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Stabilization of nonlinear systems using state-feedback periodic event-triggered controllers W. Wang, R. Postoyan, D. Nešić and W.P.M.H. Heemels

Abstract-We investigate the scenario where a controller communicates with a plant at discrete time instants generated by an event-triggering mechanism. In particular, the latter collects sampled data from the plant and the controller at each sampling instant, and then decides whether the control input needs to be updated, leading to periodic event-triggered control (PETC). In this paper, we propose a systematic design procedure for PETC that stabilize general nonlinear systems. The design is based on the existence of a continuous-time statefeedback controller, which stabilizes the system in the absence of communication constraints. We then take into account the sampling and we design an event-triggering condition, which is only updated at some of the sampling instants, to preserve stability. An explicit bound on the maximum sampling period with which the triggering rule is evaluated is provided. We show that there exists a trade-off between the latter and a parameter used to define the triggering condition. The results are applied to a van de Pol oscillator as an illustration.

I. INTRODUCTION

Major advancements over the last decades in wired and wireless communication networks gave rise to networked control systems (NCS). These are systems in which the sensors and the actuators communicate with the controller via a shared digital channel. A major challenge in this context is to design control strategies which do not "overuse" the network, to limit the transmission delays and the occurence of packet losses, which may destroy the desired closedloop system properties. An attractive solution consists in adapting the transmissions to the current state of the plant, we talk of event-triggered control, see [START_REF] Heemels | An introduction to event-triggered and self-triggered control[END_REF] and the references therein. This paradigm consists in continuously evaluating a state/output-dependent condition and, when the latter is satisfied, a transmission is triggered. Many works have shown that event-triggered control is able to significantly reduce the number of transmissions compared to the traditional periodic sampling, see [START_REF] Lunze | A state-feedback approach to event-based control[END_REF], [START_REF] Mazo | An ISS self-triggered implementation of linear controllers[END_REF], [START_REF] Postoyan | Event-triggered tracking control of unicycle mobile robots[END_REF], [START_REF] Wang | Event-triggering in distributed networked control systems[END_REF] for instance. Nevertheless, the continuous evaluation of the triggering condition is not possible when the implementation platform is digital. Instead, the triggering criterion can only be evaluated at some sampling instants, leading to the periodic event-triggered control (PETC), see [START_REF] Heemels | Periodic eventtriggered control for linear systems[END_REF], [START_REF] Heemels | L 2 -gain analysis for a class of hybrid systems with applications to reset and event-triggered control: A lifting approach[END_REF], [START_REF] Heemels | Periodic event-triggered control[END_REF] and the references therein.

Results on the design of PETC for linear systems are presented, for instance, in [START_REF] Heemels | Periodic eventtriggered control for linear systems[END_REF], [START_REF] Heemels | L 2 -gain analysis for a class of hybrid systems with applications to reset and event-triggered control: A lifting approach[END_REF]. In [START_REF] Heemels | Periodic event-triggered control[END_REF], a methodology is proposed for nonlinear systems. The idea is to start from a given event-triggered controller and to redesign it to obtain a periodic event-triggered controller, based on a condition on the successive Lie derivatives of the original triggering condition. A bound on the sampling period is provided, which is based on the minimum inter-transmission time of the event-triggered controller, which is often difficult to precisely estimate. On the other hand, the generic results in [START_REF] Sanfelice | Lyapunov analysis of sampled-andhold hybrid feedbacks[END_REF] on the sampling of hybrid controllers show that, if an eventtriggered controller ensures a uniform global asymptotic stability property, the latter is preserved semiglobally and practically when emulating the controller with sufficiently fast sampling.

