Gérard Assayag, and Ran El-Yaniv. 1998. Universal classification applied to musical se-
quences. In Proceedings of the International Computer Music Conference. 332–340.

José Echeveste, Arshia Cont, Jean-Louis Giavitto, and Florent Jacquemard. 2013a. Operational semantics
of a domain specific language for real time musician–computer interaction. Discr. Event Dynam. Syst.
(2013), 1–41.

José Echeveste, Jean-Louis Giavitto, and Arshia Cont. 2013b. A Dynamic Timed-Language for Computer-
Human Musical Interaction. Research report RR-8422. INRIA. Retrieved from http://hal.inria.
fr/hal-00917469.

Alexandre R. J. François, Isaac Schankler, and Elaine Chew. 2013. Mimi4x: An interactive audio–visual
installation for high–level structural improvisation. Int. J. Arts Technol. 6, 2 (2013), 138–151.

Daniel J. Fremont, Alexandre Donzé, Sanjit A. Seshia, and David Wessel. 2014. Control improvisation.
Arxiv:1411.0698 (2014).

Fiammetta Ghedini, François Pachet, and Pierre Roy. 2016. Creating music and texts with flow machines.
In Multidisciplinary Contributions to the Science of Creative Thinking. Springer, 325–343.

http://hal.inria.fr/hal-00917469
http://hal.inria.fr/hal-00917469

ImproteK: Introducing Scenarios into Human-Computer Music Improvisation 27

D. E. Knuth, J. H. Morris, and V. R. Pratt. 1977. Fast pattern matching in strings. SIAM J. Comput. 6, 2
(1977), 323–350.

Edward W. Large. 2001. Periodicity, pattern formation, and metric structure. J. New Music Res. 30, 2 (2001),
173–185.

Edward W. Large and Mari Riess Jones. 1999. The dynamics of attending: How people track time-varying
events. Psychol. Rev. 106, 1 (1999), 119.

Arnaud Lefebvre and Thierry Lecroq. 2000. Computing repeated factors with a factor oracle. In Proceedings
of the 11th Australasian Workshop On Combinatorial Algorithms. 145–158.

A. Lefebvre, T. Lecroq, and J. Alexandre. 2002. Drastic improvements over repeats found with a factor
oracle. In Proceedings of the 13th Australasian Workshop on Combinatorial Algorithms, E. Billington,
D. Donovan, and A. Khodkar (Eds.). 253–265.

Benjamin Lévy, Georges Bloch, and Gérard Assayag. 2012. Omaxist dialectics. In Proceedings of the Inter-
national Conference on New Interfaces for Musical Expression. 137–140.

Julian Moreira, Pierre Roy, and François Pachet. 2013. Virtualband: Interacting with stylistically consis-
tent agents. In Proceedings of the of International Society for Music Information Retrieval Conference.
Curitiba.

J. H. Morris and V. R. Pratt. 1970. A Linear Pattern-matching Algorithm. Report 40, Computing Center,
University of California, Berkeley, 1970.

Jérôme Nika. 2016. Guiding Human-computer Music Improvisation: Introducing Authoring and Control with
Temporal Scenarios. PhD Thesis. Université Paris 6 Pierre et Marie Curie. Retrieved from https://hal.
inria.fr/tel-01361835.

Jérôme Nika, Dimitri Bouche, Jean Bresson, Marc Chemillier, and Gérard Assayag. 2015. Guided improvisa-
tion as dynamic calls to an offline model. In Proceedings of the Sound and Music Computing Conference
(SMC’15).

Jérôme Nika and Marc Chemillier. 2012. Improtek: Integrating harmonic controls into improvisation in the
filiation of omax. In Proceedings of the International Computer Music Conference (ICMC’12). 180–187.

Jérôme Nika and Marc Chemillier. 2014. Improvisation musicale homme-machine guidée par un scénario
temporel. Techn. Sci. Inf. 33, 7–8 (2014), 627–650.

Jérôme Nika, José Echeveste, Marc Chemillier, and Jean-Louis Giavitto. 2014. Planning human-computer
improvisation. In Proceedings of the International Computer Music Conference. 1290–1297.

