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Metric spaces provide a framework for analysis and have several very useful properties. Many of these properties follow in part from the triangle inequality. However, there are several applications in which the triangle inequality does not hold but in which we may still like to perform analysis. This paper investigates what happens if the triangle inequality is removed all together, leaving what is called a distance space, and also what happens if the triangle inequality is replaced with a much more general two parameter relation, which is herein called the "power triangle inequality". The power triangle inequality represents an uncountably large class of inequalities, and includes the triangle inequality, relaxed triangle inequality, and inframetric inequality as special cases. The power triangle inequality is defined in terms of a function that is herein called the power triangle function. The power triangle function is itself a power mean, and as such is continuous and monotone with respect to its exponential parameter, and also includes the operations of maximum, minimum, mean square, arithmetic mean, geometric mean, and harmonic mean as special cases.

Introduction and summary

Metric spaces provide a framework for analysis and have several very useful properties. Many of these properties follow in part from the triangle inequality. However, there are several applications 1 in which the triangle inequality does not hold but in which we would still like to perform analysis. So the questions that natually follow are:

Q1. What happens if we remove the triangle inequality all together? Q2. What happens if we replace the triangle inequality with a generalized relation? A distance space is a metric space without the triangle inequality constraint. Section 3 introduces distance spaces and demonstrates that some properties commonly associated with metric spaces also hold in any distance space: for some (𝑝, 𝜎) ∈ ℝ * × ℝ.2 Section 4 then goes on to use this function to define a new relation, called the power triangle inequality in (𝑋, 𝖽), and defined as ▵ ○(𝑝, 𝜎; 𝖽) ≜ { (𝑥, 𝑦, 𝑧) ∈ 𝑋3 |𝖽(𝑥, 𝑦) ≤ 𝜏(𝑝, 𝜎; 𝑥, 𝑦, 𝑧; 𝖽) } .

The power triangle inequality is a generalized form of the triangle inequality in the sense that the two inequalities coincide at (𝑝, 𝜎) = [START_REF]A distance space is called semimetric provided…[END_REF][START_REF]A distance space is called semimetric provided…[END_REF]. Other special values include (1, 𝜎) yielding the relaxed triangle inequality (and its associated near metric space) and (∞, 𝜎) yielding the σ-inframetric inequality (and its associated σ-inframetric space). Collectively, a distance space with a power triangle inequality is herein called a power distance space and denoted (𝑋, 𝖽, 𝑝, 𝜎). 3 The power triangle function, at 𝜎 = 1 2 , is a special case of the power mean with 𝘕 = 2 and 𝜆 1 = 𝜆 2 = 1 2 . Power means have the elegant properties of being continuous and monontone with respect to a free parameter 𝑝. From this it is easy to show that the power triangle function is also continuous and monontone with respect to both 𝑝 and 𝜎 . Special values of 𝑝 yield operators coinciding with maximum, minimum, mean square, arithmetic mean, geometric mean, and harmonic mean. Power means are briefly described in APPENDIX B.2. 4 Section 4.2 investigates the properties of power distance spaces. In particular, it shows for what values of (𝑝, 𝜎) the properties M1-M5 hold. Here is a summary of the results in a power distance space (𝑋, 𝖽, 𝑝, 𝜎), for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 : Let ℝ * ≜ ℝ ∪ {-∞, ∞} be the set of extended real numbers. 7 Let ℤ be the set of integers. Let ℕ ≜ {𝑛 ∈ ℤ |𝑛 ≥ 1 } be the set of natural numbers. Let ℤ * ≜ ℤ ∪ {-∞, ∞} be the extended set of integers.

Definition 2.2 Let 𝑋 be a set. The quantity 𝟚 𝑋 is the power set of 𝑋 such that 𝟚 𝑋 ≜ {𝐴 ⊆ 𝑋} (the set of all subsets of 𝑋).

