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Área de Mecánica de Fluidos, Departamento de Ingenierı́a Mecánica y Minera,

Universidad de Jaén, Campus de las Lagunillas, 23071 Jaén, Spain

Jacques Magnaudet
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We report on a series of results provided by three-dimensional numerical simulations of

nearly spheroidal bubbles freely rising and deforming in a still liquid in the regime close to

the transition to path instability. These results improve upon those of recent computational

studies [Cano-Lozano et al., Int. J. Multiphase Flow 51, 11 (2013); Phys. Fluids 28,

014102 (2016)] in which the neutral curve associated with this transition was obtained by

considering realistic but frozen bubble shapes. Depending on the dimensionless parameters

that characterize the system, various paths geometries are observed by letting an initially

spherical bubble starting from rest rise under the effect of buoyancy and adjust its shape to

the surrounding flow. These include the well-documented rectilinear axisymmetric, planar

zigzagging, and spiraling (or helical) regimes. A flattened spiraling regime that most often

eventually turns into either a planar zigzagging or a helical regime is also frequently

observed. Finally, a chaotic regime in which the bubble experiences small horizontal

displacements (typically one order of magnitude smaller than in the other regimes) is

found to take place in a region of the parameter space where no standing eddy exists at

the back of the bubble. The discovery of this regime provides evidence that path instability

does not always result from a wake instability as previously believed. In each regime, we

examine the characteristics of the path, bubble shape, and vortical structure in the wake,

as well as their couplings. In particular, we observe that, depending on the fluctuations

of the rise velocity, two different vortex shedding modes exist in the zigzagging regime,

confirming earlier findings with falling spheres. The simulations also reveal that significant

bubble deformations may take place along zigzagging or spiraling paths and that, under

certain circumstances, they dramatically alter the wake structure. The instability thresholds

that can be inferred from the computations compare favorably with experimental data

provided by various sets of recent experiments guaranteeing that the bubble surface is free

of surfactants.

DOI: 10.1103/PhysRevFluids.1.053604

I. INTRODUCTION

The phenomenon in which the path of a bubble rising in a still liquid stops following a straight

vertical line and switches to a zigzag or helical trajectory is familiar to everybody and became known

at some point in the scientific community as Leonardo’s paradox [1]. This phenomenon, in which

the bubble shape, path, and wake are intimately coupled, has been widely studied since the 1950s,
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FIG. 1. Phase diagram in the (Bo,Ga) plane: solid line, approximate critical curve determined from three-

dimensional simulations performed using frozen realistic bubble shapes in Ref. [23]; dash-dotted and dashed

lines, critical curves obtained in Ref. [24] using the LSA approach with a freely moving and a fixed bubble,

respectively; and symbols, experimental data corresponding to incipient path instability observed in various

liquids (+ [12], × [13], • [4], ¨ [14], N [9], H [10], and ◮ [11]).

although the bubble hydrodynamic behavior is far from being fully understood yet. The first modern

study focused on that problem was performed by Haberman and Morton [2], using various liquids.

Depending on the bubble size, their study identified three different types of paths, namely, rectilinear,

spiral, and straight rocking. Afterward, many experimental studies were performed to analyze the

bubble shape, terminal velocity, wake, and path (see, for instance, [3–6] and references therein). The

transition from a rectilinear to an oscillatory path was specifically examined in Refs. [4,5,7–14].

Some of the corresponding results are displayed in Fig. 1 in the (Bo,Ga) plane, where Bo and Ga

are, respectively, the Bond number Bo = ρgD2/σ and the Galilei number Ga = ρg1/2D3/2/µ, with

ρ, µ, and σ denoting the density, viscosity, and surface tension of the liquid, respectively, D being

the bubble equivalent diameter and g the gravitational acceleration. Eliminating D in between the

Galilei and Bond numbers yields the so-called Morton number Mo = Bo3/Ga4 = gµ4/ρσ 3; hence

only two out of these three numbers are enough to entirely characterize the system provided the

density and viscosity of the liquid are much larger than those of the gas that fills the bubble. For

each value of Bo, the transition region displayed in Fig. 1 covers a wide range of Ga, underlining

the current uncertainty on the path instability threshold. This is partly due to the influence of the

setup and to experimental uncertainties in the detection of the incipient instability [15]. However,

the key issue is often the presence of surfactants that may affect the gas-liquid interface, changing

the shear-free boundary condition satisfied by the liquid into a no-slip one at least on a part of

the interface, therefore modifying the flow structure past the bubble, hence the threshold of the

instability [16,17]. This is especially true with water, which is a polar liquid, and it is only during

the past two decades that experiments could be carried out in ultrapure water where the shear-free

condition is properly achieved [14].

The critical curve was also numerically determined in order to get rid of experimental issues and

explore in more detail the connection between the evolution of the wake structure and the onset of

the instability. The initial model used in the computational approach was that of an oblate spheroidal

bubble with a prescribed aspect ratio (the length ratio of the major to minor axes, hereinafter denoted

by χ ). The direct numerical simulation (DNS) and linear stability analysis (LSA) approaches were

applied to this simplified geometry, with the bubble maintained fixed in a uniform stream [18–20] or

allowed to freely translate and rotate under the action of the buoyancy force [21,22]. However, under



real conditions, millimeter-size bubbles with a given volume do not exhibit a strict fore-aft symmetric

shape: Compared to an oblate spheroid with the same aspect ratio, their front is somewhat flatter and

their rear part is more rounded, owing to viscous effects [9,14]. This motivated more refined studies

that considered realistic fore-aft asymmetric shapes. In this framework, axisymmetric DNS was

employed in a first step to determine both the true axisymmetric bubble shape and the rise velocity

just before the transition. With these characteristics known, path instability was studied either using

three-dimensional DNS about the previously computed axisymmetric bubble shape [23] (solid line

in Fig. 1) or again within the framework of LSA [24]. In the latter case, the bubble was again

considered either fixed in a uniform stream (dashed line in Fig. 1) or freely moving (dash-dotted

line), its rise velocity being set to the value provided by the axisymmetric DNS.

The two aforementioned studies undoubtedly improved over those in which a strictly oblate

spheroidal shape was prescribed. However, they still prevent any further change in the bubble

geometry as the instability develops. Although this assumption might be tenable when the Bond

number is low, pressure fluctuations may easily alter the details of the bubble geometry when it is

of O(1) or larger. Under such conditions, a close coupling between the slight changes in the flow

past the bubble and those of its shape is to be expected. Current LSA approaches also suffer from

another restriction when the critical Galilei number becomes large, which is the case in pure water:

When the bubble starts from rest under such conditions, it almost reaches its terminal velocity well

before vorticity has fully diffused about it, owing to the large viscous time scale ρD2/µ. Hence

the base flow on which the disturbances that eventually yield path instability develop may not be

strictly stationary, unlike what is assumed in LSA. These two reasons may explain in good part

the discrepancies observed in Fig. 1 between experimental results and critical curves obtained from

DNS and LSA, respectively.

Besides the quest for an accurate critical curve, significant effort has been devoted over the past

15 years, both experimentally and computationally, to determine how the wake past the bubble

evolves with the style of path and how the coupling between the two operates. Indeed, starting

from an axisymmetric structure when the bubble rises in straight line, the transition to a zigzagging

path has been shown to be associated with the occurrence of a pair of counterrotating streamwise

vortices preserving a symmetry plane, as observed in DNS [21,25] and experiments performed in

ultrapure water [26] and silicon oils [10]. The wake past spiraling bubbles with a frozen oblate

shape was also considered in Refs. [21,25], where it was found to be made of a pair of intertwined

counterrotating vortices resulting in a frozen structure in the reference frame rotatingwith the bubble.

Some more recent DNS studies examined the wake evolution during the rise of a freely deforming

bubble, mostly in the zigzagging regime under conditions where time-dependent deformations

remain modest [27,28] or in the wobbling regime where the shape exhibits large capillary-driven

oscillations [29]. However, none of these studies focused on conditions close to the path instability

threshold. Hence little is currently known regarding the influence of transient bubble deformations

on the wake structure in the transitional regime.

Considering the state of the art summarized above, the aim of this study is to obtain a detailed

description of the path and wake of a series of freely deforming rising bubbles with Bond and Galilei

numbers corresponding to the region located in between and around the two critical curves of Fig. 1.

By so doing, we seek to improve the determination of the actual critical curve of real bubbles and get

insight into the intimate couplings between the path geometry, wake structure, and shape evolution.

The paper is organized as follows. First the numerical method and its validation are described

in Sec. II, followed by an overview of the configurations considered in the computations. The

central section of the paper is Sec. III, in which we discuss in detail the numerically observed paths

and wakes and their couplings. In Sec. IV we examine the evolution of the rising speed in the

various regimes and clarify the underlying mechanisms responsible for its characteristics. In Sec. V

we review the various transitions identified in the simulations and their main characteristics and

compare the present findings with state-of-the-art experimental and computational results to identify

the current consensus and dissensus regarding the path instability threshold. Section VI provides a

summary of the main findings of this study and suggests some avenues for future research.



FIG. 2. Detail of a typical grid in the vicinity of the bubble: (a) refined region in the vicinity of the bubble,

especially in the wake region (the last refinement level of the actual grid has been omitted in the figure to

improve readability), and (b) refinement on both sides of the bubble surface.

II. NUMERICAL METHOD, VALIDATION, AND OVERVIEW OF THE SIMULATIONS

A. Numerical technique and grid characteristics

The results to be discussed below were generated by solving the three-dimensional, time-

dependent Navier-Stokes equations in the entire gas-liquid domain. For this purpose, a one-fluid

formulation based on the volume of fluid approach was employed, considering gas-to-liquid density

and viscosity ratios of 10−3 and 10−2, respectively. The numerical simulations were performed with
the GERRIS flow solver open software [30]. The equations implemented in the solver are described

in detail in Ref. [31] and will not be repeated here. Furthermore, the discretization techniques and

additional computational details about the GERRIS code can be found in Refs. [30,32], which also

provide several validation cases.

The three-dimensional domain has a horizontal cross section of 8D × 8D and is 128D high in

order to allow the bubble motion to be tracked over a long time. This domain is discretized in cubic

finite volumes, hierarchically organized as an octree, which allows for a concentration of grid cells

at the interface and in the wake region, by refining a region of 2D × 2D × 10D around the bubble

and in the near wake. When dealing with bubbles exhibiting large lateral displacements, we expand

the size of the refined region to 4D × 4D × 20 ∼ 30D, depending on the spatial decay of the wake.