In this paper, we design periodic event-triggered controllers for nonlinear systems using a different approach compared to [START_REF] Heemels | Periodic event-triggered control[END_REF], [START_REF] Sanfelice | Lyapunov analysis of sampled-andhold hybrid feedbacks[END_REF]. We start from a continuous-time controller which stabilizes the plant in the absence of network (and not an event-triggered controller as in [START_REF] Heemels | Periodic event-triggered control[END_REF], [START_REF] Sanfelice | Lyapunov analysis of sampled-andhold hybrid feedbacks[END_REF]). We then take into account the communication network and we design a triggering condition, which is only evaluated at given sampling instants. The stability of the overall system is guaranteed provided that the maximum sampling period, with which the triggering rule is evaluated, is less than a given bound. We model for that purpose the overall system as a hybrid system using the formalism of [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] and the analysis relies on the construction of a novel hybrid Lyapunov function. The results are applied to a van de Pol oscillator as an illustration.

Compared to [START_REF] Heemels | Periodic event-triggered control[END_REF], the bound on the sampling period does not rely on the estimation of the minimum inter-transmission time of a predesigned event-triggered controller, and is therefore easier to compute. Furthermore, the triggering condition we propose is easy to construct as we only need to verify an input-to-state stability property, as opposed to a local condition on the Lie derivatives of the triggering rule of the original event-triggered controller in [START_REF] Heemels | Periodic event-triggered control[END_REF]. In addition, our results clearly show that there is a trade-off between the parameter of the triggering condition and the maximum time between two sampling instants. Also, the sampling instants at which the triggering rule is evaluated are not necessarily periodic. On the other hand, we cope with a more specific type of triggering rules than in [START_REF] Heemels | Periodic event-triggered control[END_REF]. In contrast with [START_REF] Sanfelice | Lyapunov analysis of sampled-andhold hybrid feedbacks[END_REF],

we provide an explicit bound on the sampling period and we ensure uniform global asymptotic stability properties, as opposed to uniform semiglobal practical stability.

The paper is organized as follows. The notation and preliminaries on hybrid systems are given in Section II. We state the problem and present the model in Section III. The main results are stated in Section IV. Simulation results and conclusions are respectively provided in Sections V and VI. The proofs are given in the appendix.

II. PRELIMINARIES Let

Z >0 := {1, 2, • • • }, Z ≥0 := {0, 1, 2, • • • } and R ≥0 := [0, ∞). Let |x| denote the Euclidean norm of the vector x ∈ R n . For (x, y) ∈ R n+m , (x, y) stands for [x T , y T ] T . Given a set A ⊂ R n and x ∈ R n , we define the distance of x to A as |x| A := inf y∈A |x -y|. A set-valued mapping M : R m ⇒ R n is locally bounded if, for any x ∈ R m , there exists a neighborhood U x of x such that M (U x ) is a bounded set. A set-valued mapping M : R m ⇒ R n is outer semi-continuous when its graph {(y, z) ∈ R m+n : z ∈ M (y)} is closed, see Lemma 5.10 in [2]. A function γ : R ≥0 → R ≥0 is of class-K, if it is continuous, zero at zero and strictly increasing and it is of class-K ∞ if, in addition, it is unbounded. A function γ : R 2 ≥0 → R ≥0 is of class-KL, if it is continuous, for each r ∈ R ≥0 , γ(•, r) is of class-K, and, for each s ∈ R ≥0 , γ(s, •) is decreasing to zero. For x, v ∈ R n and locally Lipschitz U : R n → R, let U • (x; v) be the Clarke derivative of the function U at x in the direction v, i.e. U • (x; v) := lim sup y→x,λ↓0 U (y+λv)-U (y) λ
. This notion will be useful as we will be working with locally Lipschitz Lyapunov functions, which are not differentiable everywhere.

Consider the following hybrid system [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] 

q = F(q) q ∈ C q + ∈ G(q) q ∈ D (1) 
with state q ∈ R n and where C, D ⊂ R n are respectively the flow and the jump sets. We assume that: the sets C and D are closed; F : R n → R n is a continuous function; G : R n ⇒ R n is outer semi-continuous and locally bounded; and G(q) is nonempty for each q ∈ D.

We now recall some definitions from [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF].

