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Abstract

We analyze a simple macroscopic model describing the evolution of a cloud of particles confined
in a magneto-optical trap. The behavior of the particles is mainly driven by self–consistent attrac-
tive forces. In contrast to the standard model of gravitational forces, the force field does not result
from a potential; moreover, the non linear coupling is more singular than the coupling based on
the Poisson equation. We establish the existence of solutions, under a suitable smallness condition
on the total mass, or, equivalently, for a sufficiently large diffusion coefficient. When a symmetry
assumption is fulfilled, the solutions satisfy strengthened estimates (exponential moments). We also
investigate the convergence of the N -particles description towards the PDE system in the mean
field regime.
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1 Introduction

This work is concerned with a simple mathematical model describing anisotropic magneto-optical
traps (MOT). In these devices, clouds of atoms are held together at very low temperatures through
the action of well tuned lasers. These lasers induce on each atom an external space dependent
confining force, as well as a friction: these effects are responsible for the trapping and cooling of the
atoms. The lasers also create effective interaction forces between the atoms. The precise description
of these forces involves a full description of the laser field and its coupling with the atoms. The
following simplification, while probably not always quantitatively accurate, is customary since the
pioneering article [24]: the interaction forces are divided into

i) a repulsive force due to multiple diffusion of photons, which is usually approximated by a
Coulomb force (predicted in [24]) and

ii) an attractive long-range force, the so–called ”shadow effect” (predicted in [9]), that bears
some similarity with gravity, and is the main subject of this article.
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In a standard, roughly spherical, cloud, the repulsive force dominates. Nevertheless, if an exter-
nal potential forces the cloud into a very elongated cigar shape, or a very thin pancake shape,
the attractive force is expected to dominate, and the repulsive force may be neglected in a first
approximation [2, 7]. This is the regime we are interested in.

A typical MOT involves 106 to 1010 interacting particles. Although in experiment trapping the
atoms in a pancake-shaped cloud would probably contain less atoms, it is then relevant to make
use of a partial differential equations describing the particles’ density, instead of considering the
dynamics of the individual particles. A reasonable model may be a 3D non–linear Fokker-Planck,
or a McKean-Vlasov, equation. However, in order to describe the cigar- or pancake-shaped clouds
observed in the experiments it makes sense to use a large scale approach, and to integrate over the
small dimension(s). After some approximations, one is left with an effective 1D or 2D nonlinear
partial differential equations (PDE). The 1D equation obtained this way coincides with the mean-
field description a 1D damped self-gravitating system [7] and is well-known. We thus concentrate
on the 2D case. The 2D nonlinear PDE studied here has its own interest, independently of the
relation with the MOT experiments: it bears some similarities with a 2D damped self-gravitating
system (also known as the Smoluchowski model in astrophysics [8] or the Keller-Segel chemotactic
model [18, 19]). Therefore, a natural question is to determine whether or not singularities appear
in finite time, depending on certain thresholds, as this is the case for the Keller–Segel model, see
the review [16, 17].

We are interested in the particle density (x, y, t) 7→ ρ(x, y, t), which is a scalar non–negative
quantity that depends on the time t ≥ 0 and space variables (x, y) ∈ R

2. Its evolution is governed
by the following non linear PDE

∂tρ = ∇ ·
(
D∇ρ− ~F [ρ]ρ

)
, (1)

where the constant D > 0 is given and the self consistent force field

~F [ρ] =

(
Fx[ρ]
Fy[ρ]

)
,

is defined by

Fx[ρ](x, y, t) = −
∫

sgn(x− x′)ρ(x′, y, t) dx′,

Fy[ρ](x, y, t) = −
∫

sgn(y − y′)ρ(x, y′, t) dy′.
(2)

The problem is complemented with an initial data

ρ
∣∣∣
t=0

= ρ0. (3)

Similar to the Keller–Segel model, the force is thus defined through a convolution formula. As a
consequence of the fact that the (distributional) derivative of the function x 7→ sgn(x) is 2δ0, where
δ0 is the Dirac delta distribution at 0, we observe that (mind the sign)

∇ · ~F [ρ] = −4ρ ≤ 0. (4)

The divergence of the force field of the Keller-Segel system satisfies the same relation. However,
there are crucial differences with the Keller–Segel system that make the analysis here different:

• the force does not have the potential structure (~F cannot be expressed as the gradient of a
potential), and, accordingly, we cannot derive estimates related to the evolution of a potential
energy,

• the convolution acts only on a single direction variable; hence we cannot expect any regu-
larisation effect similar to the one given by the coupling of the force through the Poisson
equation,
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• we cannot use symmetry properties for expressing the force term
∫∫

~F [ρ]ρ · ∇ϕdy dx, for
ϕ ∈ C∞

c (R2), in a convenient weak sense, which is a crucial ingredient when dealing with the
Keller–Segel equation, see e. g. [21, 22, 23].

We wish to investigate the existence, uniqueness of a solution of (1)–(3) and to devise and analyze
a particle method which can be used to perform simulation of the PDE. To be more specific, our
strategy is as follows:

1. Introduce a regularized PDE

∂tρ
(ε) = ∇ ·

(
∇ρ(ε) − ~F (ε)[ρ(ε)]ρ(ε)

)
(5)

where the kernel (sgn(x)δ(y), δ(x)sgn(y)) in (2) is smoothed out. We take

F
(ε)
x [ρ](x, y, t) = −

∫∫
sgn(ε)(x − x′)δ(ε)(y − y′)ρ(x′, y′, t) dx′ dy′,

F
(ε)
y [ρ](x, y, t) = −

∫∫
sgn(ε)(y − y′)δ(ε)(x− x′)ρ(x′, y′, t) dx′ dy′

(6)

with

sgn(ε)(u) = 2
1

ε
√
2π

∫ u

0

e−
v2

2ε2 dv,

δ(ε)(u) =
1

2

d

du
sgn(ε)(u) =

1

ε
√
2π

e−
u2

2ε2 .

Denoting by ⋆x (resp. ⋆y) the convolution with respect to the variable x (resp. the variable
y), we observe that

F (ε)
x [ρ] = T (ε)(sgn ⋆x ρ) = sgn ⋆x (T

(ε)ρ),

F (ε)
y [ρ] = T (ε)(sgn ⋆y ρ) = sgn ⋆y (T

(ε)ρ),

where T (ε) stands for the convolution with the normalized 2-d Gaussian kernel.

2. Establish a priori estimates that are uniform with respect to ε. We obtain several such
estimates, typically Lp and moment estimates, based on dissipative properties of the equation,
at the price of assuming the diffusion coefficient D large enough. Section 2 includes these
estimates.

3. Show the existence and uniqueness of solutions ρ(ε) of the regularized PDE (5). To this end,
we employ a suitable fixed point approach, described in Section 3

4. Use the a priori estimates to prove global existence of the solution of the original equation,
at least when D is large enough. We present two proofs. The first relies on quite standard
compactness arguments. As mentioned above the difficulty is related to the non–linear term
~F [ρ]ρ and the adopted functional framework should be constructed so that the product makes
sense and is stable. The second approach is more precise and establishes directly that the
sequence of approximated solutions

(
ρ(ε)
)
ε>0

satisfies the Cauchy criterion in a certain norm.
However this approach requires certain symmetry assumptions and fast enough decay of the
initial state. These additional assumptions allow us to derive exponential moments, and
weighted estimates on the gradient of the unknown. This analysis is detailed in Section 4.

5. Introduce a stochastic system of N ≫ 1 particles, with a regularized interaction, and prove
that the empirical measure converges towards a solution of the PDE when N → ∞. Assuming
that the number of particles N is proportional to eC/ε2 with ε being the regularizing param-
eter, one can obtain particle approximations that are arbitrarily close to ρ, on any fixed time
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interval. In particular we show that one can get an upper bound for the Wasserstein distance
between the particle approximation and ρ of order ε−ν , where ν > 0 is a certain constant
independent of ε. Put it differently, we show that if ε is of order (log(N))−

1
2 , then the rate

of convergence of the Wasserstein distance between the particle approximation and ρ is also
of logarithmic order, see Theorem 5.2. The analysis is presented in Section 5.

6. Run numerical simulations using the particle representation obtained in Section 5 and compare
it with the PDE method introduced in [6]. In this way we illustrate the existence results
covered by Theorems 4.1 and 4.5. As we will see, the constraint on the diffusion coefficient
(condition (12)) required for the two theorems to be valid is not optimal: the solution can
apparently be global in time for other values too. We also illustrate the convergence for the
particles approximation. The rate of convergence of the particle approximation as a function
of N seems to be much better than that suggested by Theorem 5.2. These are covered in
Section 6.

2 A priori estimates

2.1 Moments

Let k ∈ N, k ≥ 2. We set

mk(t) =

∫∫
(|x|k + |y|k)ρ(x, y, t) dxdy

Using integration by parts yields

dmk

dt
(t) = Dk(k − 1)mk−2(t)

+k

∫∫ (
sgn(x)|x|k−1Fx[ρ] + sgn(y)|y|k−1Fy[ρ]

)
ρ(x, y, t) dxdy

= Dk(k − 1)mk−2(t)

−k

∫∫∫
sgn(x)|x|k−1sgn(x− x′)ρ(x′, y)ρ(x, y, t) dxdx′ dy

−k

∫∫∫
sgn(y)|y|k−1sgn(y − y′)ρ(x′, y)ρ(x, y, t) dxdx′ dy.

By exchanging the rôle of x and x′, we find
∫∫∫

sgn(x)|x|k−1sgn(x− x′)ρ(x′, y)ρ(x, y, t) dxdx′ dy

=
1

2

∫∫
[sgn(x)|x|k−1 − sgn(x′)|x′|k−1]sgn(x − x′)ρ(x′, y, t)ρ(x, y, t) dxdx′ dy ≥ 0

since x 7→ sgn(x)|x|k−1 is non–decreasing. A similar remark applies for the integral coming from
Fy . Therefore, the moments satisfy the following relation

dmk

dt
≤ Dk(k − 1)mk−2. (7)

In particular, since the total mass is conserved

d

dt

∫∫
ρ(x, y, t) dy dx = 0,

we obtain
m2(t) ≤ m2(0) + 2DM0t,

with

M0 =

∫∫
ρ0(x, y) dy dx.
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2.2 Entropies

Let h : [0,∞) → R be a convex function and write

H [ρ] =

∫∫
h(ρ) dy dx.

We have
dH [ρ]

dt
=

∫∫
h′(ρ)∇ ·

(
D∇ρ− ~F [ρ]ρ

)
dy dx

= −D

∫∫
|∇ρ|2h′′(ρ) dy dx+

∫∫
∇ρ · ~F [ρ] ρh′′(ρ) dy dx.

Let q be an anti-derivative of

q′(ρ) = ρh′′(ρ).

We thus arrive at

dH [ρ]

dt
= −D

∫∫
|∇ρ|2h′′(ρ) dy dx−

∫∫
q(ρ)∇ · ~F [ρ] dy dx

= −D

∫∫
|∇ρ|2h′′(ρ) dy dx+ 4

∫∫
ρq(ρ) dy dx

(8)

by virtue of (4). In order to compensate the non–linearity in the last integral by the dissipated term,
we can make use of the following Gagliardo–Nirenberg–Sobolev inequality (see e. g. [20, p. 125] or
[5, Th. IX.9 with eq. (17) & eq. (85) p. 195]), which holds in R

2 for any p ≥ 1:

∫∫
ξp+1 dy dx ≤ Cp

∫∫
ξ dy dx×

∫∫
|∇(ξp/2)|2 dy dx. (9)

Let us detail how the estimates work in different cases:

• Entropy h(z) = z ln(z).

We get zq(z) = z2 and we use (9) with p = 1. Remarking that |∇ρ|2
ρ = 4|∇√

ρ|2 and taking
into account the mass conservation, we are led to

d

dt

∫∫
ρ ln(ρ) dy dx+ 4(D − C1M0)

∫∫
|∇√

ρ|2 dy dx ≤ 0. (10)

It indicates a dissipation property when the diffusion coefficient is large enough

D ≥ C1M0.

Based on this, we can conjecture that solutions exist globally for large diffusion constants D.

• Lp estimates: h(z) = zp.