The spatial resolution is the same as the one employed in Ref. [31], where a detailed comparison

between axisymmetric and fully-three-dimensional simulations was carried out and showed good

agreement (for a typical case, the terminal velocity and aspect ratio provided by the two approaches

were found to differ by less than 1.5% and 0.8%, respectively). This comparative analysis was used

afterward to validate the configuration, domain size, grid density, and boundary conditions employed

in the present study. At the interface (in the wake), the grid has a density of 128 (32) cells per bubble

equivalent diameter (this corresponds to the level 4 of refinement in the terminology of [23]); a

typical example of the grid around and within the bubble is displayed in Fig. 2. A no-slip boundary

condition is applied at the bottom and on the vertical lateral walls of the domain, while an outflow

condition is prescribed at the top. Computations are initiated with a spherical bubble shape, as in

Refs. [23,31], with the bubble center initially standing 3D above the bottom wall. No disturbance

is added to trigger the instability. Hence the latter occurs solely due to the propagation of truncation

and roundoff errors. It is worth pointing out that these computations have a high computational cost,

owing to the large number of grid cells [O(107)] required to resolve the boundary layer and wake

consistently and the large number of time steps [O(2.5× 105)] required to follow the bubble during
a long time and capture the possible late transitions of its path and wake.

B. Validation

The accuracy of the computational predictions in the axisymmetric flow regime was discussed in

detail in Ref. [23]. It was shown, for instance, that in the case of a marginally stable configuration

corresponding to a bubble with Ga = 239 and Bo = 0.44 rising in pure water, computational



predictions differ from experimental observations [14] by 0.17% for the terminal velocity and 3.5%

for the aspect ratio, respectively. However, this comparison was limited to quantities characterizing

the final steady state. Since we are concerned with possible transient changes in the bubble shape, we

also wished to check that capillary-driven oscillations are properly captured with the grid resolution

defined above. For this purpose we ran a specific series of three-dimensional computations in which

we tracked the evolution of bubbles released from rest with a slightly nonspherical shape. We

considered both fixed (i.e., nonrising) and rising bubbles characterized by a local pole-to-pole initial

radius 2r(θ,t∗ = 0)/D = 1+ ǫPn(θ ), where Pn(θ ) is the Legendre polynomial associated with the

axisymmetric oscillationmode of order n, ǫ is the dimensionless amplitude of the initial deformation,

and θ denotes the polar angle (throughout the paper, t∗ denotes a dimensional time). In the classical
viscous potential flow approximation, linear axisymmetric oscillations of mode n of a fixed, almost

spherical bubble are known to evolve as e[iω(n)−τ−1(n)]t∗ , where the radian frequency and characteristic

damping time are respectively given by [33]

ω2(n) = 8(n − 1)(n + 1)(n + 2)
σ

ρD3
, τ (n) =

1

4(n + 2)(2n + 1)
D2

ν
. (1)

The leading-order finite-Reynolds-number corrections to (1) resulting from the shear-free

boundary condition at the bubble surface respectively scale as Re−3/2osc and Re−1/2osc [34], with

Reosc =
√

ρσD/µ, so that (1) holds for large enough Reosc. We ran computations for bubbles

with an initial slightly prolate shape corresponding to ǫ = 0.075 so as to ensure that oscillations

stay in the linear regime. We extracted the evolution of the bubble shape, expanded it in the form

2r(θ,t∗)/D = 1+
∑

an(t
∗)Pn(θ ) and determined the optimal fit to the evolution of the amplitude of

mode n = 2, i.e., a2(t
∗), by an exponentially damped cosine function. This allowed us to conclude

that, with the grid used throughout this work, ω(2) and τ (2) are predicted with an accuracy of the

order of 1%–2%. For instance, with Reosc = 70.7, we found that predictions differ from (1) by 1.8%,

in both the frequency and damping time.

The case of rising bubbles is more complex because capillary deformations generally develop

on a nonspherical time-evolving surface. Then spherical harmonics are not eigenfunctions of the

linear dynamical problem anymore. Hence, starting with the above form of r(θ,t∗ = 0), modes of

order m with m 6= n subsequently develop. Moreover, one has to distinguish between axisymmetric

modes [with, for mode (2,0) in the nomenclature of spherical harmonics, two wavelengths along the

perimeter of the vertical bubble cross section] and nonaxisymmetric ones [with, for mode (2,2), two

wavelengths along the bubble equator]. In the case of an oblate spheroid with a prescribed aspect

ratio, the frequency of the first oscillation modes was computed in the inviscid limit as a function of

the oblateness in Ref. [35] and was shown to be a slowly decreasing function of χ . We computed

the evolution of a bubble corresponding to Bo = 2.36 and Ga = 108.6 (i.e., Reosc = 70.7 since

Reosc = GaBo−1/2), which, according to Fig. 1, falls within the transition region. Again, a slightly
prolate initial shapewith ǫ = 0.075was selected. The evolution of the bubble aspect ratio is displayed

in Fig. 3(a). The final aspect ratio χT is 1.89, whereas the final Reynolds number ReT is 145. Both

predictions compare very well with those recently obtained with a level-set approach on a uniform

three-dimensional grid with 48 cells per bubble diameter [36], namely, χT = 1.91 and ReT = 142.

To evaluate how the characteristics of the oscillations evolve in such a configuration, effects of

the variation of the mean bubble shape must be removed [37]. We achieved this by considering a

succession of time windows and separating the time-averaged and time-dependent contributions to

the amplitude of mode (2,0) in each of them. The radian frequency of this mode within each window

ω(2,0) could then be determined, together with the corresponding time-averaged aspect ratio 〈χ〉.
The resulting variation of ω(2,0) is plotted against 〈χ〉 in Fig. 3(b). Although the rapid damping of
the oscillations lowers the accuracy of the procedure as 〈χ〉 increases, resulting in a non-negligible
scatter, the general tendency is found to follow the theoretical inviscid prediction [35].

All numerical tests reported in the literature aimed at reproducing the characteristics of planar

capillary waves or drop or bubble oscillations were performed on two-dimensional or axisymmetric
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FIG. 3. Rise of an initially slightly prolate bubble corresponding toBo = 2.36 andGa = 108.6: (a) evolution

of the aspect ratio and (b) variation of the frequency of mode (2,0) with the time-averaged aspect ratio. In (b)

the solid line corresponds to the inviscid prediction of [35].

grids. Discretizing an axisymmetric shape on a three-dimensional Cartesian grid unavoidably

introduces additional numerical errors because the grid does not fit with the surface in the azimuthal

direction. This is why the accuracy of the predictions obtained in the tests reported above makes

us confident that the grid used throughout this work is suitable to properly capture time-dependent

deformations of the bubble surface in the transition regime on which we focus.

C. Overview of the simulations

Figure 4 shows the position in the (Bo,Ga) plane of the various bubbles analyzed in this

work. Twenty-six bubbles, all located in the neighborhood of the transition curves determined in

Refs. [23,24], were considered.We selected five values of theMorton number (see Table I) and varied

the Bond and Galilei numbers along each iso-Mo line by properly modifying the fluid properties, fol-

lowing the procedure described in Ref. [24]. The selected values ofMo correspond to ultrapure water

at a temperature of 28 ◦C (Mo = 1.11× 10−11) and different silicon oils at a temperature of 22 ◦C,
which were respectively employed in Refs. [9,26] to study the transition from an experimental point

of view. Table I also indicates the value of the Bond and Galilei numbers, the style of path and wake
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FIG. 4. Phase diagram showing the entire set of simulations and positioning them in the (Bo,Ga) plane

with respect to the two neutral curves displayed in Fig. 1. Open (closed) symbols refer to runs in which the

rectilinear bubble path was found to be stable (unstable). The dotted line represents the critical curve beyond

which a standing eddy exists [23] and the thin solid lines correspond to iso-Mo lines (shown from left to right

are water at 28 ◦C and silicon oils T00, T02, T05, and T11, respectively, all at a temperature of 22 ◦C). The

various bubbles are numbered as in Table I.



TABLE I. Characteristic properties of the 26 flow conditions considered in this study. Here 2CRV, SHV,

and FS stand for two counterrotating vortices, secondary hairpin vortices, and flattened spiraling, respectively;

following the terminology of [38], the terms 2R and 4R refer to the number of vortex loops per period in the

wake of zigzagging bubbles.

Case Liquid Mo Bo Ga St Path Wake Regime

1 water 1.11× 10−11 0.2 163.88 rectilinear axisymmetric rectilinear

2 water 1.11× 10−11 0.3 222.13 chaotic 2CRV aperiodic chaotic

3 water 1.11× 10−11 0.36 255.28 chaotic 2CRV aperiodic chaotic

4 water 1.11× 10−11 0.475 313.54 0.042 chaotic or

elliptical spiral

2CRV

aperiodic+SHV
transitional

5 water 1.11× 10−11 0.55 350.20 0.045 elliptical spiral→
planar zigzag

2CRV 2R+SHV FS→ zigzagging

6 T00 1.8× 10−10 0.4 137.31 rectilinear axisymmetric rectilinear

7 T00 1.8× 10−10 0.5 162.34 chaotic 2CRV aperiodic chaotic

8 T00 1.8× 10−10 0.6 186.12 chaotic 2CRV aperiodic chaotic

9 T00 1.8× 10−10 0.7 208.93 chaotic 2CRV aperiodic chaotic

10 T00 1.8× 10−10 0.8 230.94 0.054 planar zigzag 2CRV+SHV zigzagging

11 T00 1.8× 10−10 1.0 273.01 0.060 elliptical spiral→
planar zigzag

2CRV+SHV FS→ zigzagging

12 T02 1.6× 10−8 1.0 88.92 rectilinear axisymmetric rectilinear

13 T02 1.6× 10−8 1.25 105.11 rectilinear axisymmetric rectilinear

14 T02 1.6× 10−8 1.50 120.51 0.069 planar zigzag 2CRV 2R zigzagging

15 T02 1.6× 10−8 1.75 135.3 0.073 planar zigzag 2CRV 2R zigzagging

16 T02 1.6× 10−8 2.25 163.35 0.090 elliptical spiral→
planar zigzag

2CRV 4R FS→ zigzagging

17 T02 1.6× 10−8 2.5 176.77 0.095 elliptical spiral→
planar zigzag

2CRV 4R FS→ zigzagging

18 T05 6.2× 10−7 3.0 81.23 rectilinear axisymmetric rectilinear

19 T05 6.2× 10−7 4.0 100.8 0.108 planar zigzag 2CRV 2R zigzagging

20 T05 6.2× 10−7 5.0 119.2 0.123 planar zigzag 2CRV 4R zigzagging

21 T05 6.2× 10−7 6.0 136.6 0.138 elliptical spiral→
planar zigzag

2CRV 4R FS→ zigzagging

22 T11 9.9× 10−6 5.0 59.61 rectilinear axisymmetric rectilinear

23 T11 9.9× 10−6 6.0 68.34 rectilinear axisymmetric rectilinear

24 T11 9.9× 10−6 7.0 76.72 0.120 planar zigzag 2CRV 2R zigzagging

25 T11 9.9× 10−6 8.5 88.74 0.132 planar zigzag 2CRV 2R zigzagging

26 T11 9.9× 10−6 10.0 100.25 0.136→ 0.174 planar zigzag→
helix (spiral)

spiral spiraling

structure (or the succession of them) identified during the bubble ascent, and, when appropriate, the

