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Energy Efficient Time-Triggered Control over Wireless Sensor/Actuator
Networks

Vineeth S. Varma and Romain Postoyan

Abstract— We investigate the scenario where a controller is
connected to a plant using a wireless network. Our objective is
to design control strategies, which efficiently use the network
in terms of energy, by taking into account the fluctuations
of the wireless channel. In particular, we consider discrete-
time systems and we focus on time-triggered control. That
is, we assume that we know a controller, which ensures a
desired property (such as stability), as long as two successive
transmissions are not spaced by more than a fixed number
of steps N . The problem formulation is generic in the sense
that we do not make any assumption on the plant and the
controller structures or properties, all we need to ensure is
the constraint on the transmission times. We then present
triggering strategies to minimize the energy expenditure based
on knowledge on the channel state, while ensuring that two
successive transmissions are not spaced by more than N steps.
The results demonstrate that periodically communicating after
exactly N time instants has passed (to minimize the number of
transmissions), is not always the optimal scheme to minimize
the energy cost. As a result of certain properties of the wireless
channel, communicating more often when the wireless channel
conditions are good, results in a smaller energy consumption
overall despite a higher frequency of communication. Numerical
results confirm the validity of the approach and show that a
significant amount of energy can be saved.

I. INTRODUCTION

The literature on sensor networks has extensively dealt
with the extraction and communication of information ob-
tained through the sensors. Communicating the obtained
information with a high data rate or reliability, while consum-
ing as little energy or power as possible, is the primary objec-
tive of works in this field, see e.g., [1], [2]. The approaches
used to reduce the power consumption are based on the
communication requirements and wireless aspects like access
protocols, scheduling and transmission power control [3]. On
the other hand, the literature on networked control systems
(NCS) concentrates on applications in which actuation plays
a major role, see e.g., [4], [5], [6], [7]. These are systems
in which the plant and the controller communicate with
each other via a communication network. In this context,
the energy expenditure incurred is often assumed to be
directly related to the frequency of communication through
the network, meaning that the less we transmit, the less the
energy expenditure due to communication.

Many researchers have recently published results which
bridge the gap between the two approaches mentioned above,

V. S. Varma and R. Postoyan are with the Université de
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and develop a more unified framework for analyzing and
reducing the energy consumption in NCS. In [8], [9] for
instance, the implementation of event-triggered controllers
over practical communication channels is investigated. The
survey [10] provides a list of works that implement energy
efficient sensor design in the context of NCS. Minimizing the
energy consumption by a sensor, with the ability to harvest
energy, communicating over a wireless channel has been
done in [11]. Another work of interest among others, is [12],
in which the authors look at energy efficient transmit power
control in a wireless sensor/actuator network, with the power
control based on efficiency of the estimation.

The primary objective of our work is to reduce, and if pos-
sible, minimize the energy consumed by a control system, in
which the sensors and the actuators are connected to the con-
troller through a wireless channel. The controller is assumed
to be able to complete its task, as long as it is updated, within
an interval of N time instants from the previous update. We
assume that the communication is perfect (no noise through
quantization) and without delay when a sufficient amount of
energy is consumed. The problem formulation is generic in
the sense that the system and the controller can have any
dynamics and the control objective can be stability and/or
optimality for instance. The only requirement for our results
to hold, is on the frequency of communication as mentioned
above, which is assumed to imply that a desired property for
the closed-loop system holds. We propose communication
strategies (determining when to communicate) that reduce
the total discounted energy cost based on:

1) the clock state, which is the number of time instants
that has passed since the previous communication. This
takes a value in the set {1, 2, . . . , N}, as communica-
tion is enforced when N instants have passed for the
controller to perform its task.

2) the channel fading, which is a positive real number
indicating the strength of the wireless connection be-
tween the wireless transmitter and the receiver (see,
e.g., [11], [12]). The higher the value of the channel
fading, the lower the amount of energy that has to be
spent for successful communication.