Relations

Definition 2.3 8 Let 𝑋 and 𝑌 be sets. The Cartesian product 𝑋 × 𝑌 of 𝑋 and 𝑌 is the set 𝑋 × 𝑌 ≜ { (𝑥, 𝑦) | 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 } . An ordered pair (𝑥, 𝑦) on 𝑋 and 𝑌 is any element in 𝑋 × 𝑌 . A relation Ⓡ on 𝑋 and 𝑌 is any subset of 𝑋 × 𝑌 such that Ⓡ ⊆ 𝑋 × 𝑌 . The set 𝟚 𝑋𝑌 is the set of all relations in 𝑋 × 𝑌 . A relation 𝖿 ∈ 𝟚 𝑋𝑌 is a function if ( 𝑥, 𝑦 1) ∈ 𝖿 and ( 𝑥, 𝑦 2) ∈ 𝖿 ⟹ 𝑦 1 = 𝑦 2 . The set 𝑌 𝑋 is the set of all functions in 𝟚 𝑋𝑌 .

Set functions

Definition 2.4 9 Let 𝟚 𝑋 be the power set (Definition 2.2 page 4) of a set 𝑋 . A set 𝒮(𝑋) is a set structure on 𝑋 if 𝒮(𝑋) ⊆ 𝟚 𝑋 . A set structure 𝒬(𝑋) is a paving on 𝑋 if ∅ ∈ 𝒬(𝑋).

5 open ball: Definition 3.5 page 6; metric space: Definition 4.5 page 16; base: Definition A.3 page 27; topology: Definition A.1 page 26; open: Definition 3.6 page 7; continuity in topological space: Definition A.11 page 28; convergence in distance space: Definition 3.11 page 9; convergence in topological space: Definition A.16 page 28; closed set: Definition A.1 page 26; closure, interior, accumulation point: Definition A.8 page 27; coincidence in all metric spaces and some power distance spaces: Theorem 4.15 page 21; 6 if and only if statement: Theorem 3.10 page 8; open sets of a distance space induce a topology: Corollary 3.8 page 8;

7 📘 [Rana(2002)] pages 385-388 ⟨Appendix A⟩ 8 📘 [START_REF] Maddux | Relation Algebras, 1st Edition[END_REF]] page 4, 📘 [Halmos(1960)] pages 26-30, 📘 [Suppes(1972)] page 86, 📘 [Kelley(1955)] page 10, 📘 [Bourbaki(1939)], 📘 [Bottazzini(1986)] page 7, 📘 [Comtet(1974) 9 📘 [Molchanov(2005)] page 389, 📘 [START_REF] Pap | Null-Additive Set Functions[END_REF]] page 7, 📘 [START_REF] Hahn | Set Functions[END_REF]] page 254 version 0.30
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Definition 2.5 10 Let 𝒬(𝑋) be a paving (Definition 2.4 page 4) on a set 𝑋 . Let 𝑌 be a set containing the element 0. A function 𝗆 ∈ 𝑌 𝒬(𝑋) is a set function if 𝗆(∅) = 0.

Definition 2. [START_REF] Choquet | Theory of capacities[END_REF] The set function The absolute value |⋅| ∈ ℝ ℝ is defined as 13 |𝑥| ≜ { -𝑥 for 𝑥 ≤ 0 𝑥 otherwise } .

Background: distance spaces

A distance space (Definition 3.1 page 6) can be defined as a metric space (Definition 4.5 page 16) without the triangle inequality constraint. Much of the material in this section about distance spaces is standard in metric spaces. However, this paper works through this material again to demonstrate "how far we can go", and can't go, without the triangle inequality.

10 📘 [START_REF] Hahn | Set Functions[END_REF]], 📃 [Choquet(1954)], 📘 [START_REF] Pap | Null-Additive Set Functions[END_REF]] page 8 ⟨Definition 2.3: extended realvalued set function⟩, 📘 [Halmos(1950)] page 30 ⟨ §7. MEASURE ON RINGS⟩, 11 📘 [MacLane and Birkhoff(1999)] page 470, 📘 [Beran(1985)] page 1, 📃 [Korselt(1894)] page 156 ⟨I, II, (1)⟩, 📃 [Dedekind(1900)] page 373 ⟨I-III⟩. An order relation is also called a partial order relation. An ordered set is also called a partially ordered set or poset.

