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Abstract—In modern wireless networks especially in Machine-to-
Machine (M2M) systems and in the Internet of Things (IoT)
there is a high densities of users and spatial reuse has become
an absolute necessity for telecommunication entities. This paper
studies the maximum throughput of Carrier Sense Multiple
Access (CSMA) in scenarios with spatial reuse. Instead of running
extensive simulation with complex tools which would be somewhat
time consuming, we evaluate the spatial throughput of a CSMA
network using a simple model which produces closed formulas
and give nearly instantaneous values. This simple model allows
us to optimize the network easily and study the influence of
the main network parameters. The nodes will be deployed as a
Poisson Point Process (PPP) of a one or two dimensional space.
To model the effect of (CSMA), we give random marks to our
nodes and to elect transmitting nodes in the PPP we choose those
with the smallest marks in their neighborhood. To describe the
signal propagation, we use a signal with power-law decay and
we add a random Rayleigh fading. To decide whether or not a
transmission is successful, we adopt the Signal-over-Interference
Ratio (SIR) model in which a packet is correctly received if its
transmission power divided by the interference power is above a
capture threshold. We assume that each node in our PPP has a
random receiver at a typical distance from the transmitter i.e. the
average distance between a node and its closest neighbor. We also
assume that all the network nodes always have a pending packet.
With all these assumptions, we analytically study the density of
throughput of successful transmissions and we show that it can
be optimized with regard to the carrier-sense threshold.

I. INTRODUCTION

At the end of the twentieth century, the most common wireless
networks were WiFi (IEEE 802.11) networks. The dominant
architecture of such networks involved an access point where
a node, called the access point, generally connected to the
Internet, exchanged packets with surrounding nodes. In these
networks only one packet was sent at each instant since all
the nodes were within carrier sense range of the other nodes
and sent their packets one after the other. More recently,
great progress in wireless transmission technology has paved
the way to much bigger networks with more massive trans-
mission patterns. In these networks, which include military
networks, Vehicular Ad Hoc Networks (VANETs), Wireless
Sensor Networks (WSNs), applications require simultaneous
transmissions and thus the model with only one access point
is no longer valid. The transmissions can be multihop, for
instance in military networks or WSNs, and thus the same

packet must be forwarded. In this case, and especially when
there are long routes, simultaneous transmissions will increase
the performance. This phenomenon is known as spatial reuse.
In VANETs, extending the networks along roads leads to vast
networks where spatial reuse must inevitably be present. The
high density of communicating vehicles on a road using IEEE
802.11p - a CSMA-based protocol - justifies the optimization
of CSMA in networks with spatial reuse.
However, the access techniques used in these recent networks
remain similar to those used in the first Wireless LANs
(WLANs) and are based on the well-known Carrier Sense
Multiple Access techniques (CSMA). In M2M systems and
in the IoT a prominent technology is IEEE 802.15.4 which is
also based on CSMA.
Therefore, a deeper understanding of CSMA with spatial reuse
is needed and represents the main focus of this paper. There
are two main characteristics to be evaluated in spatial CSMA.
The first one is to compute the probability of transmitting when
the carrier sense rule is applied. The second one is to compute
the probability of the packet being correctly received by a
neighbor.
The remainder of this paper is organized as follows. Section II
briefly reviews related work; Section III describes the model
proposed to study CSMA and develops the corresponding
analytical model. The results of the model evaluating the
influence of the parameters are reported in Section IV. Finally
Section V concludes the paper.

II. RELATED WORK

The initial studies on CSMA date back to the mid-seventies
with the seminal paper by Kleinrock [1]. This paper, together
with a great number of papers using the same analytical model
framework, analyzed a perfect CSMA where all the nodes
are within carrier-sense range of each-other. The framework
developed in [1] accurately models the carrier sense access
technique but the analysis of the back-off technique remains
somewhat fuzzy. In 2000, the paper by Bianchi [2] relating
to the IEEE 802.11 access technique took a step further in
the modeling of the CSMA backoff technique. However the
model still considers a one-hop wireless network, and thus
spatial reuse remained beyond the scope of the paper.
The first tentative work which tried to take into account spatial
reuse in spatial networks was reported in articles devoted