Strouhal number St = f D/UT , where f is the oscillation frequency of the path andUT is the bubble

terminal velocity. In the figures displayed in the next section, all variables are made dimensionless

using the equivalent diameter D and the gravitational time
√

D/g as characteristic length and time

scales, respectively. The only exception is the vorticity, which is normalized using the characteristic

time scale D/UT . Thus, the main features of the vortical structures that develop in the wake are

discussed using isocontours of the dimensionless streamwise vorticityωx = ∂w/∂y − ∂v/∂z, where

x (u) is the dimensionless vertical coordinate (velocity) and y and z (v andw) lie in a horizontal plane.

III. OBSERVED SHAPES, PATHS, AND WAKES

In this section we comment on the key results of this study, focusing on the observed paths, wake

structures, and interface shapes for a representative sample of the 26 bubbles that were considered.



−0.1
0

0.1

−0.1

0

0.1

0

20

40

60

80

100

yz

x

(a) (b)

FIG. 5. (a) Three-dimensional reconstruction of the path followed by bubble number 22 in Table I.

(b) Streamlines of the flow around the bubble showing its axisymmetry and the presence of a standing eddy.

Emphasis is put on the discussion of the underlying mechanisms in order to identify the causes

or the nature of several puzzling behaviors. The five dynamical regimes we observed during the

computations are not presented in ascending order of the Bond and Galilei numbers. Rather, we start

by commenting on the three already-well-identified regimes, namely, vertical axisymmetric, planar

zigzagging, and helical or spiraling, before discussing the more complex flattened spiraling regime

and the chaotic regime revealed by these simulations.

A. Rectilinear regime

When the Bond and Galilei numbers are below the lowest critical curve reported in Fig. 4, bubbles

rise following a straight vertical trajectory and the flow field around them is axisymmetric as can

be observed, for example, in Fig. 5 for bubble number 22 in Table I; the same behavior was found

for bubbles 1, 6, 12, 13, 18, 22, and 23. In this stable regime, once the bubbles reach their terminal

velocity, they rise while keeping their shape unaltered. Additionally, Fig. 5(b) shows the streamlines

around the bubble, confirming that the flow is axisymmetric with a toroidal vortex attached to the

rear part of the bubble. However, displaying the streamlines corresponding to the flow field around

bubble number 12, for instance, would reveal that no such attached vortex exists in this case. This is

consistent with the position of the dotted line in Fig. 4, which corresponds to the critical conditions

for the existence of a standing eddy. Indeed, such eddies result from an accumulation of vorticity

at the back of the bubble [39] and the vorticity generated on a surface on which the flow obeys

a shear-free condition is known to be proportional to the product of the surface curvature by the

tangential fluid velocity [40]; hence only bubbles with an aspect ratio exceeding a threshold value

that depends on the rise Reynolds number exhibit an attached toroidal vortex [41]. Small initial

deviations in the path may be noticed in Fig. 5(a). They result from the cumulated effects of several

potential sources of tiny asymmetries, such as off-centering of the initial bubble position within

the three-dimensional grid, departures from axisymmetry of its initial shape, and asymmetries of

truncation errors. These errors tend to trigger the instability of the bubble path. In the present case,

the system quickly develops an axisymmetric behavior, which allows us to conclude that it is stable

with respect to infinitesimal disturbances.
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FIG. 6. (a) Three-dimensional reconstruction and (b) top view of a bubble trajectory typical from the

zigzagging regime (bubble number 19 in Table I). (c) Two perpendicular views of the temporal evolution of the

bubble shape at positions indicated by bullets in (a) and (b); the solid line corresponds to the average vertical

(x) axis of the path.

B. Planar zigzagging regime

The zigzagging motion of a rising or falling body is characterized by a constant periodic lateral

drift from one side to the other taking place within a plane. Such characteristics can be observed in

Fig. 6(a), where a three-dimensional view of the bubble path in this regime is plotted. Here, with

bubble number 19, the amplitude of the lateral drift is about±0.3D and themaximum inclinationwith
respect to the vertical, say,ψ0, is about 14

◦. These findings are in excellent agreement with the obser-
vations reported in Ref. [10] with the same (Bo,Ga) pair. As shown in Fig. 6(b), the path is not strictly

planar in its early stages, its cumulated drift in the (y,z) plane being of O(10−2D). Nevertheless,
this drift decreases over time and, after path instability has saturated, the bubble goes on zigzagging

in a plane. Since no perturbation is added to trigger the instability, the selection of this plane entirely

results from the various sources of error listed above. The right sequence in Fig. 6(c) indicates that the

minor axis of the bubble is vertical at positions 1, 3, and 5, which correspond to the maximal lateral

excursion, i.e., there is no inclination of the bubble with respect to its path. Starting from position 1 or

3, the bubble begins to tilt toward the direction of the path, achieving its maximum inclination in the

middle of the next branch of the zigzag, i.e., at position 2 or 4. In the second half of this branch, this

inclination reduces until it vanishes again at the next extremity, i.e., at position 3 or 5. All along the

zigzags, the bubble minor axis remains virtually aligned with the local direction of the path. This is

actually a general characteristic of the zigzagging motion of axisymmetric bodies with aspect ratios

not too far from unity [6,42], in contrast to the behavior of flat bodies. The left sequence in Fig. 6(c)

shows that, once in the fully developed zigzagging regime, the bubble cross section perpendicular to

the plane of the zigzag remains constant (the projected area is seen to vary somewhat over time, but

this variation is entirely due to the varying bubble inclination). In contrast, the right sequence reveals

that the bubble is more pointed (i.e., it has a larger maximum curvature) on its left at positions 1 and 5

and on its right at position 3. This is an indication that some deformation is going on within the plane

of the zigzag. More precisely, the corresponding maximum curvature is seen to be larger (smaller) at

the exterior (interior) of the zigzag. This trend is readily rationalized by noting that the bubble rotates

about its major axis perpendicular to the plane of its path and the corresponding rotation rate is maxi-

mum at the extremities of the zigzag. Hence, in the reference frame moving with the bubble centroid,

the local tangential fluid velocity is larger (smaller) at the exterior (interior) of the zigzag. This results



FIG. 7. Evolution of the streamwise vorticity isocontours ωx = ±0.24 at five successive positions
corresponding to the bullets shown in Figs. 6(a) and 6(b) for bubble number 19. The left and right panels

correspond to two perpendicular views. In the right panel, the dotted lines mark the hidden part of the primary

isocontour at positions 1, 3, and 5.

in a lower (higher) local pressure, making the bubble deform more on the side located the farthest

away from the zigzag centerline. This effect can be quantified by considering that the inclination of the

bubbleminor axis obeys the lawψ(t∗) = ψ0 cos(2πf t∗). Thus, when the bubble reaches an extremity
of the zigzag, its rotation rate is 2πf ψ0 and the difference in the fluid velocity at the two points

located at the intersection of its equator and the plane of its path is1U = 2πf Dψ0g(χ ), where g(χ )

may be estimated from the irrotational prediction for the flow induced by the rotation of an oblate

spheroid [33], i.e., g(χ ) = χ1/3(χ2 − 1)[sec−1χ − (2χ2 + 1)(χ2 − 1)1/2/3χ2][(χ2 + 1)sec−1χ −
2(χ2 − 1)1/2 − (χ2 − 1)3/2/3χ2]−1. On the equator, the rise of the bubble yields an average vertical
fluid velocity h(χ )UT , with, again from potential flow theory [33], h(χ ) = (χ2 − 1)3/2[χ2sec−1χ −
(χ2 − 1)1/2]−1. Therefore, the pressure difference resulting from the velocity difference1U is1P ≈
ρh(χ )UT 1U , which is to be compared with the mean pressure difference 1Pav = ρ[h(χ )UT ]

2/2

between the front stagnation point and the equator. Hence 1P/1Pav ≈ 21U/h(χ )UT ≈
4π Stψ0g(χ )/h(χ ). For bubble number 19 we have St = 0.108, ψ0 = 14◦, and χ ≈ 2.11 [hence

g(χ ) ≈ 0.80 and h(χ ) ≈ 2.18], so 1P/1Pav ≈ 0.12. Although one order of magnitude smaller

than the deformation resulting from 1Pav, it is likely that the pressure difference 1P induces a

significantly nonuniform distribution of the curvature of the bubble surface within the equatorial

plane, provided the Bond number is at least of O(1), and this is indeed what is seen in Fig. 6(c).