We get zq(z) = (p − 1)zp+1, and we use (9) with p > 1. Remarking that h′′(ρ)|∇ρ|2 =
4
p (p− 1)|∇ρp/2|2, we are led to

d

dt

∫∫
ρp dy dx+ 4(p− 1)

(
D

p
− CpM0

)∫∫
|∇ρp/2|2 dy dx ≤ 0. (11)

Eq. (11) shows that the Lp norm of the solution is a non-increasing function of time when D
is large enough, but how large depends on p with this approach. We are going to obtain finer
estimates for large values of the constant p.
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In order to eliminate the too restrictive condition on D, we use a different approach for the Lp

estimate. To this end, we use the Cauchy–Schwarz inequality and (9) and we obtain

∫∫
ρp+1 dy dx ≤

(∫∫
ρ2 dy dx

)1/2(∫∫
ρ2p dy dx

)1/2

≤
(∫∫

ρ2 dy dx

)1/2(
C1

∫∫
ρp dy dx

∫∫
|∇√

ρp| dy dx
)1/2

.

Going back to (8), still with h(z) = zp, the elementary inequality AB ≤ αA2

2 + B2

2α with an
appropriate choice of α > 0 leads us to

d

dt

∫∫
ρp dy dx+ 2D

p− 1

p

∫∫
|∇ρp/2|2 dy dx ≤ C2

1p

8D(p− 1)
× 16(p− 1)2

∫∫
ρ2 dy dx

∫∫
ρp dy dx.

From now on, we assume that
D > 2C2M0. (12)

Accordingly, the L2 norm is dissipated and
∫∫

ρ2(t) dy dx ≤
∫∫

ρ20 dy dx

holds. Therefore, we arrive at

d

dt

∫∫
ρp dy dx+ 2D

p− 1

p

∫∫
|∇ρp/2|2 dy dx ≤ K1 p2

∫∫
ρp dy dx (13)

with K1 =
2C2

1‖ρ0‖2
L2

D .
We use this relation to derive a L∞ estimate, through an iterative argument on the exponent p

which dates back to [1]. Let us set

pk = 2k, vk = ρpk .

Let ω > 0. Eq. (13) tells us that

e−ωt d

dt

(
eωt

∫∫
vk dy dx

)
+ 2D

pk − 1

pk

∫∫
|∇vk−1|2 dy dx ≤ (K1p

2
k + ω)

∫∫
vk dy dx.

We are going to estimate the right hand side by using the following Gagliardo–Nirenberg–Sobolev
inequality (see e. g. [20, p. 125] or [5, eq. (85) p. 195])

∫∫
ξ2 dy dx ≤ C̄2

∫∫
ξ dy dx

(∫∫
|∇ξ|2 dy dx

)1/2

. (14)

We combine this information with the Young inequality as follows

∫∫
ξ2 dy dx ≤ C̄2ω

2

∫∫
|∇ξ|2 dy dx+

C̄2

2ω

(∫∫
ξ dy dx

)2

.

We choose ω = ωk > 0 small enough to ensure

C̄2(K1p
2
k + ωk)

ωk

2
≤ D

pk − 1

pk
.

Since vk = v2k−1, we are thus led to

e−ωkt
d

dt

(
eωkt

∫∫
vk dy dx

)
+D

pk − 1

pk

∫∫
|∇vk−1|2 dy dx ≤ C̄2(K1p

2
k + ωk)

2ωk

(∫∫
vk−1 dy dx

)2

.
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Integrating from this relation, we obtain

∫∫
vk(t) dy dx ≤ e−ωkt

(∫∫
vk(0) dy dx

+

∫ t

0

e−ωks
C̄2(K1p

2
k + ωk)

2ωk

(∫∫
vk−1(s) dy dx

)2

ds

)

≤ e−ωkt

∫∫
vk(0) dy dx

+e−ωkt
eωkt − 1

ωk

C̄2(K1p
2
k + ωk)

2ωk
sup

0≤s≤t

(∫∫
vk−1(s) dy dx

)2

.

In the right hand side, we make a convex combination appear, and we infer that

∫∫
vk(t) dy dx ≤ max

{∫∫
vk(0) dy dx,

C̄2(K1p
2
k + ωk)

2ω2
k

(
sup

0≤s≤t

∫∫
vk−1(s) dy dx

)2
}
.

Let us set

L = max
(
‖ρ0‖L1, ‖ρ0‖L∞

)
, δk =

C̄2(K1p
2
k + ωk)

2ω2
k

.

Note that ωk behaves like 1
p2
k

, and thus we can dominate δk ≤ Mp6k for some M > 0, so that, finally,

we can find A > 0 such that δk ≤ Ak. A direct recursion shows that

∫∫
vk(t) dy dx ≤ δkδ

p1

k−1 . . . δ
pk−1

1 Lpk

which implies

‖ρ(t)‖Lpk ≤ L (Ark)
1/pk , rk =

k∑

ℓ=0

(k − ℓ)pℓ.

Since

rk
pk

=
1

2

k∑

j=1

j

(
1

2

)j−1

=
1

2

d

ds

(
1− sk+1

1− s

) ∣∣∣
s=1/2

= 2
(
1 + (k + 2)e−(k+1) ln(2)

)

admits a finite limit as k → ∞, we deduce that the sequence
(
‖ρ(t)‖Lpk

)
k∈N

is bounded . The L∞

bound follows by letting k go to ∞, and the bound depends on the initial L1 and L∞ norms. The
minimal D needed for this bound to be valid is unknown. We can recap our findings as follows.

Proposition 2.1 Let ρ be a sufficiently smooth solution of (1)–(3). Then, ρ satisfies the following
properties:

i) mass is conserved
∫∫

ρ(t) dy dx =
∫∫

ρ0 dy dx = M0,

ii) if ρ0 ∈ Lp(R2) and D > pCpM0,
1 then, ‖ρ(t)‖Lp ≤ ‖ρ0‖Lp,

iii) if ρ0 ∈ L1 ∩ L∞(R2) and D > 2C2M0, then there exists a constant M > 0 such that 0 ≤
ρ(y, x, t) ≤ M holds for a.e. t ≥ 0, (x, y) ∈ R

2.

iv) if (x, y) 7→ (x2 + y2)ρ0(x, y) ∈ L1(R2), then, for any t ≥ 0, (x, y) 7→ (x2 + y2)ρ(x, y, t) ∈
L1(R2), and m2(t) ≤ m2(0) + 2DM0t.

1The constant Cp is the constant appearing in the Gagliardo–Nirenberg–Sobolev inequality (9).
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2.3 Estimates for the regularized problem

To analyze the solutions of the regularized PDE (5)-(6) and justify their convergence as ε tends to
0, we will need estimates uniform with respect to ε. The following proposition is the equivalent of
Proposition 2.1 for the regularized solution.

Proposition 2.2 Let
(
ρ(ε)
)
ε>0

be the sequence of solutions of the regularized PDE (5)–(6), asso-

ciated to the initial data
(
ρ
(ε)
0

)
ε>0

. We assume that

(
ρ
(ε)
0

)
ε>0

is bounded in L1(R2) ∩ L∞(R2).

Then, the following properties are satisfied:

i) mass is conserved
∫∫

ρ(ε)(t) dy dx =
∫∫

ρ
(ε)
0 dy dx,

ii) if D > pCpM0, then ρ(ε) is bounded in L∞(0,∞;Lp(R2)) and ‖ρ(ε)(t)‖Lp ≤ ‖ρ(ε)0 ‖Lp,

iii) if D > 2C2M0, then ρ(ε) is bounded in L∞(0,∞;L2(R2)) ∩ L∞((0,∞)× R
2),

iv) if (x, y) 7→ (x2 + y2)ρ
(ε)
0 (x, y) is bounded in L1(R2), then (x2 + y2)ρ(ε)(x, y, t) is bounded in

L∞(0, T ;L1(R2)) for any 0 < T < ∞.

Proof. Item i) is clear. The proof of iv) repeats the same arguments as above, with a direct
comparison to a pure diffusion. For ii) and iii), we will need the following consequence of the
definition (6)

∂xF
(ε)
x [ρ(ε)](x, y, t) = −2

∫∫
δ(ε)(x− x′)δ(ε)(y − y′)ρ(ε)(x− x′, y − y′, t) dx′ dy′

so that (4) becomes
∇ · F (ε)[ρ(ε)] = −4T (ε)(ρ(ε))

where, as said above, T (ε) is the convolution operator with the normalized 2d Gaussian kernel.
Furthermore, the Hölder inequality yields

∫∫
(ρ(ε))pT (ε)(ρ(ε)) dy dx ≤

(∫∫
(ρ(ε))p+1 dy dx

)p/(p+1)(∫∫
|T (ε)(ρ(ε))|p+1 dy dx

)1/(p+1)

≤
(∫∫

(ρ(ε))p+1 dy dx

)p/(p+1)(∫∫
(ρ(ε))p+1 dy dx

)1/(p+1)

≤
∫∫

(ρ(ε))p+1 dy dx.

With this observation, we can go back to (8) adapted to the regularized problem and we derive the
estimates as we did for the singular equation. We refer the reader to [3] for similar reasonings.

3 Regularized problem

Let ε > 0. The initial data ρ
(ε)
0 is a given non–negative function in L1(R2)∩L∞(R2). We introduce

the operator
T : g 7→ T (g) = ρ

where ρ is the solution of the linear parabolic PDE

∂tρ = D∆ρ−∇ · (~F (ε)[g]ρ), ρ
∣∣∣
t=0

= ρ
(ε)
0 . (15)

We will show that T fulfils the hypotheses of the Schauder theorem in a suitable functional frame-
work. This will lead to the existence of a fixed point, which defines a solution of the non–linear
problem. Then, we will investigate the uniqueness independently. Gathering together these argu-
ments, we will prove the following statement.
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Theorem 3.1 Let ρ
(ε)
0 ∈ L1(R2)∩L∞(R2) be a non-negative function. Then, the problem (5)–(6)

with ρ
∣∣
t=0

= ρ
(ε)
0 admits a unique solution ρ(ε) ∈ C([0, T ];L2(R2)) ∩ L2(0, T ;H1(R2)).

3.1 Preparing for the Schauder theorem: a priori estimates

We observe that
sgn(ε) ∈ C∞(R) ∩ L∞(R),

x 7→ sgn(ε)(x)√
1 + x2

∈ L2(R),

δ(ε) =
1

2

d

dx
sgn(ε) ∈ C∞(R) ∩ L1(R) ∩ L∞(R).

Owing to these properties, we obtain estimates (that depend on ε) on the regularized force.

Lemma 3.2 The following estimates hold

i) |F (ε)
x [g]| ≤ ‖sgn(ε)‖∞‖δ(ε)‖∞‖g‖L1 = 1

ε
√
2π

‖g‖L1,

ii) |F (ε)
x [g]| ≤ √

π ‖δ(ε)‖L2

(∫
(1 + x′2)g2(x′, y′) dx′ dy′

)1/2
,

iii) |∂xF (ε)
x [g]| ≤ 2‖δ(ε)‖2L1‖g‖L∞ = 2‖g‖L∞,

iv) |∂xF (ε)
x [g]| ≤ 2‖δ(ε)‖2L∞‖g‖L1 = 2

πε2 ‖g‖L1.

Of course, the same estimates apply to F
(ε)
y as well.

Proof. It is worth bearing in mind that

0 ≤ δ(ε)(x) ≤ 1

ε
√
2π

, |sgn(ε)(x)| ≤ 1.

Items i), iii) and iv) are direct consequences of estimates on convolution products. For ii) we use
the Cauchy-Schwarz inequality twice to obtain

|F (ε)
x [g](x, y)| ≤

∫
δ(ε)(y − y′)

(∫ |sgn(ε)(x− x′)|2
1 + x′2 dx′

)1/2(∫
(1 + x′2)g2(x′, y′) dx′

)1/2

dy′

≤
(∫

|δ(ε)|2(y − y′) dy′
)1/2 (∫ |sgn(ε)(x − x′)|2

1 + x′2 dx′
)1/2(∫

(1 + x′2)g2(x′, y′) dx′ dy′
)1/2

≤ ‖δ(ε)‖L2 ×
√
π ×

(∫
(1 + x′2)g2(x′, y′) dx′ dy′

)1/2

.

For any g ∈ L∞(0,∞;L1(R2)), owing to the observations in Lemma 3.2, the linear problem (15)
admits a unique solution, say in C([0,∞];L2(R2)) ∩ L2(0,∞;H1(R2)), see [5, Th. X.9]. We can
now derive estimates on the solution of (15).

