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Abstract

Computer simulations brought remarkable novelties
in knowledge construction. In this paper, we first dis-
tinguish between mathematical modeling, computer
implementations of these models and purely com-
putational approaches. In all three cases, different
answers are provided to the questions the observer
may have concerning the processes under investiga-
tion. These differences will be highlighted by looking
at the different theoretical symmetries of each frame.
In the latter case, the peculiarities of Agent Based or
Object Oriented Languages allow to discuss the role
of phase spaces in mathematical analyses of physical
vs. biological dynamics. Symmetry breaking and ran-
domness are finally correlated in the various contexts
where they may be observed.1
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1 Introduction

Mathematical and computational modeling have be-
come crucial in Natural Sciences, as well as in archi-
tecture, economics, humanities, ….

Sometimes the two modeling techniques, typically
over continuous or discrete structures, are conflated
into or, even, identified to natural processes, by con-
sidering nature either intrinsically continuous or dis-
crete, according to the preferences of the modeler.
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We analyze here the major differences that ex-
ist between continuous (mostly equational) compu-
tational (mostly discrete and algorithmic) modeling,
often referred to as computer simulations. We claim
that these different approaches propose different in-
sights into the intended processes: they actually or-
ganize nature (or the object of study) in deeply differ-
ent ways. This may be understood by an analysis of
symmetries and symmetry breakings, which are often
implicit but strongly enforced by the use of mathe-
matical structures.

We organize the World by symmetries. They con-
stitute a fundamental “principle of (conceptual) con-
struction”, in the sense of Bailly and Longo 2011,
from Greek geometry, to XXth century physics and
mathematics. All axioms by Euclid may be under-
stood as “maximizing the symmetries of the con-
struction” (see Longo 2010). Euclid’s definitions and
proofs proceed by rotations and translations, which
are symmetries of space.

Symmetries govern the search for invariants and
their preserving transformations that shaped math-
ematics from Descartes spaces to Grothendieck
toposes and all XXth century Mathematics (see Za-
lamea 2012). Theoretical physics has been con-
structed by sharing with mathematics the same prin-
ciple of (conceptual) construction. Among them,
symmetries, which describe invariance, and order,
which is needed for optimality, play a key role
from Galileo’s inertia to the geodetic principle and
to Noether’s theorems (see Van Fraassen 1989;
Kosmann-Schwarzbach 2004; Longo and Montévil
2014). The fundamental passage from Galileo’s sym-
metry group, which describes the transformation
from an inertial frame to another while preserving
the theoretical invariants, to Lorentz-Poincaré group
characterizes the move from classical to relativistic
physics. The geodetic principle is an extremizing
principle and a consequence of conservation princi-
ples, that is of symmetries in equations (Noether).

Well beyond mathematics and modern physics, the
choice of symmetries as organizing principle is rooted
in our search for invariants of action, in space and
time, as moving and adaptive animals. We adjust to
changing environment by trying to detect stabilities

or by forcing them into the environment. Our bilat-
eral symmetry is an example of this evolutionary ad-
justment between our biological structure and move-
ment: its symmetry plane is given by the vertical axis
of gravitation and the horizontal one of movement2.
In this perspective, the role we give to symmetries in
mathematics and physics is grounded on pre-human
relations to the physical world, well before becoming
a fundamental component of our scientific knowl-
edge construction.

By this, we claim that an analysis of the intended
symmetries and their breaking, in theorizing and
modeling, is an essential part of an investigation of
their reasonable effectiveness and at the core of any
comparative analysis.

2 Approximation?

Before getting into our main theme, let’s first clar-
ify an “obvious” issue that is not so obvious to many:
the discrete is not an approximation of the contin-
uum. They simply, or more deeply, provide different
insights. Thus, in no way we will stress the superior-
ity of one technique over the other. We will just try
to understand continuous vs. discrete frames in terms
of different symmetries.

It should be clear that, on one hand, we do not
share the view of many, beautifully expressed by Réné
Thom, on the intrinsically continuous nature of the
World, where the discrete is just given by singular-
ities in continua. On the other hand, many myth-
ical descriptions of a Computational World or just
of the perfection of computational modeling seem to
ignore the limits of discrete approximation as well
as some more basic facts, which are well-known,
since always, in Numerical Analysis (the first teach-
ing job, for a few years, of the first author). There
is no way to approximate long enough a continuous
non-linear dynamics by an algorithm on discrete data
types when the mathematical description yields some
sensitivity to initial/border conditions. Given any

2The Burgess fauna, some 520 millions years ago Gould 1989,
seems to present many cases of “asymmetric” beasts among these
early multicellular organisms, later negatively selected.
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digital approximation, the discrete and the continu-
ous trajectories quickly diverge by the combination of
the round-off and the sensitivity. However, in some
cases (some hyperbolic dynamics), the discrete trajec-
tory may be indefinitely approximated by a continuous
one, but not conversely. The result is proved by diffi-
cult “shadowing theorems”, see Pilyugin 1999. Note
that this is the opposite of the “discrete approximat-
ing the continuum”, which is given for granted by
many.

We are hinting here just to a comparison between
mathematical techniques that provably differ, but
which, a priori, says nothing about the actual phys-
ical processes that are not continuous nor discrete, as
they are what they are. Yet, it is very easy to check an
algorithmic description of a double pendulum against
the actual physical device (on sell for 50 euros on
the web): very soon the computational imitation has
nothing to do with the actual dynamics. The point is
that there is no way to have a physical double pendu-
lum to iterate exactly on the “same” initial conditions
(i.e. when started in the same interval of the best pos-
sible measurement), as this device is sensitive to mi-
nor fluctuations (thermal, for example), well below
the unavoidable interval of measurement. By princi-
ple and in practice, instead, discrete data types allow
exact iteration of the computational dynamics, on ex-
actly the same initial data. Again, this is a difference
in symmetries and their breaking.

In conclusion, on one side, a mathematical analysis
of the equations allows to display sensitivity proper-
ties, from “mixing”, a weak form of chaos, to high de-
pendence on minor variations of the initial conditions
(as well as topological transitivity, a property related
to the density of orbits, etc). These are mathematical
properties of deterministic chaos. We stress by this
that deterministic chaos and its various degrees are a
property of the mathematical model : by a reasonable
abuse one may then say that the modeled physical
process is chaotic, if one believes that the mathemat-
ical model is a good/faithful/correct representation of
the intended process. But this is an abuse: the dice or
a double pendulum know very well where they will
go: along a unique physical geodetics, extremizing a
Lagrangian action, according to Hamilton principle.
If we are not able to predict it, it is our problem due

to the non-linearity of the model, which “amplifies
fluctuations”, and due to our approximated measure-
ments.