The zigzagging regime is characterized by a wake structure consisting of two counterrotating

trailing vortices exhibiting a symmetry plane, as can be appreciated in Fig. 7. The sign of the trailing

vorticity within each thread changes every half-period of the zigzag. However, as shown in Ref. [25],

this change does not coincide with the inflection point of the path, or with the maximum lateral

excursion of the bubble, rather being located in between the two. This is confirmed by Fig. 7, which

shows that the primary vortex pair changes its sign in between points 1 and 2 (2 and 3) during

the first (second) half-cycle. This mode was experimentally observed in Refs. [10,43], as well as

in DNS [21]. Looking at the various bubbles in Table I for which a planar zigzagging regime was

encountered, it may be noticed that the frequency of the periodic motion increases significantly

with the Bond number, i.e., the length of the isovorticity contours in each thread, such as those

shown in Fig. 7, decreases. Indeed, the Strouhal number ranges from 0.054 for Bo = 0.8 to 0.132

for Bo = 8.5. Actually, the Morton number also changes from one case to another, so there may

be some influence of the viscosity as well. Nevertheless, Mo keeps the same value for bubbles 24

and 25. Since the former corresponds to Bo = 7.0 and has St = 0.120 while the latter corresponds

to Bo = 8.5 and has St = 0.132, the dominant influence of the Bond number is clear. Although not

reported in Table I, the amplitude of the bubble lateral shift is also found to increase significantly



FIG. 8. Two perpendicular views of the wake structure in the zigzagging regime revealed by the λ2 criterion

(bubble number 19). The bubble is visible on the right.

with the Bond number: For instance, with Mo = 1.6× 10−8, the crest-to-crest amplitude is found
to vary from 0.8D for bubble 15 (Bo = 1.75) to 1.35D for bubble 17 (Bo = 2.5).

The vortical structure in the wake is also displayed in Fig. 8 in two perpendicular planes, using

the λ2 criterion [44]. Not surprisingly, this structure is close to that observed in the wake of fixed

or tethered axisymmetric bodies in the range of parameters in which they exhibit a periodic vortex

shedding regime preserving a planar symmetry (e.g., a fixed solid sphere at a Reynolds number

of 300 in Refs. [45,46] or fixed circular disks with aspect ratios in the range 5–10 and Reynolds

numbers in the range 170–180 in Refs. [47,48]). However, the present wake reveals a key difference

with respect to that of fixed bodies: In the latter case, the lift force, although oscillating, keeps a

constant sign, so the wake is made of a single-sided chain of vortex loops [referred to as the R

(ring) mode of vortex formation in Ref. [38]]. Here, in contrast, the averaged lift force over a full

zigzag period is zero as the bubble mean path is vertical. As a consequence, in addition to its planar

symmetry, the wake exhibits an averaged left-right symmetry and is made of a two-sided chain of

vortex loops (the 2R mode according to the nomenclature of [38]) as the bottom view in Fig. 8

shows.

Although it may at first glance seem generic of the planar zigzagging regime, it turns out that the

wake structure we just described is not. This can be appreciated by examining its counterpart in the

final stage of the rise of bubble number 16. Over a long time, this bubble follows a flattened spiraling

path that will be described in a forthcoming paragraph. However, this spiral flattens more andmore as

time proceeds, so the bubble eventually describes planar zigzags. The structure of the corresponding

wake, revealed by the λ2 criterion, is displayed in Fig. 9. As the top view in Fig. 9(a) shows, the

FIG. 9. Two perpendicular views of the wake structure revealed by the λ2 criterion at the end of the rise of

bubble number 16: (a) complete wake and (b) zoom-in of the near wake.
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FIG. 10. (a) Three-dimensional reconstruction and (b) top view of the trajectory corresponding to bubble

number 26. (c) Two perpendicular views of the temporal evolution of the bubble shape corresponding to the

bullets in (a) and (b).

wake exhibits a symmetry plane only up to a position about 10D downstream of the bubble, whereas

at larger distances the two threads become strongly intertwined, in line with the three-dimensional

nature of the “old” path. Focusing on the near wake where a symmetry plane exists [Fig. 9(b)], the

bottom view reveals that the previously described 2R mode is now replaced by a 4R mode in which

a second single-sided loop superimposes onto the primary one. While the latter is generated every

half-cycle of the zigzag near its extremities, the former emerges near the inflection point (i.e., the

centerline) of the path. This mode was also identified and described in detail in Ref. [38] in the

context of freely falling spheres. The authors showed that it is specific to zigzagging spheres and

emerges in the form of a loop after the primary streamwise vortex pair has pinched off. Moreover,

they were able to pinpoint that this pinch-off is induced by the small oscillations with frequency 2f

of the body vertical velocity that take place in between two extremities of a zigzag with frequency f :

Having suppressed artificially these oscillations, they recovered a 2R wake structure similar to that

shown in Fig. 8. To check whether or not the same mechanism holds here, it is relevant to compare

the evolutions of the rising speed, i.e., Reynolds number, for bubbles 19 and 16 in Figs. 20(c)

and 20(e) (on which we will comment in more detail later). It turns out that the relative magnitude

of the rising speed oscillations is typically five times larger for bubble 16, which gives additional

credit to the connection suggested in Ref. [38]. Finally, it is worth noting that Fig. 9(a) suggests that

the 4R mode is robust, as it subsists at least over 40D downstream of the bubble, although the wake

has lost it planar symmetry long before.

C. Spiraling (helical) regime

For the highest value of the Morton number considered in this study, Mo = 9.9× 10−6, the
largest bubble (number 26) describes a spiraling path, as can be seen in Figs. 10(a) and 10(b). More

precisely, this bubble follows an elliptic spiraling path whose minor-to-major axes ratio increases

over time, ending in a circle with a diameter about 0.28D. Hence, once it has reached its terminal

velocity, its final path is nothing but a circular helix. In line with our previous observations, the

bubble shapes displayed in Fig. 10(c) exhibit a left-right asymmetry in their diametrical plane, being

more pointed in the region looking toward the path exterior. This asymmetry is noticeable in this

case since the Bond number is large (Bo = 10), resulting in weak surface tension effects.

The corresponding wake structure is displayed using isocontours of the streamwise vorticity

in Fig. 11. This structure is characterized by a pair of fully intertwined streamwise vortices. The



FIG. 11. Evolution of the streamwise vorticity isocontours ωx = ±0.24 at four successive positions
corresponding to the bullets shown in Fig. 10 for bubble number 26. The left and right panels correspond

to two perpendicular views.

two threads are totally disconnected, i.e., no hairpin is present, in contrast to the wake structure

observed in the case of planar zigzags. They wrap up around one another, yielding a double spiral

(or corkscrew) wake structure. This is in line with the DNS observations reported in Refs. [21,25] at

much higher Reynolds number (Re ≈ 600 instead of 80 in the present case); in the latter reference

it was shown that this wake looks frozen when observed in a reference frame attached to the bubble

and delivers a constant force and torque on it. Not unlikely, the vortical structures characteristic of

this spiraling regime are similar to those observed elsewhere in the wake of spinning solid bodies, a

context in which they were referred to as spiral modes [49,50].

D. Flattened spiraling regime

For the lowest four values of the Morton number considered in this study, a flattened spiraling

regime with an approximately elliptical horizontal projection was observed at the highest values of

Ga in each series. In general, this regime appears to be a more or less long transient that eventually

converges either toward a planar zigzagging regime when the ellipse flattens gradually (this is the

case with bubbles 5, 11, 16, 17, and 21) or toward a helical regime when it tends toward a circle,

as previously seen with bubble number 26. However, this transient may be very long, maintaining

the path geometry in between those of a planar zigzag and a circular helix over a vertical distance

of O(102D) as may be observed in the two examples discussed below. Thus, it is no surprise that

in many experiments (and computations) performed in devices of limited height, this intermediate

three-dimensional regime has been considered as a stable state. It may be thought of as resulting from

the continuous (but generally nonuniform) precession of a planar zigzag. Two typical paths corre-

sponding to this regime are displayed in Figs. 12(a), 12(b), 13(a), and 13(b) for bubbles number 5 and

16, respectively. Qualitatively similar behaviors have been noticed in several experiments, especially

those performed in ultrapure water in Ref. [51]. However, it must be stressed that these experiments

were performed at significantly higher Reynolds number (ReT > 103), so the observed flattened

spiraling paths succeed the planar zigzagging or helical paths when the bubble diameter is increased

and announce the transition to the high-Reynolds-number chaotic (rocking) motion, whereas here

they precede the occurrence of the well-defined planar zigzagging and spiraling regimes.

The two elliptical spirals shown in Figs. 12(a), 12(b), 13(a), and 13(b) converge towards a planar

zigzag, as the wake structure displayed in Fig. 9 shows in the latter case. The evolution of the bubble

shape plotted in Figs. 12(c) and 13(c) reveals departures from axisymmetry [see, for instance,

snapshot 3 (2) in the left column of the former (latter) figure]. Again, this left-right asymmetry is due

to the bubble rotation. It is not unlikely that it is especially visible at the positions mentioned above,
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FIG. 12. (a) Three-dimensional reconstruction and (b) top view of a bubble trajectory typical from the

flattened spiraling regime (bubble number 5). (c) Two perpendicular views (on the left, the x-z plane and on

the right, the x-y plane) of the evolution of the bubble shape corresponding to the bullets in (a) and (b).

which both correspond to the maximum lateral excursion of the bubble. However, this asymmetry

is less salient for bubble 5, whose Bond number is four times smaller than that of bubble 16.

Figure 14 displays two perpendicular views of the wake evolution past bubble 5. The wake

structure resembles that observed in the planar zigzagging regime, as it is still dominated by a pair of

counterrotating streamwise vortices whose sign changes alternately. However, as could be expected,

no symmetry plane can be seen in either of the two views. Rather, the two vorticity threads are slightly

twisted around each other as evidenced in the right frame, a situation resulting in a nonzero axial

torque on the bubble. Moreover, an additional spectacular feature is the presence of short-wavelength

undulations of isovorticity contours, which start to develop some distance downstream of the bubble

and progressively invade the far-wake structure. Figure 15 displays the topology of the same wake

extractedwith the help of theλ2 criterion.As shown in this figure, the secondary vortices take the form

of single-sided loops superimposed onto each primary vortex. One can identify approximately four

such loops along each primary vortex, which makes the corresponding wake mode unambiguously
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FIG. 13. Same as Fig. 12 for bubble number 16.



FIG. 14. Evolution of the streamwise vorticity isocontours ωx = ±0.24 at positions corresponding to the
bullets shown in Figs. 12(a) and 12(b) for bubble number 5. The left and right panels display two perpendicular

views and the solid line indicates the x axis.

different from the 4R mode previously identified in Fig. 9. Observations showing the existence of

secondary vortex structures have repeatedly been reported in experiments performed in low-Mo

fluids [4,26,51–53]. Here the wavelength associated with the secondary loops is somewhat larger

than the spacing sv between the two vortex threads, which might suggest that they result from

Crow instability [54]. However, according to [4], the typical wavelength that emerges from Crow

instability is in the range 5sv–9sv , which is significantly larger than the characteristic wavelength

revealed by Fig. 15. Hence it seems that this explanation has to be ruled out.

