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Abstract—Cloud computing offers the opportunity of data
outsourcing as well as data management. However, because
of various privacy issues, confidential data must be encrypted
before being outsourced to the cloud. But query processing
over encrypted data without decrypting data is a very chal-
lenging task. Property-preserving encryption schemes allow
encrypting data while still enabling efficient querying over
encrypted data. The inherent merits of property-preserving
encryption schemes make them very suitable and efficient
for cloud data outsourcing. However, the security of such
schemes is still a challenge because they are vulnerable to
statistical attacks. We present a new order-preserving scheme
for indexing encrypted data, as an alternative to property-
preserving schemes, which hides data frequency to achieve
a strictly stronger notion of security. The proposed indexing
method is secure against statistical attacks. Hence, data
cannot be recovered from indexes. Moreover, our scheme
is still efficient for query processing.

Keywords-Cloud computing, Data privacy, Order-
preserving indexing scheme.

I. INTRODUCTION

Nowadays, data outsourcing become casual with the
advent of cloud computing. Cloud computing appeals to
many organizations because of a wide variety of benefits
such as cost savings, higher availability, scalability and
effective disaster recovery rather than in-house operations
[1]. One of the most notable cloud outsourcing services
is database outsourcing (Database-as-a-Service or DBaaS),
where individuals and organizations outsource data storage
and management to a Cloud Service Provider (CSP) [2].
Such services allow storing data on a remote CSP and
querying data on demand [3].

Although cloud data outsourcing induces many benefits,
it also brings out security and privacy concerns. Privacy
issues arise when sensitive data are stored, maintained and
processed by an external third party (honest but curious
CSP).

A straightforward solution to preserve privacy is en-
crypting data before outsourcing to the cloud. Encryption
protects the exposure of sensitive data even if the server is
compromised and ensures that an adversary will be unable
to interpret data.

However, when data are encrypted, query processing is
not trivial. To overcome this problem, several solutions
have been proposed [4], [5], [6]. These approaches im-
plement cryptographic techniques, e.g., order-preserving

encryption or homomorphic encryption, which allow com-
putations to be carried out on encrypted data. In the
context of relational databases, state-of-the-art solutions
use property-preserving encryption (PPE) schemes. PPE
schemes enable processing query over encrypted data
without decryption. For instance, order-preserving encryp-
tion (OPE) preserves the order of plaintext in ciphertexts.
Deterministic (DET) schemes encrypt the same plaintext
into identical ciphertexts, thus the equality property is
preserved [4]. PPE schemes are undoubtedly efficient,
enabling queries to be directly processed over encrypted
data [7].

The term efficient means here that all computation
can be processed in time logarithmic in the size of the
database, in contrast to performing linear work on each
query, which is prohibitively slow for large databases [8].
Any practical PPE scheme inherently leaks some informa-
tion about underlying data and are vulnerable to statistical
attacks [9]. In statistical attacks, an adversary possesses
some prior knowledge about the plaintext domain and its
frequency distribution to gain access to encrypted data.
Statistical attacks do not impose any threat when the
underlying data has a uniform distribution [10]. CryptDB
[5] is the first practical system that uses PPE schemes
to support a wide range of queries to be processed over
encrypted data. To the best of our knowledge, other
systems such as BigQuery demo [11], Always Encrypted
[12], CipherBase [13] and Relational Cloud [14] use PPE
schemes, too. As a result, they are vulnerable to statistical
attacks. Naveed et al. demonstrate that a large fraction of
the records from PPE encrypted columns can be decrypted
by statistical attacks [9].

Thus, we aim at proposing a secure and feasible scheme
that is practical on cloud outsourced databases. In this
paper, we focus on the problem of performing range
and exact match queries over encrypted databases. We
propose an Order-Preserving Indexing (OPI) scheme to
address the vulnerability of PPE schemes. Our scheme
bears good performance and leads to minimal change
for existing software. The proposed indexing scheme is
robust against statistical attacks through uniforming the
distribution of underlying data. We extend the proposed
scheme to introduce a new wrap-around OPI scheme.
waOPI provides higher level of security while hiding the
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original order of plaintexts.
In our scheme, the user does not need to model data

distribution. Our scheme can be used along any encryp-
tion scheme to deal with range and exact match queries
over encrypted data. Our scheme prevents the CSP from
performing statistical analysis, even with prior knowledge
about data.