As it happens, the interval of measurement, the
unavoidable approximated interface between us and
the World, is better understood by continua than over
discrete data types (we will go back to this) and, thus,
physicists usually deal with equations within contin-
uous frames.

On the other side, the power of discrete computa-
tions allows to …compute, even forever, and, by this,
it gives fantastic images of deterministic chaos. As a
matter of fact, this was mathematically described and
perfectly understood by Poincaré in 1892, yet it came
to the limelight only after Lorentz computational
discovery of “strange attractors” (and Ruelle’s work,
Ruelle and Takens 1971). As deterministic chaos is
an asymptotic notion, there is no frame where one
can better see chaotic dynamics, strange attractor or
alike than on a computer. Yet, just push the restart
button and the most chaotic dynamics will iterate
exactly, as we observed and further argue below, far
away from any actual physical possibility. And this
is not a minor point: it is “correctness of programs”
a major scientific issue in Computer Science. Of
course, one can artificially break the symmetry, by
asking a friend to change the 16th decimal in the ini-
tial conditions. Then, the chaotic dynamics will fol-
low a very different trajectory on the screen, an inter-
esting information, per se. However, our analysis here
is centered on symmetry breaking intrinsic to a the-
ory, that is on changes which have a physical mean-
ing. This control, available in computer simulations,
is thus an artifact from a physical perspective.

3 What do equations and compu-
tations do?

3.1 Equations

In physics, equations follow symmetries, either in
equilibrium systems, where equations are mostly de-
rived from conservation properties (thus from sym-
metries, see below), or in far from equilibrium sys-
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tems, where they describe flows, at least in the sta-
tionary cases — very little is known in non stationary
cases. This is the physical meaning of most equational
descriptions.

Then one “computes” from equations and, in prin-
ciple, derives knowledge on physical processes, pos-
sibly by obtaining and discussing solutions — or the
lack of solutions: a proof of non-analyticity, such as
Poincaré’s Three Body Theorem for example, may be
very informative. But these derivations are not just
formal: they are mostly based on proofs of relevant
theorems. The job of mathematical deductions, in
physics in particular, is to develop the consequences
of “meaningful” writings. Mathematics is not a for-
mal game of signs, but a construction grounded on
meaning and handled both by formal “principles of
proofs” and by semantically rich “principles of con-
structions” Bailly and Longo 2011. Typically, one
reasons by symmetries, uses order, including well-
ordering, the genericity of the intended mathemat-
ical object or generalized forms of induction that lo-
gicians analyze by very large cardinals, an extension of
the order of integer numbers obtained by alternating
limits and successor operations Barwise 1978. Once
more, theoretical symmetries and meaning step in
while proving theorems and solving/discussing equa-
tions; also the passage from Laplace’s predictability
of deterministic process, to Poincaré’s proof of deter-
ministic though unpredictable processes is a breaking
of the observable symmetries (see below for more).

As a matter of fact, in order to solve equations,
or discuss their solvability, we invented very origi-
nal mathematical structures, from Galois’ groups to
differential geometry. The use of enriched construc-
tion principles, often based on or yielding new math-
ematical meaning, has been constantly stimulated by
the analysis of equations. This is part of the common
practice of mathematical reasoning. However, well
beyond the extraordinary diagonal trick by Gödel, it
is very hard to prove that “meaningful” procedures
are unavoidable in actual proofs, that is to show that
meaning is essential to proofs. An analysis of some
recent “concrete” incompleteness result is in Longo
2011: meaning, as well-ordering, a geometric judg-
ment, provably and inevitably steps in proofs even of
combinatorial theorems (of Arithmetic!). Or, very

large, infinite cardinals may be shown to be essential
to proofs Friedman 1998. In this precise sense, for-
mal deductions as computations, with their finitistic
principles of proof, are provably incomplete.

In particular, physico-mathematical deductions,
used to discuss and solve equations, are not just for-
mal computations, i.e. meaningless manipulations
of signs. They transfer symmetries in equations to
further symmetries, or prove symmetry changes or
breaking (non-analyticity, typically). In Category
Theory, equations are analyzed by drawing diagrams
and inspecting their symmetries.

3.2 From Equations to Computations

The mathematical frame of modern computers was
proposed within an analysis of formal deductions.
Actually, Gödel, Kleene, Church, Turing …invented
computable functions, in the 1930’s, in order to dis-
prove the largely believed completeness hypothesis of
formal/axiomatic systems and their formally provable
consistency3. Turing, in particular, imagined the log-
ical Computing Machine, imitating a man in the least
action of sign manipulation according to formal in-
structions (write or erase 0 and 1, move left or right
of one square in a “child’s notebook”), and invented
by this the modern split between software and hard-
ware. He then wrote an equation that easily defines
an incomputable arithmetic function. Turing’s re-
markable work for this negative result produced the
modern notion of program and digital computer, a
discrete state machine working on discrete data types.
As we said, computing machinery, invented as an im-
plementation of formal proofs, are provably incom-
plete even in arithmetic, let alone in proper extension
of it, based on principles richer that arithmetic in-
duction (well-ordering, symmetries, infinite ordinals
…).

Thus, beyond the limits set by the impossibility
of approximation mentioned above, there is also a

3It is not by chance that an immense mathematical physicist,
H. Weyl, was one of the few who claimed that the formalist /com-
putational project was trivializing mathematics and conjectured
incompleteness, already in 1918, Weyl 1918, see also Bailly and
Longo 2011
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conceptual gap between proving over equations and
computing solutions by algorithms on discrete data.
The first deals with the physical meaning of equa-
tions, their symmetries and their breaking, transfers
this meaning to consequences, by human reasoning,
grounded on “gestures” (such as drawing a diagram)
and common understanding. It is based on the inven-
tion, if needed, of new mathematical structures, pos-
sibly infinitary ones, from Galois’ groups to Hilbert
Spaces to the modern fine analysis of infinitary proofs
Rathjen 2006. These, in some cases such as for well-
ordering or the large infinite cardinals mentioned
above, may even be proved to be unavoidable, well be-
yond computations and formalisms (see the reference
above). Do algorithms transfer “physical meaning”
along the computation? Do they preserve symme-
tries? Are those broken in the same way we under-
stand they are in the natural process under scrutiny?