12 📘 [Apostol(1975)] page 4, 📘 [START_REF] Ore | On the foundation of abstract algebra. i[END_REF]] page 409 13 A more general definition for absolute value is available for any commutative ring : Let 𝑅 be a commutative ring . A function |⋅| in 𝑅 𝑅 is an absolute value, or modulus, on 𝑅 if The pair (𝑋, 𝖽) is a distance space if 𝖽 is a distance on a set 𝑋 .

Definition 3.2 15 Let (𝑋, 𝖽) be a distance space and 𝟚 𝑋 be the power set of 𝑋 (Definition 2.2 page 4). The 16 Let (𝑋, 𝖽) be a distance space. Let 𝟚 𝑋 be the power set (Definition 2.2 page 4) of 𝑋 . A set 𝐴 is bounded in (𝑋, 𝖽) if 𝐴 ∈ 𝟚 𝑋 and diam 𝐴 < ∞.

diameter in (𝑋, 𝖽) of a set 𝐴 ∈ 𝟚 𝑋 is diam 𝐴 ≜ { 0 for 𝐴 = ∅ sup {𝖽(𝑥, 𝑦) |𝑥, 𝑦 ∈ 𝐴 } otherwise Definition 3.3

Properties

Remark 3.4 Let (𝑥 𝑛 ) 𝑛∈ℤ be a sequence in a distance space (𝑋, 𝖽). The distance space (𝑋, 𝖽) does not necessarily have all the nice properties that a metric space (Definition 4.5 page 16) has. In particular, note the following:

1. 𝖽 is a distance in (𝑋, 𝖽) / ⟹ 𝖽 is continuous in (𝑋, 𝖽) 

Open sets in distance spaces

Definitions

Definition 3.5 18 Let (𝑋, 𝖽) be a distance space (Definition 3.1 page 6). Let ℝ + be the set of positive real numbers (Definition 2.1 page 4 𝑋 is OPEN.

2.

∅ is OPEN. ( 

3. each element in { 𝑈 𝑛| 𝑛=1,2,…,𝘕 } is OPEN ⟹ 𝘕 ⋂ 𝑛=1 𝑈 𝑛 is OPEN. 4. each element in { 𝑈 𝛾 ∈ 𝟚 𝑋 |𝛾 ∈ 𝛤 } is OPEN ⟹ ⋃ 𝛾∈𝛤 𝑈 𝛾 is OPEN. ✎PROOF: (1) Proof that 𝑋 is open in (𝑋, 𝖽): ( 

✏

Of course it is possible to define a very large number of topologies even on a finite set with just a handful of elements; 20 and it is possible to define an infinite number of topologies even on a linearly ordered infinite set like the real line ( ℝ, ≤). 21 Be that as it may, Definition 3.9 (next definition) defines a single but convenient topological space in terms of a distance space. Note that every metric space conveniently and naturally induces a topological space because the open balls of the metric space form a base for the topology. This is not the case for all distance spaces. [START_REF] Brown | The number of complements of a topology on n points is at least 2 𝑛 (except for some special cases)[END_REF]], page 31, 📘 [Comtet(1974)] page 229, 📘 [START_REF] Comtet | Recouvrements, bases de filtre et topologies d'un ensemble fini[END_REF]], 📘 [Chatterji(1967)], page 7, 📘 [Evans et al.(1967)Evans, Harary, and Lynn], 📘 [Krishnamurthy(1966)], page 157

21 For examples of topologies on the real line, see the following: 📘 [START_REF] Adams | Introduction to Topology: Pure and Applied. Featured Titles for Topology Series[END_REF]] page 31 ⟨"six topologies on the real line"⟩, 📘 [START_REF] Salzmann | The Classical Fields: Structural Features of the Real and Rational Numbers[END_REF] pages 64-70 ⟨Weird topologies on the real line⟩, 📘 [ Murdeshwar(1990)] page 53 ⟨"often used topologies on the real line"⟩, 📘 [Joshi(1983) 

✎PROOF:

(1) Proof that 𝐴 ⊆ 𝐴 -: by Lemma A.10 page 27

(2) Proof that 𝐴 -⊆ 𝐴 (proof that 𝑥 ∈ 𝐴 -⟹ 𝑥 ∈ 𝐴):

(a) Let 𝑥 be a point in 𝐴 -(𝑥 ∈ 𝐴 -).