The most likely option left is that they result from the coupling between bubble deformation and

wake dynamics, a coupling that has been studied in the past for larger bubbles having Reynolds

numbers of O(103) [51,55,56]. Indeed, every transient change in the bubble shape (especially in

the vicinity of the bubble’s equator) results in a change in the local curvature of the bubble surface,

hence in a variation of the azimuthal surface vorticity. Once tilted in the streamwise (vertical)

direction, the magnitude of the vorticity that enters the double-threaded wake reflects this change,

yielding a modulation of the streamwise vortices. To assess this scenario, a simple test consists in

comparing the typical wavelength of secondary loops, say, 3, with the vertical distance traveled

by the bubble during a period of the most likely shape oscillations, say, lÄ, with lÄ = 2πUT /Ä, Ä

being the radian frequency of the relevant oscillation mode. To estimateÄ, the most obvious choice

is to consider that the dominant oscillations are those corresponding to mode 2. Ignoring effects

of bubble oblateness on the frequency of this mode [35], we stay with the crude approximation

Ä = ω(2), which yields lÄ/D = π

2
√
6
We

1/2

T , where WeT = ρU 2
T D/σ is the Weber number based

on the terminal rise velocity. Here WeT ≈ 3.32, so lÄ/D ≈ 1.17. Independently, using Fig. 15,

one deduces 3/D ≈ 1.21. Hence the two estimates are in excellent agreement, which gives strong

support to the scenario of the secondary vortex loops resulting directly from the dominant shape

oscillations through the variations of the vorticity they induce at the bubble surface. It must be pointed

FIG. 15. Two perpendicular views of the wake structure past bubble number 5 revealed by the λ2 criterion.



FIG. 16. Same as Fig. 14 for bubble number 16 (at a much earlier time than in Fig. 9).

out that this mechanism is not specific to the flattened spiraling regime: At a much later time, bubble

5 eventually follows a planar zigzagging path in which the wake structure remains similar, apart

from the newly emerging planar symmetry, to that observed at earlier stages in Figs. 14 and 15.

Figures 16 and 17 show the wake structure past bubble number 16 using the same representations

as in Figs. 14 and 15, respectively. These plots are taken at a much earlier time than in Fig. 9 to focus

on the features specific to the flattened spiraling stage. The wake is of course characterized by a

pair of intertwined streamwise vortices. However, the picture is now much simpler than with bubble

number 5 since no short-wavelength loop exists. In this case, as already observed in Fig. 9, the wake

structure is essentially of the 4R type, except that there is a significant twist of the connecting hairpins

about the vertical axis. This wake structure results in a time-dependent lift force and torque with

nonzero mean. Figure 18 shows a cross-sectional view of the vortical structure associated with this

mode in different cross sections downstream of the bubble. The asymmetry between the negative and

positive isocontours is clear, although not spectacular, and increases with the distance to the bubble.

This distribution is reminiscent of that found in the yin-yang mode that emerges from the secondary

Hopf bifurcation in the wake of a tethered infinitely thin disk [57] or from higher-order bifurcations

in the case of thicker disks [58]. In both cases, the lift force oscillates about a mean direction.

However, in the yin-yang mode the axial torque oscillates about a zero mean, whereas in the present

case the mean axial torque is nonzero. This is why the bubble may keep a vertical path on average,

whereas if the wake were in a true yin-yang mode, its average path would comprise a nonzero

inclination. To conclude with this wake structure, it is worth examining briefly the reason why no

secondary loops due to shape oscillations occur in this case. Using the same reasoning as for bubble

number 5, one finds lÄ/D ≈ 1.27, which is very close to the estimate obtained with the previous

FIG. 17. Same as Fig. 15 for bubble number 16 (at a much earlier time than in Fig. 9).
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FIG. 18. Horizontal cuts showing the shape of the streamwise vorticity isocontours, from ωx = −0.24
(black) up to ωx = 0.24 (white) for bubble number 16 in cross sections located (from right to left) 0.5D, 2D,

and 4D apart from the bubble centroid.

bubble. Hence the difference has to be found elsewhere. It lies in the ratio of the characteristic time

of the oscillations ω(2)−1 over that of their viscous damping τ (2), i.e., in the oscillatory Reynolds

number Reosc = GaBo−1/2. Compared with bubble number 5, the oscillatory Reynolds number is
four times smaller in the present case, owing to the larger viscosity and smaller surface tension.

Hence oscillations decay much faster and are unable to alter significantly the wake structure.

E. Chaotic regime

Chaotic motion of freely rising or falling bodies in which the path exhibits abrupt changes of

direction and its horizontal projection tends to fill densely a part of the (y,z) plane has frequently been

reported, especially with spheres and disks of various thicknesses [6]. Most of these observations

are concerned with large-amplitude chaotic regimes that take place at larger values of the control

parameter than well-defined regimes such as planar zigzag (see, e.g., [59–61]). For instance, it has

been observed with light rising spheres [59] that increasing the Galilei number (the body-to-fluid

density ratio being kept fixed) yields successively rectilinear, steady oblique, oscillating oblique,

planar zigzagging, and chaotic paths. Similar observations have been reported with rising bubbles,

i.e., in a given fluid, chaotic (frequently referred to as rocking) motions are observed for bubble

diameters larger than those giving rise to zigzagging and spiraling paths [2,51,62].

Herewe are concernedwith another type of chaotic path that, for a given value ofMo,was detected

in several simulations carried out with slightly smaller values of the Galilei number than those at

which zigzagging paths (and during long transients, flattened spiraling paths) were encountered.

This chaotic regime was observed for bubbles 2, 3, 7, 8, and 9 in Fig. 4, which all belong to the

two low-Mo series. These bubbles follow nearly vertical trajectories on which small-amplitude

horizontal displacements, exhibiting abrupt changes of direction, superimpose, as shown for bubble

3 in Figs. 19(a) and 19(b); this bubble motion is accompanied by a thin double-threaded wake

that grows and sheds streamwise vorticity in an aperiodic manner [Fig. 19(c)]. Path instability was

already detected experimentally in Ref. [4] for the (Bo,Ga) pair corresponding exactly to bubble

3, a result that was later on corroborated numerically in Ref. [23]. That these computations, where

the bubble shape was kept frozen, captured the corresponding path instability proves that shape

oscillations are not at the root of the latter in this region of the (Bo,Ga) plane.

According to Fig. 19(b), the amplitude of the horizontal bubble displacements is approximately

0.15D from crest to crest, in contrast to the 2.3D amplitude revealed by Fig. 12 for the slightly

larger bubble number 5, which follows a flattened spiraling and then a planar zigzagging trajectory.

The bubble shape also experiences small fluctuations, mainly in the back region, the corresponding

changes of the aspect ratio (with is about 1.75 on average) being less than 5%. It is interesting to notice
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FIG. 19. (a) Three-dimensional reconstruction and (b) top view of a bubble trajectory typical from

the chaotic regime (bubble number 3). (c) Evolution of the streamwise vorticity isocontours ωx = ±0.24
corresponding to the bullets shown in (a) and (b); time and x coordinate increase from top to bottom; on the

left is the x-z plane and on the right, the x-y plane. The solid lines in (c) indicate the x axis.

that all six snapshots in Fig. 19(c) reveal the existence of a symmetry plane in the wake; however the

orientation of this plane changes over time since it always has to remain locally tangent to the path.

A key feature of the base flow associated with the present chaotic regime may be inferred from

Fig. 4 by examining the dashed line corresponding to the critical curve beyond which a standing

eddy takes place. Clearly bubbles 2, 3, 7, and 8 stand below this curve, hence there are no closed

streamlines in the corresponding base flows. The reason why this feature is important here is that the

existence of a standing eddy is known to be a necessary condition for the onset of wake instability past

fixed bluff bodies. Indeed, this instability is absolute in nature and finds its root in the wavemaker

located in the core of the standing eddy [63]. Hence the path instability observed in the present

regime does not result from a wake instability and must be seen as an outcome of the coupling

between the bubble and the surrounding flow. Similar examples are known to exist with disks of

various thicknesses [64,65], although they are less spectacular because a small standing eddy is still

present. The reason why the coupled fluid-body system may become unstable at Reynolds numbers

much smaller than the threshold value for the same body held fixed was identified in Ref. [65],

where a LSA of the whole system was carried out. It was shown that, in addition to the eigenmodes

associated with wake instability, the coupled system exhibits other eigenmodes that result from the

constraint that the overall force and torque balances on the body put on its angular orientation and

rotation rate (see also [66]). Under certain conditions, these modes can become unstable at lower

Reynolds number than the former ones, so the path instability may occur even though the wake is

still stable. This is what happens here and the double-threaded wake displayed in Fig. 19(c) is just

enslaved to the path, i.e., it is a consequence of the lateral excursions of the bubble, not their cause.

Given the small amplitude of the horizontal bubble displacements in Fig. 19, as compared with

those found in the well-defined zigzagging and spiraling regimes, it is clear that the present chaotic

paths are associated with the generic family of the so-called A regimes described in Ref. [6]. These

quasivertical, albeit unstable, regimes are frequently encountered with thin disks. They generally

precede a transition to a large-amplitude zigzagging regime, which is often subcritical. This is the

case, for instance, with slightly buoyant disks with an aspect ratio χ = O(10) for which a series

of five quasivertical regimes, the first of which is steady oblique whereas the last one is chaotic,

is succeeded by a subcritical transition to a well-defined planar zigzagging state [64,67]. Here the

chaotic regimes identified with bubbles 2 and 3 in pure water are succeeded by a transitional regime

for bubble 4 in which the bubble “hesitates” between a chaotic and a flattened spiraling path, both

of which display O(D) horizontal displacements. Then bubble number 5, the largest in this series,

eventually zigzags in a plane after having followed a flattened spiraling path during a very long time.

Similarly, with the slightly larger Morton number Mo = 1.8× 10−10, the chaotic regime identified



with bubbles 7 to 9 is succeeded by a large-amplitude planar zigzagging regime for bubbles 10 and

11. Hence the present findings for the lowest two Mo are consistent with a scenario in which the

system first undergoes a primary bifurcation where the vertical axisymmetric regime is succeeded

by a chaotic (hence three-dimensional) A regime and then a secondary bifurcation from which a

planar zigzagging regime emerges after a more or less long transient stage during which the bubble

follows a flattened spiraling path.