Our claim is that algorithmic approaches (with
the notable exception of interactive automated formal
calculus, within its limits) involve a modification of
the theoretical symmetries used to describe and un-
derstand phenomena in physics, in particular by con-
tinua. This means that algorithmic approaches usu-
ally convey less or a different physical meaning than
the original equational approaches. In other words,
the modification of the equations needed for a com-
pletely finitary and discrete approach to the determi-
nation of a phenomenon leads to losses of meaningful
aspects of the mathematization and to the introduc-
tion of arbitrary or new features.

As far as losses are concerned, the most preem-
inent ones probably stem from the departure from
the continuum, an invention resulting from measure-
ment, from Pythagoras’ theorem to the role of inter-
vals in physical measurement. As we already hinted,
in the computing world, deterministic unpredictabil-
ity does not make sense. A program determines and
computes on exact data: when those are known, ex-
actly (which is always possible), the program iter-
ates exactly, thus allows a perfect prediction, as the
program itself yields the prediction. The point is
that deterministic unpredictability is due to the non-
linearity, typically, of the “determination” (the equa-
tions) and triggered by non-observable fluctuations
or perturbation, below the (best) interval of measure-

ment. Now, approximation is handled, in mathemat-
ics, by topologies of open intervals over continua, the
so called “natural topology” over the real numbers.

At this regards, note that a key assumption, bridg-
ing mathematics of continua and classical physics,
is that any sequence of measurements of increasing,
arbitrary precision converge to a well defined state.
This is mathematically a Cauchy condition of com-
pleteness, which implies that the rational numbers
are not sufficient to understand the situation. Can-
tor’s real numbers have been invented exactly to han-
dle this kind of problems (among other reasons, such
as the need to mathematize rigorously the phenom-
enal continuum in its broadest sense, the continuum
of movement, say).

Also, the fundamental relation between sym-
metries and conservation properties exhibited by
Noether’s theorems depend on the continuum (e.g.
continuous time translations), so that these results
can no longer be derived on a discretized background.
In short, these theorems rely on the theoretical abil-
ity to transform states continuously along continuous
symmetries in equations (of movement, for example)
since the intended conserved quantity cannot change
during such a transformation. With a discrete trans-
formation the observed quantities can be altered (and
it is the case usually in simulations) because there is
no continuity to enforce their conservation.

Reciprocally, the changes due to the discretization
introduce features that are arbitrary from a physi-
cal perspective. For example a basic discretization of
time introduces an arbitrary fundamental time-scale.
In Numerical Analysis, the methodology is to have
the (differential) equations as the locus of objectiv-
ity and to design algorithms that can be shown to
asymptotically converge (in a pertinent mathematical
sense, and hopefully rapidly in practice) towards the
mathematical solutions of the physically meaningful
equations. In these frames, the theoretical mean-
ing of the numerical (or algorithmic) approaches is
entirely derivative: such numerical approaches are
sound only with respect to, and inasmuch as there are
mathematical results showing a proximity with the
original equations and the trajectories determined by
them. The mathematical results (convergence the-
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orems) define the nature of this proximity, and are
usually limited to specific cases, so that entire re-
search communities develop around the topic of the
simulation of a specific family of equations (Navier-
Stokes or alike for turbulence, Schrödinger in Quan-
tum Physics, …). As a result, the methods to ap-
proach different (non-linear) equations by computing
rely on specific discretizations and their close, often
ad hoc, analysis.

3.3 Computations

As we said, we are just singling-out some method-
ological differences or gaps between different model-
ing techniques. On the “side of algorithms”, the main
issue we want to stress here is that equational ap-
proaches force uniform phase spaces. That is, the list
of pertinent observables and parameters, including
space and/or time, of course, must be given a priori.
Since the work by Boltzmann and Poincaré, physi-
cists usually consider the phase spaces made out of
(position, momentum) or (energy,time) as sufficient
for writing the equational determination. By gen-
eralizing the Philosopher’s (Kant) remark on New-
ton’s work, the (phase) space is the very “condition
of possibility” for the mathematical intelligibility of
physics. Or, to put it as H. Weyl, the main episte-
mological teaching of Relativity Theory is that phys-
ical knowledge begins when one fixes the reference
system (that is to say, the way to describe the phase
space) and the metrics on it. Then Einstein’s In-
variantentheorie allows to inspect the relevant invari-
ants and transformations, on the grounds of Lorentz-
Poincaré symmetry groups, typically, within a pre-
given list of observables and parameters.

Now, there exists a rich practice of computational
modeling, which does not need to pass through equa-
tions, skips this a priori. Varenne nicely describes
the dynamic mixture of different computational con-
texts as a “simulat”, a neologism which recalls “agré-
gat” (an aggregate) Varenne 2012. This novelty has
been introduced, in particular, by the peculiar features
of Object Oriented Programming (OOP), but other
“agent oriented systems” exist.

As a matter of fact, procedural languages require

all values to share the same representation — this is
how computer scientists call names for observables
and parameters4. “Objects” instead may interact even
with completely different representations as long as
their interfaces are compatible5. Thus, objects behave
autonomously and do not require knowledge of the
private (encapsulated) details of those they are inter-
acting with. As a consequence, only the interface is
important for external reactions (Cook 1991; Bruce,
Cardelli, and Pierce 1997).

In biological modeling, aggregating different tech-
niques, with no common a priori “phase space”, is a
major contribution to knowledge construction. Or-
ganisms, niches, ecosystems may be better under-
stood by structuring them in different levels of or-
ganization, each with a proper structure of determi-
nation, that is phase space and description of the dy-
namics. For example, networks of cells are better de-
scribed by tools from statistical physics, while mor-
phogenesis, e.g. organ formation, are currently and
mostly modeled by differential equations in continua.
Each of these approaches requires pregiven phase
spaces, which may radically differ (and the commu-
nities of researchers in the two fields hardly talk to
each other). In a computer, by its high parallelism,
one may mix these different techniques, with some
more or less acceptable approximations, in spite of
their differences. Even more so, ad hoc algorithms
may describe specific interactions, independently of
a unified equational description that may be impos-
sible. Then “objects”, in the sense above, may inter-
act only on the grounds of the actual interface, both
within a level of organization and between different
levels, without reference to the proper or internal (to
the object, to the level), causal structure.