François Pachet and Pierre Roy. 2011. Markov constraints: Steerable generation of Markov sequences.
Constraints 16, 2 (2011), 148–172.

François Pachet, Pierre Roy, Julian Moreira, and Mark d’Inverno. 2013. Reflexive loopers for solo musical
improvisation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM.

Jeff Pressing. 1984. Cognitive processes in improvisation. Adv. Psychol. 19 (1984), 345–363.
Miller Puckette. 1991. Combining event and signal processing in the MAX graphical programming environ-

ment. Comput. Music J. 15 (1991), 68–77.
Mathieu Ramona, Giordano Cabral, and François Pachet. 2015. Capturing a musicians groove: Genera-

tion of realistic accompaniments from single song recordings. In Proceedings of the 24th International
Conference on Artificial Intelligence. AAAI Press, 4140–4141.

Axel Röbel. 2003. A new approach to transient processing in the phase vocoder. In Proceedings of the 6th
International Conference on Digital Audio Effects (DAFx’03). 344–349.

Robert Rowe. 1999. The aesthetics of interactive music systems. Contemp. Music Rev. 18, 3 (1999), 83–87.
L. Henry Shaffer. 1980. 26 analysing piano performance: A study of concert pianists. Adv. Psychol. 1 (1980),

443–455.
George Sioros and Carlos Guedes. 2011a. Complexity driven recombination of MIDI loops. In Proceedings of

the International Society for Music Information Retrieval (ISMIR’11). 381–386.
George Sioros and Carlos Guedes. 2011b. A formal approach for high-level automatic rhythm generation.

Proceedings of the Bridges Conference 2011. University of Coimbra, Coimbra, Portugal.
John A. Sloboda. 1982. Music performance. The Psychology of Music (1982), 479–496.
Greg Surges and Shlomo Dubnov. 2013. Feature selection and composition using pyoracle. In Proceedings of

the 9th Artificial Intelligence and Interactive Digital Entertainment Conference.
Cheng-i Wang and Shlomo Dubnov. 2014. Guided music synthesis with variable markov oracle. In Proceedings

of the 10th Artificial Intelligence and Interactive Digital Entertainment Conference (2014).

https://hal.inria.fr/tel-01361835
https://hal.inria.fr/tel-01361835

Online Appendix to:
ImproteK: Introducing Scenarios into Human-Computer
Music Improvisation

JÉRÔME NIKA, IRCAM STMS Lab (CNRS, UPMC, Sorbonne Universités)
MARC CHEMILLIER, Cams, Ecole des Hautes Etudes en Sciences Sociales
GÉRARD ASSAYAG, IRCAM STMS Lab (CNRS, UPMC, Sorbonne Universités)

The videos cited in this article can be found in a dedicated channel15 or at vimeo.com/
jeromenika. Brief descriptions of the videos are as follows:

Video 0: Compilation of Different Interaction Situations

Video 0, cited in Section 1: www.youtube.com/watch?v=OhXf-1QpqEI (or vimeo.com/
jeromenika/improtek-compilation).

Short excerpts of the music improvisation sessions cited in the article.

Video 1: Conformity to an Idiomatic Structure, Improvisation on a Simple Chord Progression

Video 1, cited in Section 3.2: www.youtube.com/watch?v=w17pFvrI06A (or vimeo.
com/jeromenika/improtek-fox-rentparty).

Sax improvisations on a simple chord progression using the music improvisation
software ImproteK. Work session with Rémi Fox rehearsal for a performance at Mon-
treux jazz festival. The software starts with an empty musical memory and improvises
by reinjecting the live audio material that is processed and transformed online to
match the scenario while being reactive to external controls. The scenario is the chord
progression of “Rent Party” (Booker T. Jones) segmented by beat:

|| : Cm7 Bb7 | AbMaj7 Bb7 : ||16.

Video 2a: Example of “Hybridization” with an Early MIDI Version of the System

Video 2, cited in Section 3.3: www.youtube.com/watch?v=yY3B5qfFri8 (or vimeo.com/
jeromenika/improtek-lubat-early).