Lemma 3.3 Let ρ = T (g) be the solution of (15). It satisfies

i) For any fixed time t > 0 and any p ∈ [1,∞], ρ(t) ∈ Lp(R2). More precisely, we have
∫∫

ρ(x, y, t)p dy dx ≤ e4(p−1)t‖g‖L∞(0,∞;L1(R2))‖δ
(ε)‖2

L∞

∫∫
ρ
(ε)
0 (x, y)p dy dx,

and ‖ρ(t)‖L∞ ≤ e4t‖g‖L∞(0,∞;L1(R2))‖δ
(ε)‖2

L∞ ‖ρ(ε)0 ‖L∞.

ii) For any fixed time t,
∫∫

(x2 + y2)ρ(x, y, t) dy dx is finite. More precisely, we have
∫∫

(x2 + y2)ρ(x, y, t) dy dx

≤ et
(∫∫

(x2 + y2)ρ
(ε)
0 (x, y) dy dx+ t‖ρ(ε)0 ‖L1

(
4D + ‖sgn(ε)‖2L∞‖δ(ε)‖2∞‖g‖2L∞(0,∞;L1(R2))

))
.
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iii) For any 0 ≤ t ≤ T < ∞, we have

‖∇ρ‖2L2((0,t)×R2) ≤
1

2D
e4T‖g‖L∞(0,∞;L1(R2))‖δ

(ε)‖2
L∞ ‖ρ(ε)0 ‖L2.

Proof. i) We compute

d

dt

∫∫
ρp dy dx+Dp(p− 1)

∫∫
ρp−2|∇ρ|2 dy dx =

∫∫
F (ε)[g]ρp(p− 1) · ∇ρρp−2 dy dx

= −(p− 1)

∫∫
∇ · F (ε)[g]ρp dy dx

≤ (p− 1)‖∇ · F (ε)[g]‖L∞

∫∫
ρp dy dx

≤ 4‖δ(ε)‖2L∞‖g‖L1 × (p− 1)

∫∫
ρp dy dx.

The last line uses Lemma 3.2-iv). Grönwall’s lemma then yields i). The L∞ estimate follows by
taking the limit p → ∞. Estimate iii) is obtained by specifying to the case p = 2 and considering
the dissipation term.

ii. Let us use the shorthand notation z = (x, y). We get

d

dt

∫∫
|z|2ρ dz = 4D

∫∫
ρ dz + 2

∫∫
ρF (ε)[g] · z dz

≤ 4D

∫∫
ρ dz + 2‖F (ε)[g]‖L∞

(∫∫
|z|2ρ dz

)1/2(∫∫
ρ dz

)1/2

≤ 4D

∫∫
ρ dz + ‖F (ε)[g]‖2L∞

∫∫
ρ dz +

∫∫
|z|2ρ dz

≤ (4D + ‖sgn(ε)‖2∞‖δ(ε)‖2∞‖g‖2L1)

∫∫
ρ dz +

∫∫
|z|2ρ dz

by using Lemma 3.2-i). The Grönwall lemma allows us to conclude.
iii) We have

d

dt

∫∫
ρ2 dy dx+ 2D

∫∫
|∇ρ|2 dy dx ≤ 4‖δ(ε)‖2L∞‖g‖L1 ×

∫∫
ρ2 dy dx. (16)

Inserting the estimate of item i) leads to

d

dt

∫∫
ρ2 dy dx+ 2D

∫∫
|∇ρ|2 dy dx ≤ CeCt

∫∫
ρ
(ε)
0 (x, y)2 dy dx, (17)

with C = 4‖δ(ε)‖2L∞‖g‖L∞(0,∞;L1(R2)). Integrating over time then yields

(∫∫
ρ2 dy dx

)
(t)−

(∫∫
ρ2 dy dx

)
(t = 0) + 2D‖∇ρ‖2L2((0,t)×R2) ≤ (eCt − 1)‖ρ(ε)0 ‖2L2.(18)

Hence

‖∇ρ‖2L2((0,t)×R2) ≤ eCt

2D
‖ρ(ε)0 ‖2L2 (19)

≤ 1

2D
e4T‖g‖L∞(0,∞;L1(R2))‖δ

(ε)‖2
L∞ ‖ρ(ε)0 ‖2L2. (20)
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3.2 Preparing for the Schauder theorem: definition of the functional

framework

Let 0 < T < ∞ be fixed once for all. We introduce the set C consisting of the functions g :
[0, T ]× R

2 → [0,∞), such that

i)
∫∫

g dz =
∫∫

ρ
(ε)
0 dz ≤ M0,

ii)
∫∫

|z|2g dz ≤ eC1T (
∫∫

|z|2ρ(ε)0 dz + C2T ),

iii) ‖g‖∞ ≤ eC3T ‖ρ(ε)0 ‖∞,

By using the mass conservation property, the estimates in Lemma 3.3 allow us to choose the
constants C1, C2 and C3 (which depend on ε) such that C is convex, and stable upon application
of T .

3.3 Preparing for the Schauder theorem: T is continuous

We wish to establish the continuity of T : C → C for the norm of L2((0, T )×R
2). For i ∈ {1, 2}, let

ρi = T (gi), with gi ∈ C. By Lemma 3.3-i), we already know that ρi belongs to L∞(0, T ;L2(R2)).

We denote ~F
(ε)
i = ~F (ε)[gi]. We get

d

dt

∫∫
(ρ2 − ρ1)

2 dz = −2D

∫∫
|∇(ρ2 − ρ1)|2 dz + 2

∫∫
∇(ρ2 − ρ1) · ~F (ε)

2 (ρ2 − ρ1) dz

+2

∫∫
ρ1∇(ρ2 − ρ1) · (~F (ε)

2 − ~F
(ε)
1 ) dz

≤ −2D

∫∫
|∇(ρ2 − ρ1)|2 dz +

∫
|∇ · ~F (ε)

2 | (ρ2 − ρ1)
2 dz

+D

∫∫
|∇(ρ2 − ρ1)|2 dz +

1

D

∫
ρ21(

~F
(ε)
2 − ~F

(ε)
1 )2 dz

≤ −D

∫∫
|∇(ρ2 − ρ1)|2 dz + 4‖δ(ε)‖2L∞‖g2‖L1

∫∫
(ρ2 − ρ1)

2 dz

+
1

D
‖ ~F (ε)

2 − ~F
(ε)
1 ‖2L∞

∫∫
ρ21 dz. (21)

We aim at controlling ‖ ~F (ε)
2 − ~F

(ε)
1 ‖2L∞ by the difference g2 − g1 in L2 norm. This cannot be

done directly, and we should use further moment estimates. To be more specific, we will use a
splitting that makes ‖g2 − g1‖L2 appear plus an arbitrarily small contribution. To this end, we use
Lemma 3.2-ii). For any 1 < s < 2 and any R > 0, we write

(F
(ε)
2,x − F

(ε)
1,x)

2(x, y, t) ≤ ‖δ(ε)‖2L2

(∫ |sgn(ε)(x− x′)|2
1 + |x′|s dx′

)∫∫
(1 + |x′|s)(g2 − g1)

2(x′, y′, t) dx′ dy′

≤ C(ε)

∫∫
(1 + |z|s)(g2 − g1)

2(z, t) dz

≤ C(ε)

(∫∫
(g2 − g1)

2(z, t) dz +

∫∫

|z|≤R

|z|s(g2 − g1)
2(z, t) dz

+

∫∫

|z|>R

|z|s(g2 − g1)
2(z, t) dz

)

≤ C(ε)(1 +Rs)

∫∫
(g2 − g1)

2(z, t) dz + C(ε)

∫∫

|z|>R

|z|2
|z|2−s

(g2 − g1)
2(z, t) dz

≤ C(ε)(1 +Rs)‖(g2 − g1)(t)‖2L2 + C(ε) ‖g2‖L∞ + ‖g1‖L∞

R2−s

∫∫
|z|2|g2 − g1|(z, t) dz

≤ C(ε)(1 +Rs)‖(g2 − g1)(t)‖2L2 + C(ε) ‖g2‖L∞ + ‖g1‖L∞

R2−s

(∫
|z|2g2 dz +

∫
|z|2g1 dz

)
.

11



The same inequalities obviously hold for F
(ε)
2,y − F

(ε)
1,y . Coming back to (21) yields

d

dt

∫∫
(ρ2 − ρ1)

2 dz +D

∫∫
|∇(ρ2 − ρ1)|2 dz

≤ 4‖δ(ε)‖2L∞‖g2‖L1

∫∫
(ρ2 − ρ1)

2 dz

+
2C(ε)‖ρ1(t)‖2L2

D

(
(1 +Rs)‖(g2 − g1)(t)‖2L2 +

‖g2‖L∞ + ‖g1‖L∞

R2−s

(∫
|z|2g2 +

∫
|z|2g1

))
.

Bearing in mind that C3 = 4‖δ(ε)‖2∞M0, we are ready to use the Grönwall lemma which leads to

∫∫
(ρ1 − ρ2)

2(z, t) dz

≤ eC3T

{∫
(ρ2 − ρ1)

2(z, 0) dz

+
2C(ε)‖ρ1‖2L∞(0,T ;L2(R2))(1 +Rs)

D

∫ t

0

∫∫
(g2 − g1)

2(z, τ) dz dτ

+
2C(ε)‖ρ1‖2L∞(0,T ;L2(R2))(‖g2‖L∞ + ‖g1‖L∞)

DR2−s

∫ t

0

∫∫
|z|2(g2 + g1)(z, τ) dz dτ

}
.

When ρ1 and ρ2 have the same initial condition the first term of the right hand side vanishes.
Take g ∈ C and consider a sequence

(
gn
)
n∈N

∈ C, such that gn → g in L2([0, T ] × R
2). We

apply (22) with ρn = T (gn) and ρ = T (g); it reads

∫∫
(ρn − ρ)2(z, t) dz

≤ eC3T
2C(ε)‖ρ‖2L∞(0,T ;L2(R2))(1 +Rs)

D

∫ T

0

∫∫
(gn − g)2(z, τ) dz dτ

+eC3T
2C(ε)‖ρ‖2L∞(0,T ;L2(R2))(‖gn‖L∞ + ‖g‖L∞)

DR2−s

∫ T

0

∫∫
|z|2(gn + g)(z, τ) dz dτ

Pick η > 0. Using the bounds that define the set C, it is possible to select R(η) > 0 such that the
last term can be made smaller than η/2, uniformly with respect to n. Then, with this R at hand,
there exists N(η) ∈ N such that for all n ≥ N(η) the first term in the right hand side is smaller
than η/2 too. Hence, ∫

(ρn − ρ)2(z, t) dz ≤ η

holds for any n ≥ N(η) and 0 ≤ t ≤ T < ∞. It shows that ρn → ρ in L2((0, T ) × R
2). Thus

T : C → C is continuous for the strong topology of L2((0, T )× R
2).

3.4 Preparing for the Schauder theorem: T is compact

Let
(
gn
)
n∈N

be a sequence in C, and set ρn = T (gn). Then, from Lemma 3.3, ρn is bounded in

L∞ (0, T ;L2(R2)
)
, and, furthermore, ∇ρn is bounded in L2

(
(0, T )× R

2
)
. We also have

∂tρn = D∇ · ∇ρn −∇ ·
(
~F (ε)[gn]ρn

)

where, by Lemma 3.2-i), ~F (ε)[gn] is bounded in L∞ uniformly with respect to n. Therefore, ∂tρn
is bounded in L2

(
0, T ;H−1(R2)

)
. Since the embedding H1(B(0, R)) ⊂ L2(B(0, R)) is compact for

any 0 < R < ∞, we can appeal to the Aubin-Simon lemma, see [25, Cor. 4, Sect. 8], to deduce
that

(
ρn
)
n∈N

is relatively compact in L2((0, T ) × B(0, R)) for any 0 < R < ∞. We need to
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strengthen this local property to a global statement. The moment estimate and the L∞ estimate
in Lemma 3.3-i) and ii) respectively, allow us to justify that

∫ T

0

∫∫

|z|≥R

|ρn|2 dz dt ≤ ‖ρn‖∞
R2

∫ T

0

∫∫
|z|2ρn dz dt ≤

C(ε, T )

R2

can be made arbitrarily small by choosing R large enough, uniformly with respect to n ∈ N. The
sequence

(
ρn
)
n∈N

thus fulfils the criterion of the Fréchet-Weil-Kolmogorov theorem, see e. g [14,

Th. 7.56] and it is thus relatively compact in L2((0, T )× R
2).

3.5 Schauder theorem: existence

Gathering the results of the previous subsections, we can use Schauder’s theorem: C is a closed
convex subset of L2((0, T ) × R

2), T is a continuous mapping such that T (C) ⊂ C and T (C) is
relatively compact in L2((0, T )×R

2). Then T has a fixed point, which is a solution of the nonlinear

regularized PDE (5)–(6) with initial condition ρ
(ε)
0 , on any arbitrary time interval [0, T ]. The

obtained solution lies in C([0, T ];L2(R2)) ∩ L2(0, T ;H1(R2)).

3.6 Uniqueness

The argument to justify uniqueness relies on the following claim, for which we refer the reader to
[15, Lemma 7.1.1] or [10, Th. 3.1].