In other words, OOP allows independent objects’
dynamics, reminiscent of individual cell dynamics.
Then, proliferation with variation and motility, the
default state of life (see Longo et al. 2015) may be
added to the models of morphogenesis that usu-
ally consider cells as inertial bullets, which they are

4Technically, an existential quantifier is opened at the begin-
ning of the program and then everyone shares all private informa-
tion.

5The existentials are opened only at the point of performing the
operation
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not; that is, their proliferation, changes and motility
are not entailed by physical forces that contribute to
shape organs (in particular, when organs function for
the exchange of energy and matter). By the compu-
tational power of modern computers, agent or object
based programming styles (such as OOP) may im-
plement autonomous agency for each cell, have them
simultaneously interact within a morphogenetic field
shaping the dynamics or a network ruled by statisti-
cal laws.

In summary, in computer simulation, one may
“put together” all these techniques, design very com-
plex “simulat” as aggregation of algorithms, including
stochastic equations, probabilities distributions and
alike. In particular, OOP allows the simulation of
discrete dynamics of individual cells in an organism
or of organisms in an ecosystem. And this with no
need to write global first equations: one directly goes
to algorithms in their changing environment.

However, let the process, or images on a com-
puter, run …then push the restart button. Since ac-
cess to discrete data is exact, as we said and keep
stressing, the computer will iterate on the same ini-
tial conditions, exactly, with the same discrete algo-
rithms. Thus, it will go exactly along the same com-
putation and produce exactly the same trajectories,
images and genesis of forms. This has no physical
meaning as an unstable or chaotic system would never
“iterate identically”. It is even less biologically plau-
sible, as biology is, at least, the “never identical it-
eration of a morphogenetic process” (see Longo et al.
2015). Observe now that exact iteration is a form
of (time-shift/process-identity) symmetry; while non
identical iteration is a symmetry breaking (see be-
low for more on randomness vs. symmetry breaking).
Noise, of course, may be introduced artificially, but
this makes a deep conceptual difference, at the core
of our analysis.

Note finally, that stochastic equations, probability
values and their formal or algorithmic descriptions,
are expressions and measurement of randomness, they
do not implement randomness. And this is a key is-
sue.

4 Randomness in Biology

Theoretical Physics proposes at least two forms of
randomness: classical and quantum. They are sepa-
rated by different probability theories and underying
logic: entanglement modifies the probability correla-
tions between quantum events Belavkin 2000. Even
the outcome of the mesurement of generic states is
contextual which means that this outcome depends
on the other measurements performed and cannot be
assumed to be predefined Abbott, Calude, and Svozil
2014; Cabello 2008, and this situation departs from
classical ones which are not contextual. A new form
of randomness seems to be emerging from computer
networks; or, at least, it is treated, so far, by yet differ-
ent mathematics Longo, Palamidessi, and Paul 2010.
In particular, some analysis of randomness are carried
without using probabilities.

In the same way that we said that the world is nei-
ther intrinsically continuous or discrete, randomness
is not in the world: it is in the interface between our
theoretical descriptions and “reality” as accessed by
measurement. Randomness is unpredictability with
respect to the intended theory and measurement. Both
classical and quantum randomness, though different,
originate in measurement.

The classical one is present in dynamics sensitive
to initial or border conditions: a fluctuation or per-
turbation below measurement, which cannot be exact
by physical principles (it is an interval, as we said),
is amplified by the dynamics, becomes measurable
and …“we have a random phenomenon” Poincaré
1902. This amplification is mathematically described
by the non-linearity of the intended equations or evo-
lution function, with a subtle difference though. If
a solution of the non-linear system exists, then the
analysis of the Lyapounov exponents, possibly, yields
some information on the speed of divergence of tra-
jectories, initially indistinguishable by measurement:
a non measurable fluctuation is amplified and pro-
duces an unpredictable and measurable event, yet the
amplification is computable. In the case of non-
existence or non-analyticity of solutions of the given
differential equations, one may have bifurcations or
an unstable homoclinic trajectories (i.e. trajecto-
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ries at the intersection of stable and unstable mani-
folds). The choice at bifurcation or the physical tra-
jectory is then highly unpredictable, thus random,
and may be also physically ascribed to fluctuations
or perturbations below measurement. However, in
this case, one does not have, in general, a criterium
of divergence, such as Lyapounov exponents. The
fluctuation or perturbation “causes” the unpredictable
event, thus Curie’s principle is preserved: “a physi-
cal effect cannot have a dissymmetry absent from its
efficient cause” — a symmetry conservation principle,
or “symmetries cannot decrease”. Yet, at the level of
measured observables one witness a symmetry break-
ing, as the causing dissymmetry cannot be observed.

Quantum randomness is grounded on non-
commutativity of the measurement of conjugated
variables (position and momentum or energy and
time), given by a lower bound — Planck’s ℎ. It is
represented by Schroedinger’s equation that defines
the trajectory of a probability amplitude (or law), in
a very abstract mathematical space (a Hilbert space).
As hinted above, measurement of entangled particles
gives probabilities that are different from the classi-
cal contexts (Bell inequalities are not respected, see
Aspect 1999).

In quantum physics, though, there is another fun-
damental difference: in classical and relativistic me-
chanics, from Aristotle, to Galileo and Einstein, it is
assumed that “every event has a cause”. As mentioned
above in reference to Curie’s principle, the unpre-
dictable, but measurable, classical event is “caused”
by the (initial or border) undetectable fluctuation.
Instead, in current interpretations of QM, random
events may be a-causal — the spin up / spin down
of an electron, say, is pure contingency, it does not
need to have a cause. This radically changes the con-
ceptual frame — and many still do not accept it and
keep looking, in vain, for hidden variables (hidden
causes), along the classical paradigm.