Although the literature mentioned above treats the problem
of energy efficient communication in NCS, the strategies
obtained usually are either from a communication perspective
(not considering the plant state) or from a control perspective
(not considering the channel fading). Designing a power
control scheme taking into account both the wireless channel
fading and the plant state jointly has been done in [13], where



the authors develop a co-designed power control policy for
linear systems when the wireless channel distribution is
known. In comparison, our results apply to general systems
and controllers, but, which satisfy time triggering conditions.
The latter enables us to separate the control and communi-
cation problems as the former is solved by restricting the set
of communication strategies to the subset which satisfies the
time triggering condition.

We treat three primary cases of interest, based on the
wireless channel model assumed:

1) The wireless channel conditions remain a constant for
all time: in this simple case, reducing the frequency of
communication obviously minimizes the energy cost.
That is, the optimal policy is transmitting only when
the clock state is exactly N .

2) The wireless channel conditions are known for a certain
number of time instants in the future: several practical
scenarios have appeared over the recent years, for
which forecasting the wireless channel state over a long
time horizon is realistic, see [14], [15]. In this case,
we develop a rollout algorithm [16] for signal power
control, that consumes an amount of energy lower than
or equal to that consumed by the policy given by the
first case. Simulation results actually have shown that
it consumes a much smaller energy cost.

3) The probability distribution of the wireless channel
conditions are also known: this assumption is often
made in wireless literature (see [3], [12], [13]) as the
channel statistics can be learned. In this case, we are
able to compute and minimize the minimal expected
energy costs by modeling the problem as a Markov
decision process.

The rest of the paper is structured in the following man-
ner. The problem is formally stated in Section II. Section
III presents the proposed communication strategies for the
three cases mentioned above. Section IV provides numerical
results that illustrate the energy gains observed by imple-
menting the proposed policies. Finally, Section V concludes
the paper. The proofs are omitted due to space limitations.

II. PROBLEM STATEMENT

We investigate the scenario where a controller is imple-
mented over a wireless network and communicates with the
plant at time instants ti ∈ Z≥0, i ∈ Z≥0 (where Z≥0 =
{0, 1, . . . }). In order to monitor the plant, low-energy sensors
are deployed which measure the plant state and communicate
this information to the controller. The primary objective of
this work is to develop a communication scheduling scheme
that minimizes (when possible) the energy consumption at
the sensor while ensuring that the controller can consistently
perform its task.

A. Control requirements

When a transmission occurs, the plant sensors send the
current value of the output vector to the controller, which also
sends in the meantime, the current value of the control input
to the plant. We assume that the transmission delays and that

quantization can be neglected and that both transmissions
occur over the same channel and do not interfere. Define
by N ∈ Z>0 (where Z>0 = {1, 2, . . . }), the maximum
allowable transmission interval (MATI) where

ti+1 ∈ {ti, ti + 1, . . . , ti +N}, ∀i (1)

We assume that the MATI, N as defined in (1) ensures that
the control system satisfies a desired property, like stability
or optimality for instance. This general assumption allows
covering various situations without imposing any model for
the plant and the controller. For instance, conditions to ensure
stability properties for system, including a bound on N , are
provided in [17]. The near-optimal time-triggered strategies
presented in [18] can also be modeled by (1).

For the sake of convenience, we introduce the clock state
τ(t) to count the number of steps since the last transmission.

τ(t+ 1) =


1 when τ(t) ∈ {1, . . . , N}

(transmission)
τ(t) + 1 when τ ∈ {1, . . . , N − 1}

(no transmission).
(2)

Where τ(t) is reset to 1 when a transmission occurs and
is incremented by 1 when that is not case. We are free to
trigger a transmission whenever τ(t) ∈ {1, . . . , N} in order
to satisfy the control objective. As the energy consumed per
transmission depends on the wireless channel, we consider a
wireless channel model as described in the following section.

B. Channel fading and energy costs

The signals sent through wireless channels experience an
attenuation due to various factors like shadowing, multi-
path propagation and path loss (distance). In the framework
of wireless communications, this process is called channel
fading. The channel fading is, in general, a time-varying
quantity, and we model the gain (or loss) of the signal
strength due to the channel fading at time t by the real num-
ber ht, which is assumed to satisfy the following condition.

