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Abstract. Determining the receptive field of a visual sensory neuron is crucial to characterize
the region of the visual field and the stimuli this neuron is sensitive to. We propose a new method
to estimate receptive fields by a nonconvex variational approach, thus relaxing the simplifying
and unrealistic assumption of convexity made by standard approaches. The method consists of
solving a relaxed discrete energy minimization problem using a proximal alternating algorithm.
We compare our approach with the classical spike-triggered-average technique on simulated data,
considering a typical retinal ganglion cell as ground truth. Results show a high improvement in
terms of accuracy and convergence with respect to the duration of the experiment.

1. Introduction
This paper deals with the estimation of receptive fields of individual visual neurons. Knowing
the receptive field of a particular neuron is a crucial information to understand which region of
the visual field and which stimulus the neuron is sensitive to. Thus, biologists always devote
efforts in their experimental protocol to characterize the neurons they are recording.

The goal is to characterize the relation between the stimulus and the neuron response which
is a set of action potentials (also called spikes). To do so, it is classical to assume that response
follows a linear-nonlinear Poissonian (LNP) model [5, 9, 12] (Fig. 1): given a visual stimulus
s(x, t) : Ω ⊂ R2 × [0, T ] → R, where Ω is the spatial domain and T is the duration of the
experiment, the neuron generates a sequence of n(T ) spikes times {ti}1≤i≤n(T ) such that

{ti}1≤i≤n(T ) is generated by a Poisson process of rate r(t) = S ((s× u)(t)) , (P)

where S(.) is a nonlinear function and u : Ωd = Ω× [−d, 0] −→ R is the so-called receptive field
which corresponds to the linear part of the processing with d > 0 the length of its temporal
support.

The operator × is defined by (s×u)(t) =
∫ 0
−∞〈s(., t+τ), u(., τ)〉Ωdτ, where < ., . >Ω denotes

the inner product on Ω. Given hypothesis (P) the problem of estimating the receptive field u(x, t)
is an inverse problem: given a stimulus s(x, t) of duration T and the n(T ) spikes {ti}1≤i≤n(T )

from the sensory neuron responding to s(x, t), recover the unknown receptive field u(x, t).
This inverse problem can be formulated using a Bayesian approach. Using the Bayes rule, a

classical method is to search for the receptive field u(x, t) as minimum of the anti-log of the a
posteriori probability (see, e.g., [12, 14, 13]):

inf
u

{
− log

(
ρ(u|{ti}1≤i≤n(T ))

) }
= inf

u

{
− log(ρ({ti}1≤i≤n(T )|u))− log(ρ(u))

}
, (1)
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Figure 1. Illustration of the LNP model (P). Two kinds of S(.) are illustrated: ramp- or
sigmoid-like nonlinearities. Here the stimulus is a white noise sequence which is the classical
stimulus used for the spike-triggered averaged approach (STA, see [5]).

where ρ(u) denotes the probability density of the random variable u. Then, assuming that ρ(u)
is a distribution of the form ρ(u) ∝ e−J(u), one can show that (1) can be rewritten as [6]:

inf
u
E(u) = ψ(s× u) + J(u), (2)

where ψ(s× u) = −log(ρ({ti}1≤i≤n(T )|u)) is the data fidelity term defined by

ψ(z) =

∫ T

0
S(z(τ))dτ −

n(T )∑
i=1

log(S(z(ti))), (3)

with z(t) = (s× u](t), and J(u) is the prior term to infer qualitative properties to the solution,
according to what is known about the general shape of a receptive field. To study this problem,
it is classical to assume that the nonlinearity S(.) is a ramp function or an exponential. The
computation of (2) is then simple since it is a convex problem to solve [12, 14, 9].

On the opposite, in this paper, we consider the case when the nonlinearity S(.) is a sigmoid,
which is more realistic from a physiological point of view; in particular it models the fact that
the neuron has a bounded firing rate. However, since S(.) is nonconvex, the data fidelity term
ψ(s× u) also becomes nonconvex. This is known to be harder to minimize numerically.

Concerning J(.), we choose it to impose two properties on the solution. The first is that
u should be localized in space and time since neurons are sensitive to a particular region of
the visual field. This can be imposed by a sparsity constraint term. Here we choose to use
a convex relaxation of the sparsity and we penalise the L1–norm of u. The second is that u
should be smooth. We propose that u should belong to the space BV2 that contains piecewise
linear functions. This kind of regularity constraint has also been previously used in the context
of image restoration [3]. This allows to recover functions with fast smooth variations more
precisely than using a simple ‖∇u‖2L2–regularity constraint. So the prior term will be

J(u) = λ‖u‖L1(Ωd) + µ|u|BV2(Ωd), (4)

where λ, µ > 0 are weights associated respectively to the sparsity and to the regularity of u.