Excerpt of a concert with Bernard Lubat. Co-improvisation using an early MIDI
version of the system playing theme / variations and a chorus. The musical memory
used by the system is constituted by the captured live MIDI material and a very
heterogeneous offline corpus (recordings of more than 10 jazz standards or ballads by
different interprets). The scenario is the chord progression of “D’ici d’en bas” (Bernard
Lubat) segmented by beat:

||: (Fm7 | G7 | Cm7 | Cm7 | F7 | G7 | Cm7 | Cm7)*2
| Fm7 | Bb7 | EbMaj7 | AbMaj7 | D7 | G7 | Cm7 | C7 |

| Fm7 | Bb7 | EbMaj7 | AbMaj7 | D7 | G7 | Cm7 | C m7 :||

15Youtube channel “Jérôme Nika”: www.youtube.com/channel/UCAKZIW0mMWCrX80yS96ZxAw.
16In this chord progression and in the following: |...| = a bar = 4 beats.

http://vimeo.com/jeromenika
http://vimeo.com/jeromenika
https://www.youtube.com/watch?v=OhXf-1QpqEI
http://vimeo.com/jeromenika/improtek-compilation
http://vimeo.com/jeromenika/improtek-compilation
https://www.youtube.com/watch?v=w17pFvrI06A
http://vimeo.com/jeromenika/improtek-fox-rentparty
http://vimeo.com/jeromenika/improtek-fox-rentparty
https://www.youtube.com/watch?v=yY3B5qfFri8
http://vimeo.com/jeromenika/improtek-lubat-early
http://vimeo.com/jeromenika/improtek-lubat-early
https://www.youtube.com/channel/UCAKZIW0mMWCrX80yS96ZxAw
http://dx.doi.org/10.1145/3022635

App–2 J. Nika et al.

Video 2b: Example of Audio “Hybridization”: Trio Holiday, Schwarzkopf, Piaf

Video 2, cited in Section 3.3: www.youtube.com/watch?v=reJ-SiblCcs (or vimeo.com/
jeromenika/improtek-sellin-themanilove1-finale).

“The Man I Love #1” improvisation by Hervé Sellin (piano) and Georges Bloch (using
ImproteK). The scenario provided to the system is the chord progression of the song,
and its musical memory is

—Hervé Sellin playing “The Man I Love,”
—Billie Holiday singing “The Man I Love,”
—Edith Piaf singing “Mon dieu” and “Milord,”
—Elisabeth Schwarzkopf singing “Mi trad quell’alma ingrata” (Mozart, Don Giovanni)

and “Tu che del gel sei cinta” (Puccini, Turandot).

Video 3: In-Time Reaction as Rewriting the Anticipations

Video 3, cited in Section 5.2.1: www.youtube.com/watch?v=w8EWxFijB4Y (or vimeo.
com/jeromenika/improteksmc15).

Simulations “behind the interface”: focus on the improvisation handler agent em-
bedding the offline scenario/memory generation model in a reactive framework. This
video shows the anticipations being rewritten when the chosen reactive inputs (see
Section 5.1) are modified.

Example 1: scenario: harmonic progression (“Autumn Leaves”), memory: heteroge-
neous MIDI corpus (captured solos on various blues or jazz standards), chosen reactive
dimensions: register and density. Example 2: scenario: spectral centroid profile, mem-
ory: audio file, chosen reactive dimensions: scenario itself and memory region.

Video 4: “Scat” Co-improvisations, Synchronized Audio Rendering

Video 4, cited in Section 5.3.2: www.youtube.com/watch?v=MsCFoqnvAew (or vimeo.
com/jeromenika/improtek-lubat-scat).

Compilation of “scat” co-improvisations with Bernard Lubat and Louis Lubat. For all
of these improvisation sessions, the system starts with an empty musical memory and
improvises by re-injecting the live audio material that is processed and transformed
online to match different idiomatic scenarios while being reactive to external controls
and synchronized with a non-metronomic beat. The scenarios used in the different ex-
amples are metric structures and/or harmonic progressions. In particular, the scenario
of the last session presented in the video (1′36) is the chord progression of “J’aime pour
la vie” (Bernard Lubat) segmented by beat:

||: (D7 | D7 | D7 | D7)*4 | (G7 Ab7 | G7 F7 | G7 Ab7 | G7 F7)*2 :||

Video 5: Interactive Improvisation with a Composed Scenario—Content-Based Alphabet

Video 5, cited in 6.1: www.youtube.com/watch?v=mQeG2e7hPVQ (or vimeo.com/
jeromenika/improtek-agnes-composed).