A set S ⊂ R ≥0 × Z ≥0 is called a compact hybrid time domain if S = J-1 j=0 ([t j , t j+1 ], j) for some finite sequence of times 0 = t 0 ≤ t 1 ≤ t 2 ≤ • • • ≤ t J . The set S is a hybrid time domain if for all (T, J) ∈ S, S ∩ ([0, T ] × {0, 1, • • • , J}) is a compact hybrid time domain. A function q : S → R n is a hybrid arc if S is
a hybrid time domain and q(•, j) is locally absolutely continuous for each j. A hybrid arc q : dom q → R n is a solution to (1) if q(0, 0) ∈ C ∪ D and 1) for all j ∈ Z ≥0 and almost all t such that (t, j) ∈ dom q, q(t, j) ∈ C and q(t, j) = F(q(t, j)); 2) for all (t, j) ∈ dom q such that (t, j + 1) ∈ dom q, q(t, j) ∈ D and q(t, j + 1) ∈ G(q(t, j)). A solution is maximal if it cannot be extended and it is complete when dom q is unbounded. We also recall the following set stability definition.

Definition 1: The closed set A ⊂ R n is called uniformly globally asymptotically stable (UGAS) for system (1) if there exists β ∈ KL such that all solutions q to system (1) satisfy

|q(t, j)| A ≤ β(|q(0, 0)| A , t + j) ∀(t, j) ∈ dom q (2)
and all maximal solutions to system (1) are complete. We will need the following result, which corresponds to Lemma II.1 in [START_REF] Liberzon | Lyapunov-based smallgain theorems for hybrid systems[END_REF].

Lemma 1: Consider two functions U 1 : R n → R and U 2 : R n → R that have well-defined Clarke derivatives for all x ∈ R n and v ∈ R n . Introduce three sets A := {x :

U 1 (x) > U 2 (x)}, B := {x : U 1 (x) < U 2 (x)}, Γ := {x : U 1 (x) = U 2 (x)}. Then, for any v ∈ R n , the function U (x) := max{U 1 (x), U 2 (x)} satisfies U • (x; v) = U • 1 (x; v) for all x ∈ A, U • (x; v) = U • 2 (x; v) for all x ∈ B, and 
U • (x; v) ≤ max{U • 1 (x; v), U • 2 (x; v)} for all x ∈ Γ.

III. PETC MODEL

We consider the plant model

ẋp = f p (x p , u), (3) 
where x p ∈ R np is the state and u ∈ R nu is the control input.

We assume that the full state vector x p is measured. Suppose that the following state-feedback controller is designed to stabilize the origin of ( 3)

ẋc = f c (x c , x p ) u = g c (x c , x p ), (4) 
where x c ∈ R nc is the state of the controller. When the controller is static, (4) becomes u = g c (x p ) and there is no need to introduce the state x c .

Controller x p (t i ) u(t i ) Plant x p (s i )
Event-triggering mechanism

(x c (s i ), u(s i ))
Fig. 1: PETC schematic.

We consider the scenario where plant (3) and controller (4) communicate with each other via a network, see Figure 1. An event-triggering mechanism is used to define the sequence of transmission instants in the following manner. A triggering condition is evaluated at each sampling instant s i , i ∈ Z ≥0 , where

ε ≤ s i+1 -s i ≤ T, i ∈ Z ≥0 , (5) 
where T > 0 is the upper bound on the sampling period and ε ∈ (0, T ] is the minimum time between two successive evaluations of the triggering condition. When the triggering condition is satisfied, the plant state measurement x p and the control input u are respectively sent to the controller and to the plant. Consequently, the sequence of transmission instants, which we denote {t i } i∈I , I ⊆ Z ≥0 , is a subsequence of {s i } i∈Z ≥0 , and two successive transmissions are spaced by at least ε units of time in view of (5), thereby avoiding the Zeno phenomenon. Parameter ε reflects the minimum achievable transmission interval given by the hardware constraints. We assume that the transmission delays and the quantization effects are negligible. For the sake of generality, we allow the triggering condition to depend on x p , x c , u at the current transmission time. While this may be difficult to implement in practice, this formulation encompasses the practically relevant cases where the controller is directly connected to the actuators and only the plant state is transmitted over the network, or vice versa when the controller is directly connected to the sensors and only the control input is sent over the channel.