Lemma 3.4 (Singular Grönwall Lemma) Let A,B ≥ 0, 0 ≤ α < 1. Let u(t) a locally bounded
function such that

u(t) ≤ A+B

∫ t

0

u(s)

(t− s)α
ds

then we have
u(t) ≤ AE1−α

(
BΓ(1− α)t1−α

)

with s 7→ Γ(s) the usual Γ−function and E1−α stands for the Mittag–Leffler function with parameter
β = 1− α

Eβ =

∞∑

n=0

sn

Γ(nβ + 1)
.

Let ρ1 and ρ2 be two solutions of the regularized nonlinear PDE. Let

Ht(z) =
1

4πDt
e−|z|2/(4Dt) (22)

stand for the two-dimensional heat kernel with coefficient D. We write

(ρ1 − ρ2)(t) = Ht ⋆ (ρ1 − ρ2)(0)−
∫ t

0

Ht−s ⋆∇ · (~F (ε)[ρ2]ρ2 − ~F (ε)[ρ1]ρ1)(s) ds

= Ht ⋆ (ρ1 − ρ2)(0) +

∫ t

0

∇Ht−s ⋆ (~F
(ε)[ρ2]ρ2 − ~F (ε)[ρ1]ρ1)(s) ds.

Initially we have ρ2(0) = ρ1(0) and (with C0 = 1
π

∫∫
|z|e−|z|2 dz) we arrive at

∫∫
|ρ1 − ρ2|(z, t) dz ≤

∫ t

0

∫∫
|∇Ht−s(z − z′)| |~F (ε)[ρ2]ρ2 − ~F (ε)[ρ1]ρ1|(z′, s) dz′ dz ds

≤
∫ t

0

C0√
t− s

∫∫
|~F (ε)[ρ2]| |(ρ2 − ρ1))|(z′, s) dz′ ds

+

∫ t

0

C0√
t− s

∫
|~F (ε)[ρ2]− ~F (ε)[ρ1]| ρ1(z′, s)| dz′ ds. (23)
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Lemma 3.2-i) together with the mass conservation tell us that

‖ ~F (ε)[ρ2]‖L∞ ≤ 2M0‖δ(ε)‖L∞‖sgn(ε)‖L∞ .

We also have
∫∫

ρ1(z, t)|~F (ε)[ρ2]− ~F (ε)[ρ1]|(z, t) dz ≤ 2‖δ(ε)‖L∞‖sgn(ε)‖L∞

∫∫
ρ1(z, t) dz

∫∫
|ρ1 − ρ2|(z′, t) dz′

≤ 2M0‖δ(ε)‖L∞‖sgn(ε)‖L∞

∫∫
|ρ1 − ρ2|(z′, t) dz′.

Introducing this into (23) yields, for a certain constant B > 0:

‖ρ1 − ρ2‖L1(t) ≤ B

∫ t

0

1√
t− s

‖ρ1 − ρ2‖L1(s)ds (24)

The singular Grönwall lemma allows us to conclude that ρ1 = ρ2.

4 Convergence of ρ(ε)

We can now state our main result about the existence of solutions for (1)–(3), which is expressed
as a stability result.

Theorem 4.1 Let ρ
(ε)
0 be a sequence of non negative functions bounded in L1(R2) and in L∞(R2).

We suppose that
∫∫

ρ
(ε)
0 dy dx ≤ M0 and D > 2C2M0 (see (12)). Then, up to a subsequence, the

associated sequence
(
ρ(ε)
)
ε>0

converges strongly in Lp((0, T ) × R
2) for any 1 ≤ p < ∞, and in

C([0, T ];Lp(R2)−weak), to ρ, which is a solution of (1)–(2) with initial data ρ0, the weak limit of

ρ
(ε)
0 .

4.1 Compactness approach

We remind the reader that we are assuming D > 2C2M0. Accordingly, from Proposition 2.2, we
already know that

(
ρ(ε)
)
ε>0

is bounded in L∞((0, T );Lp(R2)), for any 1 ≤ p ≤ ∞, and ∇ρ(ε) is

bounded in L2((0, T )× R
2). Moreover, the equation

∂tρ
(ε) = ∇ ·

(
D∇ρ(ε) − ~F (ε)[ρ(ε)]ρ(ε)

)

tells us that ∂tρ
(ε) is the space derivative of the sum of a term bounded in L2((0, T ) × R

2)) and
the divergence of a term bounded in L∞(0, T ;L1(B(0, R))) for any 0 < R < ∞. Indeed, we readily
check that
∫∫

B(0,R)

|F (ε)
x [ρ(ε)](x, y, t)| dy dx ≤

∫∫
√

x2+y2≤R

∫∫
δ(ε)(y − y′)ρ(ε)(x′, y′, t) dx′ dy′ dy dx

≤
∫ +R

−R

dx

∫∫ (∫
δ(ε)(y − y′) dy

)
ρ(ε)(x′, y′, t) dx′ dy′(25)

≤ 2RM0. (26)

In fact it turns out that F
(ε)
x [ρ(ε)], like Fx[ρ], is bounded in L∞((0, T )×R;L1(R)). Hence, ∂tρ

(ε) is
bounded in, say, L2(0, T ;H−1−δ(B(0, R))) for any 0 < R < ∞ and δ > 0. We can apply the Aubin–
Simon lemma [25] and we conclude that

(
ρ(ε)
)
ε>0

is relatively compact in L2((0, T )×B(0, R)) for
any 0 < T,R < ∞. By using the moments estimate, and reasoning as we did in Section 3.4, we
show that ρ(ε) is actually relatively compact in L2((0, T )× R

2).
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Therefore, possibly at the price of extracting a subsequence (still labelled by ε, though) we can
assume that

ρ(ε) → ρ strongly in L2((0, T )× R
2).

The convergence can be strengthened in two directions. First of all, if 1 < p = θ2+(1− θ) < 2, the
Hölder inequality leads to ‖ρ(ε)−ρ‖Lp((0,T )×R2) ≤ (2M0)

1−θ‖ρ(ε)−ρ‖θL2((0,T )×R2) and if 2 < p < ∞,

we have ‖ρ(ε)−ρ‖Lp((0,T )×R2) ≤ (‖ρ(ε)‖L∞ +‖ρ‖L∞)(p−2)/p‖ρ(ε)−ρ‖2/pL2((0,T )×R2). We can also treat

the case p = 1 since the L2 estimate and the moment estimate imply that
(
ρ(ε)
)
ε>0

is weakly

compact in L1((0, T )×R
2) and we can assume that it converges a.e., see [14, Th. 7.60]. Finally we

get
ρ(ε) → ρ strongly in Lp((0, T )× R

2) for any 1 ≤ p < ∞. (27)

Second of all, the bound on ∂tρ
(ε) can be used to justify, by using the Arzela–Ascoli theorem and

a diagonal extraction, that

lim
ε→0

∫∫
ρ(ε)(x, y, t)φ(x, y) dy dx =

∫∫
ρ(x, y, t)φ(x, y) dy dx

holds for any φ ∈ C(R2), or in Lp′

(R2), uniformly on [0, T ]. In particular, the initial data passes
to the limit and (3) makes sense (with ρ0 the weak limit in Lp(R2) of the extracted sequence(
ρ
(ε)
0

)
ε>0

).

We are left with the task of passing to the limit in the non–linear term ~F (ε)[ρ(ε)]ρ(ε). To this
end, we split as follows

~F (ε)[ρ(ε)]− ~F [ρ] = ~F (ε)[ρ(ε) − ρ] + (~F (ε)[ρ]− ~F [ρ]).

The first term tends to 0 as a consequence of (27) combined with the following claim.

Lemma 4.2 The operator F
(ε)
x (resp. F

(ε)
y ) is, uniformly with respect to ε, continuous from L1(R2)

to L∞(Rx;L
1(Ry)) (resp. L∞(Ry;L

1(Rx))).

Proof. For any φ ∈ L1(R2), we have
∫

|F (ε)
x [φ](x, y)| dy ≤

∫ (∫∫
δ(ε)(y − y′)|φ(x′, y′)| dx′ dy′

)
dy

≤
∫∫ (∫

δ(ε)(y − y′) dy

)
|φ(x′, y′)| dx′ dy′ = ‖φ‖L1.

It remains to investigate, for φ ∈ L1(R2), the behavior of

∣∣F (ε)
x [φ]− Fx[φ]

∣∣(x, y) =
∣∣
∫∫

δ(ε)(y − y′)sgn(ε)(x− x′)φ(x′, y′) dy′ dx′

−
∫ (∫

δ(ε)(y − y′) dy′
)
sgn(x− x′)φ(x′, y) dx′∣∣

≤
∫∫

δ(ε)(y − y′)
∣∣sgn(ε)(x− x′)φ(x′, y′)− sgn(x− x′)φ(x′, y)

∣∣ dy′ dx′.

We integrate with respect to y and, bearing in mind that δ(ε)(y) = 1
εδ(y/ε) with δ the normalized

Gaussian, we use the change of variable y − y′ = εξ; it yields
∫ ∣∣F (ε)

x [φ]− Fx[φ]
∣∣(x, y) dy ≤

∫∫∫
δ(ξ)

∣∣sgn(ε)(x− x′)φ(x′, y − εξ)− sgn(x− x′)φ(x′, y)
∣∣ dξ dx′ dy

≤
∫∫∫

δ(ξ)
∣∣φ(x′, y − εξ)− φ(x′, y)

∣∣dξ dx′ dy

+

∫∫∫
δ(ξ)φ(x′, y)

∣∣sgn(ε)(x− x′)− sgn(x− x′)
∣∣dξ dx′ dy.
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On the right hand side, the first integral recasts as

∫
δ(ξ)

(∫∫ ∣∣φ(x′, y − εξ)− φ(x′, y)
∣∣dx′ dy,

)
dξ

which tends to 0 as ε → 0 by combining the Lebesgue dominated convergence theorem with the
continuity of translation in L1, [14, Cor. 4.14]. The second integral reads

∫
δ(ξ) dξ ×

∫∫
φ(x′, y)

∣∣sgn(ε)(x− x′)− sgn(x− x′)
∣∣ dx′ dy

The function (x, x′) 7→ |sgn(ε)(x − x′) − sgn(x − x′)| tends to 0 pointwise and it is dominated by
2. Since ρ ∈ L1(R2), a direct application of the Lebesgue dominated convergence theorem tells us
that this quantity tends to 0 as ε → 0, for any given x ∈ R. Similar reasoning obviously apply to
the second component of ~F . Finally, for any test function ϕ ∈ C∞

c (R2), we obtain

lim
ε→0

∫∫
ϕ
(
F (ε)[ρ(ε)]ρ(ε) − F [ρ]ρ

)
dy dx = 0.

Therefore ρ satisfies, in a weak sense, the limit equation (1)–(2). This completes the proof of
Theorem 4.1.

4.2 Symmetric solutions

Throughout this Section, we work with data that satisfy the following symmetry condition

ρ0(−x, y) = ρ0(x, y) = ρ0(x,−y). (28)

It will be used to derive further estimates and a stronger convergence result of the regularized
solution ρ(ε) towards the solutions of (1)–(3). Using the uniqueness property of the solution of the
regularized equation (5)–(6), we deduce that the symmetry property is preserved by the solutions
of (1). Accordingly, we get

Fx[ρ](0, y, t) = −
∫

sgn(x′)ρ(x′, y, t) dx′ = 0, Fy[ρ](x, 0, t) = 0.

However, we know that ∂xFx[ρ] < 0 and ∂yFy [ρ] < 0. Thus, x 7→ Fx[ρ](x, y, t) is non increasing
and it vanishes for x = 0, so that it has the sign of (−x). We deduce that

(x, y) · ~F [ρ](x, y, t) = xFx[ρ](x, y, t) + yFy[ρ](x, y, t) ≤ 0.

A similar property hold with the solutions ρ(ε) of the regularized problem and the force operator
~F (ε)[ρ(ε)]. This will be used to obtain a strengthened control on the behavior of the solutions for
large x, y’s: exponential moments and weighted estimates on the gradients. These estimates will
be combined with the interpretation of (1) as a perturbation of the heat equation. Namely, still
with Ht the heat kernel (22), we shall make use of the Duhamel formula

ρ(x, y, t) = Ht ⋆ ρ0(x, y)−
∫ t

0

Ht−s ⋆∇ ·
(
~F [ρ]ρ(s, ·)

)
(x, y) ds, (29)

and the analogous formula with ρ(ε).
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4.2.1 Strengthened estimates for symmetric solutions

At first, the symmetry property allows us to control exponential moments.