Surprisingly enough, a quantum event at the
molecular level may have a phenotypic effect, in bi-
ology. This is the result of recent empirical ev-
idence, summarized and discussed in Buiatti and
Longo 2013. Thus, a phenotype, that is a structural
property of an organism, possibly a new organism,

may result from an a-causal event, happening at a
completely different level of organization (molecular
vs. organs or organisms). This micro event may be
amplified by classical dynamics of molecules, includ-
ing as their enthalpic oscillations and their Brownian
motion. Brownian motion is omnipresent in cells’
proteome, where macromolecules are very “sticky”
and their chemical interactions are largely stochastic
— though canalized by strong chemical affinities and
cell compartmentalization. So, quantum and clas-
sical randomness may “superpose” in a highly con-
strained environment. Moreover, it is increasingly
recognized that gene expression is mostly stochastic,
see Elowitz et al. 2002; Arjun and van Oudenaarden
2008.

This leads to the fully general fact that:

macromolecular interactions and dynamics are stochas-
tic, they must be described in terms of probabilities and
these probabilities depend on the context.

This context includes the global proteomic com-
position, the torsion and pressure on the chromatin
Lesne and Victor 2006, the cell activity in a tissue
Bizzarri et al. 2011; Barnes et al. 2014, the hormonal
cascades…up to the ecosystem, as containing funda-
mental constraints to biological dynamics. The up
and down interactions between different levels of or-
ganization yield a proper form of biological random-
ness, a resonance between levels, called bio-resonance
in Buiatti and Longo 2013. Bio-resonance desta-
bilizes and stabilizes organisms; it both yields and
follows from variability, as correlated variations con-
tribute also to the changing structural stability of or-
ganisms. Note that variability produces adaptation
and diversity, at the core of biological dynamical sta-
bility: an organism, a population, a species is “biolog-
ically stable”, while changing and adapting, also be-
cause it is diverse. Both stability and diversity are also
the result of randomness. “Also”, because, as we said,
randomness is highly canalized in biology, by cel-
lular compartments of molecules, tissues tensegrity,
organismal control (hormones, immune and neural
systems …) and the ecosystem may downward influ-
ence these constraints (methylation and demethyla-
tion, which may regulate gene expression, can be in-
duced by the environment), Gilbert and Epel 2009.
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Variability and diversity are constrained by history as
well: phenotypes are the result of an evolutionary his-
tory that canalizes, but does not determine (at least in
view of quantum events) further evolution. For ex-
ample, as for historical “canalization” there are good
reasons to believe that we, the vertebrates, we will
never get out of the “valley” of tetrapodes — at most
we may lose, and some of us have lost, podia and keep
just traces of them.

In conclusion, randomness has a constitutive role
in biology, as variability and diversity contribute to
structural stability, beginning with gene expression.
We developed above a comparative analysis in terms
of symmetries of physical processes with respect to
their equational and computational modeling. We
now hinted to the different ways randomness is un-
derstood in various physical and biological frames. In
biology, this later issue becomes particularly relevant,
in view of the organizing role of randomness, includ-
ing for small numbers (a population of a few thou-
sands individuals is biologically more stable when di-
verse). Further on, we will propose a ‘general ‘thesis”
relating randomness and symmetry breaking.

5 Symmetries and information, in
physics, in biology.

5.1 Turing, Discrete State Machines and
Continuous Dynamics

We already stressed the key role of invariants and in-
variant preserving transformations in the construc-
tion of mathematical and physical knowledge. The
sharing of construction principles in these two dis-
ciplines, first of all, symmetry principles and order
principles, are the reason of the reasonable, though
limited, effectiveness of mathematics for physics:
these disciplines have been actually co-constituted on
the grounds of these common construction princi-
ples, see Bailly and Longo 2011. However, since
so few physical processes can be actually predicted
— frictions and many-body interactions, i.e. non-
linearity, are everywhere —, the effectiveness of
mathematics stays mostly in the reasonable intelli-

gibility we have of a few phenomena, when we can
organize them in terms of invariants and their trans-
formations, thus of symmetries, well beyond pre-
dictability.

In the account above, changing fundamental sym-
metries produced the change from one theoretical
frame to another, such as from classical to relativis-
tic physics. Further useful examples may be given
by thermodynamics and hydrodynamics. The irre-
versibility of time, a symmetry breaking, steps in the
first by the proposal of a new observable, entropy;
the second assumes incompressibility and fluidity in
continua, two symmetries that are irreducible to the
quantum mechanical ones, so far.

There is a common fashion in projecting the sci-
ences of information onto biological and even physi-
cal processes. The DNA, the brain, even the Universe
would be (possibly huge) programs or Turing Ma-
chines, sometimes set up in networks — note that
the reference to networks is newer, it followed actual
network computing by a many years delay.

We do not discuss here the Universe nor the brain.
It may suffice to quote the inventor of computing by
discrete state machines, Turing: “ …given the initial
state of the machine and the input signal it is always
possible to predict all future states. This is reminis-
cent of Laplace’s view that from the complete state of
the universe at one moment of time, as described by
the positions and velocities of all particles, it should
be possible to predict all future states. The prediction
which we are considering is, however, rather nearer to
practicability than that considered by Laplace. The
system of the ’universe as a whole’ is such that quite
small errors in the initial conditions can have an over-
whelming effect at a later time. The displacement of a
single electron by a billionth of a centimeter at one
moment might make the difference between a man
being killed by an avalanche a year later, or escap-
ing. It is an essential property of the mechanical sys-
tems which we have called ’discrete state machines’
that this phenomenon does not occur. Even when
we consider the actual physical machines instead of
the idealized machines, reasonably accurate knowl-
edge of the state at one moment yields reasonably ac-
curate knowledge any number of steps later“ (A. M
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Turing 1950, p. 440)6.
As for the brain, Turing continues: “The nervous

system is certainly not a discrete-state machine. A
small error in the information about the size of a ner-
vous impulse impinging on a neuron, may make a
large difference to the size of the outgoing impulse”
(A. M Turing 1950, p. 451). As a matter of fact, the
notions of spontaneous symmetry breaking, “catas-
trophic instability”, random fluctuations…are at the
core of Turing’s analysis of continuous morphogenesis,
A. M. Turing 1952, far remote from his own inven-
tion of the elaboration of information by the “Dis-
crete State Machine” (DSM, his renaming in 1950
of his Logical Computing Machine of 1936).