Assumption 1: The wireless channel fading at time t ∈
Z≥0 is given by ht ∈ H whereH := [hmin,+∞] and hmin >
0. �

Assumption 1 guarantees that, at any time t, the channel
ht is larger than or equal to hmin > 0, where hmin is the
channel fading when the the wireless channel connection
is the weakest. This property is required to ensure that
communication at any time can be successful with no loss.
Indeed, a real wireless device will have a bit-error rate.
However, we assume that reliable communication can always
be performed using error correcting codes and by using the
maximum energy [19], [20]. Note that in future work, we
can relax this condition by considering stochastic control.
We also assume that ht is known to the sensor, with a
negligible sensing energy cost compared to cost of sending a
wireless transmission. This assumption is often justified, as
in practice, the receiver will typically sent pilot signals for
the transmitter to estimate the channel (see [13] for instance).



Let the energy spent by the transmitter to communicate at
time t be given by Et ∈ [0, Emax], where Emax > 0 is the
maximum energy output of the transmitter. In practice, we
are free to select the energy Et at each t ∈ Z>0. The energy
required in order to communicate with no loss depends on
the wireless channel fading. We assume that the minimum
amount of energy needed in order to communicate without
loss is inversely proportional to the channel fading ht as
formalized below.

Assumption 2: When the transmitter consumes Et Joules
of energy at time t, then the communication is lossless if

Et ≥
E0

ht
(3)

where E0 > 0 is a positive real number satisfying E0 ≤
Emaxhmin. �

Assumption 2 is suitable when the communication per-
formance metric is a non-decreasing function of the signal
to noise ratio and the communication system implements
capacity achieving codes. For satisfying a certain quality
of service (like communication with no loss) the signal to
noise ratio must be above a certain threshold, resulting in
channel inversion for the energy (and transmit power) spent.
Additional information on the validity of this assumption
can be seen in in Section IV.A of [13]. Assumptions 1 and 2
guarantee that, at any time t, the communication between the
sensor and the controller will be successful when an energy
E0

ht
is consumed by the wireless transmitter.

C. Performance metric

We are interested in minimizing the total energy consumed
by the transmitter over an infinite horizon. As this cost will
be unbounded in general, we introduce a discount factor δ ∈
(0, 1) and look at the total discounted cost (often studied in
literature, e.g. [18], [21]), measured in Joules as

e :=

∞∑
t=1

δtEt, (4)

while ensuring that the interval between two successful com-
munication instants is in {1, 2, . . . , N}. From Assumption
2, we know that when Et ≥ E0

ht
, the communication is

successful. Therefore, we reduce our problem into finding
a sequence dt ∈ {0, 1} for any t, where Et = dt

E0

ht
, which

minimizes the total energy cost, i.e., the cost function,

e =

∞∑
t=1

δtdt
E0

ht
. (5)

Hence, when dt = 0, the energy spent at time t is equal
to zero, meaning that we do not transmit. When dt = 1, a
transmission occurs and we use E0

ht
Joules to successfully

transmit. Minimizing e in (5) would require knowing ht for
all t, which is not reasonable in practice. Therefore, we define
h̄t := (ht, ht+1, . . . , ht+M ), the M + 1 dimensional vector
formed by the concatenation of the current channel ht and M
future channels, where M ∈ Z≥0 at time t ∈ Z>0. We also
introduce h̄|t := (h1, h2, . . . , ht) that represents the value of

the channel fading from 1 to t ∈ Z≥0. We assume that these
M future channel fadings are known at any time t.

Assumption 3: At any time t, h̄t is known by the trans-
mitter, where M ∈ Z≥0. �

Assuming that the transmitter knows all the realizations
of the system state in advance can also be seen as a way of
obtaining an upper bound for the performance of scenarios
that assume a reduced time horizon for forecasting. It is
worth noting that several practical scenarios have appeared
over the recent years as seen in[14] or [15]. Note that the
case of M = 0, is a special case of Assumption 3 where no
future channel fadings are known.

Our goal is to design “policies” which determine dt,
given h̄t (the vector of known channels) and τ(t) (the clock
state), such that the energy cost e in (5) is minimized
when possible, while ensuring τ(t) ≤ N for any t, hence
ensuring the desired control task. We define a policy as
πM : Z>0 ×HM+1 → {0, 1} (H defined in Assumption 1),
which is a function that determines whether to communicate
or not given τ(t) and h̄t.