Note that our scheme does not hide information such
as the number of data items. One solution for applications
that demand the privacy of data item numbers is injecting
dummy data items into small data sets to build equally
sized data sets [7].

The remainder of this paper is organized as follows.
Section II gives some preliminaries. The overview of
our system is described in section III. Section IV details
our indexing scheme. We enhance the security of our
scheme in section V, which is followed in section VI by
a discussion. Section VII reviews related works. Finally,
section VIII provides final conclusions and directions for
future work.

II. PRELIMINARIES

A. Property Preserving Encryption

In the context of DBaaS, state-of-the-art solutions rely
on PPE schemes. A PPE scheme leaks certain properties
of plaintexts by default, which enables an untrusted CSP to
compute over encrypted data. Order-preserving encryption
(OPE) and deterministic encryption (DET) are two PPE
schemes that are used to handle range and exact match
queries over encrypted data.

DET allows equality checking by encrypting a plaintext
into the same ciphertexts when using the same key k.
Thus:

∀x, y : x = y ⇔ EncDETk(x) = EncDETk(y).

DET allows performing SELECT with equality predi-
cates, equality JOIN, GROUP BY, COUNT, DISTINCT
queries [15]. Blowfish and AES+ECB are examples of
widely used DET encryption schemes.
DET is secure when there is no data redundancy. In
contrast to random encryption schemes (a random scheme
encrypts the same plaintext into different ciphertexts using
the same key), DET is not robust against statistical attacks.

OPE is a deterministic encryption scheme that preserves
the order of plaintexts in ciphertexts, i.e., for any key k,

if x ≤ y, then EncOPEk(x) ≤ EncOPEk(y).

The CSP can perform range queries when given en-
crypted constants EncOPEk(c1) and EncOPEk(c2) cor-
responding to range [c1, c2]. Aggregation queries MIN,
MAX, ORDER BY and SORT can also be computed directly
over encrypted data.

OPE is a weaker encryption scheme than DET because
it reveals order. This weak form of encryption may
provide sufficient security for some applications, e.g.,
when the adversary does not possess any prior knowledge,
while increasing query processing efficiently [16].

B. Statistical Attacks against PPE Schemes

The most common adversarial model in existing solu-
tions is ciphertext-only. It is assumed that the adversary
has access only to ciphertexts without other background
information. In this context, PPE schemes are vulnerable
to statistical attacks [7]. In a statistical attack, the adver-
sary has prior knowledge, e.g., the adversary possesses
some statistical information about underlying plaintexts.
The adversary can use such knowledge to infer about data
or even launch an attack. For example, the adversary can
map the distribution of ciphertext and plaintext to find all
ciphertexts with high frequency.

The major problem with PPE schemes is that they are
deterministic, i.e., plaintext and ciphertext have the same
distribution. To address this drawback, a one-to-many
mapping can be used to flatten the distribution of plain-
texts. In one-to-many mappings, one plaintext is mapped
into many ciphertexts belonging to a fixed size interval. As
a result, highly frequent plaintexts induce dense intervals
(figure 1). Hence, the distribution of plaintexts can easily
be estimated by differential attacks [17].

C. Secure Indexes over Encrypted Attributes

A common technique to speed up the execution of
queries in databases is to use a pre-computed index. The
purpose of secure indexes is to retrieve requested data
without decryption. An index is built for a specific attribute
that needs to be accessed to evaluate a query. In fact, the
biggest difference between a plain index and a secure
index is that a secure index must not expose anything
about underlying plaintexts.

A secure index for ordered data should support exact
match, range and aggregation queries MAX and MIN. A
secure index is built on plaintexts before encryption. Then,
the index is stored in an auxiliary attribute along encrypted
values at the CSP’s.

III. OVERVIEW OF SYSTEM

In this section, we briefly discuss the system model
where our scheme is applied, our adversary model and
our system goals.

A. Basic Model

In our setting, there are three entities.
• The Data Owner (DO) has a large amount of data

to be outsourced in the cloud to eliminate database
maintenance. The DO accesses its data remotely
without revealing the content of its database. The DO
has limited computation and storage resources.