It is worth stressing here the breadth and origi-
nality of Turing’s work. He first invented the split
hardware/software and the DSM, in Logic. Then,
when moving to bio-physics, he invented a continu-
ous model for morphogenesis, viewed just as physical
matter (hardware) that undergoes continuous defor-
mations, triggered by (continuous) symmetry break-
ing of an homogeneous field, in a chemical reaction-
diffusion system. The model is given by non-linear
equations: a linear solution is proposed, the non-
linear case is discussed at length.

A key property of Turing’s continuous model is
that it is “a falsification” (his words on page 37) of
the need for a (coded) “design”. This clearly appears
from the further comments on the role of genes, men-
tioned below. In discussions reported by Hodges
Hodges 1997, Turing turns out to be against Hux-
ley’s “new synthesis”, which focused on chromosomes
as fully determining ontogenesis and phylogenesis
Huxley 1942. He never refers to the already very
famous 1944 booklet by Schrödinger Schrödinger
1944, where Schrödinger proposes to understand the
chromosomes as loci of a coding, thus as a Laplacian
determination of embryogenesis, as he says explicitly
(“once their structure will be fully decoded, we will be
in the position of Laplace’s daemon” says Schrödinger
in chapter 2, The hereditary code-script). As a mat-
ter of fact, in his 1952 paper, Turing quotes only

6In popular references to unstable or chaotic dynamics, instead
of quoting the famous “Lorentz’s butterfly effect”, proposed in
1972 on the grounds of Lorentz’ work of 1961, one should bet-
ter refer the “Turing’s electron effect”, published in 1952.

Child, D’arcy Thompson and Waddington as biolo-
gists, all working on dynamics of forms, at most con-
strained (Waddington), but not determined nor “pre-
designed” by chromosomes. Indeed, Turing discusses
the role of genes, in chromosomes, which differ from
his “morphogenes” as generators of forms by a chem-
ical action/reaction system. He sees the function of
chromosomal genes as purely catalytic and, says Tur-
ing, “genes may be said to influence the anatomi-
cal form of the organism by determining the rates
of those reactions that they catalyze …if a compar-
ison of organisms is not in question, the genes them-
selves may be eliminated from the discussion”, page
38 (a remarkable proposal, in the very fuzzy, ever
changing notion of “gene”, see Fox Keller 2002). No
(predefined) design, no coded or programmed Aris-
totelian homunculus in the chromosomes (the myth
of the chromosomes as a program), for Turing, the
man who invented coding and programming. This is
science: an explicit proposal of a (possibly new) per-
spective on nature, not the transfer of familiar tools
(the ones he invented, in this case!) on top of a differ-
ent phenomenology.

Note finally that, when comparing his DSM to
a woman’s brain in A. M Turing 1950, Turing
describes an “imitation game”, while he talks of a
“model” as for morphogenesis. This beautiful distinc-
tion, computational imitation vs. continuous model,
is closely analyzed in Longo 2009.

5.2 Classifying information
Let’s further analyze the extensive use of “informa-
tion” in biology, molecular biology in particular. In-
formation branches in at least two theories:

• elaboration of information (Turing, Church,
Kleene and many others, later consistently
extended to algorithmic information theory:
Martin-Loef, Chaitin, Calude, see Calude 2002
and

• transmission of information (Shannon, Bril-
louin, see SHANNON 1948).

In Longo et al. 2012, we stressed the key differ-
ences between these two theories that are confusedly
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identified in molecular biology, with unintelligible
consequences in the description of the relationship
of information to entropy and complexity …two rel-
evant notions in biology7.

As scientific constructions, both information the-
ories are grounded on fundamental invariants. And
this is so since at least Morse practical invention, with
no theory, of information transmission. Information
is independent of the specific coding and the mate-
rial support. We can transmit and encode informa-
tion as “bip-bip”, by short and long hits, as flashes,
shouts, smoke clouds …by bumping on wood, metal,
by electricity in cables or whatever and this in a bi-
nary, ternary, or other code …. Information is the
invariant with respect to the transformation of these
coding and material supports: this is its fundamen-
tal symmetry. Up to Turing’s fundamental inven-
tion: distinguish software from hardware. So, a rich
Theory of Programming was born, largely based on
Logic, Typed and Typed-free languages, term rewrit-
ing systems etc, entirely independent of the specific
encoding, implementation and hardware. The com-
puter’s soul is so detached from its physical realization
that Descartes dualism is a pale predecessor of this
radical and most fruitful split. And when the hard-
ware of your computer is dying, you may transfer the
entire software, including the operating system, com-
pilers and interpreters, to another computer. This
symmetry by transfer is called “metempsychosis”, we
think. Now, it does not apply in biology, nowhere.

The DNA is not a code, carrying information.
There is no way to detach a soft content from it and
transfer it to another material structure: it cannot
be replaced by metal bullets, or bumps on a piece of
wood. What gets transferred to RNA and then pro-
teins is a chemical and physical structure, a most rel-
evant one, as the DNA is an extraordinary chemical
trace of an history. And it transmits to other chemi-
cals an entirely contingent physico-chemical confor-

7See Smith 1999), where Turing-Kolmogorov’s elaboration
theory is quoted as well as Shannon’s theory. The author consid-
ers the second as more pertinent for biology. Then a notion of
complexity as amount of information is given that is actually based
on the first theory and it is described as co-variant to entropy. Fi-
nally, in the paper, Shannon’s theory pops out again — the more
pertinent theory, according to the author, where complexity is con-
travariant to entropy, it is negentropy.

mation. If a stone bumps against other stones in a
river and de-forms them (in-forms them, would say
Aristotle), there is no meaning to speak of a trans-
mission of information, in the scientific invariant
sense above, unless in reference to the Aristotelian
sense. No informational invariant can be extracted,
but the ones proper to the physico-chemical pro-
cesses relative to stone bumping. Life is radically
contingent and material: no software/hardware split.
The pre-scientific reference to information, some-
times called “metaphorical”, has had a major mis-
leading role. First, it did not help to find the right
invariants. The physico-chemical structure of cellu-
lar receptors, for example, has some sort of general-
ity, which yields some stereospecificity Kuiper et al.
1997. Yet, this is still strictly related to a common
chemistry that has nothing to do with an impossi-
ble abstract information theoretic description. The
proposal of a too abstract and matter independent in-
variant did not help to find the right scientific level of
invariance. Or, more severely so, it forced exact stere-
ospecifity of macromolecular interaction, as a conse-
quence of the information theoretic bias.