The reason why LSA is unable to predict the instability of the fluid-bubble system throughout the

parameter range where DNS detects this small-amplitude chaotic regime needs clarification. The

difference between the two series of predictions is not thin, since LSA predicts that only bubbles

with χ & 2.20 (or χ & 2.15 when a strictly spheroidal shape is assumed) can exhibit a nonvertical

path, whereas bubble 2, which has the smallest oblateness of all unstable bubbles considered in

this study, corresponds to χ ≈ 1.65. As discussed in Ref. [24], a plausible explanation could be

that the instability sets in before the base flow has reached the strict steady state assumed in the

LSA approach, given the high Reynolds number (Re & 600) at which the phenomenon takes place

in the low-Mo range. This remains a possibility and could perhaps be checked by introducing a

slowly time-dependent base flow in the LSA approach. However, the resemblance between the

chaotic A regime revealed by DNS and the recent discovery of similar regimes preceding a sub-

or supercritical transition to a zigzagging regime for thin disks [64,67] suggests another potential

scenario that was very unlikely before the present results were obtained: The transition from a

steady vertical path to quasivertical chaotic paths could be subcritical, in which case it would not

be captured by LSA. If so, starting from the vertical axisymmetric regime and increasing gradually

the bubble diameter, i.e., Bo and Ga, in the presence of infinitesimal disturbances, the system

would switch directly at some point to a finite-amplitude zigzagging regime, a transition that would

correspond to the threshold predicted by LSA. From that point, decreasing gradually the bubble

diameter, the system would enter the quasivertical chaotic regime until jumping back to the steady

vertical regime. Such a scenario would imply that the entire parameter range where the chaotic

regime is observed would actually correspond to a region of bistability. Exploring this possibility

demands very large CPU resources, owing to the numerous runs required to achieve a step-by-step

increase and decrease of Bo and Ga, and is beyond the scope of this study. Nevertheless, data

from [4] give some support to this hypothesis because straight vertical paths and zigzagging or

spiraling paths were both observed in the range 0.31 6 Bo 6 0.36 in these experiments.

IV. EVOLUTION OF THE RISE VELOCITY AND UNDERLYING MECHANISMS

Figure 20 shows the evolution of the Reynolds number Re = ρDU/µ for the various flow

regimes discussed in Sec. III and defined in Table I. Tiny oscillations due to the numerical procedure

employed to determine the rise velocitymay be noticed in some cases, e.g., in Fig. 20(a); nevertheless,

they remain much smaller than those shown in Figs. 20(b)–20(e), which are associated with path

instability. In all cases, the rise velocity increases linearly during a first period of time. Within

this initial stage, the dominant force acting on the bubble (apart from buoyancy) is the so-called

added-mass force, which is proportional and opposed to its acceleration dU/dt∗. The viscous
drag force does not play a significant role yet, being proportional to U (t∗), since the flow is

nearly irrotational. As far as the bubble remains spherical, the amount of fluid it displaces is half

its own volume, yielding an added-mass coefficient CM = 1/2. Hence the rise velocity initially

evolves as U (t∗) ≈ 2gt∗. At the same time, the Weber number We(t∗) = ρU 2(t∗)D/σ increases

quadratically over time and becomes of O(1) when t∗ = t∗1 = (σ/4ρg2D)1/2, i.e., t1 = (4 Bo)−1/2.
At that time, the bubble has already become somewhat oblate, owing to the pressure difference that

has established between its poles and equator. This tendency goes on for t > t1. One consequence

of this deformation is that the bubble displaces more fluid as it rises, so its added-mass coefficient

CM (t
∗) increases significantly over time (according to [33] CM ≈ 1.12 for χ = 2). Moreover, the

Reynolds number is already large when t = t1, since Re(t1) = (ρσD/µ2)1/2 = GaBo−1/2, and
goes on increasing at later times. The combined effect of this increase in CM with that of the



FIG. 20. Evolution of the Reynolds number for different bubbles in Table I: (a) rectilinear regime,

(b) chaotic regime, (c) planar zigzagging regime, (d) and (e) flattened spiraling and then planar zigzagging

regime, and (f) spiraling (helical) regime. In (c) the inset shows a detailed view of the oscillations and the

numbers identify the instants of time 1–5 of Figs. 6 and 7.

viscous drag force, which is still almost proportional to U (t∗) but now involves a prefactor G(χ ),

which is also an increasing function of χ [with G(1) = 1], is a progressive decrease of the bubble

acceleration. Hence the rise velocity does not increase linearly anymore when t & t1, since the

buoyancy, added-mass, and viscous drag forces have a similar order of magnitude and the latter two

involve coefficients that depend onχ , which itself varies in a nonlinearmannerwith the currentWeber

number We(t∗) (see [68]). At some point, the added-mass force becomes negligible and the bubble
reaches a quasiterminal rise velocity UQT , resulting from a balance between the buoyancy force

and the viscous drag force −6πµDG(χ)UQT . This yields the estimate UQT ≈ ρgD2/36µG(χ),

i.e., a nearly terminal Reynolds number ReQT ≈ Ga2/36G(χ ). For instance, in the case of bubble

number 3, which corresponds to Ga = 255.3, the final oblateness is about 1.75, soG(χ ) ≈ 2.25 and

ReQT ≈ 805 [68], which provides the right order of magnitude of the terminal Reynolds number

since Fig. 20(b) indicates ReT ≈ 720. The time at which this happens, say, t∗ = t∗2 , may be estimated
by assuming that the rise velocity evolves approximately as U (t∗) = UQT (1− e−t∗/β) up to t∗ = t∗2 .
Keeping in mind that dU/dt∗ ≈ 2g at short times, i.e., β = ρD2/72µG(χ ), and considering that the

exponential contribution becomes negligible when t∗ ≈ 4β (since e−4 < 0.02), i.e., t∗2 = 2UQT /g,

one obtains in dimensionless form t = t2 = Ga/18G(χ), i.e., t2 ≈ 6.3, which again agrees quite

well with the time at which the early evolution of the Reynolds number ends according to Fig. 20(b).

Throughout this early evolution, vorticity is continuously generated at the bubble surface, yielding

the formation of a boundary layer around it and an axisymmetric wake downstream. However, owing

to the specificities of the shear-free condition as compared with the usual no-slip one (see below),

vorticity remains finite within the boundary layer as the Reynolds number becomes large. This in

turn implies that the vortical regions only result in a finalO(Re
−1/2
T ) relative correction to the viscous

drag force [68] that does not alter the above estimates at leading order. As mentioned in Sec. III, a key

feature of vorticity dynamics around uncontaminated bubbles is that surface vorticity is proportional

to the product of the relative fluid velocity by the local interface curvature [40]. For this reason, it

may be shown [18] that the azimuthal vorticity ωθ and the vorticity flux µ∂ωθ/∂n at the surface

of an oblate bubble (∂/∂n standing for the derivative in the direction normal to the surface) vary

as χ8/3UT /D and Re
−1/2
T χ7/2ρU 2

T /D, respectively [strictly speaking, these estimates are valid only

in the limit of large χ , but they actually apply even down to χ = O(2)]. The Re
−1/2
T χ7/2 prefactor

in the latter estimate implies that the viscous vorticity flux that enters the flow may be of the same

order as the advective flux ρUT ωθ , even at large Reynolds number, provided the bubble oblateness

is sufficient. This is why, beyond some critical oblateness that depends on the Reynolds number,



vorticity accumulates within a standing eddy at the back of the bubble. Having reminded these

fundamental properties, one can also determine the various time scales involved in the development

of vortical regions, keeping in mind that the distance δT over which vorticity diffuses within a

time interval T ∗ is δT ≈ (2µT ∗/ρ)1/2. First, the time required for the boundary layer to reach its

final thickness δV ≈ (D/2)Re
−1/2
T is obtained by equating δT and δV , which yields T ∗

V ≈ D/8UT .

Vorticity is also advected downstream in the wake with an O(UT ) velocity, so the corresponding

time scale, say, T ∗
W , is again of O(D/UT ). Hence, in both cases, the dimensionless characteristic

time is proportional to Ga−1. Things are different regarding the growth of the standing eddy whose
size does not scale with δV . As shown in Fig. 5, it rather scales with D, provided the distance to

the threshold Ga = Gas(Bo) beyond which a standing eddy exists at the current value of Bo (dotted

line in Fig. 4) is large enough. Thus the corresponding time scale, say, T ∗
S , is T ∗

S = ρD2/2µ, i.e.,

TS = Ga/2. Hence, under such circumstances, the longest time scale involved in the development

of vortical regions is the one associated with the growth of the standing eddy and this is why, when

Ga is large, the base flow may not be completely stationary at the time the instability sets in.

After the bubble has reached its quasiterminal velocity, path instability may in principle take place

provided Ga exceeds the threshold value Gac(Bo) corresponding to the solid line in Fig. 4. It does so

almost immediately in the chaotic regime, as may be observed in Fig. 20(b), which corresponds to a

situation in which no standing eddy exists. In contrast, in most other cases, there is a significant delay

between the time at whichUQT is reached and that at which some further evolution ofU (t
∗), such as

oscillations, happens. Considering the position of bubbles corresponding to Figs. 20(c)–20(f) in the

(Bo,Ga) diagram of Fig. 4 reveals that they all stand above the dashed line, i.e., they all correspond

to Ga > Gas(Bo). This is in line with our estimates of the time scales associated with the vortical

regions and the observed delay may be interpreted as the time period TS required for the development

of the standing eddy. Obviously TS depends on Ga− Gas(Bo), hence on Ga and Bo. This is reflected
in Fig. 20, where the duration of the corresponding plateau is seen to increase significantly with Bo

[bubble 11 in Fig. 20(d) has Bo = 1.0, while bubble 26 in Fig. 20(f) has Bo = 10.0].

