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GENERICITY OF WEAK-MIXING MEASURES ON
GEOMETRICALLY FINITE MANIFOLDS

KAMEL BELARIF

ABSTRACT. Let M be a manifold with pinched negative sectional curva-
ture. We show that when M is geometrically finite and the geodesic flow
on T*M is topologically mixing then the set of mixing invariant mea-
sures is dense in the set .#'(T'M) of invariant probability measures.
This implies that the set of weak-mixing measures which are invariant
by the geodesic flow is a dense G5 subset of .Z*(T*M). We also show
how to extend these results to manifolds with cusps or with constant
negative curvature.

1. INTRODUCTION

Let M be a complete, simply connected manifold with pinched sectional
curvature (i.e there exists b > a > 0 such that —b? < k < —a?) and I a non
elementary group of isometries of M. We will denote by M the quotient
manifold M /T and ¢; the geodesic flow on the unit tangent bundle T M.
The interesting behavior of this flow occurs on its non-wandering set 2.
Let us recall a few definitions related to the mixing property of the geodesic
flow.

(1) ¢ is topologically mixing if for all open sets %, 7 C ) there exists
T > 0 such that

Ge(% )NV # 0 for all [t| > T,

(2) Given a finite measure p the geodesic flow is mixing with respect to
w if for all f € L2(T*M, p),

2
i oy - fdu = d
tg;wa ¢t - fdp (wau>,

(3) it is weakly-mixing if for all continuous function f with compact
support we have
2
fdu>

T
lim 4
T—o00 0

Finally, let us recall what is the weak topology: a sequence p, of prob-
ability measures converges to a probability measure p if for all bounded
continuous functions f,

dt = 0.

Fomo)fe)duta) ~ ( |

T'M LM

Py "2 / fdp.
TN TIM
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In this article, we will show that the weak-mixing property is generic in
the set .#'(T'M) of probability measures invariant by the geodesic flow
and supported on Q. We endow .2 (T M) with the weak topology.

In [Sig72], K. Sigmund studies this question for Anosov flows defined on
compact manifolds and shows that the set of ergodic probability measures
is a dense G set (i.e a countable intersection of dense sets) in .1 (T M).
On non-compact manifolds, the question has been studied by Y. Coudene
and B. Schapira in [CS10] and [CS14]. It appears that ergodicity and zero
entropy are typical properties for the geodesic flow on negatively curved
manifolds.

Since the set of mixing measures with respect to the geodesic flow is con-
tained in a meager set (see [CS14]) it is natural to consider the set of weak-
mixing measures from the generic point of view.

Let us recall that a manifold M is geometrically finite if it is negatively
curved, complete and has finitely many ends, all of which are cusps of finite
volume and funnels.

Here is our main result.

Theorem 1. Let M be a geometrically finite manifold with pinched curva-
ture and ¢; the geodesic flow defined on its unit tangent bundle T*M.

If ¢ is topologically mixing on ), then the set of mizing probability measures
invariant by the geodesic flow is dense in .4 (T*M) for the weak topology.

Corollary 1.1. Let M be a geometrically finite manifold with pinched neg-
ative curvature and ¢ the geodesic flow defined on its unit tangent bundle
T'M.

If ¢ is topologically mizing on the non-wandering set of TYM, then the set
of invariant weak-mizing probability measures with full support on  is a

dense G subset of .4 (T*M).

To prove theorem [1] we will use the fact that Dirac measures supported
on periodic orbits are dense in .#'(T*M). This comes from [CS10] where
the result is shown for any metric space X admitting a local product struc-
ture and satisfying the closing lemma.

The rest of the proof relies on the approximation of a single Dirac measure
supported on a periodic orbit & (p) using a sequence of Gibbs measures as-
sociated to (T, F},) where F, : T*M — R is a Hélder-continuous potential.
The notion of Gibbs measures which is related to the construction of
Patterson-Sullivan densities on the boundary at infinity of M will be recalled
in §.2 .

In §.4 we will prove a criterion connecting the divergence of some subgroups
of I with the finiteness of the Gibbs measures which comes from [DOP0O0]
for the potential F' = 0.

After this, we will construct in §.5 a sequence of bounded potentials satisfy-
ing the desired property. The main step of this paragraph builds on a result
of [Cou03] which claims that there exists a bounded potential such that the
Gibbs measure is finite.