to Aloha such as [3] and [4]. In 1988, Ghez, Verdu and
Schwartz introduced a model for slotted Aloha [3] with
multipacket reception capability. To our knowledge this paper
was the first quantitative model of a wireless network with
spatial reuse. This model was revisited in [4] with a more
accurate evaluation of the performance of the network. In [4]
Baccelli et al. show that it is possible to accurately compute
the probability of successful transmission in an Aloha network
with spatial reuse if the distance between the transmitter and
the receiver is known. [4] also allows the density of successful
transmissions to be computed if the distance between the
transmitter and the receiver is known. In Aloha networks
the complete and stateless randomization of the transmitters
leads to a particularly simple evaluation of the pattern of the
simultaneously transmitting nodes.
In [5] the authors compute the mean number of transmissions
with CSMA in a linear random network of vehicles but, in
contrast to the present study which takes into account the entire
interference, [5] only takes into account the nearest interferer.
The Matern selection process [6] was first used in [7] to
evaluate the pattern of simultaneous transmissions in CSMA.
The study in [8] uses a process close to the Matern process to
evaluate the interference in CSMA spatial networks but it does
not study the throughput of the network, which is the main
purpose of this paper. Finally, the model of [7] was improved
by [9], which is the model that is used and extended in this
paper. Apparently, no further improvements in this field have
been made in recent years.
Although a few papers [10],[11] have studied the effect of the
carrier sense detection threshold in CSMA protocols, these
papers do not explore the spatial effect of the carrier sense
detection threshold but rather the probability of capture when
all the nodes are at one hop from each other.

III. SYSTEM MODEL

A. Network nodes
The nodes are randomly deployed according to a Poisson Point
Process Φ. We denote by λ the intensity of the process. In
this paper we consider a 2D infinite plan, S = R2 or a 1D
infinite line, S = R. The 2D model is for Mobile Ad-hoc
NETworks (MANETs) or Wireless Sensor Networks (WSNs).
The 1D model is more relevant to Vehicular Ad-hoc NETworks
(VANETs).

B. Propagation law, fading and capture model
We suppose that the signal received in a transmission is the
result of a random fading F and a power-law in the distance
decay 1/rβ where β is the decay factor and is generally
between 3 and 6. In our study, the fading will be Rayleigh
i.e exponentially distributed with parameter µ and thus is of
mean 1/µ. Thus the signal received when the transmitter and
the receiver are at distance r from each other is F/l(r)1 with
l(r) = rβ .
We use the well-accepted SIR2 (Signal over Interference Ratio)
with a capture threshold T .

1The power received P = P0F
l(r)

and we set P0 = 1
2We omit the thermal noise but it could be easily added, as is explained

below. An even more realistic model than the SIR based on a graded SIR model
using Shannon’s law is possible in our framework though with an increased
computational cost. This will be discussed below.
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Fig. III.1. Matern CSMA selection process and an example of over-
elimination.

C. Model for CSMA
Using the model developed in [9], we adopt a Matern selection
process to mimic the CSMA selection process. The points Xi

in Φ receive a random mark mi. We also call Fi,j the fading for
the transmission between Xi and Xj . The idea of the Matern
selection is to select the points Xi with the smallest random
marks mi in their neighborhood. To define the neighborhood
of a point Xi we need to introduce the carrier sense threshold
Pcs. We define V(Xi) = {Xj ∈ Xi Fi,j/l(|Xi−Xj |) > Pcs}
the neighborhood of Xi. Xi will be selected in the Matern
selection process if and only if ∀Xj ∈ V(Xi) mi < mj .
In other words, this means that Xi has the smallest mark
mi in its neighborhood. The Matern selection is illustrated
in Figure III.1. Node i has the smallest mark mi within its
neighborhood. Although node q does in fact have a smaller
mark, it is not within node i’s neighborhood. We should point
out that, for the sake of simplicity, here we have not taken
into account any Rayleigh fading (F ≡ 1) and thus the
neighborhood of node i is a disc.
The technique based on marks used by the Matern selection
process results in an over-elimination of nodes. When a node is
eliminated by a node with a smaller mark, the node which has
the smallest back-off in its neighborhood can start transmitting.
The nodes which have been eliminated should not further
eliminate other nodes. But this over-elimination can occur, as
shown in Figure III.1. Node o is eliminated by node i, but node
o eliminates node p in the Matern selection process, whereas
in a CSMA system, node o is correctly eliminated by node i,
but, being eliminated, node o can not eliminate another node.
We do not take this case into account in our model.
We note the medium access indicator of node Xi ei =
1I(∀Xj ∈ V(Xi) mi < mj)

Proposition III.1. The mean number of neighbors of a node
is:

N = λ

∫
S

P{F > Pcsl(|x|)}dx.

In a 2D network we have :

N =
2πλΓ(2/β)

β(Pcsµ)2/β
.