Because of the communication network, plant (3) no longer has access to u, but only to its networked version, which we denote by û. Similarly, controller (4) has access to xp , the networked version of x p . Between two successive transmission instants, xp and û are governed by

ẋp = fp (x p , x c , xp , û) u = fc (x p , x c , xp , û) t ∈ (t i , t i+1 ), (6) 
where fp and fc are the holding functions. Zero-order-hold devices correspond to fp = 0 and fc = 0 for instance, but other holding functions can be envisioned as well, see [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF] for example. Before modeling the dynamics of xp and û at each sampling instant s i , we introduce the vector x := (x p , x c ) ∈ R nx , which is the concatenation of the plant and the controller state, and the vector of network-induced errors e := (e p , e u ) ∈ R ne , where e p := xp -x p is the network-induced error on the state measurement x p , e u := û -u is the network-induced error on the control input, n x := n p + n c and n e := n p + n u . At each sampling instant s i , i ∈ Z ≥0 , the update of xp and û satisfy

xp (s + i ) û(s + i ) ∈                            x p (s i ) u(s i ) when Υ(e(s i ), x(s i )) > 0 xp (s i ) û(s i ) when Υ(e(s i ), x(s i )) < 0 xp (s i ) û(s i ) , x p (s i ) u(s i ) when Υ(e(s i ), x(s i )) = 0, ( 7 
)
where Υ describes the triggering condition, which is evaluated at each sampling instant by the event-triggering mechanism. We explain later how to construct Υ (see Section IV-B). In view of [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF], when Υ(e(s i ), x(s i )) > 0, a transmission occurs at s i , and xp and û are reset to the actual value of x p and u, respectively. When Υ(e(s i ), x(s i )) < 0, no transmission occurs and xp and û remain unchanged. When Υ(e(s i ), x(s i )) = 0, the model allows two possibilities: either a transmission occurs or not, our results apply in both cases. This construction ensures that the jump map in ( 7) is outer semi-continuous, which is essential for the hybrid model presented below to be (nominally) well-posed, see Chapter 6 in [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] for more details. As a result, [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF] generates non-unique solutions, which is not an issue for the forthcoming results.

We deduce from ( 7) that the variable e has the following dynamics at jumps

e(s + i ) ∈ h(e(s i ), x(s i )), (8) 
where

h(e, x) := 1 -Γ(e, x) e (9) 
and Γ : R ne+nx ⇒ {0, 1} is the function that indicates if a transmission occurs or not. In particular, Γ(e, x) = {1} when Υ(e, x) > 0, which corresponds to a transmission. When Υ(e, x) < 0, Γ(e, x) = {0} and this corresponds to no transmission and h(e, x) = e in this case. When Υ(e, x) = 0, Γ(e, x) = {0, 1} covers the above two possibilities. In agreement with [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], we call (8) the protocol equation. We note that h depends on the state x contrary to [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF], [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF], which will have important consequences on the stability property of the protocol equation compared to the latter references (see Remark 1 in Section IV-B).

We introduce the variable τ ∈ R ≥0 to keep track of the time elapsed since the last evaluation of the triggering criterium on, which has the following dynamics

τ = 1 when τ ∈ [0, T ] τ + = 0 when τ ∈ [ε, T ].
We then model the complete system as

q = F (q) q ∈ C q + ∈ G(q) q ∈ D, (10) 
where q := (x, e, τ ),

C := R nx+ne × [0, T ] D := R nx+ne × [ε, T ]. (11) 
The mapping F in (10) is defined as, for

q ∈ R nx × R ne × R ≥0 , F (q) 
:= (f (x, e), g(x, e), 1) ,

where f and g can be calculated from ( 3) and ( 4), and the set-valued mapping G is defined as

G(q) := x, h(e, x), 0 (13) 
with h coming from (9). Our objective is to design the triggering condition Υ in [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF] and to provide an explicit bound on the sampling period T to ensure asymptotic stability properties for system [START_REF] Mazo | An ISS self-triggered implementation of linear controllers[END_REF].