• The CSP provides data storage services and compu-
tational resources dynamically.

• Data Users (DU) are authorized users. DUs can
retrieve encrypted data and decrypt them.

Our scheme is implemented in two software layers: a
user layer that resides at the DO’s and a server layer that
resides at the CSP’s.
When a query is issued, the user layer translates it into a
query that can be executed directly over the encrypted
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Figure 1. Comparison between plaintext and ciphertext distribution. (a) Plaintext distribution. (b) Ciphertext distribution of deterministic OPE. (c)
Ciphertext distribution of one-to-many OPE [17].

database. When a query is received by the server, it
is executed by the server layer. The computed result is
shipped back to the client layer, which decrypts it (figure
2).
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Figure 2. System model.

The user layer stores some metadata such as keys and
database schemes to translate queries and decrypt query
results.

For ease of presentation, we do not distinguish between
the human user (DO or DU) and the user layer. When we
say ”user”, we mean the human user who has access to the
user layer and similarly, when we say ”CSP”, we mean
the cloud service provider who has access to the server
layer.

B. Security Threats

We assume the following threat model.

• The CSP is honest but curious (semi-honest) and has
full access to encrypted data. We limit the attacks by
the CSP to passive attacks. It is assumed that the CSP
executes submitted queries honestly on encrypted
data and sends complete and correct results. However,
the CSP is curious and may attempt to increase its
knowledge about confidential data.

• The CSP has some prior knowledge about outsourced
data. For example, the CSP might possess some
statistical information about data, such as the domain

of plaintext values, minimum or maximum values, or
some information about the frequency of values.

• We assume the user’s machine is trusted. The com-
munication channel between the user and the CSP
uses a standard secure protocol such as SSL or IPsec.

C. System Goals

In order to preserve the privacy of outsourced data, we
have the following goals:
• Data confidentiality: ensures that unauthorized parties

and the CSP have no access to sensitive data.
• Index privacy: the proposed indexing method leaks

no information about underlying plaintexts.
• Efficiency: the proposed method should be efficient

for query processing.

IV. OPI
In our new order-preserving scheme, called OPI, the or-

der of plaintext values is preserved in their corresponding
ciphertexts, but not the frequency of values.

The intuition of our scheme is simple. First, we split
the original plaintext’s domain into successive intervals of
equal lengths. Secondly, we extend the plaintext domain
into a new domain. Finally, we use a mapping function to
map the original values into the extended domain.

OPI satisfies two properties.
1) Order-preserving: Let D be the domain of plaintext

values. The order of values must be preserved in
their corresponding indexes, i.e.,
∀v, v′ ∈ D : if v < v′ =⇒ OPI(v) <
OPI(v′).

2) Uniform distribution: The distribution of plaintexts
must be flattened in their corresponding indexes,
i.e., two equal values have different indexes with a
high probability.

The second property implies that the scheme is not de-
terministic and improves the robustness against statistical
attacks.

We design our scheme for numerical values. Other data
types should be translated into integers before indexing
[18].



A. Notations

Consider a database consisting of a relation T . Suppose
that T has one attribute, A. T stores N records. We denote
by vi the ith value of attribute A. The goal here is storing
the encryption of T , T ′, at the CSP’s.
• Let D be the domain of plaintext values of A,

consisting of t distinct values {v1, . . . , vt} with corre-
sponding frequencies {f1, . . . , ft} where v1 < v2 <
. . . < vt.

• Let D′=[l′, r′) be an extension of D, the domain of
indexes, where l′, r′ ∈ Z. Without lose of generality,
we consider l′ = 0.

• Let F(i) be a function that outputs a random number
in interval d′i = [l′i, r

′
i).

OPI consists of the following steps.
• Splitting the domain of indexes: The first step is

splitting the domain of indexes D′ into t intervals
d′i (1 ≤ i ≤ t) [19] such that
d′i=[l′i, r

′
i)=[(

∑i−1
k=1 fk). |D

′|
N , (

∑i
k=1 fk). |D

′|
N ).

Such splitting has the following properties [7], [19]:
1) d′i ⊆ D′ (1 ≤ i ≤ t)
2)

⋃t
i=1 d

′
i = D′

3) ∀d′i, d′j i 6= j: d′i ∩ d′j = Ø.