First technical experiments with the composer-improviser Michelle Agnes
Magalhaes, who works on structured improvisation. The chosen content-based alpha-
bet is a 3-uple: loudness, brightness, playing mode. This example illustrates the case
where the scenario only describes the part of the machine improvisation (see Sec-
tion 6.1). The system re-injects the live audio material matching the descriptor profiles
imposed by the scenario that is composed in such a way that the machine improvisation
alternates between counterpoint and extension of the musical gesture.

https://www.youtube.com/watch?v=reJ-SiblCcs
http://vimeo.com/jeromenika/improtek-sellin-themanilove1-finale
http://vimeo.com/jeromenika/improtek-sellin-themanilove1-finale
https://www.youtube.com/watch?v=w8EWxFijB4Y
http://vimeo.com/jeromenika/improteksmc15
http://vimeo.com/jeromenika/improteksmc15
https://www.youtube.com/watch?v=MsCFoqnvAew
http://vimeo.com/jeromenika/improtek-lubat-scat
http://vimeo.com/jeromenika/improtek-lubat-scat
https://www.youtube.com/watch?v=mQeG2e7hPVQ
http://vimeo.com/jeromenika/improtek-agnes-composed
http://vimeo.com/jeromenika/improtek-agnes-composed

ImproteK: Introducing Scenarios into Human-Computer Music Improvisation App–3

Video 6: Using the Analysis of a Target Audio File as Scenario

Video 6, cited in Section 6.1: www.youtube.com/watch?v=am_YDsu4Ko8 (or vimeo.
com/jeromenika/improtek-starwospheres).

A short offline example. The content-based scenario is the profile of spectral centroid
and roughness extracted from the soundtrack of a musicless movie scene segmented by
audio event. It is applied to a memory constituted by the piece “Atmospheres” (Ligeti)
analyzed with the same couple of audio descriptors. The generated sequence replaces
the original soundtrack.

Video 7: Generative Improvisation with a Composed Scenario—Abstract Alphabet

Video 7, cited in 6.1: www.youtube.com/watch?v=yW8PkIl4tDE (or vimeo.com/
jeromenika/improtek-fox-generative1).

Structured improvisation, work session with Rémi Fox, rehearsal for a performance
at Montreux jazz festival. The software starts with an empty musical memory and
improvises several voices by reinjecting the live audio material that is processed and
transformed online to match the composed scenario while being reactive to external
controls. The scenario defines two voices (“accompaniment” or “solo”) and an abstract
structure segmented by beat:

||: A1 B1 B2 A1 B2 :||
with

A1 = || X | X+5 | X−2 | X+3 ||
A2 = || X | X | X+5 | X+5 | X−2 | X−2 | X+3 | X+3 ||
B1 = || Y Z | Z+5 X+3 | Y X+5 | Z+5 X+3 | Y X−4 | Y+3 | Z−5 Z | Z+5 X+3 ||
B2 = || Y Z | Z+5 X+3 | Y X+5 | Z+5 X+3 | Y X−4 | Y+3 | Z−5 Z | Z+5/X+3 Y ||,
where X, Y , and Z are abstract equivalence classes and the exponents represents
transposition in semitones. A constraint is added to the “accompaniment” voice to get
a repetitive structure: Its memory is restricted to A1 and the first measures of B1.

https://www.youtube.com/watch?v=am_YDsu4Ko8
http://vimeo.com/jeromenika/improtek-starwospheres
http://vimeo.com/jeromenika/improtek-starwospheres
https://www.youtube.com/watch?v=yW8PkIl4tDE
http://vimeo.com/jeromenika/improtek-fox-generative1
http://vimeo.com/jeromenika/improtek-fox-generative1