In a 1D network we have :

N =
λΓ(1/β)

β(Pcsµ)1/β
.



This result is very simple. Let F 0
j be the fading between the

node at the origin Xi and node Xj

This is just the application of Slivnyak’s theorem and Camp-
bell’s formula, see [12], [9]

N = E0
[ ∑
Xj∈φ

1I(F 0
j l(|Xj −Xi|) > Pcs

]
= λ

∫
S

P{F > Pcsl(|x|)}dx

A straightforward computation provides the explicit value of
N in the 1D and 2D cases.

Proposition III.2. The probability p that a given node X0

transmits i.e. e0 = 1 is:

p = E0[e0] =
1− e−N

N
.

Proof: The proof is obtained by computing the probability
that a given node X0 at the origin with a mark m = t is
allowed to transmit. The result is then obtained by decondi-
tioning on t. The details of the proof can be found in [9].

Thus p measures the probability of transmission in a CSMA
network. If p is close to 1 this means that the carrier sense
does not restrain transmissions. In contrast, if p is small, this
means that the carrier sense imposes a severe restriction on
transmissions.

Proposition III.3. The probability that X0 transmits given
that there is another node Xj ∈ Φ at distance r is pr with

pr = p− e−Pcsµl(r)
(1− e−N

N2
− e−N

N

)
Proof: The proof is the same as that of Proposition III.2.

Proposition III.4. Let us suppose that X1 and X2 are two
points in Φ such that |X1 − X2| = r. We suppose that node
X2 is retained by the selection process. The probability that
X1 is also retained is:

h(r) =

2
b(r)−N ( 1−e−N

N
− 1−e−b(r)

b(r) )(1− e−Pcsµl(r))

1−e−N

N
− e−Pcsµl(r)

(
1−e−N

N2 − e−N

N

)
with

b(r) = 2N − λ
∫
S

e−Pcsµ(l(|x|)+l(|r−x|)dx.

In a 2D network, we have:

b(r) = 2N−λ
∫ ∞
0

∫ 2π

0

e−Pcsµ(l(τ)+l(
√
τ2+r2−2rτcos(θ)))dτdθ.

In a 1D network, we have:

b(r) = 2N − λ
∫ ∞
−∞

e−Pcsµ(l(τ)+l(|r−τ |))dτ

Proof: The proof can be found in [9]

Proposition III.5. Given the transmission of a packet, we
denote by pc(r, Pcs) the probability of successfully receiving

this packet at distance r in a CSMA system (modeled by a
Matern selection process with a carrier sense threshold Pcs)
and with a capture threshold T . We have:

pc(r, Pcs) ' exp
(
− λ

∫
S

h(|x|)
1 + l(|x−r|)

Tl(r)

dx
)

In a 2D network, we have:

pc(r, Pcs) ' exp
(
−λ
∫ ∞
0

∫ 2π

0

τh(τ)

1 +
l(
√
τ2+r2−2rτcos(θ))

Tl(r)

dτdθ
)

In a 1D network, we have:

pc(r, Pcs) ' exp
(
− λ

∫ ∞
−∞

h(τ)

1 + l(|r−τ |)
Tl(r)

dτ
)

Proof: The idea of the proof is to consider a transmitter
at the origin and to compute the probability of successful
reception by a receiver at distance r. To do so, we condition
by the presence of another transmitting node at distance τ .
According to proposition III.4, the density of such nodes is
λh(τ). We approximate the interference by the interference of
a Poisson Process of density λh(τ). The result is obtained by
integrating on τ . The details of the proof can be found in [9].

It is easy to add a thermal noise W to the model. The expres-
sion of pc(r, Pcs) must then be multiplied by LW (µT l(r))
where LW (.) is the Laplace Transform of the noise.
In a more advanced model using Shannon’s law, we have the
average transmission rate for X0

E0(log(1+SIR)|e0 = 1) =

∫ ∞
0

P 0(log(1+SIR) > t|e0 = 1)dt

=

∫ ∞
0

pc(r, Pcs, e
t − 1)dt

with pc(r, Pcs, x) = pc(r, Pcs) where T is substituted by x,
see [9]. Although more complicated, such an approach seems
computationally achievable, and will form the subject of a
more extensive study of spatial CSMA.
We resume with the capture model in the SIR model.
Proposition III.6. The spatial density of successful transmis-
sions is:

λppc(r, Pcs)

This spatial density has a 1D and a 2D version and the values
of p and pc(r, Pcs) are chosen accordingly.

Proof: Proposition III.6 is just the exploitation of propo-
sitions III.2 and III.5.