• Mapping: Second, each plaintext value vi (1 ≤ i ≤
t) is mapped to an index Ii, where Ii=F(i). In
other words, each time vi is repeated, F(i) returns a
random number in interval d′i=[l′i, r

′
i) as Ii.

B. Table Structure

To store relation T at the CSP’s, column A is presented
in two columns Enc(A) and SIdx(A) (Secure order-
preserving Index) in encrypted table T ′. The values of
Enc(A) are encrypted values of A with an additive homo-
morphic encryption scheme such as Paillier’s cryptosystem
[20]. Values Ii i = 1, ..., N are stored in column SIdx(A).
When a range or exact match query is issued, it is rewritten
and executed on column SIdx(A). When an aggregation
query is issued, it is directly computed over Enc(A).

C. Query Processing

In this section, we discuss how to process queries.
Each query is transformed into a form that can be

computed by the CSP. We classify queries into two main
classes.

1) Range and Exact Match Queries:
• QUERY-I: ”A = vi”

is an exact match query, e.g., SELECT * FROM T
WHERE A=vi. This query is translated into
SELECT * FROM T ′ WHERE SIdx(A) ≥ l′i AND
SIdx(A) < r′i, where l′i and r′i are the boundaries
of interval d′i.

• QUERY-II: ”A ≤ vi”
is a range query that is translated into
SELECT * FROM T ′ WHERE SIdx(A) < r′i.

• QUERY-III: ”A < v”
is a range query that is translated into
SELECT * FROM T ′ WHERE SIdx(A) < l′i.

• QUERY-IV: ”vi ≤ A ≤ vj”
is translated into
SELECT * FROM T ′ WHERE SIdx(A) ≥ l′i AND
SIdx(A) < r′j . l′i and r′j are the left and the right
boundary of d′i and d′j , respectively.

2) Update Queries: In our scheme, the execution of
update queries is straightforward. A deletion query such
as DELETE FROM T WHERE A = vi, is translated into
DELETE FROM T ′ WHERE SIdx(A) ≥ l′i AND
SIdx(A) < r′i.

To insert a new value vi, the corresponding encryption
and index, Enc(vi) and Ii are computed and inserted into
T ′.

For an update query, tuples satisfying the query pred-
icate are returned. Then, the values in the SET predicate
are substituted with the new ones.

V. ENHANCING SECURITY

In this section, we introduce waOPI, a light modifica-
tion of OPI that improves its security. waOPI reveals less
information about underlying plaintexts without sacrificing
efficiency. OPI Actually reveals the location of plaintext.
waOPI is not order-preserving per se, but still allows range
and exact match queries to be processed. This modification
is simple and generic: we wrap-around the domain of
indexes.

A. waOPI: wrap-around OPI

First, a random value, wa, is chosen randomly from D′

such that l′ < wa < r′. Then, in waOPI the values of
wrap-around index waI , waIi i = 1, ..., N , are defined
based on algorithm1.

Algorithm 1 Calculating waI

Input: wa
Output: waIi, i = 1, ..., N

for i = 1 to N do
if (i > wa) then
waIi−wa ← Ii

else
waIi+N−wa ← Ii

end if
return waIi

end for

B. Query Processing

waOPI processes range and exact match queries in the
same way as OPI. The only difference is that when a query
is issued, it must be transformed into a form that can be
executed over wrap-around indexes.

Considering a query that asks all data in interval [vi, vj).
This interval is transformed into [l′i, l

′
j), as described in



section IV-C1. Then, [l′i, l
′
j) is transformed into [ci, cj)

where:
• if l′i ≤ l′j ≤ wa then

[ci, cj) = [waIl′i+N−wa, waIl′j+N−wa)

• if wa ≤ l′i ≤ l′j then

[ci, cj) = [waIl′i−wa, waIl′j−wa)

• if l′i ≤ wa < l′j then

[ci, cj) = [waIN−wa+l′i
, waIN ] ∪ (0, waIl′j−wa).