Monod, one of the main theoreticians of molecular
biology, claims that the molecular processes are based
on the “oriented transmission of information …(in
the sense of Brillouin)”. In Monod 1970, he derives
from this that the “necessarily stereospecific molecu-
lar interactions explain the structure of the code …a
Boolean algebra, like in computers” and that “genes
define completely the tridimensional folding of pro-
teins, the epigenetic environment only excludes the
other possible foldings”. Indeed, bio-molecular ac-
tivities “are a Cartesian Mechanism, autonomous, ex-
act, independent from external influences”. Thus,
the analysis based on the search for how informa-
tion could be transmitted, forced an understanding
inspired by the Cartesian exactness proper to com-
puters as well as the Laplacian causal structure, Tur-
ing would say, proper to information theories. It in-
duced the invention of exact stereospecificity, which
is “necessary” to “explain” the Boolean coding! That
is, stereospecificity was logically, not empirically, de-
rived, while, since 1957 Novick and Weiner 1957, ro-
bust evidence had already shown the stochasticity of
gene expression (see Kupiec 1983; Kupiec and Sonigo
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2003; Arjun and van Oudenaarden 2008 and Heams
2014 for a recent synthesis).

We now know that the protein folding is not de-
termined by the coding (yet, Monod did consider this
possibility). Macromolecular interactions, including
gene expression, are largely random: they must at
least be given in probabilities, as we said, and these
probabilities would then depend on the context. No
hardware independent Boolean algebra governs the
chemical cascades from DNA to RNA to proteins,
also because these cascades depend, as we already
recalled, on the pressure and tensions on the chro-
matin, the proteome activities, the intracellular spa-
tial organization, the cellular environment and many
other forms of organismal regulations, see for exam-
ple Weiss et al. 2004; Lesne and Victor 2006.

In summary, the informational bias introduced a
reasoning based on Laplacian symmetries, far away
from the largely turbulent structure of the proteome,
empowered also by chaotic enthalpic oscillations of
macromolecules. This bias was far from neutral in
guiding experiments, research projects and concep-
tual frames. For example, it passed by the role of en-
docrine disruptors of the more than 80,000 molecules
we synthesized and used in the XXth century, an
increasingly evident cause of major pathologies, in-
cluding cancer, Zoeller et al. 2012; Soto and Son-
nenschein 2010; Demeneix 2014. These molecules
were not supposed to interfere with the exact molec-
ular cascades of key-lock correspondences, a form of
stereospecificity. The bias guided the work on GMO,
which have been conceived on the grounds of the
“central dogma of molecular biology” and of Monod’s
approach above: genetic modifications would com-
pletely guide phenotypic changes and their ecosys-
temic interactions (see Buiatti 2003).

One final point. Information theories are “code
independent”, or analyze code in order to develop
general results and transmission stability as code in-
sensitive (of course cryptography goes otherwise: but
secrecy and code breaking are different purposes, not
exactly relevant for organisms). Information on dis-
crete data is also “dimension independent”: by a poly-
nomial translation one may encode discrete spaces of
any finite dimension into one dimension. This is cru-

cial to computing, since it is needed to define Turing’s
Universal Machine, thus operating systems and com-
pilers.

Biology instead is embedded in a physical world
where the space dimension is crucial. In physics,
heat propagation and many other phenomena, typ-
ically field theories, strictly depend on space dimen-
sion. By “mean field theories” one can show that
life, as we know it, is only possible in three dimen-
sions (see Bailly and Longo 2011). Organisms are
highly geometric in the sense that “geometric” im-
plies sensitivity to coding and dimensions. In this sense,
continuous models more consistently propose some
intelligibility: in “natural” topologies over continua,
that is when the topology derives from the interval
of physical measurement, dimension is a topological
invariant, a fundamental invariant in physics, to be
preserved in biology, unless the reader believes that
he/she can live encoded in one dimension, just ex-
changing information, like on the tape of a Turing
Machine. A rather flat Universe …yet, with no loss
of information. But where one has only information,
not life.

Missing the right level of invariance and, thus,
the explanatory symmetries, is a major scientific mis-
take. Sometimes, it may seem just a “matter of lan-
guage”, as if language mattered little, or of informal
metaphors, as if metaphors were not carrying mean-
ing, forcing insight and guiding experiments. They
actually transfer the conceptual structure or the in-
tended symmetries of the theory they originate from,
in an implicit, thus more dangerous and un-scientific
way. Just focusing on language, consider the termi-
nology used when referring to DNA/RNA as the
“universal code for life”, since all forms of life are
based on it. This synchronic perspective on life — all
organisms yield these molecules and the basic chem-
ical structure of their interactions, thus there is a uni-
versal code — misses the historical contingency of
life. There is no universality in the informational
sense of an invariant code with respect to an inde-
pendent hardware. Life is the historical result of con-
tingent events, the formation somewhere and some-
how of DNA or RNA or both, sufficiently isolated
in a membrane, which occurred over that hardware
only. Then, the resulting cell reproduced with varia-
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tion and diversified, up to today’s evolutionary diver-
sity. One contingent material origin, then diversifi-
cation of that matter, of that specific hardware and no
other. Invariance, symmetries and their breaking are
different from those proper to “information”, in this
strictly material, evolutionary perspective.

6 Theoretical symmetries and ran-
domness

In this section, we would like to elaborate on a “the-
sis”, already hinted in Longo and Montévil 2014. In
physical theories, where the specific trajectory of an
object is determined by its theoretical symmetries,
we propose that randomness appears when there is
a change in some of these symmetries along a trajec-
tory and reciprocally that changes of symmetries are
associated to randomness.

Intuitively theoretical symmetries enable to under-
stand a wide set of phenomenal situations as equiva-
lent. In the end of the day, the trajectory that a phys-
ical object will follow, according to a theory, is the
only trajectory which is compatible with the theoret-
ical symmetries of a given system. Symmetries, in
this context, enable to understand conservation prop-
erties, the uniqueness of the entailed trajectory and
ultimately the associated prediction, if any.