(b) Define a sequence of open balls ( 𝖡 ( 𝑥, 1 1 ) , 𝖡 ( 𝑥, 1 2 ) , 𝖡 ( 𝑥, 1 3 ) , … ) . (c) Define a sequence of points (𝑥 1 , 𝑥 2 , 𝑥 3 , …) such that 𝑥 𝑛 ∈ 𝖡 ( 𝑥 𝑛 , 1 𝑛 ) ∩ 𝐴. (d) Then (𝑥 𝑛 ) is convergent in 𝑋 with limit 𝑥 by Definition 3.11 page 9 (e) and (𝑥 𝑛 ) is Cauchy in 𝐴 by Definition 3.12 page 9. (f) By the hypothesis 2, (𝑥 𝑛 ) is therefore also convergent in 𝐴.

Let this limit be 𝑦. Note that 𝑦 ∈ 𝐴. (g) By hypothesis 1, limits are unique, so 𝑦 = 𝑥. (h) Because 𝑦 ∈ 𝐴 (item (2f)) and 𝑦 = 𝑥 (item (2g)), so 𝑥 ∈ 𝐴. (i) Therefore, 𝑥 ∈ 𝐴 -⟹ 𝑥 ∈ 𝐴 and 𝐴 -⊆ 𝐴.

✏

Proposition 3.17 29 Let (𝑥 𝑛 ) 𝑛∈ℤ be a sequence in a DISTANCE SPACE (𝑋, 𝖽). Let 𝖿 ∶ ℤ → ℤ be a strictly 27 in metric space: 📘 [START_REF] Rosenlicht | Introduction to Analysis[END_REF]] page 52 28 in metric space: 📘 [START_REF] Kubrusly | The Elements of Operator Theory, 1st Edition[END_REF]] page 128 ⟨Theorem 3.40⟩, 📘 [START_REF] Haaser | Real Analysis[END_REF]] page 75 ⟨6⋅10, 6⋅11 Propositions⟩, 📘 [Bryant(1985)] page 40 ⟨Theorem 3.6, 3.7⟩, 📘 [Sutherland(1975) Remark 3.20 Rather than defining continuity of a distance function in terms of the sequential characterization of continuity as in Definition 3.19 (previous), we could define continuity using an inverse image characterization of continuity" (Definition 3.9 page 8). Assuming an equivalent topological space is used for both characterizations, the two characterizations are equivalent (Theorem A.20 page 29). In fact, one could construct an equivalence such as the following:

⎧ ⎪ ⎨ ⎪ ⎩ 𝖽 is continuous in ℝ 𝑋 2 (Definition A.11 page 28) (inverse image characterization of continuity) ⎫ ⎪ ⎬ ⎪ ⎭ ⟺ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (𝑥 𝑛 ) , (𝑦 𝑛 ) ∈ 𝐶 ⟹ lim 𝑛→∞ ( 𝖽 ( 𝑥 𝑛 , 𝑦 𝑛)) = 𝖽 ( lim 𝑛→∞ (𝑥 𝑛 ) , lim 𝑛→∞ (𝑦 𝑛 ) ) (Definition A.16 page 28) (sequential characterization of continuity) ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭
Note that just as (𝑥 𝑛 ) is a sequence in 𝑋 , so the ordered pair ( (𝑥 𝑛 ) , (𝑦 𝑛 ) ) is a sequence in 𝑋 2 . The remainder follows from Theorem A.20 (page 29). However, use of the inverse image characterization is somewhat troublesome because we would need a topology on 𝑋 2 , and we don't immediately have one defined and ready to use. In fact, we don't even immediately have a distance space on 𝑋 2 defined or even open balls in such a distance space. The result is, for the scope of this paper, it is arguably not worthwhile constructing the extra structure, but rather instead this paper uses the sequential characterization as a definition (as in Definition 3.19).