Lemma 4.3 (Exponential moments) Assume that ρ0 satisfies (28) and

∫∫
eλ
√

1+x2+y2
ρ0(x, y) dy dx = E0(λ) < +∞

for some λ > 0. Then, the solutions of (1)–(3) satisfy

∫∫
eλ
√

1+x2+y2
ρ(x, y, t) dy dx ≤ E0(λ)eD(λ2+2λ)t.

The same estimate holds replacing ρ by ρ(ε).

Proof. By using integration by parts, we get

d

dt

∫∫
eλ
√

1+x2+y2
ρ(x, y, t) dy dx ≤ D(λ2 + 2λ)

∫∫
eλ
√

1+x2+y2
ρ(x, y, t) dy dx

+

∫∫
λeλ

√
1+x2+y2 (x, y) · ~F [ρ]√

1 + x2 + y2
ρ(x, y, t) dy dx.

As consequence of the symmetry assumption, the last term contributes negatively. We end the
proof by integrating with respect to time.

Using Lq and moments estimates, we can readily obtain a weighted L2 bound; for instance, we
have

∫∫
eλ
√

1+x2+y2
ρ2(x, y, t) dy dx ≤

(∫∫
e2λ

√
1+x2+y2

ρ(x, y, t) dy dx

)1/2(∫∫
ρ3 dy dx

)1/2

and a similar estimate holds for ρ(ε). According to Proposition 2.1-i) & iii) and 2.2-i) & iii), it
becomes a relevant estimate for D large enough: when (12) holds we have bounds in L1(R2) ∩
L∞(R2), thus on L3(R2). We finally arrive at

∫∫
eλ
√

1+x2+y2
ρ2(x, y, t) dy dx ≤ Ce2Dλ(1+λ)t (30)

where the constant C depends on D, E0(2λ), ‖ρ0‖L1 and ‖ρ0‖L∞. Again, the same (uniform)
estimate is fulfilled by ρ(ε).

We need now to specify the class of initial data to which the analysis applies. Addtionally to

the symmetry assumption, we suppose that ρ
(ε)
0 , which is a regularization of ρ0 in (3), is such that

there exists p0, p2 ≥ 0 such that for any λ ≥ 0, we have

E0(λ) = sup
ε>0

(∫∫
eλ
√

1+x2+y2
ρ
(ε)
0 (x, y) dy dx

)
≤ ep0+p2λ

2

.
(31)

Such an assumption clearly holds for uniformly compactly supported data, as well as for Gaussian–
like data. Finally, for our purpose, we will need another estimate for the weighted L2 norm of the
gradient, which applies for the data verifying (31).

Lemma 4.4 (Weighted L2 estimates) Let
(
ρ
(ε)
0

)
ε>0

be a sequence of non negative functions

bounded in L1 ∩ L∞(R2). Assume that ρ
(ε)
0 satisfies (28) and

sup
ε>0

{∫
|z|4ρ(ε)0 dz +

∫∫
(1 + |z|2)|ρ(ε)0 |2 dz

}
< ∞.
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If D satisfies (12), there exists constants B0, B1, B2 > 0, which do not depend on ε nor on t, such
that ∫∫

(1 + |z|2)(ρ(ε))2 dz ≤ B0 +B1t+ B2t
2,

∫ t

0

(∫∫
(1 + |z|2)|∇ρ(ε)(z, s)|2

)
ds ≤ B0 +B1t+B2t

2.

Proof. Let us compute (still with the shorthand notation z = (x, y)), by using several integrations
by parts,

1

2

d

dt

∫∫
(1 + |z|2)|ρ(ε)|2(z, t) dz = −D

∫∫
(1 + |z|2)|∇ρ(ε)|2 dz + 2D

∫∫
|ρ(ε)|2 dz

+

∫∫
|ρ(ε)|2z · F (ε)[ρ(ε)] dz

−1

2

∫∫
(1 + |z|2)|ρ(ε)|2 ∇ · (~F (ε)ρ(ε)) dz.

The symmetry assumption implies z · F (ε)[ρ(ε)] ≤ 0, which allows us to get rid of the third term

in the right side. We remind the reader that ∇ · (~F (ε)ρ(ε)) = −4T (ε)(ρ(ε)) is proportional to the
convolution with an approximation of the 2D Dirac measure. Hence, we get

1

2

d

dt

∫∫
(1 + |z|2)|ρ(ε)|2(z, t) dz +D

∫∫
(1 + |z|2)|∇ρ(ε)|2 dz

≤ 2D

∫∫
|ρ(ε)|2 dz + 2

∫∫
(1 + |z|2)|ρ(ε)|2 T (ε)(ρ(ε)) dz

≤ 2D

∫∫
|ρ(ε)|2 dz + 2

(∫∫
(1 + |z|2)2ρ(ε) dz

)1/2(∫∫ ∣∣T (ε)(ρ(ε))
∣∣2 ∣∣ρ(ε)

∣∣3 dz
)1/2

≤ 2D

∫∫
|ρ(ε)|2 dz + 2

(
2

∫∫
(1 + |z|4)ρ(ε) dz

)1/2(∫∫
|ρ(ε)|5 dz

)1/2

.

For the last term, we have used Hölder’s inequality as in the proof of Proposition 2.2. We already
know that the L2 and L5 norms of ρ(ε) are uniformly bounded, by virtue of Proposition 2.2. It
remains to discuss the forth order moment. To this end we go back to (7): t 7→ m2(t) has a linear
growth, hence t 7→ m4(t) have a quadratic growth with respect to the time variable. We conclude
that both

∫∫
(1 + |z|2)|ρ(ε)|2(z, t) dz and

∫ t

0

∫∫
(1 + |z|2)|∇ρ(ε)(z, s)|2 dz ds

has at most a quadratic growth, with coefficients independent of ε.

4.2.2 Cauchy property for ρ(ε)

This Section is concerned with the following statement, which strengthens Theorem 4.1 for sym-
metric solutions.

Theorem 4.5 Let
(
ρ
(ε)
0

)
ε>0

be a sequence of non negative functions bounded in L1 ∩ L∞(R2),

which satisfies (28) and (31) and which converges in L1(R2) to some ρ0. Then the associated
sequence

(
ρ(ε)
)
ε>0

of solutions of (5)–(6) is a Cauchy sequence in C([0, T ];L1(R2)).

Corollary 4.6 Let ρ0 ∈ L1∩L∞(R2) verify (28) and (31). Then the sequence
(
ρ(ε)
)
ε>0

of solutions

of (5)–(6) with the same initia data converges C([0, T ];L1(R2)) to ρ, the unique symmetric solution
of (1)–(3).
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We make use of (29), which leads to
∫∫

|ρ(ε) − ρ(ε
′)|(z, t) dz ≤

∫
Ht ⋆ |ρ(ε)0 − ρ

(ε′)
0 |(z) dz

+

∫ t

0

∫∫ ∣∣∣∇Ht−s ⋆
[(

~F (ε)[ρ(ε)]ρ(ε) − ~F (ε′)[ρ(ε
′)]ρ(ε

′)
)
(s, ·)

]∣∣∣ (z) dz ds.
(32)

We dominate the right hand side by the sum of the following four terms

Aε,ε′(t) =

∫∫

R2

Ht ⋆ |ρ(ε)0 − ρ
(ε′)
0 |(z) dz,

Bε,ε′(t) =

∫ t

0

∫∫∫∫
|∇Ht−s(z − z′)| |~F (ε)[ρ(ε)](z′, s)| |ρ(ε) − ρ(ε

′)|(z′, s) dz′ dz ds,

Cε,ε′(t) =

∫ t

0

∫∫∫∫
|∇Ht−s(z − z′)| ρ(ε′)(z′, s) |~F (ε)[ρ(ε) − ρ(ε

′)](z′, s)| dz′ dz ds,

Dε,ε′(t) =

∫ t

0

∫∫ ∣∣∣∣
∫∫

ρ(ε
′)(z′, s) ∇Ht−s(z − z′) ·

(
~F (ε)[ρ(ε

′)]− ~F (ε′)[ρ(ε
′)](z′, s)

)
dz′
∣∣∣∣ dz ds.

Since ρ
(ε)
0 → ρ0 in L1(R2), it is clear that

lim
ε,ε′→0

(
sup
t≥0

Aε,ε′ (t)

)
= 0 (33)

uniformly on any time interval [0, T ]. Next, we are going to justify the following claim.

Lemma 4.7 Let α = 1√
2
. Set

ϕ(λ) = 2Dλ(1 + α)
(
1 + λ(1 + α)

)
.

Then there exists constant β1, β2 > 0 such that, for any R > 0 we have

Bε,ε′ (t) ≤ β1R‖ρ(ε)‖L∞

∫ t

0

1√
t− s

‖(ρ(ε) − ρ(ε
′))(s, ·)‖L1 ds+ β2

√
t

λ
e−αλReϕ(λ)t. (34)

The constant β1 does not depend on the data, while β2 depends on E0(2λ(1 + α)).

Proof. In Section 3.6, we already used the basic estimate
∫∫

|∇Ht−s(z − z′)| dz′ ≤ C0√
t− s

(35)

for a certain constant C0. We have
∫∫

|F (ε)[ρ(ε)](z′)||ρ(ε) − ρ(ε
′)|(z′) dz′

≤
∫∫∫∫

ρ(ε)(x1, y1)δ
(ε)(y′ − y1)|ρ(ε) − ρ(ε

′)|(x′, y′) dx′ dy′ dx1 dy1

≤
∫∫∫∫

x2
1+y2

1≤R2

... dx′ dy′ dx1 dy1 +

∫∫∫∫

x2
1+y2

1≥R2

... dx′ dy′ dx1 dy1.

We dominate the first integral as follows
∫∫∫∫

x2
1+y2

1≤R2

... dx′ dy′ dx1 dy1

≤ ‖ρ(ε)‖L∞

∫

x1≤R

(∫
δ(ε)(y′ − y1) dy1

)
|ρ(ε) − ρ(ε

′)|(x′, y′) dy′ dx′

≤ 2R‖ρ(ε)‖L∞‖ρ(ε) − ρ(ε
′)‖L1 .
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Next, we have

∫∫∫∫

x2
1+y2

1≥R2

... dx′ dy′ dx1 dy1

≤
∫∫∫∫

x2
1+y2

1≥R2

ρ(ε)(x1, y1)ρ
(ε)(x′, y′)δ(ε)(y′ − y1) dx

′ dy′ dx1 dy1

+

∫∫∫∫

x2
1+y2

1≥R2

ρ(ε)(x1, y1)ρ
(ε′)(x′, y′)δ(ε)(y′ − y1) dx

′ dy′ dx1 dy1

where the two terms can be treated with the same approach. We make the exponential moment
appear and we use the Cauchy-Schwarz inequality to obtain, for instance,

∫∫∫∫

x2
1+y2

1>R2

ρ(ε)(x1, y1)δ
(ε)(y − y1)ρ

(ε)(x, y) dx1 dy1 dxdy

≤ 1

2

∫∫∫∫

x2
1+y2

1>R2

eλ
√

1+x2
1+y2

1e−λ
√

1+x2+y2 |ρ(ε)|2(x1, y1)δ
(ε)(y − y1) dx1 dy1 dxdy

+
1

2

∫∫∫∫

x2
1+y2

1>R2

e−λ
√

1+x2
1+y2

1eλ
√

1+x2+y2 |ρ(ε)|2(x, y)δ(ε)(y − y1) dx1 dy1 dxdy.

(36)
The elementary inequality

α(|x|+ |y|) ≤
√
1 + x2 + y2

allows us to estimate ∫
e−λ

√
1+x2+y2

dx ≤ e−αλ|y| 2

αλ
.

Hence the first integral in the right hand side of (36) is dominated by

∫∫

x2
1+y2

1>R2

(∫
δ(ε)(y − y1)

(∫
e−λ

√
1+x2+y2

dx

)
dy

)
eλ
√

1+x2
1+y2

1 |ρ(ε)|2(x1, y1) dx1 dy1

≤ 2

αλ

∫∫

x2
1+y2

1>R2

(∫
δ(ε)(y − y1)e

−αλ|y| dy

)
eλ
√

1+x2
1+y2

1 |ρ(ε)|2(x1, y1) dx1 dy1

≤ 2

αλ

∫∫

x2
1+y2

1>R2

eλ
√

1+x2
1+y2

1 |ρ(ε)|2(x1, y1) dx1 dy1

≤ 2

αλ

∫∫

x2
1+y2

1>R2

e−λα
√

1+x2
1+y2

1eλ(1+α)
√

1+x2
1+y2

1 |ρ(ε)|2(x1, y1) dx1 dy1

≤ 2

αλ
e−λαR

∫∫
eλ(1+α)

√
1+x2

1+y2
1 |ρ(ε)|2(x1, y1) dx1 dy1

≤ C
2

αλ
e−λαR e2Dλ(1+α)(1+(1+α)λ)t

where we have used (30) and the constant C > 0 depends on E0(2λ(1 +α)). Next, we observe that

∫∫
1x2

1+y2
1>R2e−λ

√
1+x2

1+y2
1 dx1 ≤ e−αλ|y1|

∫
1x2

1+y2
1>R2e−αλ|x1| dx1 ≤ 2

αλ
e−αλ(|y1|+g(y1))

where

g(y) = 1|y|≤R

√
R2 − y2.