So this paper is about the study of the problem (2) with (3)–(4) In Sect. 2, we study the
discrete version of the problem (2). We introduce a relaxed problem so that the solution can
be computed more easily. We justify it theoretically and introduce an alternating minimizing
algorithm converging toward a critical point of the relaxed energy. In Sect. 3, we test the
approach on simulated data to provide a quantitative evaluation with comparisons to the classical
spike triggered averaged technique (STA, see [5]). In Sect. 4, we describe future work.

2. Study of the discrete problem: Well-posedness and algorithm
2.1. Problem definition
In this section, we study a discrete version of (2). The stimulus is a sequence of Nt images each
presented during a period of ∆t so that the duration of the experiment is T = Nt∆t. Each



image is of size Nx×Ny pixels. Receptive field is of size Nx×Ny ×D where D is a fixed depth.
We introduce the real vector spaces X , Y and Z so that:

u ∈ X = RNx×Ny×D, s ∈ Y = RNx×Ny×Nt , z ∈ Z = RNt , (5)

endowed with the scalar product 〈., .〉 and the associated norm ‖.‖2 =
√
〈., .〉. We denote by

‖.‖1 the l1–norm. We do the following hypothesis on the sigmoid function S(.).

Hypothesis 1. There exist c > 0 and θ1 < θ2 such that :

(i) S = 0 on ]−∞, θ1], S increasing in [θ1, θ2] and S = c on [θ2,+∞[;

(ii) S ∈ C1(R) and analytic on [θ1, θ2];

(iii) z 7→ −log(S(z)) is convex on ]θ1,+∞[.

Given these notations, if we denote ξ = (ξi)1≤i≤Nt the number of spikes per time step and if
we assume that ∆t = 1 without loss of generality, then the data fidelity term (3) can be written
as

ψξ(z) =

Nt∑
i=1

ψξi(zi), with ψξi(zi) = S(zi)− ξilog(S(zi)), (6)

where ψξi(z) has a limited domain of definition denoted by Z+
ξi

equal to R if ξi = 0, and ]θ1,+∞[
if ξi > 0. One can easily verify that the data fidelity term is nonconvex when ξi ≤ c.

The prior term is approximated by

Jε(u) = λ‖u‖1 + µIε(u) with Iε(u) =
∑

(i,j,k)

√
ε2 + ‖(Hu)i,j,k‖22, (7)

where the introduced parameter ε > 0, is small enough to make the prior term differentiable
and H : X → X 9 is a matrix equal to the discrete Hessian. It is clear that by introducing a
dual variable, by following for example [7], we could have avoid to introduce this regularization.
We did not use this approach for computational time reason: we have to solve a primal dual
problem at each iteration and compute a projection on the set {H?p, p ∈ X 9, |pi,j,k| ≤ 1} by a
fixed point algorithm based on [4]. Denoting by ×d the discretization of × we get the discrete
problems associated to (2):

inf
u∈X
E(u) = ψξ(s×d u) + iZ+

ξ
(s×d u) + λ‖u‖1 + µIε(u), (8)

where iZ+
ξ

denotes the characteristic function associated to Z+
ξ =

∏Nt
i=1Z+

ξi
.

In (8), the data fidelity term depends only on s ×d u and when minimizing w.r.t. u it is
difficult to guarantee that s ×d u remains in the domain of definition of ψξ. To solve this
problem, we propose to introduce an auxiliary variable z and the following relaxed formulation:

inf
z∈Z,u∈X

Eα(z, u) = ψξ(z) + iZ+
ξ

(z) +
α

2
‖s×d u− z‖22 + λ‖u‖1 + µIε(u), (9)

where the term in α penalizes the difference between z and s ×d u. Another interest of this
relaxed problem is that now the problem in z containing the nonconvexity is separable (it leads
to Nt one-dimensional independent problems) and we will show that the energy is separately
convex w.r.t. to z and u under some assumptions.



2.2. Well-posedness
We start with the following two propositions which result from standard arguments:

Proposition 2.1 (Existence). Let α > 0 and λ > 0 (resp. λ > 0), the energy Eα(z, u) (9) (resp.
E(u) (8)) is coercive and admits at least a minimizer.

Proposition 2.2. If α > − inf
R

ess S ′′ then problem Eα(z, u) (9) is convex w.r.t to z and u

separately (but not convex w.r.t. (z, u)).

The following proposition establishes the link between solutions of the relaxed problem and
solutions of the initial one.

Proposition 2.3. Let α be a positive integer, then the sequence {(zα, uα)}α≥1 solution of the
minimization problem (9) associated to Eα(z, u) is bounded and

(i) All its cluster points are couples (s× ū, ū) such that ū is a solution of (8).

(ii) The infimum converges: inf(z,u) Eα(z, u) = Eα(zα, uα) −→
α→+∞

infu E(u).

(iii) If E(u) admits a unique minimizer ū, then (zα, uα) −→
α→+∞

(s× ū, ū).

Proof. The proof of this proposition uses the epi-convergence of Eα(z, u) toward E(u) i{z=s×du}
(see [15]).