IV. MAIN RESULTS

In this section, we first state the assumption we make on system [START_REF] Mazo | An ISS self-triggered implementation of linear controllers[END_REF], based on which we then construct the triggering condition Υ and the bound on T . We finally present the main stability result.

A. Assumption

We assume that system (10) verifies the following properties.

Assumption 1: There exist locally Lipschitz functions V :

R nx → R ≥0 and W : R ne → R ≥0 , α V , α V , α W , α W ∈ K ∞ , a V , L W > 0 and L V ≥ 0 such that the following holds. (i) For all x ∈ R nx , α V (|x|) ≤ V (x) ≤ α V (|x|). (ii) For almost all x ∈ R nx and all e ∈ R ne , ∇V (x), f (x, e) ≤ -a V V (x) + γ 2 W 2 (e). (iii) For any e ∈ R ne , α W (|e|) ≤ W (e) ≤ α W (|e|).
(iv) For any x ∈ R nx and almost all e ∈ R ne , ∇W (e), g(x, e) ≤ L W W (e) + L V V (x). Items (i)-(iii) in Assumption 1 imply that the system ẋ = f (x, e) is input-to-state stable (ISS) with respect to e. The fact that the Lyapunov function V has an exponential decay rate in item (ii) of Assumption 1 is not restrictive as any input-to-state stable Lyapunov function can be modified accordingly in view of [START_REF] Praly | Stabilization in spite of matched unmodelled dynamics and an equivalent definition of input-to-state stability[END_REF]. Item (iii) says that W is positive definite and radially unbounded. Item (iv) is an exponential growth condition of the e-system between two consecutive sampling instants, like in [START_REF] Postoyan | A framework for the observer design for networked control systems[END_REF], [START_REF] Postoyan | Tracking control for nonlinear networked control systems[END_REF]. A nonlinear physical example, which satisfies Assumption 1, is provided in Section V.

B. Triggering mechanism

We define Υ in (7) by, for any e ∈ R ne and x ∈ R nx ,

Υ(e, x) = W 2 (e) -λV (x), (14) 
where λ ≥ 0 is a design parameter. We select λ such that λ < λ * with

λ * := a V γ 2 , ( 15 
)
where a V and γ > 0 come from Assumption 1.

Remark 1: The definition of Υ in [START_REF] Postoyan | A framework for the observer design for networked control systems[END_REF] guarantees that the corresponding protocol ( 8) is input-to-state stable (see Definition 5.3 in [19]). In particular, W (e) ≥ (λ + ν)V (x) implies W (h(e, x)) = 0 for any (x, e) ∈ R nx+ne and ν > 0.

For each λ ∈ [0, λ * ), we select T in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF] such that T < T MASP , where T MASP is the maximum allowable sampling period defined as

T MASP := 2 L W arctanh   L W √ a V -γ √ λ (L W √ λ + 2L V )γ + L W √ a V   , (16) 
where 16) is non-negative in view of [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF].

L V ≥ 0, L W , a V , γ > 0 come from Assumption 1. The numerator L W ( √ a V -γ √ λ) in (
The bound in ( 16) is decreasing in λ. In other words, the larger the λ, which leads to a later triggering instant as ensured by [START_REF] Postoyan | A framework for the observer design for networked control systems[END_REF], the smaller T MASP . Loosely speaking, this suggest that there is a trade-off between the maximum sampling period and T the number of transmissions generated by the event-triggering condition, typically fast sampling would lead to less frequent transmissions but to more computation and vice-versa.

Remark 2: When λ = 0, the triggering condition Υ is always non-negative, and consequently transmissions can occur at every sampling instants according to [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF]. Hence, in this case we recover the time-triggered control scenario investigated in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF]. The bound on the MASP in ( 16) is then

T MASP = 2 L W arctanh L W √ a V 2L V γ + L W √ a V , (17) 
which differs from the one in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF] because the assumptions and the analysis are different. We cannot therefore assess whether one is more conservative than the other in general.