Finally, we will prove in §.6 the convergence of the Gibbs measures using



GENERICITY OF WEAK-MIXING MEASURES 3

the variational principle which is recalled in §.2.

Now, assume that Theorem [I] is true. The proof of corollary is a con-
sequence of [CS14] where it is shown that the set of weak-mixing measures
with full support is a Gy subset of the set of invariant Borel probability
measures supported on 2.

In the previous theorem, we restricted ourselves to the case of geomet-
rically finite manifolds but we make the following conjecture: the result is
still true for non geometrically finite manifolds as soon as the geodesic flow
is topologically mixing on its non wandering set.

The conjecture is supported by the following two results.

Corollary 1.2. Let M be a connected, complete pinched negatively curved
manifold with a cusp then the set of probability measures fully supported on
Q that are weakly mizring with respect to the geodesic flow is a dense Gg set

of M (T'M).

Corollary 1.3. Let S be a pinched negatively curved surface or a manifold
with constant negative curvature then the set of probability measures fully

supported on € that are weakly miring with respect to the geodesic flow is a
dense G set of M (T M).

Let M be a manifold such that dim(M) = 2, kpy = —1 or M possesses a
cusp and denote by ¢; the geodesic flow on T'M. We will show in §.7 that
we can find a geometrically finite manifold M on which theorem [1] applies
and for which ¢; is a factor of the geodesic flow qASt on T M.

One way to confirm the conjecture is to find a positive answer to the
following question:
Let M be a connected, complete manifold with pinched negative curvature.
We will suppose that M is not geometrically finite and has no cusp. Does
there exist a potential F' : T'M — R such that the Gibbs measure associated
with (T, F') is finite?

2. PRELIMINARIES

2.1. Geometry on T 1M, We first recall a few notations and results related
to the geometry of negatively curved manifolds.
Let 0,0 M be the boundary at infinity of M, we define the limit set of I' by

AT =Tz N0 M,

where x is any point of M.
An element ¢, € AT is parabolic if there exists a parabolic isometry v € I'
satisfying v¢ = €.
A parabolic point § € AI' is bounded if AT'/T¢, is compact where I'¢, is the
maximal subgroup of I fixing §,. In this case, let JZ be a horoball centered
at £ then,

G = He/T,
is called the cusp associated with &.
We say that A.I" C AT is the conical limit set if for all £ € A.I" for some
T € M there exists € > 0 and a sequence (Y, )nen such that (v, (Z))nen
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converges to ¢ and stays at distance at most € from the geodesic ray (z¢€).
We define the parabolic limit set as follows.

Apl' = {n € A" : 3y € T parabolic ,v-n=n}

Let us choose an origin zp in M once and for all. We define the Dirichlet
domain of I', centered on xy as follows.

7= () {FeM:dF %) <d@ o)}
~el y#Id
It is a convex domain having the following properties.
« Unr7=M,
vel’
e for all y € T\{Id}, 2 N~y2 = 0.
We define the diagonal of AT x AT the set of points (x,y) € AT’ x AT such
that x = y. We denote by A this set.
For all £,m € Do M , we denote by (£n) the geodesic joining £ to . We define
the lift of the non wandering set on T M by

Q={FeT'M:3(¢,n) € AT x AT\A, 7€ (¢n)}.

Let 7 : T'M — M be the natural projection of the unit tangent bundle to
the associated manifold. We denote by @ AT’ the smallest convex set in M
containing ().
M is geometrically finite if one of the following equivalent conditions is
satisfied
(1) AT = AJJUA = AU { bounded parabolic fixed points },
(2) For some € > 0, the e—neighborhood of €AI'/I" has finite volume,
(3) M has finitely many ends, all of which are funnels and cusps of finite
volume.
We define a map
C F 800]/\\4/ X M 2 —R
called the Gibbs cocycle of (I, F) by
' &) &) _
Cre(z,y) = Cr(§,z,y) = tlggo/y F —/x F

where t — £(t) is any geodesic ending at &.

Here is a technical lemma of [PPS15] giving estimates for the Gibbs co-
cycle.

Proposition 2.1. ([PPS15]) For every ro > 0, there exists ¢y, ca,c3,c4 > 0
with co,cqy < 1 such that the following assertions hold.