IV. RESULTS OF THE MODEL

In this section, the model is used to analyze the network
performance and the influence of the model’s parameters. We
study the transmissions for pairs of source-destination nodes
at distance r. r is set at 1/

√
λ or 1/λ for 2D and 1D networks

respectively. r can be seen as a typical distance in these



networks since it is the average distance between a node and
its closest neighbor. Thus the transmitters are in the Poisson
Point Process and for each transmitter, we create a random
receiver at distance r.

A. Optimizing the density of successful transmissions with the
carrier sense threshold Pcs
We consider that the parameters of the model λ, T and µ are
constant and we vary Pcs to maximize the density of successful
transmissions. It is easy to show that p is an increasing
function of Pcs. When the carrier threshold increases, the
probability of transmission in CSMA increases. VANETS As
the carrier threshold increases, transmission becomes easier
and thus p increases. This can be verified using the equation
of proposition III.2. In contrast, when Pcs increases then
pc(r, Pcs) decreases. This can been shown using the equation
of proposition III.4. When Pcs increases, h(τ) increases and
thus pc(r, Pcs) decreases. Since the density of successful
transmissions is upper-bounded by λ we know that there is an
optimal value of Pcs which optimizes the density of successful
transmissions. Studying a few examples, we have seen that
the density of successful transmissions always has the same
behavior, as shown in Figure IV.1. For small value of Pcs
and when we increase Pcs, p increases faster than pc(r, Pcs)
decreases, and thus the density of successful transmissions is
an increasing function of Pcs. This density reaches a maximum
for a given value of Pcs and then becomes a decreasing
function of Pcs. We assume that this is always the case
although it seems difficult to show it mathematically. We use
Maple to numerically compute this optimum of the density of
successful transmissions.
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Fig. IV.1. Density of successful transmissions versus carrier threshold (T=1,
µ = 10, β = 4).

In Figures IV.2 and IV.3, we present the carrier sense threshold
versus the density of nodes when the density of successful
transmissions is optimized.

B. Effect of the fading rate µ
We note that in the probability of transmission p found in
Proposition III.2, we can isolate µPcs. It is the same for
pc(r, Pcs). This means that if we multiply µ by 10, exactly
the same performance can be obtained with Pcs divided by 10.
Thus there is no influence of µ on the global performance of
the system; the optimum density of successful transmissions,
the probability of capture pc(r, Pcs) and the probability of
transmission p at the optimum value of Pcs. This remark
regarding µ is valid for both 1D and 2D networks. In the
following we use µ = 10.
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Fig. IV.2. Optimized carrier threshold versus density, 2D network (T=1,
µ = 10, β = 4).
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Fig. IV.3. Optimized carrier threshold versus density, 2D network (T=1,
µ = 10, β = 4).

C. Effect of the density of nodes λ
We compute the optimum density of successful transmissions
when Pcs is optimized versus λ the density of nodes in the
network. We use the following parameters T = 1, µ = 10
and β = 4. The results of these computations are shown
in Figure IV.4 for 2D networks and in Figure IV.5 for 1D
networks. Our numerical study shows that the density of
successful transmissions is linear in λ. This means that the
maximum of the product of ppc(r, Pcs) does not depend on
λ. This is an interesting result and one which is not easily
apparent in the analytical formulas of ppc(r, Pcs).
Figures IV.4 and IV.5 also show the density of successful
transmissions when the carrier sense threshold is constant and
taken as the optimal value for λ = 1. The loss is significant for
small values of λ: 26% for λ = 0.1 and much more significant
for large values of λ : 80% for λ = 10 in 2D networks and
85% for λ = 10 in 1D networks. For instance, this means
that, in a VANET, the channel cannot be used efficiently if
the carrier sense threshold is not properly optimized according
to the density of vehicles. When λ = 0.1 and if we use
the optimization for λ = 1 we do not have any restriction
on the transmission rights and we actually have an excess of
transmission rights. The problem comes from the probability
of success for a given transmission. When λ = 10 and if we
use the optimization for λ = 1 we have a stringent restriction3

on the transmission rights, whereas a given transmission is
very well protected by the CSMA scheme and thus every
transmission is nearly always successful. The model shows

3the access right of CSMA (excess or stringent restriction) is determined
by the equation given in Proposition III.2.