2.3. Algorithm
To compute a solution of (9), we propose the proximal alternating minimization introduced in [1]
in a general context. Given an initial condition u0 ∈ X (e.g., u0 = 0), the algorithm consists of
the following two steps:

z(k+1) ∈ arg min
z
Eα(z, u(k)) +

1

2β(k)
‖z − z(k)‖22, (10a)

u(k+1) ∈ arg min
u
Eα(z(k+1), u) +

1

2γ(k)
‖u− u(k)‖22, (10b)

where β(k), γ(k) are sequences of parameters belonging to [r−, r+] with 0 < r− < r+ for all k ≥ 0
(note that this is the only condition on these parameters to obtain convergence). Note that
quadratic terms in (10) are necessary to show the convergence and that the definition of (10)
leads to a decrease of the energy verifying:

Eα(z(k+1), u(k+1)) +
1

2β(k)
‖z(k+1) − z(k)‖22 +

1

2γ(k)
‖u(k+1) − u(k)‖22 ≤ Eα(z(k), u(k)).

From a numerical point of view, this algorithm becomes easy to tackle:

• If we choose S(.) as a piecewise cubic function verifying (1), when ξi = 0, then problem
(10a) can be solved analytically thanks to its separability: it is equivalent to compute
the proximal operator [10] of S(.) up to a multiplicative constant depending on α and β(k).
When α+ 1

β(k) > − inf ess S ′′(.) the problem is strictly convex so that the proximal operator

is uni-valued. Otherwise, in the general case, we use a Newton algorithm.

• Problem (10b) is convex and we solve it by a standard forward-backward proximal algorithm
of type Nesterov [2].

Theorem 2.1. (Convergence) Algorithm (10a)–(10b) generates a sequence (z(k), u(k))k∈N which
converges to a critical point (z, u) of Eα(z, u) (i.e., 0 ∈ ∂Eα(z, u)) and the sequence (z(k), u(k))
is l1(N).

Proof. Energy Eα(z, u) verifies the Kurdyka-Lojasiewicz property (see [8] and Definition 7 in [1])
and is coercive from Proposition 2.1. By applying Theorem 9 of [1] we get the result.



3. Numerical results
In this section we show quantitative results obtained using simulated data. We assume that we
look for the receptive field of a neuron which can be approximated by a LNP model and that
the nonlinearity is a known sigmoid (a piecewise cubic approximation verifying Hypothesis 1).
Here we choose as the ground truth a receptive field shape that corresponds to a class of retinal
ganglion cells: the function u is separable in space and time, it is a difference of Gaussian in
space and a difference of exponential in time. It is discretized as a spatio-temporal volume of
size 20× 20× 30 pixels. This is illustrated in Fig. 2 (first row, sample temporal slices).

For the stimulus, we choose a sequence of uniform random binary images each presented
during a time step ∆t = 1. Here we use images of size 20×20 pixels, with block size 4×4 pixels
(as illustrated in Fig. 1). Using this stimulus allows to apply the STA technique [5] to make a
comparison.

In Fig. 2 we show a comparison between STA [5] and our approach (β(k) = γ(k) = 10 ∀k,
λ = 10, ε = 10−8, µ = 100, c = 33, θ1 = −7, θ2 = 107). This result is obtained using a
stimulus of Nt = 1000 images (giving around n(T ) = 500 spikes). Results show that the spatial
resolution of STA is constrained by the size of the block of the stimulus, by definition of the
STA (PSNR=22.1dB), while we obtain a much better estimation (PSNR=33.1dB).
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Figure 2. Example of result for simulated data. Each column shows a sample of temporal
slices of (first line) the ground truth (GT), i.e., the receptive field to recover, (second line) the
result obtained using the classical STA approach, and (third line) the result obtained using our
approach. Last column shows temporal profile corresponding to a central position.
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Figure 3. Convergence of the approach: (left) covariance error (1 − cov(u,u0)
σuσu0

) as a function

of the number of spikes in semi-log scale, (middle) l2-norm error (‖u − u0‖2) as a function of
the number of spikes in log-log scale, and (right) l2-norm error as a function of the number of
iterations for Nt = 1000.



Concerning the convergence, different aspects are shown in Fig. 3. In Fig. 3(left), we show
that our approach converges faster than STA as the number of spikes increases, which is directly
related to the duration of the experiment. In other words, for a fixed duration of experiment,
our approach provides a better estimate of the receptive field than STA. In Fig. 3(middle), the
main observation is that error decays linearily (in log scale) with a slope of the convergence equal
for both methods which can be explained by the central limit Theorem. Finally, Fig. 3(right)
illustrates the speed of convergence of our algorithm.

4. Conclusion
Overall, this study presents for the first time an approach to deal with the non-convex case
allowing efficient extraction of receptive fields with great accuracy, as exemplified on synthetic
data. Another advantage of this approach is that we are no longer constrained to use white
noise as input as needed in STA, so that one can investigate what could be an optimal stimulus
(e.g., [11]) to further improve the results. Future work will focus on validating our approach on
real cell recordings.
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