(1) For all x,yeM a,ndﬁe@ooﬂ,

C T,y S c ed(xvy) + dm"y max ﬁ ’
’ F,ﬁ( ) ‘ 1 ( )ﬂ—l(B(x,d(%y)))‘ ‘

and if furthermore d(x,y) < 1o, then

Cr¢(, <cd(xz,y)?+dz, max Fl.
| Crela,y) | < crd(z,y) ( y)wfl(B(a:,d(w,y)))| |
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(2) For every r € [0,19], for all z,y" in M, for every € in the shadow
O.B(y',r) of the ball B(y',r) seen from xz, we have

Y ~
Cr (x,y')+/ F’§C3’I"c4—|-2’l“ max |F|.
¢ . (Bl 7)

2.2. Thermodynamic formalism for negatively curved manifolds.

We start by recalling a few facts on Gibbs measures on negatively curved
manifolds. The results of this paragraph come from [PPS15].

Let F': T'M — R be a I'—invariant Holder function. We will say that
the induced function F' on T'M = T1M /T is a potential.

The Poincaré series associated with (I, F') is defined by
P,rr(s) = Z el ﬁ_s.
yel’
Its critical exponent is given by
or,p = limsup  log( Z el ﬁ)
nree ~vyel,n—1<d(z,yz)<n

We say that (T, F') is of divergence type if
P, r r(dr,r) diverges.
When F = 0 on T' M, we will denote by dr the critical exponent associated
to (I', F).
Proposition 2.2. Let F be the potential on T*M = (TIM)/F induced by
the T'—invariant potential F : T*M — R.

(1) The Poincaré series associated with (I', F') converges if s > or p and

diverges if s < or F,
(2) We have the upper bound

orp <dr+ sup F,
7= 1(€AT)

(3) For every ¢ >0, we have
or,r = limsup 2 log( Z el ﬁ)

noee vl ,n—c<d(z,yx)<n

We define a set of measures on &x)M as the limit points when s — 5; P
of

TR F
m Z el *h(d(z,v2))Dyo = Ha,s-
~yel'

where h : Ry — RY is a well chosen non-decreasing map and D.; is the
Dirac measure supported on yzx.
Proposition 2.3. If or p < 0o then

(1) {uis} has at least one limit point when s — 0; .. with support AT,

(2) If uf' is a limit point then it is a Patterson density i.e

Vyel,z,y e M,€ € O oM
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duf (€) = e r-imr o) gy F ey,

Using the Hopf parametrization on TlM each unit tangent vector v can
be written as v = (v4,v_,t) € 9cM x oM x R. We define a measure on
T'M by

—~ d~l-‘01, d v
di(v) = TR

where

Dpa(vy,v) = e 2P0 @) +H(Crov, @m(w)

is the potential gap and

T'M - T'M
L
v —v

is the antipodal map.
This measure is called the Gibbs measure associated to (I", F').
It is a measure independent of z, invariant under the action of I' and invari-
ant by the geodesic flow. Hence it defines a measure m? on T'M invariant
by the geodesic flow.

Let m € .#'(T'M) be a measure with finite entropy hy,(¢¢). We define
the metric pressure of a potential F' with respect to the measure m as the
quantity

Pr p(m) = hm(¢r) + / Fdm.
T'M
We say that the supremum

P(I,F) = sup P rp(m)
me.# (T M)
is the topological pressure of the potential F'. An element realizing this
upper bound is called an equilibrium state for (T, F').

Theorem 2. [OP04, PPSI5] Let M be a complete, simply connected Rie-
mannian manifold with pinched negative curvature, I' a non-elementary dis-
crete group of isometries of M and F : T'M — R a Hélder-continuous
I'-invariant map with or F < co.

(1) We have
P(T,F) = op.p.
(2) If there exists a finite Gibbs measure mg for (T, ) such that the
negative part of F is mp—integrable, then m¥ = ” H 1s the unique

equilibrium state for (I, F). Otherwise, there exists no equilibrium
state for (T, F).

3. MIXING PROPERTY FOR THE GEODESIC FLOW

The question of the topological mixing of the geodesic flow on a negatively
curved manifold is still open in full generality. This question is closely related
to mixing with respect to a Gibbs measure (see [PPS15]).

We define the length of an element v € I" by 4(v) = 1é1]\f/[ d(z,vz).
z
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Theorem 3. If or r < oo and m¥ is finite then the following propositions
are equivalent.

(1) The geodesic flow is topologically mixing on 2,

(2) The geodesic flow is mizing with respect to m*",

(3) L(I") = {l(y);y € T'} is not contained in a discrete subgroup of R.