Given a policy πM and channel fadings h̄|t+M , let
the communication decision made at time t be given by
dt(πM , h̄|t+M ), and the clock state as a result of these
decisions be given by τ(t) = St(πM , h̄|t+M ), where St is
some function to be designed. Denote by Π the set of all
policies satisfying the time triggering rule (1), i.e.,

Π := {πM |πM (N ′, ḡ) = 1 ∀ḡ ∈ HM+1, ∀N ′ ≥ N}.

Our objective is to find policies πM ∈ Π that (when possible)
minimize the cost function

e(πM , h̄|∞) :=

∞∑
t=1

δtdt(πM , h̄|t+M )
E0

ht
. (6)

Since knowing all the future channel values, i.e., h̄|∞ is not
generally possible in practice, we are interested in optimizing
the decisions in order to minimize the expected cost. Let
ht ∼ P where P is the probability distribution of ht, and
the probability distribution function (PDF) of ht is P (·). The
expected energy cost ē(πM ) (over channel realizations) while
using a policy πM is given by

ē(πM ) := Eh̄|∞e(πM , h̄|∞), (7)

where Eh̄|∞ :=
∫
H∞ Π∞t=1P (ht)dh̄|∞ is the expectation over

all the channels.
The objective of our work is to minimize ē(πM ), when

Pt is known and otherwise, find policies that reduce the
consumed energy e(πM , h̄|∞) compared to a base policy
defined in the following section.

III. MAIN RESULTS

A. Constant channel fading

In this subsection, we look at the trivial case where the
channel fading is a constant for all time. This kind of
model is suitable when both the transmitter and receiver are
stationary and is at line-of-sight with no obstructions. This



results in a Rician channel fading with a small variance, i.e.,
approximately a constant.

Assumption 4: There exists h0 ≥ hmin such that ht = h0

for any t ∈ Z>0. �
Note that h0 is necessarily known in view of Assumption

3. We will now introduce a policy πBM which we will refer
to as the “base heuristic”.

Definition 1: The base heuristic πBM is given by, for any
τ ∈ {1, . . . , N} and ḡ ∈ HM+1,

πBM (τ, ḡ) :=

{
1 if τ = N
0 if τ < N .

(8)

�
This policy minimizes the communication frequency by

transmitting the measurement only when the clock state is
N . Additionally, this policy does not require any information
on the channel fading (present or future). Therefore, the
implementation is very straightforward and requires almost
no computational resources or information. Moreover, such
a policy is optimal under Assumptions 1-4, as we show in
the next proposition. Note that such a policy would also be
naturally used when ignoring the channel fadings fluctuations
and considering only the control requirements.

Proposition 1: When Assumptions 1-4 hold, the expected
energy cost ē(πM ) is minimized by implementing the base
heuristic, i.e., π∗M = πBM and results in a total energy
consumption of ē(πBM ) = δNE0

h0(1−δN )
. �

B. Channel statistics are unknown

In most practical systems Assumption 4 does not hold true,
as ht typically varies in time. The energy cost from when
the base heuristic is implemented for any general channel
model (ht is not necessarily a constant) is given by

e(πBM , h̄|∞) =

∞∑
i=1

δiN
E0

hiN
. (9)

In this section, we only suppose that Assumptions 1-3 hold
and we do not make any assumption on the channel statistics,
i.e., the PDF is unknown. We propose a rollout algorithm (see
[16]), which outperforms the base heuristic. Recently, some
works like [13], [21] have utilized the rollout algorithm in
the field of event-triggered control. Although the latter does
not result in an optimal solution, it may produce consider-
able (and often dramatic) performance improvements over
the base heuristic, as confirmed in the simulation results
presented in Section IV.

The rollout algorithm assumes that the algorithm only
affects a certain horizon of time, and that the base heuristic
is implemented after this horizon. The related costs of the
system beyond the horizon are calculated assuming that the
base heuristic given in Definition 1 is implemented. The total
energy cost within the time period {t, t + 1, ..., t + M} is
minimized, while ensuring that the base heuristic will be
implemented after t+M .