As a matter of fact, for any y ∈ R, we have |y|+ g(y) ≥ R, so that

∫
1x2

1+y2
1>R2e−λ

√
1+x2

1+y2
1 dx1 ≤ 2

αλ
e−αλR.
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The second integral of the right hand side in (36), is thus dominated by

∫∫ (∫ (∫
1x2

1+y2
1>R2e−λ

√
1+x2

1+y2
1 dx1

)
δ(ε)(y − y1) dy1

)
eλ
√

1+x2+y2 |ρ(ε)|2(x, y) dxdy

≤ 2

αλ
e−αλR

∫∫ (∫
δ(ε)(y − y1) dy1

)
eλ
√

1+x2+y2 |ρ(ε)|2(x, y) dxdy

≤ C′ 2

αλ
e−αλR e2Dλ(1+λ)t

where we have used (30) again and C′ here depends on E0(2λ). We finally conclude (note that
λ(1 + α) > λ) that

∫∫
|F (ε)[ρ(ε)](z′, s)||ρ(ε) − ρ(ε

′)|(z′, s) dz′

≤ 2R‖ρ(ε)‖L∞‖(ρ(ε) − ρ(ε
′))(s)‖L1 +

C

αλ
e−αλReϕ(λ)t

with C depending on E0(2λ(1 + α)) ≥ E0(2λ). We combine this inequality to (35) to obtain the
final estimate on Bε,ε′ .

Lemma 4.8 There exists constant γ1, γ2 > 0 such that, for any R > 0 we have

Cε,ε′ (t) ≤ γ1R‖ρ(ε)‖L∞

∫ t

0

1√
t− s

‖(ρ(ε) − ρ(ε
′))(s, ·)‖L1 ds+ γ2

√
t

λ
e−αλReϕ(λ)t. (37)

The constant γ1 does not depend on the data, while γ2 depends on E0(2λ(1 + α)).

Proof. The same reasoning applies for Cε,ε′ . Indeed, we can first integrate ∇Ht−s(z − z′) over z,

which leads to the analog of (35). Estimating ~F (ε), we are left with

Cε,ε′ (t) ≤
∫ t

0

C0√
t− s

∫∫
ρ(ε

′)(x′, y′, s)|ρ(ε) − ρ(ε
′)|(x1, y1, s))δ

(ε)(y′ − y1) dx1 dy1 dx
′ dy′ ds

which is exactly the same expression that appeared in the analysis of Bε,ε′ .

We turn to the analysis of Dε,ε′ .

Lemma 4.9 Let 0 < T < ∞. Then Dε,ε′(t) converges to 0, uniformly over [0, T ] as ε, ε′ tend to 0

Proof. We evaluate Dε,ε′ through the following splitting

Dε,ε′(t) ≤ Dx,1(t) +Dx,2(t) +Dy,1(t) +Dy,2(t)
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with

Dx,1(t) =

∫ t

0

∫∫ ∣∣∣∣
∫∫∫∫

∂xHt−s(x− x′, y − y′)ρ(ε
′)(x′, y′, s)ρ(ε

′)(x”, y”, s)

× sgn(ε)(x′ − x”)
(
δ(ε)(y′ − y”)− δ(ε

′)(y′ − y”)
)
dx′ dy′ dx” dy”

∣∣∣ dxdy

Dx,2(t) =

∫ t

0

∫∫ ∣∣∣∣
∫∫∫∫

∂xHt−s(x− x′, y − y)ρ(ε
′)(x′, y′, s)ρ(ε

′)(x”, y”, s)

× δ(ε
′)(y′ − y”)

(
sgn(ε)(x′ − x”)− sgn(ε

′)(x′ − x”)
)
dx′ dy′ dx” dy”

∣∣∣ dxdy

Dy,1(t) =

∫ t

0

∫∫ ∣∣∣∣
∫∫∫∫

∂xHt−s(x− x′, y − y′)ρ(ε
′)(x′, y′, s)ρ(ε

′)(x”, y”, s)

× sgn(ε)(y′ − y”)
(
δ(ε)(x′ − x”)− δ(ε

′)(x′ − x”)
)
dx′ dy′ dx” dy”

∣∣∣ dxdy

Dy,2(t) =

∫ t

0

∫∫ ∣∣∣∣
∫∫∫∫

∂yHt−s(x− x′, y − y)ρ(ε
′)(x′, y′, s)ρ(ε

′)(x”, y”, s)

× δ(ε
′)(x′ − x”)

(
sgn(ε)(y′ − y”)− sgn(ε

′)(y′ − y”)
)
dx′ dy′ dx” dy”

∣∣∣ dxdy.

In order to study Dx,1, we make use of the following quantity

∫∫
∂xHt−s(x− x′, y − y′)ρ(ε

′)(x′, y′, s)Iε,ε′(x′, y′, s) dx′ dy′

with

Iε,ε′(x′, y′, s) =

∫∫
ρ(ε

′)(x”, y”, s)sgn(ε)(x′ − x”)
(
δ(ε)(y′ − y”)− δ(ε

′)(y′ − y”)
)
dx” dy”.

Since δ(ε)(u) = 1
2

d
dusgn

(ε)(u), the latter can be rewritten by integrating by parts

Iε,ε′(x′, y′, s) =
1

2

∫∫
∂yρ

(ε′)(x”, y”, s)sgn(ε)(x′ − x”)
(
sgn(ε)(y′ − y”)− sgn(ε

′)(y′ − y”)
)
dx” dy”.

The Cauchy-Schwarz inequality yields

|Iε,ε′(x′, y′, s)| ≤ 1

2

(∫∫
(1 + |x”|2)

∣∣∂yρ(ε
′)(x”, y”, s)

∣∣2 dx” dy”
)1/2

×
(∫

dx”

1 + |x”|2
∫ ∣∣sgn(ε)(y′ − y”)− sgn(ε

′)(y′ − y”)
∣∣2 dy”

)1/2

≤
√
π

2

(∫∫
(1 + |z”|2)|∇ρ(ε

′)(z”, s)|2 dz”
)1/2√

∆ε,ε′(y′),

where

∆ε,ε′(y
′) =

∫ ∣∣sgn(ε)(y′ − y”)− sgn(ε
′)(y′ − y”)

∣∣2 dy”

=
2

π

∫ ∣∣∣
∫ y′−y”

0

e−
v2

2ε2
dv

ε
−
∫ y′−y”

0

e
− v2

2|ε′|2
dv

ε′

∣∣∣
2

dy”

=
2

π

∫ ∣∣∣
∫ u/ε

u/ε′
e−v2/2 dv

∣∣∣
2

du.

In particular this quantity does not depend on y′. Clearly, for any fixed u ∈ R, we have

lim
ε,ε′→0

(∫ u/ε

u/ε′
e−v2/2 dv

)
= 0.
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Furthermore, for 0 < ε, ε′ ≪ 1, it can be dominated as follows

∣∣∣∣∣

∫ u/ε

u/ε′
e−v2/2 dv

∣∣∣∣∣ =
∣∣∣∣∣

∫ u/ε

u/ε′
e−v2/4 e−v2/4 dv

∣∣∣∣∣ ≤ e−u2/2

∫
e−v2/4 dv

which lies in L2(R). Therefore the Lebesgue theorem tells us that

lim
ε,ε′→0

∆ε,ε′ = 0.

We go back to Dx,1 that we split into

Dx,1(t) =

∫ t−η

0

... ds+

∫ t

t−η

... ds

with 0 < η ≪ t ≤ T < ∞ to be determined. The integral on (0, t − η) can be estimated owing to
the previous manipulations and the Cauchy–Schwarz inequality; we get

∣∣∣∣
∫ t−η

0

... ds

∣∣∣∣ ≤ ‖ρ(ε)‖L∞

∫ t−η

0

C0√
t− s

sup
x′,y′

|Iε,ε′(x′, y′, s)| ds

≤ C0
√
π

2
‖ρ(ε)‖L∞

√
∆ε,ε′

(∫ t−η

0

ds

t− s

)1/2(∫ t−η

0

∫∫
(1 + |z|2)|∇ρ(ε)(z, s)|2 ds dz

)1/2

≤ CT

√
∆ε,ε′

√
ln(t/η)

for a certain CT > 0, that comes from the estimates in Lemma 4.4. For the integral over (t− η, t),
we claim that we can find a constant, still denoted CT > 0, such that

∣∣∣∣
∫ t

t−η

... ds

∣∣∣∣ ≤
∫ t

t−η

C0√
t− s

∫∫∫∫ [
δ(ε)(y′ − y”) + δ(ε

′)(y′ − y”)
]

(38)

×ρ(ε)(x′, y′, s)ρ(ε
′)(x”, y”, s) dx′ dy dx” dy” ds

≤ CT
√
η.

This conclusion follows from uniform bounds (with respect to ε, ε′ and s) of expressions like

Jε,ε′(s) =

∫
δ(ε)(y′ − y”)ρ(ε)(x′, y′)ρ(ε

′)(x”, y”) dz′ dz”.

Let us set

ρ̃(ε)(x”, y′, s) =

∫
δ(ε)(y′ − y”)ρ(ε)(x”, y”, s) dy”.

We control Jε,ε′(s) by using moments. Indeed, we get

Jε,ε′(s) =

∫∫∫
ρ(ε)(x′, y′, s)ρ̃(ε

′)(x”, y′, s) dx′ dy′ dx”

≤ 1

2

∫∫∫
1 + x′2

1 + x”2
|ρ(ε)|2(x′, y′, s) dx′ dy′ dx”

+
1

2

∫∫∫∫
1 + x”2

1 + x′2 |ρ̃
(ε′)|2(x”, y′, s) dx′ dy′ dx”

≤ π

2

∫∫
(1 + x2)|ρ(ε)|2(x, y, s) dxdy +

π

2

∫∫
(1 + x2)|ρ̃(ε′)|2(x, y, s) dxdy.
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Owing to Lemma 4.4, we already know that the first integral in the right hand side is bounded (the
constant depends on the final time). For the second term, we simply write

∫∫
(1 + x2)|ρ̃(ε′)|2(x, y, s) dxdy

≤
∫∫

(1 + x2)

∣∣∣∣
∫ √

δ(ε)(y − y′)
√
δ(ε)(y − y′)ρ(ε)(x, y′, s) dy′

∣∣∣∣
2

(x, y, s) dxdy

≤
∫∫

(1 + x2)

{∫
δ(ε)(y − y′) dy′ ×

∫
δ(ε)(y − y′)|ρ(ε)(x, y′, s)|2 dy′

}
dxdy

≤
∫∫

(1 + x2)|ρ(ε)(x, y′, s)|2
(∫

δ(ε)(y − y′) dy

)
dxdy′

≤
∫∫

(1 + x2)|ρ(ε)(x, y′, s)|2 dxdy′

which is thus also bounded uniformly with respect to ε, ε′ > 0 and 0 ≤ s ≤ T < ∞. Finally, we
arrive at

|Dx,1(t)| ≤ CT

(√
ln(t/η)

√
∆ε,ε′ +

√
η
)

which holds for any 0 < η ≪ t ≤ T < ∞. It shows that lim(ε,ε′)→0 Dx,1(t) = 0 uniformly on [0, T ].

The analysis of Dx,2 is simpler; it relies on the following observation

∣∣∣∣
∫∫

δ(ε
′)(y′ − y”)

(
sgn(ε)(x′ − x”)− sgn(ε

′)(x′ − x”)
)
ρ(ε

′)(x”, y”, s) dx” dy”

∣∣∣∣

≤ ‖ρ(ε′)‖∞
∫

|sgn(ε)(x′ − x”)− sgn(ε
′)(x′ − x”)| dx”

≤
√

2

π

∫ ∣∣∣
∫ u/ε

u/ε′
e−v2/2 dv

∣∣∣du = ∆̃ε,ε′ .