Once this development is completed, path instability sets in provided Ga > Gac(Bo), yielding a

significant decrease of the rise velocity whatever the next style of path. The reason for this decrease

is twofold. First, as soon as the bubble starts oscillating, part of the potential energy of the system

is spent in the generation of its horizontal motion rather than its rise. Second, compared with the

axisymmetric flow structure, wakes associated with nonstraight paths are three dimensional and

involve larger velocity gradients, resulting in a larger viscous dissipation, hence a larger drag. Not

surprisingly, when the subsequent regime corresponds to a helical path [Fig. 20(f)], the rise velocity

reaches a constant final value, in line with the constant force and torque delivered by the spiral wake

displayed in Fig. 11. In cases in which the bubble rather follows a zigzagging or a flattened spiraling

path, the decrease of U is succeeded by oscillations whose amplitude depends of course on that

of the lateral bubble displacements. Similar oscillations have been reported in experiments [69,70]

and DNS [21] at higher Reynolds numbers. The corresponding frequency is twice that of the

lateral motion since the drag force is an even function of the bubble inclination with respect to the

vertical. These oscillations result from the two mechanisms mentioned above, as can be understood

more easily in the case of a planar zigzag. First, the buoyancy force has an oscillating horizontal

component that reaches its maximum at the inflection point of the zigzag and vanishes at each of

its extremity. Hence, if the wake were axisymmetric, the rise velocity would go through a minimum

(maximum) at the former (latter) position. Second, since the actual wake structure is dominated by

a pair of counterrotating trailing vortices, the vortex cores, which are low-pressure regions, increase

the pressure difference between the front and back regions of the bubble, yielding an additional drag

that may be thought of as a “sucking” of the bubble by its wake. This is nothing but the classical

induced drag acting on a wing of finite span. However, here the streamwise vorticity changes its sign

twice during a zigzag period. As we saw in Sec. III, this change takes place approximately midway

between the extremity of the zigzag and the inflection point, i.e., in between points 1 and 2 (3 and 4)

during the first (second) half-cycle of the zigzagging path displayed in Fig. 6. Consequently, the lift

and induced-drag forces vanish at these positions. Combining the two mechanisms, one expects the
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FIG. 21. Comparison between present predictions (open and closed squares, same definition as in Fig. 4) and

critical conditions determined in various works. Data are shown for the DNS of Ref. [29] (⋆); the experiments

with ultrapure water of Refs. [14] (¨) and [4] (•); and the experiments in various silicon oils of Refs. [9]
(N), [10] (H), and [11] (◮). In these data sets, the open (closed) symbols correspond to the largest stable

(smallest unstable) bubble. The three curves are identical to those in Fig. 4.

rise velocity to reach its maximum slightly after each extremity of the zigzag, i.e., just after positions

1 and 3 in Fig. 6, which is fully confirmed by the evolution displayed in the inset of Fig. 20(c).

V. REGIME MAP AND CRITICAL CONDITIONS FOR PATH INSTABILITY

A. Observed transitions

We now return to the critical conditions that define the onset of path instability and to the

succession of unstable regimes revealed by this study. Results corresponding to the 26 bubbles we

considered are gathered in Fig. 21, together with the critical curves previously obtained by assuming

frozen bubble shapes and several experimental and computational results from the literature that we

consider state of the art. In particular, all experimental data reported in that figure correspond to

surfactant-free conditions because they were obtained either in ultrapure water [4,14] or in silicon

oils [9–11], which are nonpolar liquids. In the following discussion it must be kept in mind that, of

the two critical curves reported in Fig. 21, that provided by the LSA approach may be considered as

“exact” in the sense that it resulted from a detailed exploration of the (Ga,Bo) space based on small

steps in both parameters, whereas that provided by the frozen-shape DNS is much more qualitative

since it was deduced from a series of runs in which these steps were much larger. The figure also

indicates the nature of the final path we observe, but it must be pointed out that this may not be

the ultimate regime: In Ref. [21] the path of a bubble corresponding approximately to Bo = 0.85

and Ga = 390 was found to undergo a transition from planar zigzag to spiral after the bubble rose

approximately 250D above its initial position. Here the numerical domain is only 128D high, so it

may well be that in certain cases the regime indicated in the figure would be succeeded by a different

one if we could follow the bubble over a longer time.

For Bo > 5, the critical conditions drawn by the present study agree well with those found in

Ref. [23], which employed a different code. Since the shape was frozen in that case, this agreement

suggests that shape oscillations do not modify significantly the threshold of path instability in that

high-Bo range, although surface tension effects are weak. In the intermediate range 1 6 Bo 6 5, the

present results yield a threshold somewhat larger than indicated by the results of [23], i.e., the path of

three-dimensional deformable bubbles looks slightly more stable than that of frozen axisymmetric

bubbles. Things are different in the low-Bo range (i.e., Bo < 1) where the low-amplitude chaotic



regime was detected for some (Bo,Ga) pairs located significantly below the critical curve of [23]

(e.g., bubble 7), suggesting that the instability may be triggered by shape oscillations in that range.

Apart from this chaotic regime, the other unstable regimes revealed by the DNS are essentially

those documented in the literature. For a given Mo, the generic succession encountered when the

bubble diameter is increased starts with a planar zigzagging regime, which may or may not emerge

from a (frequently long) transient during which the bubble follows a flattened spiraling path. These

two possibilities indicate that the first bifurcation does not necessarily preserve a symmetry plane,

the latter emerging at a later time if the flattened spiraling regime first takes place. It must be kept

in mind that an arbitrary linear combination of two counterrotating helices with the same frequency

and opposite orientations results in a flattened spiral; it degenerates into a planar zigzag in the

particular case where the two amplitudes are equal and in a circular helix if one of them is zero.

Hence all three types of path are equivalent from the point of view of linear stability. The fact that

the first nonvertical path that emerges in the present DNS is frequently a flattened spiral suggests that

the discrete description of the axisymmetric bubble surface on the three-dimensional Cartesian grid

induces some differences in the amplitudes of the two counterrotating linearly unstable helicalmodes.

Increasing the bubble diameter again, the planar zigzagging regime is succeeded at some point

by a spiraling one in the series corresponding to the highest Morton number considered here (bubble

26). This change of style is associated with the loss of the planar symmetry in the wake, as shown in

Fig. 11. With bubbles rising in pure water, the transition from planar zigzag to spiral, for instance,

was observed to take place in the range 2.2 6 χ 6 2.3 (i.e., 1.6 6 Bo 6 1.75) in Ref. [51]. Hence

it probably exists for all values of the Morton number considered here, but we did not explore a

sufficiently large range of Ga for most of them to confirm this.

Examination of Table I reveals two clear trends regarding the variations of the Strouhal number.

First, for each value of Mo, the larger the bubble (i.e., Bo and Ga), the larger St, irrespective of the

detailed geometry of the corresponding nonvertical regime. This tendency, which is in line with past

observations at higher Reynolds number [56], results from the increasing oblateness of the bubble

as D increases, which in turn increases the amount of vorticity generated at its surface. Second,

the Strouhal number is seen to increase uniformly with Mo: Focusing on the zigzagging regime, St

is about 0.045 when Mo = 1.1× 10−11 and increases up to 0.136 when Mo = 9.9× 10−6. This is
because the larger theMorton number, the smaller the critical Reynolds number corresponding toGac
and the larger the bubble oblateness, hence the more intense the vorticity flux generated at the bubble

surface, owing to the χ7/2Re−1/2 scaling obeyed by this flux. This variation of St with Mo agrees
qualitatively with LSA predictions: For Bo 6 1.2 (which holds throughout the series corresponding

to the lowest two Mo), the latter indicate that the first unstable mode is of low-frequency type with a

Strouhal number about 0.02, whereas for Bo > 5.5 (which holds throughout the series corresponding

to the largest Mo) it is of high-frequency type with St = O(0.1). In contrast, in the intermediate

range 1.2 < Bo < 5.5, LSA predicts that the first unstable mode is stationary, which corresponds to

a steady oblique path. Although such a path has often been reported for freely rising and falling rigid

spheres [38,59] and disks [64,67,71] and results from a subtle nontrivial zero-torque condition that

was derived through a weakly nonlinear analysis for both geometries in Ref. [72], it has never been

observed in experiments or in DNS with bubbles. The present results for the two intermediate series

Mo = 1.6× 10−8 and 6.2× 10−7 do not escape this rule, as they show that the first nonvertical
regime encountered within that range is always of the planar zigzagging type. The reason might

be that the zero-torque condition cannot be satisfied by a shear-free bubble rising along a steady

inclined path, a hypothesis that could be checked by extending the theory developed in Ref. [72] to

bubbles.

B. Toward a well-defined critical curve: Current consensus and open questions

Figure 21 also contains several pairs of experimental and numerical data that, for a given fluid,

correspond to the largest (smallest) bubble that was found to follow a straight (nonstraight) path, i.e.,

the largest and smallest bubbles such that Ga < Gac(Bo) and Ga > Gac(Bo), respectively. Let us first



examine how the present findings compare with critical conditions determined from experiments,

keeping in mind that the (Bo,Ga) step separating the last stable point from the first unstable one

in the available data sets is often quite large. The agreement is clearly satisfactory for the highest

three Mo, i.e., there is a consensus between the present DNS results and experiments that path

instability sets in approximately at Gac ≈ 70, 90, and 125 for Mo = 9.9× 10−6, 6.2× 10−7, and
1.6× 10−8, respectively. The situation is less clear for the lowest two values of Mo. According
to [9], the paths observed in silicon oil corresponding to Mo = 1.8× 10−10 remain rectilinear up
to Bo = 0.56, whereas we already observed a low-amplitude chaotic regime for bubble number 7,

i.e., with Bo = 0.50. Similarly, in pure water, all paths were found to be rectilinear up to Bo = 0.31

in Ref. [4], whereas we already observed a chaotic path for bubble number 2, which corresponds

to Bo = 0.30. However, the amplitude of the bubble lateral shift in the chaotic regime is so small

[typically ofO(0.1D)] that it may not have been detected in experiments, despite the modern optical

tools that were employed. A similar situation is known to exist with thin cylinders whose tiny lateral

displacements were not resolved in experiments [73] but were clearly identified in DNS [64,67].

Four other pairs of data reported in Fig. 21 were extracted from a recent computational study [29],

also performed with the GERRIS code. Although the critical conditions that can be inferred from these

data are in good qualitative agreement with the present ones for Bo > 2, they result in significantly

lower values ofGac for Bo 6 1. Such low values are clearly not supported by experiments, suggesting

that the grid employed in Ref. [29] is not sufficient to capture accurately the small-scale vortical

regions involved in the initiation of the instability in the low-Mo (hence high-Ga) range. Indeed, this

grid had a resolution about half the present one. Hence, although it is probably suitable for dealing

with the high-Bo part of the transitional region where ReT = O(102), it is certainly not sufficient

to address properly the low-Bo part where ReT may be up to 900, which implies a reduction of the

boundary layer thickness by a factor of 3. This remark also questions the adequacy of the grid used

in the present investigation in that regime, where typically three grid cells stand within the boundary

layer, which is barely sufficient. The grid density in the near wake is one-fourth the latter, so the

smallest vortical structures are also probably overlooked. Therefore, although we are confident that

the corresponding results are almost quantitatively correct, it would be desirable to double the grid

density, at least in the vortical regions, to achieve grid convergence.