Now, what happens when, over time or with re-
spect to a pertinent parameter, a symmetry of the sys-
tem is broken? A symmetry corresponds to a situa-
tion where the state or the set of possible states and
the determination of a system does not change ac-
cording to specific transformations (the symmetries).
After the symmetry breaking, the state(s) becomes
no longer invariant by these transformations; typi-
cally, the trajectory goes to one of the formerly sym-
metric states and not to the others (a ball on top of
a mathematical hill falls along one of the equivalent
sides). Since the initial situation is exactly symmetric
(by hypothesis), all the different “symmetric” states
are equivalent and there is no way to single out any of
them. Then, in view of the symmetry breaking, the
physical phenomena will nevertheless single out one

of them. As a result we are confronted with a non-
entailed change: it is a random change.

This explanation provides a physico-mathematical
meaning to the philosophical notion of contingency
as non-necessity: this description of randomness as
symmetry breaking captures contingency as a lack
of entailment or of necessity in an intended the-
ory. Note that usually the equivalent states may not
be completely symmetric as they may be associated
to different probabilities, nevertheless they have the
same status as “possible” states.

For now, we discussed the situation at the level of
the theoretical determination alone, but the same rea-
soning applies mutadis mutandis to prediction. In-
deed, we access to a phenomenon by measurement,
but measurement may be associated to different pos-
sible states, not distinguishable individually. These
states thus are symmetric with respect to the mea-
surement, but the determination may be such that
these (non-measurably different) states lead to com-
pletely different measurable consequences. This rea-
soning is completely valid only when the situation is
such for all allowed measurements, so that random-
ness cannot be associated to the possible crudeness of
an arbitrary specific measurement.

Reciprocally, when we consider a random event, it
means that we are confronted with a change that can-
not be entailed from a previous observation (and the
associated determination). When the possible obser-
vations can be determined (known phase space), this
means that the different possibilities have a symmet-
ric status before the random event (precisely because
they are all pre-defined possibilities) but that one (or
several) of them are singled out by the random event
in the sense that it becomes the actual state. We rec-
ognize in this statement the description of a symme-
try that is broken during the random event.

Let us now review the main physical cases of ran-
domness.

• Spontaneous symmetry breaking in quantum
field theories and theories of phase transitions
(from a macroscopic viewpoint) are the most
straightforward examples of the conjecture we
describe. In these cases, the theoretical deter-
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mination (Hamiltonian) is symmetric and the
change of a parameter leads the systems equi-
librium to shift from a symmetric state to an
asymmetric one (for example isotropy of a liq-
uid shifting to a crystal with a specific orien-
tation). Randomness stems then just from the
“choice” of a specific orientation, triggered by
fluctuations in statistical mechanics.

• Classical mechanics can, in spite of its deter-
ministic nature, lead to unpredictability as a
consequence of the symmetrizing effect of mea-
surement on one side (there are always differ-
ent states which are not distinguished by a mea-
surement), and a determination that leads those
states to diverge (which breaks the above sym-
metry). This reasoning applies to chaotic dy-
namics but also to phase transitions where, from
a strictly classical viewpoint, fluctuations below
the observation determine the orientation of the
symmetry changes.

• In classical probabilities, applied to “naive” cases
such as throwing a dice or to more sophisti-
cated framework such as statistical mechanics,
our reasoning also applies. When forgetting
about the underlying classical mechanics, the
probabilistic framework is a strict equivalence
between different possibilities, except for their
expected frequencies which may differ: those are
given by the associated probabilities. In order
to define theoretically these probabilities, some
underlying theoretical symmetries are required.
In our examples, the symmetries are the symme-
try between the sides of a dice and for statistical
mechanics, the symmetry between states with
the same energy for the microcanonical ensem-
ble. From a strictly classical viewpoint, these
symmetries are assumed to be established on av-
erage by the properties of the considered dy-
namics. In the case of dice, it is the rotation,
associated to the dependence on many parame-
ters which leads to a sufficient mixing, generat-
ing the symmetry between the different sides of
the dice. In the case of statistical mechanics, it
is the property of topological mixing of chaotic
dynamics (a property met by these systems by

definition). This property is assumed in order to
justify the validity of statistical mechanics from
the point of view of classical mechanics. In both
cases, a specific state or outcome corresponds to
a breaking of the relevant symmetry.

• In quantum mechanics, the usual determina-
tion of the trajectory of a state is determinis-
tic, randomness pops out during measurement.
The operator corresponding to the measurement
performed establishes a symmetry between its
different eigen vectors, which also correspond
to the different outcomes corresponding to the
eigen values. This symmetry is partially broken
by the state of the system, which provides differ-
ent weights (probabilities) to these possibilities.
The measurement singles out one of the eigen
vectors which becomes the state of the system
and this breaks the former symmetry.

We can conclude from this analysis and these ex-
amples that randomness and symmetry breaking are
tightly associated. We can put this relationship into
one sentence:

A symmetry breaking means that equivalent “direc-
tions” become no longer equivalent and precisely because
the different directions were initially equivalent (sym-
metric) the outcome cannot be predicted.

As discussed elsewhere Longo and Montévil 2011,
2014, we assume that theoretical symmetries in bi-
ology are unstable. It follows that randomness, un-
derstood as associated to symmetry breaking, should
be expected to be ubiquitous; however, this approach
leads also to propose a further form of randomness.
In order to show that randomness can be seen as a
symmetry breaking, we needed to assume that the
set of possibilities was determined before the event.
In biology, the instability of the theoretical symme-
tries does not allow such an assumption in general.
On the opposite, a new form of randomness appears
through the changes of phase spaces, and this ran-
domness does not take the form of a symmetry break-
ing stricto sensu inasmuch as it does not operate on a
pre-defined set. In other words, these changes cannot
be entailed but they cannot even be understood as the
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singling out of one possibility among others — the
list of possibilities (the phase space) is not pre-given.

In brief, theoretical symmetries in physics enable
to single-out a specific trajectory in a phase space,
formed by a combination of observables. Thus, a
symmetry breaking corresponds to the need of one
or several supplementary quantities to further spec-
ify a system on the basis of already defined quantities
(which were formerly symmetric and thus not use-
ful to specify the situation). In biology, instead, the
dynamic introduces new observable quantities which
get integrated to the determination of the object as
the latter is associated to the intended quantities and
symmetries. This dynamics of the very phase space
may be analyzed a posteriori as a symmetry breaking.
Thus, randomness moves from within a phase space
to the very construction of a phase space, a major
mathematical challenge.
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