VI. SECURITY DISCUSSION

In OPI, we uniformly distribute original values across
a domain into another broader domain. Having a uniform
distribution of values minimizes information leakage to
an adversary who would observe the outsourced data.
Overhead comes from the new domain size, which is
bigger than the original domain’s. Theoretically, we need
domain D′ to be of size |D′| � |D| to uniformly distribute
all original values across D′. Choosing an appropriate
domain size for D′ is a trade-off between security and
storage cost [7], [19].

waOPI provides a substantial improvement in security.
Given the wrap-around indexes, the adversary cannot de-
duce any information about the real location of underlying
plaintexts.

However, our schemes are possibly vulnerable when
executing queries. The adversary or the CSP is able to infer
the frequency of attribute values by observing frequent
intervals accessed at query time. The adversary might also
be able to infer random value wa. Yet, it has been proven
that no scheme is secure against an adversary that has
access to both plaintexts and prior knowledge about query
workloads [21], [22]. To prevent such inference, Obvious
RAM (ORAM) [23], [24], [25], [26] can be used. ORAM
hides access patterns during query processing, but ORAM
techniques are currently computationally prohibitive and
cannot be used in practice. Another solution is sending
fake queries. Fake queries must be frequently submitted.
The goal is misleading the adversary to infer a wrong wa.
Submitting fake queries makes waOPI more robust.

VII. RELATED WORKS

OPE was introduced in the database community by
Agrawal et al. [27] as a tool to support efficient range
queries over encrypted data [22]. This scheme maps each
value of the plaintext domain to one value in the ciphertext
domain, such that the relative ordering of plaintexts is pre-
served after encryption. This scheme bears weak privacy
protection because the CSP can statistically estimate the
original data values [7]. Boldyreva et al. define the first
formal ideal-security definition of OPE, called indistin-
guishability under ordered chosen-plaintext attack (IND-
OCPA) [8]. Informally, an IND-OCPA scheme reveals
no additional information about the underlying plaintexts
beside their order, which is the minimum requirement of

the order-preserving property. IND-OCPA [8] introduces
a random mapping that preserves order, but leaks at least
half of the plaintext bits (i.e., more information than OPE)
and shows poor efficiency [28].

Popa et al. introduce the first practical IND-OCPA
scheme, mutable order-preserving encoding (mOPE) [28].
mOPE requires an interactive protocol for query process-
ing. Additionally, mOPE relies on user defined functions
(UDFs) for query processing, which makes it unsuitable
for cloud outsourcing.

Liu et al. introduce an OPE scheme that randomly splits
the original plaintext domain into successive intervals with
different lengths [7]. Then, an extended ciphertext domain
is selected and split into the same number of intervals.
Finally, nonlinear mapping functions map the original
plaintexts into ciphertexts in the extended domain.

While Liu et al.’s scheme is efficient for query process-
ing, it partially destroys the distribution of original data
because the splitting method is random and does not rely
on data frequency.

Table I shows the comparison between existing OPE
schemes. It highlights that mOPE has the lowest perfor-
mance because it requires the user to interact with the
server to retrieve requested data. Our schemes do not
require such interaction and present the same efficiency
as Liu et al.’s.

In IND-OCPA approach, only the order of data is
revealed, while our scheme reveals nothing about the
original data. Compared with Liu et al.’s scheme, waOPI
can achieve security against statistical attacks, because
we use a density and frequency-aware domain splitting
method.

Table I
COMPARISON OF OPE SCHEMES

Scheme Efficiency level Security level Order comparison
Agrawal Medium Low Direct
Boldyreva Low Medium Direct
mOPE Low High UDFs
Liu High Medium Direct
OPI High Medium Direct
waOPI High High Direct

VIII. CONCLUSION

In this paper, we propose an order-preserving indexing
scheme, OPI, in which the ordering relation between
plaintexts is preserved in their corresponding indexes. In
OPI, the distribution of index values is different from the
plaintext distribution. We extend our scheme in order to
achieve robustness against statistical attacks. In waOPI,
the security of plaintexts is indeed improved by hiding
the rule of data distribution and data frequency, without
sacrificing efficiency.

Nevertheless, we should prove the security of OPI and
waOPI. We also plan to investigate secure indexing mech-
anisms with additive homomorphic property to efficiently
support aggregation queries over encrypted data.
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