Finally, although this is not the subject of the present paper, the significant quantitative differences,

about 25% for Bo > 5, between the approximate threshold resulting from the DNS of [23] and that

provided by the LSA approach of [24], both based on the frozen-shape hypothesis, remain to be

explained. They may result, at least in some parts of the Morton number range, from numerical

inaccuracies in either code, from the hypothesis of a strictly stationary base flow in the latter [but

this was found to have no effect in the case of disks with O(102) Reynolds numbers for which the

comparison of the two approaches revealed excellent agreement [65]], or from the subcritical nature

of the primary bifurcation, although no indication of such a behavior was noticed up to now, except

perhaps in the low-Mo range. This has to be clarified in the future.

VI. CONCLUSION

In this work we examined the results of a series of 26 three-dimensional numerical simulations

of the flow past freely deforming bubbles rising in still liquids. We selected the physical parameters

so as to cover approximately the transition region where path instability is expected to take place

over four orders of magnitude of the Morton number. We varied the Bond number by two orders

of magnitude (from 0.1 to 10) and the Galilei number by a factor of 6, from Ga ≈ 60 in the most

viscous case to Ga ≈ 350 in the most inertial one, which corresponds to a variation of the terminal

Reynolds number by a factor of 15 (from ReT ≈ 60 to ReT ≈ 880). Depending on the value of

the dimensionless parameters, we observed contrasting evolutions, starting in each series with a

rectilinear rise associated with an axisymmetric wake. Beyond the transition, four types of path were

identified. Three of them have been widely described in the literature, namely, planar zigzag and

circular spiral (or helix), plus the intermediate flattened spiraling path. The last one is a low-amplitude
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chaotic path. The location of the 26 runs in the (Bo,Ga) plane and the style of the corresponding

final paths observed in the various regions or this plane are summarized in Fig. 22.

The zigzagging regime is characterized by a periodic lateral motion of the bubble on both sides of

an average vertical path. The amplitude, which is of the order of the bubble diameter, and frequency

of these horizontal movements have been found to be increasing functions of the Bond number.

An important result of this investigation is the significant nonaxisymmetric deformation that takes

place, for large enough Bond numbers, every time the bubble goes through an extremity of the

zigzag. Indeed, it was found that, for Bo = O(5), its rotation induces pressure differences along the

equator that can exceed 10% those between the upper pole and the equator. This yields bubbles with

a significantly larger curvature on the side looking toward the exterior of the zigzag. In this regime,

the wake is dominated by a double-threaded structure exhibiting a planar symmetry. However,

two different vortex shedding modes were identified. The most common is the 2R mode, which

corresponds to a wake made of a two-sided chain of vortex loops in which vorticity changes its sign

every half-cycle in between the extremity of the zigzag and its centerline. In contrast, in other cases,

the wake structure is dominated by a 4R mode in which a second single-sided loop superimposes

onto the primary one, being generated in between two successive changes of sign of the primary

vortex threads. In line with the original observations of this regime with falling spheres [38], we

found that the style of the shedding mode is closely linked to the amplitude of the oscillations in

the rise velocity: When these oscillations are small [typically of O(10−2UT )], the wake is of the 2R

type, whereas the 4R structure emerges when they become one order of magnitude larger.

The circular spiraling or helical regime was only observed in one of the runs performed at the

highestMorton number,most probably becausewe did not consider large enough values of theGalilei

number in the other series. In this regime, no symmetry plane exists in the wake that consists of

two disconnected and intertwined threads of streamwise vorticity, resulting in a corkscrew structure.

This wake structure remains frozen as the bubble rises and results in a constant rise velocity, in

line with previous findings with spheroidal bubbles [21,25]. Although it has been reported in some

experiments that the path may switch directly from rectilinear to spiral, the present observations

suggest that spiraling paths can only arise after planar zigzags, i.e., either for larger bubble diameters

or after a long planar zigzagging transient.

The above two “pure” nonvertical paths frequently emerge after a more or less long transient

during which the bubble follows a flattened spiraling path, which may be thought of as a slowly

precessing planar zigzag whose precession rate varies over time. This regime is frequently observed

over rising distances of O(102D), so in some cases we could not determine whether or not it



would have converged toward one of the two pure limits had the numerical domain be much higher.

As far as the period of the zigzagging component is much shorter than that of the precession, most

characteristics of this regime display trends similar to those observed in the planar zigzagging regime.

Themost specific features reside in the wake where the two vorticity threads are more or less severely

twisted, yielding a nonzero time-averaged lift force and axial (i.e., vertical) torque. The corresponding

shedding mode may be of the 2R or 4R type, similar to the planar zigzagging regime. Under certain

conditions, a spectacular change in the wake structure was observed (it also happens in the planar

zigzagging regime), namely, the occurrence of series of secondary vortex loops whose frequency

was shown to be very close to that of the mode 2 of shape oscillations. These oscillations yield local

changes in the curvature of the bubble surface, which results in modulations of the surface vorticity,

hence in those of the strength of the streamwise vorticity injected in the wake, provided the decay rate

of the oscillations is weak enough, i.e., the oscillatory Reynolds number GaBo−1/2 is large enough.
Finally, DNS revealed the existence of a low-amplitude chaotic regime specific to the low-

Morton-number range. This regime, where the lateral displacements of the bubble do not exceed

0.1D, precedes the transition to the planar zigzagging or flattened spiraling regime. Hence, in that

case the first bifurcation of the system breaks all possible symmetries, some of which are recovered

through the next bifurcation. From the stability viewpoint, the important characteristic of this regime

is that it is observed in a region of the parameter space where no standing eddy exists at the back of

the bubble. Hence this is a clear case in which path instability does not result from a wake instability

but rather from an instability intrinsic to the coupled bubble-fluid system, as already found with

freely moving disks in some flow regimes where the wake is stable [65].

The onset of the instability takes place after the bubble has reached a quasiterminal rise velocity.

However, there is in general a significant time delay between the two, during which the rise velocity

displays a plateau, the length of which is an increasing function of the Bond number. This is the

time period required for the attached eddy to grow and reach its “adult” size, then allowing wake

instability to set in. The only exception is of course the transition to the low-amplitude chaotic regime

that starts right after the bubble has reached its terminal velocity since there is no standing eddy in

that case. Once path instability occurs, the rise velocity experiences a sharp decrease that can be up to

approximately 10% of its previous value. This decrease results from both the wake-induced drag and

the nonzero inclination of the instantaneous bubble velocity with respect to the vertical. Then, except

in the pure helical regime, the above two mechanisms yield periodic or almost periodic oscillations

of the rise velocity with a frequency twice that of the zigzagging motion and an amplitude that may

in certain cases be up to 10% of UT .

The role of shape oscillations in the transition to path instability appears to be complex. Since

the larger the Bond number, the larger the deformation for a given value of the Galilei number, one

might have expected time-dependent deformations to lower the threshold primarily for large Bond

numbers. The DNS results are at odds with this intuition. Compared with the approximate critical

curve obtained under the frozen-shape assumption, the threshold seems to be lowered when the Bond

number is low (Bo < 1), somewhat increased in the intermediate range 1 6 Bo 6 5, and unchanged

when the Bond number is large enough (Bo > 5). This suggests that these deformations trigger the

instability at low Bond number but make the system more stable in the intermediate range because

they help the bubble damp flow disturbances.

The present DNS results also helped reveal some general trends of the nonvertical regimes. For

instance, for a given Mo, i.e., a given set of fluid properties, we found that the frequency of the

horizontal movements is an increasing function of the distance to the threshold, i.e., of the bubble

diameter. Similarly, for a given style of path, i.e., approximately a given distance Ga− Gac to the
threshold, this frequency was observed to increase with Mo. These trends are in line with available

experimental and LSA results. More fundamentally, they follow the scaling of the vorticity flux

generated at the bubble surface, which is at the root of path instability as soon as the latter is driven

by a wake instability. Regarding the instability threshold, although the step between successive

values of the Bond and Galilei numbers has to be reduced to obtain an accurate critical curve, the

agreement between experimental data corresponding to well-controlled conditions and present DNS



predictions is satisfactory for Bo > 1. At lower Bo, the quantitative comparison is unfortunately

obscured by the discovery of the low-amplitude chaotic regime.

Future progress in the intimate understanding of the mechanisms governing path instability

requires further developments and massive use of DNS and LSA approaches. Regarding DNS,

available techniques may be considered mature to describe the evolution of rising bubbles with

O(102) Reynolds numbers. In contrast, it must be kept in mind that achieving a faithful and thorough

capture of all phenomena involved at the bubble surface when the Reynolds number is ofO(103) as it

is in pure water remains a real challenge, in terms of both discretization methods and computational

resources. This is especially true with fixed-grid approaches such as that employed here: Combining

an accurate evaluation of the capillary force and of the very thin boundary layers that surround the

bubble surface with a proper treatment of the large density and viscosity jumps in the same region

remains a “Grail” of modern computational fluid dynamics and some improvements are certainly

still required to make sure that the corresponding results are fully method independent. Besides these

developments, repeating present computations on larger grids is necessary to assess and probably

improve the accuracy on the position of the threshold Gac(Bo) in the region Bo . 1. Similarly,

assessing the possibility that the primary bifurcation be subcritical requires series of runs in which

the flow parameters are varied little by little to track possible hysteresis phenomena and bistability

ranges, as recently achieved with various axisymmetric rigid bodies [64,67,71]. In parallel, the

development of LSA codes in which the bubble surface is allowed to deform is needed to understand

the possible role of transient shape deformations, especially regarding the threshold Gac(Bo) and

the nature and characteristics of the first linearly unstable modes, through their coupling with the

surrounding flow and the translational and rotational movements of the bubble. Once such codes

will be available, it will become possible to develop weakly nonlinear models in the spirit of that

of [22] to determine which path geometry is actually selected by the system close to the threshold.
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