A straightforward adaptation of the argument used for studying ∆ε,ε′ shows that limε,ε′→0 ∆̃ε,ε′ = 0
and we have

|Dx,2(t)| ≤
∫ t

0

C0√
t− s

‖ρ(ε)(s, ·)‖L1 ∆̃ε,ε′ ds ≤ CT ∆̃ε,ε′

for any 0 ≤ t ≤ T < ∞. Of course, Dy,1 and Dy,2 can be dealt with in a similar manner.

Coming back to (32), we arrive at

‖(ρ(ε) − ρ(ε
′))(t, ·)‖L1 ≤

(
Aε,ε′ + Ã(R, λ)

)
+ B(R)

∫ t

0

‖(ρ(ε) − ρ(ε
′))(s, ·)‖L1√

t− s
ds, (39)

which holds for any 0 ≤ t ≤ T < ∞ and 0 < R < ∞ with

Aε,ε′ = sup
0≤t≤T

Aε,ε′(t) + sup
0≤t≤T

Dε,ε′(t),

Ã(R, λ) = (β2 + γ2)
1 + λ

λ2

√
Teϕ(λ)T e−αλR,

B(R) = (β1 + γ1)RM,

(40)

with M = supε>0 ‖ρ(ε)‖L∞ , which is known to be finite. We should bear in mind the fact that β2

and γ2 depend on λ too, through the exponential moments E0(2λ(1 + α)). Applying the singular
Grönwall Lemma 3.4 leads to

‖(ρ(ε) − ρ(ε
′))(t, ·)‖L1 ≤

(
Aε,ε′ + Ã(R, λ)

)
E1/2

(B(R)

2

√
t
)
.
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We remind the reader that the Mittag–Leffler function is explicitely known

E1/2(z) =

∞∑

k=0

zk

Γ(1 + k/2)
= ez

2

erfc(−z) =
2√
π

ez
2

∫ z

−∞
e−u2

du.

We are paying attention to the term Ã(R, λ)E1/2

(B(R)

2

√
t
)
. This is where we make use of (31)

to control E0(2λ(1 + α)) in the coefficients β2, γ2. As far as λ ≥ 1, we have ϕ(λ) ≤ 4D(1 + α)2λ2.
Therefore, up to some irrelevant constant hereafter denoted by K > 0, the quantity of interest can
be dominated by

√
T

λ
exp

(
(DT + p2)4(1 + α)2λ2 − αRλ+ p0 +

(β1 + γ1)
2M2

4
TR2

)
.

The exponent recasts as

4(DT+p2)(1+α)2
(
λ− αR

8(DT + p2)(1 + α)2

)2
−R2

( α2

16(DT + p2)(1 + α)2
− (β1 + γ1)

2M2

4
T
)
+p0.

We start by picking 0 < T < T⋆ small enough, so that

α2

16(DT + p2)(1 + α)2
− (β1 + γ1)

2M2

4
T ≥ α2

8p2(1 + α)2
= q2 > 0

holds for any 0 ≤ t ≤ T⋆. Next, let ω > 0. We can find R = R(ω) large enough so that

K
√
T ep0e−R2q2 ≤ ω

2

holds. Possibly enlarging R(ω), we also suppose that

αR

8(DT + p2)(1 + α)2
≥ 1.

We then make use of the estimates with

λ =
αR

8(DT + p2)(1 + α)2

which leads to

Ã(R, λ)E1/2

(B(R)

2

√
t
)
≤ ω

2
.

Finally, there exists ε(ω) > 0 small enough such that for any 0 < ε, ε′ ≤ ε(ω) we get

Aε,ε′E1/2

(B(R)

2

√
t
)
≤ ω

2
.

It follows that

‖(ρ(ε) − ρ(ε
′))(t, ·)‖L1 ≤ ω

holds for any 0 ≤ t ≤ T ≤ T⋆, provided 0 < ε, ε′ ≤ ε(ω). We extend this result on any time
interval by repeating the reasoning on subintervals of length smaller than T⋆. Therefore

(
ρ(ε)
)
ε>0

is a Cauchy sequence in the Banach space C([0, T ], L1(R2)) and it converges strongly to a solution
of (1)–(3). The proof can be readily adapted to establish the uniqueness of the solution of (1)–(3)
for a symmetric initial data verifying (31).
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4.2.3 A convergence rate for ρ(ε)

Following the same strategy as in the proof of Theorem 4.5, it is possible to give a rate of convergence
for ρ(ε).

Theorem 4.10 Let T be a fixed time. Let ρ(ε) be the symmetric solution of (5)–(6) with initial
data ρ0 (ρ0 is assumed to be symmetric), and let ρ be the symmetric solution of (1)–(2) with same
initial data ρ0. Then there exist constants C(ρ0, T ) and 0 < ν(ρ0, T ) < 1 depending on both ρ0 and
T , such that

sup
t∈[0,T ]

||(ρ(ε) − ρ)(t)||L1 ≤ C(ρ0, T )ε
1
2ν(ρ0,T ) (41)

Remark 4.11 Observe that ν(ρ0, T ) is always smaller than 1, and it has the following asymptotic
behavior

lim
T→0

ν(ρ0, T ) = 1, lim
T→+∞

ν(ρ0, T ) = 0,

for any ρ0. Note the 1/2 factor: with the present proof the convergence rate cannot be better than
ε1/2.

Proof. The idea is to revisit the computations in Section 4.2.2, in order to estimate more accurately
the distance between ρ(ε) and ρ, solution of the singular PDE. Since we have used estimates that
are uniform with respect to ε, we may simply take ε′ = 0 in the computations performed above. It
leads to the following observations:

• A term: We take the same initial condition for ρ(ε) and ρ, hence the error related to the
initial condition simply vanishes: Aε(t) = 0.

• B and C terms: We use Lemmas 4.7 and 4.8, with ε′ = 0.

• D term: We need to estimate

∆ε =
4

π

∫ ∞

0

∣∣∣∣∣

∫ ∞

u/ε

e−v2/2 dv

∣∣∣∣∣

2

du.

Since v2/2 ≥ x2/2 + x(v − x), we get

∫ ∞

x

e−v2/2 dv ≤ e−x2/2

∫ ∞

0

e−xs ds ≤ e−x2/2

x
.

Thus, for any α > 0 we obtain

∆ε ≤ 4

π

(∫ α

0

√
π

2
du+

∫ ∞

α

ε2

u2
e−u2/ε2 du

)

≤ 4

π

(
α

√
π

2
+ ε

∫ ∞

α/ε

1

s2
e−s2 ds

)
.

Choosing α = ε, this relation yields

∆ε ≤ Cε

where C is an absolute constant. A very similar reasoning applied to

∆̃ε = 2

√
2

π

∫ ∞

0

∣∣∣∣∣

∫ ∞

u/ε

e−v2/2 dv

∣∣∣∣∣ du
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yields
∆̃ε ≤ Cε

where again C is an absolute constant.

The estimate for Dx,1(t) reads, for any 0 < η < t,

|Dx,1(t)| ≤ CT

(√
∆ε

√
ln(t/η) +

√
η
)
.

Choosing η = ∆ε (it is possible to do marginally better), we obtain, at the price of modifying
CT ,

|Dx,1(t)| ≤ CT

√
∆ε

√
ln(t/∆ε) ,

which, according to the above estimate for ∆ε, yields

|Dx,1(t)| ≤ CT

√
ε
√
ln(t/ε).

Since Dx,2 ≤ CT ε, we see that Dx,1 is the largest contribution to Dε.

We use now (39)–(40) of the previous section with ε′ = 0:

||(ρ(ε) − ρ)(t)||L1 ≤ (Aε + Ã(R, λ))E1/2

(
(β1 + γ1)

2M2R2T

4

)
. (42)

The contribution to Aε coming from the initial condition vanishes, since we choose the same initial
condition for ρ(ε) and ρ. The second contribution to Aε comes from the ”D terms”, which are
smaller than CT

√
ε
√
ln(T/ε).

We can play the same game as in the proof of the Cauchy property: write E1/2(z) ≤ cez
2

for
some c, and observe that the exponent in (42) can be rewritten as

4(DT+p2)(1+α)2
(
λ− αR

8(DT + p2(1 + α)2

)2

−R2

(
α2

4(DT + p2)(1 + α)2
− (β1 + γ1)

2M2T

4

)
+p0.

(43)
We choose T = T ∗ small enough so that the second term, proportional to R2 is negative, which
means

α2

4(DT ∗ + p2)(1 + α)2
− (β1 + γ1)

2M2T ∗

4
= q2(T

∗) > 0

Then we choose λ such that the first term in (43) vanishes. We finally obtain

sup
t∈[0,T∗]

||(ρ(ε) − ρ)(t)||L1 ≤ CAε exp (KT∗R2) + C′ exp (−q2R
2) (44)

where C and C′ depend on T ∗, and

KT =
(β1 + γ1)

2M2T

4
.

We now choose R to minimize the right hand side of (44). For instance, taking R such that

exp [−(KT∗ + q2(T
∗))R2] = Aε

yields, for a modified C,

sup
t∈[0,T∗]

||(ρ(ε) − ρ)(t)||L1 ≤ C
[√

ε
√

ln(T ∗/ε)
]ν̄

. (45)

with

ν̄ =
q2(T

∗)

KT∗ + q2(T ∗)
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Slightly decreasing ν̄ to absorb the logarithmic term, this proves the claim for any T < T ∗. For
T > T ∗, we divide [0, T ] into subintervals of size T ∗, and apply the previous strategy for each
subinterval. We have to take into account the error related to initial condition at the beginning
of each subinterval. This error is given by the total error at the end of the previous subinterval.
Thus we have to reintroduce an error related to initial data. Calling Ek the bound on the error

at the end of the interval [(k − 1)T ∗, kT ∗], and A(k)
ε the Aε term to be considered on the interval

[kT ∗, (k + 1)T ∗], we have

A(k)
ε ≤ CT∗

√
ε
√
ln(T ∗/ε) + CT∗Ek ≤ CT∗Ek,

where CT∗ can take different values, but remains a constant depending on ρ0, T
∗, and not on ε.

With the same reasoning as above, we conclude with

Ek+1 ≤ CT∗Eν̄
k .

Since T ∗ is of order 1, we have to repeat the argument on a finite number of subintervals to reach
the prescribed time T . Each iteration of course decreases the convergence rate, and increases the
prefactor, but for any T , we can guarantee a finite ν, as claimed.

5 Particle approximation

We consider now an N -particle description of the dynamics. Namely, let Z
(ε)
i = (X

(ε)
i , Y

(ε)
i ) be the

solution of the stochastic differential system

dX
(ε)
i,t =

1

N

∑

j 6=i

K(ε)
x (Z

(ε)
i,t − Z

(ε)
j,t ) dt+

√
2D dBi,x,t, (46)

dY
(ε)
i,t =

1

N

∑

j 6=i

K(ε)
y (Z

(ε)
i,t − Z

(ε)
j,t ) dt+

√
2D dBi,y,t, (47)

where Bi,x and Bi,y are independent Brownian motions. Here and below, the interaction kernel is
given by

K(ε)
x (z) = −sgn(ε)(x)δ(ε)(y)

K(ε)
y (z) = −sgn(ε)(y)δ(ε)(x),

with z = (x, y). It is then clear that ‖K(ε)
x ‖Lip = C/ε2, and the same holds true for K

(ε)
y . We

assume that the initial conditions for the particles’ trajectories

Z
(ε)
i,t

∣∣∣
t=0

= Z
(ε)
i,0

are independent random variables, with common law ρ0. In the discussion, we naturally assume
that ρ0 is a probability density. Accordingly, for both ρ and ρ(ε) solutions of (1) and (5) respectively,
associated to the initial data ρ0, we have

∫∫
ρ dz =

∫∫
ρ(ε) dz =

∫∫
ρ0 dz = 1.

Moreover, we assume throughout this section that ρ0 is such that the symmetric existence theorem
works as we shall use the rate of convergence established in this framework. We associate to the
solutions of this system (46)–(47), the empirical measure

ρ̂(ε),N =
1

N

N∑

i=1

δ(z − Z
(ε)
i ).
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Note that the interaction force in (46)–(47) has been rescaled by the 1/N factor (roughly speaking
we have replaced the kernel K(ε) by 1

NK(ε)), so that the total force exerted on a given particle
remains of order 1; this is the so–called mean field regime. We refer the reader to the surveys [4, 13]
for an introduction to such regimes. The goal of this section is to investigate the convergence of
this particle approximation to ρ, the solution of the singular PDE (1) in the regime N → ∞, ε → 0.