Here are some cases where the geodesic flow is known to be topologically
mixing [DP98],[Dal99],[Dal00].

Lemma 3.1. Let I' be a non elementary group of isometries of a Hadamard
manifold M with pinched negative curvature. If M = M/F satisfies one
of the following properties then the restriction of the geodesic flow to its
non-wandering set is topologically mixing.

(1) The curvature of M is constant,

(2) dim M = 2,

(3) There ezists a parabolic isometry in T,

(4) Q=T'M.

To conclude this section, let us recall the Hopf-Tsuji-Sullivan criterion for
the ergodicity of the geodesic flow with respect to the Gibbs measure (see
[PPS15] for a proof)

Theorem 4. The following assertions are equivalent:

(1) (I', F') 1s of divergence type,
(2) Vo € M,y (9sc M\AL) =0,
(3) The dynamical system (T*M, (¢¢)ier, mF) is ergodic.

As a consequence of this theorem, one can show that if ér r < 0o, the Pat-
terson density (uf) senr associated with (I', F) is non-atomic (see [PPS15]
Proposition 5.13).

4. A FINITENESS CRITERION

First, let us give a criterion for the finiteness of the Gibbs measure. This
result comes from [DOPO0] for a potential F' = 0. For the general case where
F is an Holder potential, the proof is given in [PPS15].

Theorem 5. Suppose that I is a geometrically finite group with (I', F') of
divergence type and or p < oco. The Gibbs measure mp is finite if and only
if for every parabolic fized point &,
> d(w,ya)els (o)
«/ergp
converges.

Definition 4.1. (F F) satisfies the spectral gap property if for all parabolic
points &, € 0o M
5F£p,F < 6F,F-
Proposition 2 of [DOPO0] gives a criterion for this property for the zero

potential. The following proposition is more general and applies to all Holde-
rian potentials.
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Proposition 4.1. Let M be a Hadamard manifold with pinched negative
curvature and I' a geometrically finite discrete group acting on it. Suppose
there exists a bounded Hélderian potential F:T'M > R.

If for all parabolic fized point &, the couple (I'¢,, F) is of divergence type,
then (I, F) satisfies the spectral gap property. Moreover, the Gibbs measure
m*" associated to (T, F) is finite.

Proof. To prove the first claim, we follow the ideas of [DOP00] when F' = 0.

Since the action of Fg on Oso M has a fundamental domain ¢ in Oso M we
have

pE(0sM) = > pl(99) + pE (AT,).
gEng

Moreover, since there exists K € R such that

1k (99) = LGCFér’F’g(x’gm)dﬂgx(f)

gz _

we have
il (99) > (7 Fomr) (e Kl ()
and
00 > pt (0 X) > > 4k (99) > Co - Pury, (61 r).
g€le,
So, 6. > v, F

For the second claim, since (I, F') satisfies the spectral gap property for
M = M/T and

Ve > 0,3C. > 0,d(z,yz) > C. = ecd@z) > d(z,yz),

we have

Zd:cwxef F5FF<Z f’ﬂ —(0r,F—¢€)
’Yergp ’YEF&F

. or,F—0r, ,F .
Choosing € small enough such that % > €, the series converges

and the Gibbs measure is finite. O

5. CONSTRUCTION OF THE POTENTIALS

We now construct a I'—invariant potential H : T'M — R such that the
associated Gibbs measure is finite and which critical exponent associated to
(I¢,, H) is of divergence type.

Since M is geometrically finite, the set Parr of parabolic points &, € Do M
intersecting the boundary of the Dirichlet domain is finite.
We define for those parabolic points a family of disjoint horoballs {.77Z, (uo¢, ) }¢,

on M passing through a well chosen point ug¢, of the cusp.
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For any u in J,(uo,), we define a height function p : M >R by the

Buseman cocycle at ugg¢,:

p(w) = Be, (u,tp.¢,)-

This cocycle coincides with the Gibbs cocycle for the potential F' = —1.
The curve levels of this function are the horocycles based on ¢, passing
through .