Examples

Similar distance functions and several of the observations for the examples in this section can be found in 📘 [Blumenthal(1953)] pages 8-13.

In 

𝖽(𝑥, 𝑦) ≜ ⎧ ⎪ ⎨ ⎪ ⎩ 𝑦 ∀ (𝑥, 𝑦) ∈ {4} × (0 ∶ 2] (vertical half-open interval) 𝑥 ∀ (𝑥, 𝑦) ∈ (0 ∶ 2] × {4} (horizontal half-open interval) |𝑥 -𝑦| otherwise (Euclidean) ⎫ ⎪ ⎬ ⎪ ⎭ is a distance on ℝ.
Note some characteristics of the distance space (ℝ, 𝖽):

(1) (ℝ, 𝖽) is not a metric space because 𝖽 does not satisfy the triangle inequality:

𝖽(0, 4) ≜ |0 -4| = 4 ≰ 2 = |0 -1| + 1 ≜ 𝖽(0, 1) + 𝖽(1, 4) (2) Not every open ball in (ℝ, 𝖽) is open. For example, the open ball 𝖡(3, 2) is not open because 4 ∈ 𝖡(3, 2) but for all 0 < 𝜀 < 1 𝖡(4, 𝜀) = (4 -𝜀 ∶ 4 + 𝜀) ∪ (0 ∶ 𝜀) ⊈ (1 ∶ 5) = 𝖡(3, 2) (3)
The open balls of (ℝ, 𝖽) do not form a base for a topology on ℝ. This follows directly from item (2) and Theorem 3.10 (page 8).

32 A similar distance function 𝖽 and item (4) page 13 can in essence be found in 📘 [Blumenthal(1953) (4) In the distance space (ℝ, 𝖽), limits are not unique; For example, the sequence ( 1 /𝑛) ∞ 1 converges both to the limit 0 and the limit 4 in (ℝ, 𝖽):

lim 𝑛→∞ 𝖽 ( 𝑥 𝑛 , 0 ) ≜ lim 𝑛→∞ 𝖽( 1 /𝑛, 0) ≜ lim 𝑛→∞ | 1 /𝑛 -0| = 0 ⟹ ( 1 /𝑛) → 0 lim 𝑛→∞ 𝖽 ( 𝑥 𝑛 , 4 ) ≜ lim 𝑛→∞ 𝖽( 1 /𝑛, 4) ≜ lim 𝑛→∞ ( 1 /𝑛) = 0 ⟹ ( 1 /𝑛) → 4
(5) The topological space (𝑋, 𝑻 ) induced by (ℝ, 𝖽) also yields limits of 0 and 4 for the sequence ( 1 /𝑛) ∞ 1 , just as it does in item ( 4). This is largely due to the fact that, for small 𝜀, the open balls 𝖡(0, 𝜀) and 𝖡 (4, 𝜀) are open. 

𝖡(0, 𝜀) is open ⟹ for each 𝑈 ∈ 𝑻 that contains 0, ∃𝘕 ∈ ℕ such that 1 /𝑛 ∈ 𝑈 ∀𝑛 > 𝘕 ⟺ ( 1 /𝑛) →
lim 𝑛→∞ (𝖽(1 -1 /𝑛, 4 -1 /𝑛)) = lim 𝑛→∞ (|(1 -1 /𝑛) -(4 -1 /𝑛)|) = |1 -4| = 3 ≠ 4 = 𝖽(0, 4) = 𝖽 ( lim 𝑛→∞ (1 -1 /𝑛) , lim 𝑛→∞ (4 -1 /𝑛) )
In a metric space, all convergent sequences are also Cauchy. However, this is not the case for all distance spaces, as demonstrated next:

Example 3.22 33 The function 𝖽(𝑥, 𝑦) ∈ ℝ ℝ×ℝ such that

𝖽(𝑥, 𝑦) ≜ { |𝑥 -𝑦| for 𝑥 = 0 or 𝑦 = 0 or 𝑥 = 𝑦 (Euclidean) 1 otherwise (discrete) } is a distance on ℝ.
Note some characteristics of the distance space (ℝ, 𝖽):

(1) (𝑋, 𝖽) is not a metric space because the triangle inequality does not hold: (5) Even though the open balls in (ℝ, 𝖽) do not induce a topology on 𝑋 , it is still possible to find a set of open sets in (𝑋, 𝖽) that is a topology. For example, the set {∅, {1, 2}, ℝ} is a topology on ℝ.