C. Stability guarantee

We show that Assumption 1 with a proper selection of λ and T ensure the stability of system [START_REF] Mazo | An ISS self-triggered implementation of linear controllers[END_REF], as formalized in Theorem 1.

Theorem 1: Consider system (10) and suppose the following hold.

1) Assumption 1 is verified.

2) λ < λ * with λ * defined in [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF].

3) T < T MASP with T MASP defined in [START_REF] Postoyan | Tracking control for nonlinear networked control systems[END_REF]. Then, the compact set

A := {q ∈ R nx × R ne × R ≥0 : x = 0, e = 0, τ ∈ [0, T ]} is UGAS.
Remark 3: The stability property ensured in Theorem 1 is robust to ρ-perturbations as the attractor A is compact and system (10) satisfies the hybrid basic conditions, which implies that it is well-posed, see Chapter 7 in [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF].

V. ILLUSTRATIVE EXAMPLE

We consider the following van der Pol oscillator

ẋ1 = x 2 ẋ2 = (1 -x 2 1 )x 2 -x 1 + u, (18) 
where x 1 , x 2 ∈ R, whose origin is exponentially stabilized by the controller

u = -x 2 -(1 -x 2 1 )x 2 .
We consider the case where sensors and actuators are collated via a communication network and the control signal u is submitted to the network and received as û. Suppose zero-order-hold devices are used to implement the controller, which gives fc = 0 for fc in [START_REF] Heemels | Periodic event-triggered control[END_REF]. Then, with e := û-u being the networked-induced error (there is no need to introduce xp -x p since the controller is static), we obtain the system in [START_REF] Mazo | An ISS self-triggered implementation of linear controllers[END_REF] with

   f (x, e) := x 2 -x 1 -x 2 + e g(x, e) := (2 -x 2 1 )(-x 1 -x 2 + e) -2x 1 x 2 2 . ( 19 
)
Assumption 1 is satisfied with1 V (x) = 3.1783x We choose λ = 1.246 × 10 -4 , which gives T MASP = 0.0105 and we take T = 0.01 which satisfies T < T MASP . Figure 3 illustrates the convergence of the plant state to the origin. On the other hand, the convergence no longer occurs when we increase λ to 2 × 10 -4 or when we increase T to 0.1 (which both violate the conditions of Theorem 1). This suggests that the bounds on T and on λ are not very conservative for this example.

VI. CONCLUSIONS

We have addressed the design of periodic event-triggered controllers for a class of nonlinear systems. We have followed an emulation approach for this purpose, in the sense that we start from a given state-feedback controller which stabilizes the origin of the continuous-time plant, and we then explain how to derive a periodic event-triggered condition to preserve stability in the presence of a network. The triggering condition is of the same type as in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] where continuous event-triggered control was addressed. An easily computable bound on the sampling period used to evaluate the triggering condition is provided. The analysis reveals a trade-off between the parameter of the triggering criterion and the considered sampling period.
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 2 Fig. 2: Triggering parameter λ vs T MASP .
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 3 Fig. 3: A solution to system (10) when T = 0.01 and λ = 1.246 × 10 -4 .
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We have obtained V , W , γ, a V , L V , L W using SOSTOOLS[START_REF] Valmorbida | SOSTOOLS: Sum of squares optimization toolbox for MATLAB[END_REF].
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APPENDIX

Proof of Theorem 1. Let λ ∈ (0, λ * ) with λ * defined as in [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF]. Let T ∈ (0, T MASP ) and T MASP be determined by [START_REF] Postoyan | Tracking control for nonlinear networked control systems[END_REF].