Let t, be a decreasing sequence of positive numbers converging to 0.
One can construct a sequence Y,, of positive numbers such that

Yn+1 Z Yn + tn - tn+1a

Z ed(xo,pxo)(tn%rgp) > 1.
pEp~H(Yn,Ynt1])

for all §, € Parr, we define a I'-invariant map on 2N, (uo ¢, ) as follows:

for every u in I (uog¢,),
~ tn + Yn - p(’lNJ,) on pil(]Yna Yn + tn - tn+1])7
Hi(u) = .
lpt10n p (]Yn +tn — tnta, Yn-H])‘

We extend H 1 to M as follows.
First, we extend it to 2 by a constant function such that

ﬁl 92 - R
is Holder-continuous. Next, we extend it to M as follows. For all v el,if
Z € 79 then
Hl(f) = Hl(’}/_li).
Let H be the I'—invariant potential obtained by pulling back H; on T’ 1M,
We denote by H : T'M — R the map induced by H on T M.

Lemma 5.1. (Coudéne [Cou03]) H is a T—invariant Hélderian potential
such that for all parabolic fized point &,, the critical exponent associated with
(Le,, H) is of divergence type.

We have therefore constructed a I'-invariant Holderian potential on 7'M
such that the associated Gibbs measure is finite and is supported on 2.

Remark that the divergence of the parabolic subgroups only depends on
the value of the potential in the cusp. In the previous construction, we made
the assumption that the potential was constant on

T'My=T'(¢AT | s4,)/T.

Ep€Parr

However, taking any bounded potential such that the resulting function on
T M, is Holder-continuous, the associated Gibbs measure will still be finite.
We now choose p € T'M = T*M /T such that ¢:(p) is periodic. We will
denote by @(p) the closed curve ¢g(p) and assume that &(p) C T M.

For all n € N, we define a Lipschitz-continuous potential by
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F,(z) = max{c, — ¢, d(O(p),x); H(x)}.

Proposition 5.1. For alln € N, the critical exponent or r, is finite. More-
over, we have

cn < 0r,p, < 0r + cp.

Proof. Since ¢, = sup Fy(z), the upper bound dr g, < dr + ¢ is evident
zeT*M

by the second claim of Proposition [2.2

Let p be the periodic point of 7'M defined above and h € T' the generator

of the isometry group fixing the periodic orbit ¢r(p). Let H =< h > and

denote by £ the length of h. By the very definition of critical exponents, we

have

. 1 YT ﬁ
(1) or,F, = lim sup ;- log Z el P
noee Y€, n—L<d(z,vx)<n
: 1 JTF
(2) > lim sup ;- log Z el B,

oo vyEH, n—{<d(z,yz)<n

Since the critical exponent does not depend on the choice of a base point,
one can choose = p where p is a lift of p on T'M. Therefore, the fact that
the value of the potential on &'(p) is constant, equal to ¢ implies that

w7
/~ Fy = d(z,vx)er > (n— £)eg
Iz

which gives

(3)
or,F, > limsup % log Z e=0e% > lim sup % log (Axe("_g)c’“) ,

oo vyeH, n—{<d(z,yz)<n oo

where A, =t#{y € H:n—{ <d(x,yx) <n}.

Since the group H is generated by a hyperbolic isometry h, for all v € H,
there exists i € N such that v = h? and £(v) = £(h?) = if(h). Therefore the
quantity A, does not depend on n and

Or,F, > Ck-

which concludes the proof. O

Therefore, the Gibbs measure mp, associated with (T', F},) of dimension
or,F, exists for all n € N.
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6. PROOF OF THE MAIN THEOREM

Let Dg(,) be the Dirac measure supported on & (p). We prove Theorem
which states the following.
Let M be a geometrically finite, negatively curved manifold and ¢ its geo-
desic flow. If ¢, is topologically mizing on ), then the set of probability mea-
sures that are mizing with respect to the geodesic flow is dense in .4 (T* M)
for the weak topology.

Here is our strategy: since the geodesic flow on a manifold with pinched
negative curvature satisfies the closing lemma (see [Ebe96]) and admits a
local product structure, we use the following result.

Proposition 6.1. (Coudéne-Schapira [CS10]) Let M be a complete, con-
nected Riemannian manifold with pinched negative curvature and ¢ its ge-
odesic flow. Then the set of normalized Dirac measures on periodic orbits
is dense in the set of all invariant measures A (T'M).

It is therefore clear that the following proposition implies Theorem

Proposition 6.2. For all p € T'M such that O(p) = ¢r(p) is periodic,
there exists a sequence {my}ren of measures satisfying the following prop-
erties

(1) myg is a probability measure which is mizing with respect to the geo-
desic flow,
(2) my — Dﬁ(p).