The analysis uses the Wasserstein distance, see [11, 27] for a thorough discussion on this notion.
The Wasserstein distance W1(µ, ν) between two probability measures µ, ν on R

2 is defined as

W1(µ, ν) = sup

{∣∣∣∣
∫

ϕ(z)µ(dz)−
∫

ϕ(z)ν(dz)

∣∣∣∣ , ‖ϕ‖Lip ≤ 1

}
,

where

‖ϕ‖Lip = sup
x 6=y, x,y∈R2

|ϕ(x) − ϕ(y)|
|x− y| .

Note that W1 determines the topology of tight convergence on the space of probability measures
on R

2, see [27, Chap. 6].
Wasserstein metric is well defined on the set of probability measures with finite first moment.

This is the case for ρ, the solution of the original PDE (1), see Proposition 2.1 as well as ρ(ε),
the solution of the regularized PDE (5), see Proposition 2.2. It also holds true for the particle
approximations ρ̂(ε),N (they are finite sums of Dirac delta distributions).

It turns out that W1 is a well adapted tool to investigate the limit N → ∞, see [4, 11, 13, 26].
The strategy is to write

W1(ρ̂
(ε),N , ρ) ≤ W1(ρ̂

(ε),N , ρ(ε)) +W1(ρ
(ε), ρ),

where ρ(ε) is the solution of the regularized PDE (5). The second term is controlled by the rate of
convergence established in the previous section, and the first one by adapting “standard” MacKean–
Vlasov estimates, as we are going to detail now. According to [26], we start by introducing an
auxiliary system of interacting particles. The solution ρ(ε) of the regularized PDE is also the law
of the solution of the system of SDE

dX̃
(ε)
i = (K(ε)

x ⋆ ρ(ε))(Z̃
(ε)
i ) dt+

√
2D dBi,x, (48)

dỸ
(ε)
i = (K(ε)

y ⋆ ρ(ε))(Z̃
(ε)
i ) dt+

√
2D dBi,y . (49)

Note that both Z
(ε)
i = (X

(ε)
i , Y

(ε)
i ) and Z̃

(ε)
i = (X̃

(ε)
i , Ỹ

(ε)
i ) are driven by the same Brownian

motions and we choose them to have the same initial condition. The system of stochastic differential
equations (48)–(49) (respectively (46)–(47)) has a unique solution, as the coefficients (t, z) 7→
K

(ε)
x ⋆ρ(ε)(z) and (t, z) 7→ K

(ε)
y ⋆ρ(ε)(z) are Lipschitz with respect to z and continuous with respect

to t. Moreover, the law µ(ε) of Z̃
(ε)
i = (X̃

(ε)
i , Ỹ

(ε)
i ) is a (weak) solution of

∂tµ
(ε) = ∇ ·

(
(−K(ε) ⋆ ρ(ε))µ(ε)

)
+D∆µ(ε)

µ(ε)
∣∣∣
t=0

= ρ0.

Since this equation has a unique solution, and ρ(ε) is a solution, it follows that µ(ε) = ρ(ε). We

define ρ̃(ε),N to be the empirical measure associated with the Z̃
(ε)
i :

ρ̃(ε),N =
1

N

N∑

i=1

δ(z − Z̃
(ε)
i ).

The following statement is an immediate corollary of Theorem 1 in [12]:
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Proposition 5.1 Let 0 < T < ∞. Assume that there exist q > 2 and a constant C = C(T ), that
depends on T but is independent of ε, such that

sup
t∈[0,T ]

∫
|z|qρ(ε)(dz) ≤ C. (50)

Then there exists a constant C̃ = C̃(T ) independent of ε such that

sup
t∈[0,T ]

E[W1(ρ̃
(ε),N , ρ(ε))] ≤ C̃√

N
log (1 +N). (51)

The uniform bound (50) holds true if, for example, the initial measure ρ0 has a finite third
moment. To prove this, one uses an argument similar to that in Proposition 2.2–iv (in effect one
uses the same proof as that used for the a priori bound deduced for the original measure ρ in
Proposition 2.1–iv). We state and prove now the main result of the section.

Theorem 5.2 Let 0 < T < ∞ be a fixed time. Under the same conditions as in Theorem 4.10, we
have

sup
t∈[0,T ]

E[W1(ρ̂
(ε),N , ρ)] ≤ C̃e

2CT

ε2√
N

log (1 +N) + Cρε
1
2
νρ , (52)

where C̃ = C̃(T ) is the constant defined in Proposition 5.1, C is the Lipschitz constant of ε2K(ε)

and Cρ = C(ρ0, T ), respectively, νρ = ν(ρ0, T ) are the constants arising from Theorem 4.10.

In particular, for any δ ∈ [0, 1
2 ), there exists ε = ε(δ,N) and a constant C̃ρ = C̃ρ(δ) independent

of N such that

sup
t∈[0,T ]

E[W1(ρ̂
(ε),N , ρ)] ≤ C̃ρ (log(N))

− 1
4 νρ (53)

for any N ≥ 1.

Proof. Following Theorem 4.10, to establish (52) it suffices to prove that

sup
t∈[0,T ]

E[W1(ρ̂
(ε),N , ρ(ε))] ≤ C̃e

2CT

ε2

√
N

log (1 +N). (54)

Since both Z
(ε)
i = (X

(ε)
i , Y

(ε)
i ) and Z̃

(ε)
i = (X̃

(ε)
i , Ỹ

(ε)
i ) are driven by the same Brownian motions

and have the same initial condition, we have

d

dt
(Z

(ε)
i,t − Z̃

(ε)
i,t ) =

1

N

∑

j

K(ε)(Z
(ε)
i,t − Z

(ε)
j,t )− (K(ε) ⋆ ρ(ε))(Z̃

(ε)
i,t )

= (K(ε) ⋆ ρ̂(ε),N )(Z
(ε)
i,t )− (K(ε) ⋆ ρε)(Z̃

(ε)
i,t )

= [K(ε) ⋆ (ρ̂(ε),N − ρ(ε))(Z
(ε)
i,t )] + [(K(ε) ⋆ ρ(ε))(Z

(ε)
i,t )− (K(ε) ⋆ ρ(ε))(Z̃

(ε)
i,t )].

We note that K(ε)(· − Z
(ε)
i,t ) is a function with Lipschitz constant less than C

ε2 . Hence

∣∣K(ε) ⋆ (ρ̂(ε),N − ρ(ε))(Z
(ε)
i,t )
∣∣ ≤ C

ε2
W1(ρ̂

(ε),N , ρ(ε)).

Furthermore, using that K(ε)(z − ·) is C/ε2-Lipschitz, and
∫
ρε dz = 1, we get

∣∣K(ε) ⋆ ρ(ε)(Z
(ε)
i,t )−K(ε) ⋆ ρ(ε)(Z̃

(ε)
i,t )
∣∣ ≤ C

ε2
|Z(ε)

i,t − Z̃
(ε)
i,t |. (55)

Then
d

dt
|Z(ε)

i,t − Z̃
(ε)
i,t | ≤

C

ε2
|Z(ε)

i,t − Z̃
(ε)
i,t |+

C

ε2
W1(ρ̂

(ε),N , ρ(ε)).
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Hence, since Z(ε) and Z̃(ε) share the same initial data, we arrive at

e−
Ct

ε2 |Z(ε)
i,t − Z̃

(ε)
i,t | ≤

∫ t

0

Ce−
Cs

ε2

ε2
W1(ρ̂

(ε),N , ρ(ε))(s) ds. (56)

Now we write

e−
Ct

ε2 W1(ρ̂
(ε),N , ρ(ε)) ≤ e−

Ct

ε2 W1(ρ̂
(ε),N , ρ̃(ε),N) + e−

Ct

ε2 W1(ρ̃
(ε),N , ρ(ε))

≤ 1

N

N∑

i=1

e−
Ct

ε2 |Z(ε)
i,t − Z̃

(ε)
i,t |+ e−

Ct

ε2 W1(ρ̃
(ε),N , ρ(ε))

≤
∫ t

0

Ce−
Cs

ε2

ε2
W1(ρ̂

(ε),N , ρ(ε))(s) ds+ e−
Ct

ε2 W1(ρ̃
(ε),N , ρ(ε)),

where we have used first the triangle inequality, then a direct inequality for the W1 distance between
the two empirical measures, and finally (56). By taking the expectation and using (51), we obtain

e−
Ct

ε2 EW1(ρ̂
(ε),N , ρ(ε))(t) ≤ (1 − e−

Ct

ε2 )
C̃√
N

log (1 +N) +
C

ε2

∫ t

0

e−
Cs

ε2 EW1(ρ̂
(ε),N , ρ(ε))(s) ds.

≤ C̃√
N

log (1 +N) +
C

ε2

∫ t

0

e−
Cs

ε2 EW1(ρ̂
(ε),N , ρ(ε))(s) ds.

By the standard Grönwall’s lemma we deduce that

e−
Ct

ε2 EW1(ρ̂
(ε),N , ρ(ε))(t) ≤ C̃e

Ct

ε2

√
N

log (1 +N)

which gives (54). Using the triangle inequality and Theorem 4.10, (54) leads to (52). Moreover

observe that for δ ∈ [0, 12 ) and ε = (1−2δ
4CT log(N))−

1
2 we have

C̃e
2CT

ε2

√
N

log (1 +N) + Cρε
1
2νρ =

C̃

N δ
log (1 +N) + Cρ

(
1− 2δ

4CT
log(N)

)− 1
4νρ

which gives (53).

6 Numerical illustrations

The goal of this section is two–fold:

1. Illustrate the existence Theorems 4.1 and 4.5, and show that the minimal value for the diffusion
we have identified in the statement is not optimal: the solution can apparently be global in
time for D < 2C2M0;

2. Illustrate the convergence for the particles approximation, and show that the actual rate of
convergence as a function of N seems to be much better than suggested by Theorem 5.2.

For this purpose, we use a finite volume method introduced in [6] to study drift-diffusion equations
with gradient structure. Of course, there is no gradient structure in the present case, but the
method can be adapted and it is proved to be robust. Let us briefly explain the principles of the
approach. We work on a Cartesian grid, with space steps ∆x,∆y > 0. Given the time step ∆t > 0,
we wish to update the numerical unknown with a finite volume formula which looks like

ρn+1
i,j = ρn+1

i,j − ∆t

∆x
(Fi+1/2,j − Fi−1/2,j)−

∆t

∆y
(Gi,j+1/2 −Gi,j−1/2)
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where we need to find a relevant definition for the numerical fluxes F,G. To this end, we rewrite
the right hand side of (1) as

∇ ·
(
ρ(∇ ln(ρ)− ~F [ρ])

)
= ∂x

(
ρ(∂x ln(ρ) + ∂xU)

)
+ ∂y

(
ρ(∂y ln(ρ) + ∂yV )

)

where U, V are the scalar functions defined by

U(x, y, t) =

∫
|x− x′|ρ(x′, y, t) dx′, V (x, y, t) =

∫
|y − y′|ρ(x, y′, t) dx′.

We shall therefore apply the ideas in [6] directionwise. The flux Fi+1/2,j is given by applying the
upwinding principle with the “velocity” ξ = ∂x ln(ρ) + ∂xU which leads to

Fi+1/2,j =
[
ξi+1/2,j

]
+
ρi,j +

[
ξi+1/2,j

]
+
ρi+1,j .

The interface value is obtained by the mere centered difference

ξi+1/2,j =
1

∆x

(
ln(ρi+1,j)− ln(ρi,j) + Ui+1,j − Ui,j

)
,

where the integral that defines U can be evaluated by a quadrature rule (the rectangle rule, say). A
similar construction applies to construct the flux G. The accuracy of the method can be improved
by using a polynomial reconstruction of the density, with a suitable slope limiter, instead of the
mere upwind scheme, in the spirit of the design of MUSCL schemes. We refer the reader to [6]
for further details and the analysis of this scheme for gradient–flow equations. We can equally
use a second-order Runge-Kutta method for the time integration. We do not explicitly introduce
a regularization for the singular forces (2) in the code; we simply compute (2) by summing over
rows or columns of the square grid. This corresponds to an effective regularization of the order of
the grid spacing (typically ∆x = ∆y = 0.05 in the simulations presented below). For the particles
simulations, we integrate directly the regularized equations (46)–(47) by using the Euler method.
We typically use ǫ = 0.1.

Fig. 1 shows a contour plot of ρ at late times for D = 0.15 obtained by using the finite volume
method introduced in [6] (left plot) and the (mollified) particles approximation (right plot). Fig. 2
shows the evolution of the L2 and L∞ norms for various values of D. D = 0.15 is smaller than 2C2,
the threshold of Theorem 4.1 (here M0 = 1): the L2 norm is not monotonically decreasing, but
there is apparently no finite time singularity. Fig. 3 shows that particles simulations are reasonably
close to the PDE simulations already for a number of particles much smaller than that suggested
by Theorem 5.2.
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