that the problem concerning the access right is much more
detrimental to the global throughput than collisions would have
been if the density of nodes had been overestimated.
We have studied the probability of capture when the throughput
is optimized. We observed that the optimum throughput is not
obtained when most of the transmissions are successful but
rather when the success rate is around 55% in 2D networks
and around 70% in 1D networks. The numerical results we
obtained show that, at the optimum, pc(r, Pcs) does not depend
on λ and we also deduce that p does not depend on λ. This
is an interesting result which is not brought to light using the
analytical formulas.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1  2  3  4  5  6  7  8  9  10

de
ns

ity
 o

f s
uc

ce
ss

fu
l t

ra
ns

m
is

si
on

s

density of nodes

density of throughput (optimized CSMA) 
density of throughput (CSMA) 

Fig. IV.4. Density of successful transmissions versus density of nodes (T=1,
µ = 10, β = 4). Spatial network (2 D)
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Fig. IV.5. Density of successful transmissions versus density of nodes (T=1,
µ = 10, β = 4). Linear network (1 D)

D. Evaluation of exclusion area when the system is optimized
We computed the optimum value of Pcs: Pcs(opt) in the
previous section. CSMA is optimum when a transmission at
a given point forbids a transmission where the signal power
exceeds Pcs(opt). This means that on average, around a
transmitter, any transmission at distance Rcs is forbidden such
that 1

µl(Rcs)
= Pcs(opt). We study the ratio of Rcs by the

distance between the transmitter and its receiver. We recall that
this distance is 1/

√
λ in 2D networks and 1/λ in 1D networks.

In Figure IV.6, we show the ratio of Rcs by the distance
between the transmitter and its receiver for 2D networks versus
the density of nodes λ . We see that the average exclusion
area around a given transmitter ranges, on average, from 0.92
to 1.47 times the distance between the source and destination
nodes for 2D networks T=1, µ = 10 and β = 4. For 1D
networks as there is only one degree of freedom, the nodes are
more grouped and the average exclusion area around a given

transmitter is larger; it ranges from 1.47 to 1.63 times the
distance between the source and destination nodes depending
on the density of the nodes.
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Fig. IV.6. Ratio of carrier sense range and transmission range versus λ
density of nodes for T=1, µ = 10, β = 4 and a 2D network.
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Fig. IV.7. Ratio of carrier sense range and transmission range versus λ
density of nodes for T=1, µ = 10, β = 4 and a 1D network.

E. Effect of the capture threshold T
We study the effect of the capture threshold on the max-
imum density of successful transmissions. In Figure IV.8
and Figure IV.9 we plot the maximum density of successful
transmissions for T varying from 0.01 to 10 respectively for
2D and 1D networks. We observe that dividing the capture
threshold by 100 leads to multiplying the density of successful
transmissions by 5.6 and 1.9 for 2D and 1D networks. This
means that a small capture threshold is much more beneficial in
2D networks. The study of the analytical model does not show
any obvious scaling of the density of successful transmissions
with the capture threshold T .

F. Effect of the transmission decay β
In Figures IV.10 and IV.11, we plot the maximum density of
successful transmissions for β varying from 2 to 6 respectively
for 2D and 1D networks. In 2D networks, we observe that the
maximum density of successful transmissions is multiplied by
1.91 when β varies from 2.5 to 6. For linear networks (1D) the
maximum density of successful transmissions is multiplied by
1.32 when β varies from 2.5 to 6. As for the capture threshold,
the effect of a large transmission decay is less beneficial for
1D networks than for 2D networks. The study does not show
any apparent scaling of the density of successful transmissions
with the capture threshold β.
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Fig. IV.8. Density of successful transmissions versus capture threshold T
for 2D networks (λ=1, µ = 10, β = 4).
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Fig. IV.9. Density of successful transmission versus the capture threshold T
(λ=1, µ = 10, T = 1). Linear network (1 D)

V. CONCLUSION

In this paper, we present a simple model of CSMA and
we show the importance of optimizing it according to the
density of nodes. We have shown that the optimized density
of successful transmissions scales linearly with the density
of nodes. We have observed that using a constant carrier
threshold leads to a very significant loss in the network’s
global throughput. This effect is much more penalizing when
the density of nodes in the network is underestimated than
when it is overestimated. The numerical computations we have
carried out show that the best performance of the network is
not reached when transmissions are nearly always successful
but when there is a success rate of around 0.6. We have also
studied the influence of the model’s parameters : µ, T and
β. The rate of fading does not influence the performance of
the network if it is optimized. We show that T and β have
a greater impact on 2D networks than on 1D networks. The
results of this study have yet to be compared with simulation
results, preliminary tests show a good matching between the
results of both approaches. This will form the subject of our
future work. In addition the approximation of CSMA induced
by the Matern selection process should be further investigated.
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