Let hiop (¢¢) be the topological entropy of the geodesic flow on T'M and
hyu(¢¢) the measure theoretic entropy of the geodesic flow with respect to f.
D. Sullivan proved in [Sul] that if the Bowen-Margulis measure mpys (i.e
the Gibbs measure associated with the potential F' = 0) is finite then

Or = himpgy (d1)-

Using a result of C.J.Bishop and P.W.Jones [BJ] connecting the critical
exponent dpr with the Hausdorff dimension of the conical limit set of T,
J.P.Otal and M.Peigné proved that for all ¢;—invariant probability measures
m € M1 (TIM ) which are not the Bowen-Margulis measure, we have the
strict inequality,

hyu(¢t) < or.

We refer to F. Ledrappier [Led13] for a survey of these results.

Theorem 6. [OP04] Let M be a simply connected, complete Riemannian
manifold with pinched negative curvature and I' be a non-elementary discrete

group of isometries of M, then
htop (¢t) = 5l"-

Moreover, there exists a probability measure p mazximizing the entropy if and
only if the Bowen-Margulis measure is finite and p = mpyy.

We begin the proof of the main theorem. First, we state a general result
which holds true for any metric space X satisfying a variational principle.
In the next claim, we suppose that F : X — R is a measurable function
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such that there exist an invariant compact set K C X and a neighborhood
V of K satisfying the following assumptions:

Vr € K,F(x) =c=sup F(x)

zeX
sup F(z)=(c <ec.
zeX\V

We say that a probability measure p with finite entropy is an equilibrium
state for a potential F': X — R if it achieves the supremum of

m = (1) + /Xde

over all invariant probability measures with finite entropy.

Lemma 6.1. Let X be a metric space, ¢¢ a flow defined on X and F : X —
R, K, V defined as above.

Suppose there exists an equilibrium state p for F, then

p(X\V) < hulen,

c—C
Proof. Let mg be a probability measure supported on K. Since p realises
the supremum of

m € M (X) = hp(dr) +/ Fdm
X

we have
h() + / Fdpu > hony (61) + / Fdmy
X X

which implies

(4) h(on) + [ Fduz [ Famy
X X
since A, (¢:) > 0. Moreover, since the potential F' is constant on K we
have
/ Fdm K —C
X

which can be written as
5) [ Pmic = v+ ux\v))
Combining equations [4] and [5} we obtain
hu(de) = [ Fdmg — [ Fdp
> o(u(V) + p(X\V)) —eu(V) = du(X\V))
which finally gives
hu(oe) > u(X\V).

c—c’

O

Recall that a sequence { i, }nen of probability measures on a Polish space
X is tight if for all € > 0 there exists a compact set K C X such that

Vn e N, pup(X\K) <e.

We give a criterion for the convergence of a sequence of probability measures
to the Dirac measure supported on the periodic orbit &'(p). We denote by
V. the subset of T'M defined by
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Veo={z € T'M : d(x,0(p)) < €}.

Lemma 6.2. The following assertions are equivalent:

(1) The sequence of probability measures {mf},cn converges to the
Dirac measure supported on O(p),
(2) for all e >0,

lim m™(T'M\V,) = 0.

n—oo

Proof. Tt is clear that (1) = (2). Let us show that (2) = (1).
We first notice that {mm},cy is tight. Indeed, let V be a compact subset
of T*M containing @(p). Since condition (2) is satisfied, for all € > 0, there
exists Ny > 0 such that for all n > Ny,
mI (TYM\V) < e.
For all n € {1,.., Ny — 1}, we can also find a compact set K,, such that
mI(T'M\K,) < e.
No—1
Define the compact set K = ( |J K,)UV.
n=1
For all n € N, K satisfies
mI™(T'M\K) < e.

Therefore, the sequence {m!™},cy is tight.
Since condition (2) is satisfied and using the fact that the unique invariant
probability measure supported on &(p) is Dy, each converging subse-

quence of {m'™} converges to D).

Therefore, by Prokhorov’s Theorem [Pro56], each sub sequence of {mf=}
possesses a further subsequence converging weakly to D¢, so the sequence

mf" converges weakly to D). O
We are now able to prove our main result of convergence.

Theorem 7. The sequence {m™},cn of probability measures converges to
the Dirac measure supported on O(p).