We define, for any q ∈ C ∪ D, U (q) := max V (x), φ(τ )W 2 (e) , [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF] where W and V come from Assumption 1, and φ : [0, T MASP ] → µ, µ is defined in the next lemma, whose proof is omitted due to space limitations. Lemma 2: There exist µ > µ > 0 such that

where µ * := γ 2 a V and µ * := 1 λ , and the function φ defined by the solution to

We first show that the following properties hold for system [START_REF] Mazo | An ISS self-triggered implementation of linear controllers[END_REF]. There exist ν > 0, α U and α U ∈ K ∞ such that: 1) U is locally Lipschitz in x, e and τ , and, for all q ∈ C∪D, α U (|q| A ) ≤ U (q) ≤ α U (|q| A ); 2) for all q ∈ C, U • (q; F (q)) ≤ -νU (q); 3) for all q ∈ D and g ∈ G(q), U g ≤ U (q).

It follows from Assumption 1 and the definition of φ in Lemma 2 that the Lipschitz property of U in item 1) is satisfied. In view of Lemma 2, φ(τ ) ∈ µ, µ for all τ ∈ T ]. It follows from ( 21) that item 1) holds with α U , α U ∈ K ∞ given by, for all s ≥ 0,

We now consider item 2). Let U 1 (q) := V (x) and U 2 (q) := φ(τ )W 2 (e) for any q ∈ C ∪ D. Let q ∈ C. We distinguish three cases according to Lemma 1.

Case 1: q ∈ C and U 1 (q) > U 2 (q).

In this case, φ(τ

Consequently, in view of Lemma 1 and item (ii) of Assumption 1,

Case 2: q ∈ C and U 1 (q) < U 2 (q). In this case, U (q) = U 2 (q) = φ(τ )W 2 (e). Hence

We omit below the dependency of φ on τ for the sake of convenience. In view of item (iv) in Assumption 1, ( 22), ( 25)

and the fact that φ(τ ) ≥ µ for all τ ∈ [0, T ],

Since U (q) = φ(τ )W 2 (e) ≤ µW 2 (e) in this case, (26) gives that

Case 3: q ∈ C and U 1 (q) = U 2 (q). In view of Lemma 1, ( 24) and ( 27), we have that

Combining ( 24) and ( 27) leads to item 2) with ν := min (1 -σ)a V , µµ µ for all q ∈ C. We now investigate the evolution of U at jumps, i.e., item 3). Let q ∈ D. We distinguish two cases depending on whether a transmission occurs or not. When a transmission occurs, the corresponding g ∈ G(q) is such that W 2 (h(e, x)) = 0 and thus, since W is positive definite in view of item (iii) of Assumption 1,

When no transmission occurs, it follows from ( 9) and ( 14) that W 2 (h(e, x)) = W 2 (e) ≤ λV (x). Since φ(0) = µ and µ < 1/λ according to Lemma 2,

for all g ∈ G(q) satisfying h(e, x) = e. This with (28) ensures that item 3) holds for all q ∈ D. The satisfaction of items 1)-3) imply that items (i)-(iii) of Theorem 1 in [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF] hold and item (iv) of Theorem 1 also holds with noting [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF].

We then invoke Theorem 1 in [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF] and have that system [START_REF] Mazo | An ISS self-triggered implementation of linear controllers[END_REF] is uniformly globally pre-asymptotically stable (UGpAS). Note that condition (VC) of Proposition 6.10 in [2] holds for system [START_REF] Mazo | An ISS self-triggered implementation of linear controllers[END_REF]. Moreover, we can exclude item (b) of Proposition 6.10 in [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] in view of items 1)-3), and item (c) of this proposition is also excluded as G(q) ⊂ C for any q ∈ D in view of ( 10)- [START_REF] Postoyan | Event-triggered tracking control of unicycle mobile robots[END_REF]. Then, in view of Proposition 6.10 in [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] and the fact that t j+1 -t j ≥ ε holds for any t, j ∈ dom q, all maximal solutions q of system (10) are complete in t direction, i.e., sup t domq = ∞. As a result, the set A is UGAS for system [START_REF] Mazo | An ISS self-triggered implementation of linear controllers[END_REF].