Definition 2: The rollout policy πRM is defined as, for

clock state τ ∈ Z>0 and channel vector ḡ ∈ HM+1

πRM (τ, ḡ) := argb0 min
b̄

M∑
j=0

δjbj
E0

gj
(10)

where bj ∈ {0, 1} for all j ∈ {0, 1, ..,M} and b̄ =
(b0, b1, . . . , bM ) has to satisfy the following constraints. Let
S′j(b̄) be the clock state after j time steps, where S′0(b̄) = τ
by definition, and S′j(b̄) is defined for j ∈ {1, 2, . . . ,M} as

S′j(b̄) :=

 j + τ if bk = 0 ∀k ∈ {0, 1, .., j − 1}
j −max{k ∈ {1, . . . , j − 1}|bk = 1}

otherwise.
(11)

The vector b̄ is such that

S′j(b̄) ≤ N ∀j ∈ {0, 1, ..,M − 1} (12)

and
S′M (b̄) ≤ N − (Ndτ +M

N
e − τ −M). (13)

where the notation dye denotes the smallest integer greater
than or equal to y (ceiling function). �

In Definition 2, b̄ represents the vector of decisions that
will be taken from t to t + M if the rollout policy is
implemented when the clock state at t is τ . Assuming the
decisions b̄ from t to t+M are taken, then S′j(b̄) represents
the clock state after j time steps and can be estimated by
(11). As the time triggering rule (1) has to be satisfied, we
impose the constraint (12). We also enforce an additional
constraint (13) to avoid transmitting after the rollout horizon
and before the schedule of the base heuristic. Implementing
the rollout policy πRM results in an energy cost, which is at
most, the energy cost of the base heuristic. This result is
detailed in the following proposition.

Proposition 2: When Assumptions 1-3 hold, the rollout
policy πRM leads to an energy cost that is less than or equal
to the energy cost implementing πBM . �
Implementing πRM when M is large, requires an exhaustive
search over all the possible decisions with a computational
complexity of 2M steps and dynamic programming can
be used in order to reduce the computational complexity
and solve the minimization problem in (10). Our numerical
results, for the considered channel fading model, indicate that
this may not essential, as the gain from increasing M is not
significant beyond M = 5 when N = 10.

C. Channel distribution is known

While the rollout strategy may reduce the energy expen-
diture, the obtained cost is not optimal a priori. In this
subsection, we aim at providing optimal policies. We assume
for this purpose that the channel distribution information
is known for all time and are independent and identically
distributed random variables.

Assumption 5: The channel fading distribution P (h) :
R+ → R+ is known such that ht ∼ P for all t, and the
PDF of ht is given by P (h). �

Assumption 5 is often made in the framework of wireless
communications [3], [12], [13]. For any M , when the prob-



ability distribution P (h) is known, we derive the optimal
policy (optimal given the available information of M future
channel states). Let vτ,ḡ(πM ) represent the expected energy
cost while using policy πM for all future times while the
clock state is τ and ḡ is the vector of known future channels.
Define v̄τ (πM ) := Eḡ[vτ,ḡ(πM )].

Proposition 3: Under Assumptions 1-3 and 5, the problem
resolves into a Markov decision process (MDP) and the op-
timal policy π∗M is given by iteratively solving the following
equations

π∗M (τ, ḡ) = argb0 minb̄

{
b0
E0

g0
+
∑M
m=1 δ

mbm
E0

gm

+δM+1v̄S′M+1(b̄)(π
∗
M )
} (14)

where bj ∈ {0, 1} for all j ∈ {0, 1, ..,M} and b̄ =
(b0, b1, . . . , bM ) satisfies the constraint (12) and S′j(b̄) is
from Definition 2, and

v̄τ (π∗M ) = Eḡ
[
π∗M (τ, ḡ)E0

g0
+ δπ∗M (τ, ḡ)v̄1(π∗M )

+ δ(1− π∗M (τ, ḡ))v̄τ+1(π∗M )]
(15)

�

Although iteratively solving equations (14) and (15) can be
computationally heavy, this can be done offline and v̄τ (π∗M )
can be computed. The expected energy cost for the policy π∗M
is ē(π∗M ) = v̄1(π∗M ) (as we initialize with communication
at t = 0). In general, the minimization problem in (14) is
similar to the problem in the previous subsection, but also
yields non-trivial results for M ∈ {0, 1}. Of special interest
is the case of M = 0, where the future channel states are
unknown, but their statistics are known, in which case the
policy is given as follows.