Proof. Let Dg(p) be the Dirac measure supported on the periodic orbit &'(p).
Recall that ¢, = sup F,(x).
zeTM
By lemma [6.2 we have to show that
lim mi™(T'M\V,) = 0.
n— o0
Using the variational principle described in Theorem [2, we have

orp, = suwp  Prp,(n) = Prp, (m'™)
pe (T M)

and
or,p, = Pr.p, (Do) = hpg, (61) + /TlM FrdDg ).
Since O(p) is invariant by the action of the geodesic flow and

P, (¢t) < 6r < oo,
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one can use the claim of lemma [6.1] to obtain the following inequality
mI (T M\V,) < 2

/
cn—ch,

where

= sup Fp(x).
€T M\ Ve

By the definition of the potential F},, we know that
¢ < max{cg,cn(1 —€)}.
Therefore, for all € > 0 and n large enough,

mf (T M\V,) < &

implies that
lim m (T'M\V,) = 0.
Which concludes the proof. O

Finally, we are able to prove corollary which states that the set of
weak-mixing measures is a dense G subset of . (T M).
Our proof relies on the following theorem.

Theorem 8. (Coudéne-Schapira [CS14]) Let (¢!)ier be a continuous flow
on a Polish space. The set of weak-mizxing measures on X is a Gg subset of
the set of Borel invariant probability measures on X.

Proof. (of corollary

Since mixing measures are weak-mixing, Theorem [I] implies that weak-
mixing measures are dense in the set of probability measures on 2. The
previous theorem insures us that it is a Gy set.

Since negatively curved manifolds with pinched curvature satisfy the clos-
ing lemma, it is shown in [CS10] that the set of invariant measures with full
support on {2 is a dense G subset of the set of invariant probability measures
on €.

The intersection of those two dense Gy sets is a dense G set by the Baire
Category Theorem. O

7. NON-GEOMETRICALLY FINITE MANIFOLDS WITH CUSPS

We now prove corollaries and First of all, remark that since
the manifold possesses a cusp then from lemma the geodesic flow is

topologically mixing on 7'M = T*M/T.
Let v € " and D(v) the subset of M bounded by

{7 € M : d(F, %) = d(F,vF0)}
and containing yzg. We define the subset C, on dso M as follows.
Cy = 0M N D(7).
The proof of corollary is deduced from the following result.
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Lemma 7.1. Let M be a connected, complete pinched negatively curved
manifold with a cusp and ¢; the geodesic flow defined on T M. There exists a
geometrically finite manifold M such that its geodesic flow gZ;t is topologically
mixing and a covering map p : TlM — TY'M such that the diagram

TN 2 Ting
”l l”
"M ——— TIM

commutes.

Proof. Let §, € 8OOM be a bounded parabolic point fixed by a parabolic

isometry 7, € I and h € I' be a hyperbolic transformation.

Let N > 0 be defined such that the sets C'%z?v, Cyn~, O,Y—N, C},~~ have disjoint
p

interiors. We define I'y = < 'y]ﬁv ,hN >, a subgroup of I'. The ping-pong
lemma shows that I'g is a discrete group which acts freely discontinuously
on M. So, the quotient M / Iy is a geometrically finite manifold. O

Proof. (of corollary Let M be a geometrically finite manifold con-
structed as in lemma and p its associated covering map. We can use
the proof of Theorem [1] on M and construct a sequence 7y of invariant
mixing measures for (&t such that myg — Dgp)-

Since the geodesic flow ¢, is a factor of @t, we can define v to be the push-
forward by p of 7, then it is an invariant mixing measure on T M and for
all bounded continuous function g on 7'M,

klinc}o leM gdvy = klinc}o leM go Pdmk
= Jprg°pdDey)
= leM gd(p*Dﬁ(p))

O

We end up by the proof of corollary In the case of a surface S (or a
constant negatively curved manifold), we don’t need to ask for the existence
of a bounded parabolic point. Since the geodesic flow is always topologically
mixing in restriction to its non wandering set, we can choose two hyperbolic
isometries hi1,ho in I' such that the subgroup I'y =< hqy, ho > is convex-
cocompact.

The same proof as lemma shows us that the geodesic flow ¢; on S is
a factor of the geodesic flow ¢; on the convex-cocompact manifold 715y =
T'S /To. Therefore, the previous proof gives us the density result.
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