Optimal policy for M = 0: The optimal policy obtained
from (14) has a simple form in this case. Let g̃τ :=

E0

δv̄τ+1(π∗0 )−δv̄1(π∗0 ) and (14) can be simplified to be a thresh-
old policy on the channel for each state τ :

π∗0(τ, g0) =

{
1 if g0 ≥ g̃τ or τ = N ;
0 otherwise. (16)

Hence, we compute g̃τ for all τ ∈ {1, 2, . . . ,M} offline by
iteratively solving (14) and (15), and we simply check on-line
whether ht is bigger than g̃τ(t), in which case a transmission
is triggered.

When M > 0, it becomes more complex (in terms of
computation) to find the optimal policy as we also have
information on ht+1, ht+2, . . . , ht+M . The total number of
decision variables are M + 1, and as in the previous section,
this results in a computational complexity of 2M+1. Dynamic
programming can be used to find the optimal decision
policy π∗M given the expected minimal energy cost function
v̄τ (π∗M (·, ·)) with less computational complexity.

So far, we have provided several policies to reduce or
minimize the energy costs in a time triggered control system.
In the next section, we provide some numerical results
that illustrate the advantages and gains resulting from our
proposed policies.

IV. NUMERICAL RESULTS

We use a Rayleigh model of channel fading for our
numerical study, and generate channel realizations with the
PDF

P (ht) = exp(−ht)

by considering unit variance (note that h for us, is in the
signal power domain, and not amplitude, resulting in the
exponential distribution). Additionally, we consider hmin =
0.01 and consider all randomized ht = 0.01 if the randomly
selected ht < 0.01. We take the parameters E0 = 1 and
δ = 0.99.

In Figure 1, we compare the energy cost by implementing
the rollout policy with the optimal policy (w.r.t the available
information) developed in Section III C. Observe that for
N = 10, even when M = 0, the expected energy cost is
reduced by about 74% when compared to the base policy
(which is equivalent to rollout with M = 0). Figure 1 also
shows that the reduction in energy cost by using M > 5
is not significant for neither the rollout and nor the optimal
policy. Beyond this point, both the policies converge to costs
that are not far from the optimal policy obtained by knowing
all values of ht. This indicates that an exhaustive search is
feasible to solve (10) or (15), and it is not essential to use
advanced techniques like dynamic programming.

Figure 2 plots the thresholds g̃τ against the time since the
last transmission (τ ), for the optimal policy with M = 0,
i.e., for π∗0(τ, g0). This figure clearly shows how the optimal
policy can be implemented when M = 0. If the channel
realization ht ≥ g̃τ (with τ = τ(t)), the optimal decision
would be to transmit, and not transmit otherwise. For a larger
N , the channel realization much be much larger to transmit
efficiently for the same τ , as you have the possibility to wait
longer for a better channel.

V. CONCLUSION

We have studied the time triggered control of systems
in which controller and the plant are connected through
a wireless channel. The closed-loop system is such that,
the controller requires an update on system state within N
time instants from the previous update, in order to ensure
desired properties, such as stability. This update is provided
across the wireless network, which incurs an a minimum

Fig. 1. Expected energy cost with the rollout scheme ē(πRM ) (defined in
Section III. B) or the optimal policy ē(π∗

M ) (defined in Section III. C) vs
the number of known future channel values M .



Fig. 2. Channel thresholds (g̃τ ) against time since last transmission (τ )
for the optimal policy with M = 0, i.e., for π∗

0(τ, g0).

energy cost E0

ht
for successful communication, where ht

models the channel fading (the strength of the wireless
channel). We study three models for the wireless channel
and provide policies that determine when communication
should be done, in order to minimize (when possible) the
total discounted energy cost. The first case of interest is
when the channel fading is a constant and we prove that to
communicate after exactly N time instants from the previous
communication instant is optimal. In the second case, the
channels fading values are unknown in general but known
for M future instants and we propose a sub-optimal rollout
policy which is shown to provide large gains in energy
cost through simulations. Finally, when the channel statistics
remain a constant through time and are known, we find
the optimal policy by modeling the problem as a Markov
decision process. An important property of our analysis is
that, the energy gains are independent of every property of
the control system except for N , the MATI.
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