𝖽 ( 1 4 , 1 2 ) = 1 ≰ 3 4 = | 1 4 -0 | + | 0 -1 2 | = 𝖽 ( 1 4 , 0 ) + 𝖽 ( 0, 1 2 ) (2) The open ball 𝖡 ( 1 4 , 1 2 ) is not open because for any 𝜀 ∈ ℝ + , no matter how small, 𝖡(0, 𝜀) = (-𝜀 ∶ +𝜀) ⊈ { 0, 1 4 } = { 𝑥 ∈ 𝑋 | 𝖽 ( 1 4 , 𝑥 ) < 1 2 } ≜ 𝖡 ( 1 4 , 1 2 ) (3) Even though not all the open balls are open, it is still possible to have an open set in (𝑋, 𝖽). For example, the set 𝑈 ≜ {1, 2} is open: 𝖡(1, 1) ≜ {𝑥 ∈ 𝑋 |𝖽(1, 𝑥) < 1 } = {1} ⊆ {1, 2} ≜ 𝑈 𝖡(2, 1) ≜ {𝑥 ∈ 𝑋 |𝖽(2, 𝑥) < 1 } = {2} ⊆ {1, 2} ≜ 𝑈 ( 
(6) In (ℝ, 𝖽), limits of convergent sequences are unique:

(𝑥 𝑛 ) → 𝑥 ⟹ lim 𝑛→∞ 𝖽 ( 𝑥 𝑛 , 𝑥 ) = ⎧ ⎪ ⎨ ⎪ ⎩ lim | 𝑥 𝑛 -0 | = 0 for 𝑥 = 0 OR |𝑥 -𝑥| = 0 for constant (𝑥 𝑛 ) for 𝑛 > 𝘕 OR 1 ≠ 0 otherwise ⎫ ⎪ ⎬ ⎪ ⎭
33 The distance function 𝖽 and item (7) page 14 can in essence be found in 📘 [Blumenthal(1953)] page 9
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3.4 EXAMPLES
which says that there are only two ways for a sequence to converge: either 𝑥 = 0 or the sequence eventually becomes constant (or both). Any other sequence will diverge. Therefore we can say the following:

(a) If 𝑥 = 0 and the sequence is not constant, then the limit is unique and 0.

(b) If 𝑥 = 0 and the sequence is constant, then the limit is unique and 0.

(c) If 𝑥 ≠ 0 and the sequence is constant, then the limit is unique and 𝑥.

(d) If 𝑥 ≠ 0 and the sequence is not constant, then the sequence diverges and there is no limit. (7) In (ℝ, 𝖽), a convergent sequence is not necessarily Cauchy. For example, (a) the sequence ( 1 /𝑛) 𝑛∈ℕ is convergent with limit 0:

lim 𝑛→∞ 𝖽( 1 /𝑛, 0) = lim 𝑛→∞ 1 /𝑛 = 0 (b) However, even though ( 1 /𝑛) is convergent, it is not Cauchy: lim 𝑛,𝑚→∞ 𝖽( 1 /𝑛, 1 /𝑚) = 1 ≠ 0 (8) The distance function 𝖽 is discontinuous in (𝑋, 𝖽): lim 𝑛→∞ (𝖽( 1 /𝑛, 2 -1 /𝑛)) = 1 ≠ 2 = 𝖽(0, 2) = 𝖽 ( lim 𝑛→∞ ( 1 /𝑛) , lim 𝑛→∞ (2 -1 /𝑛) ) .
Example 3.23 34 The function 𝖽(𝑥, 𝑦) ∈ ℝ ℝ×ℝ such that

𝖽(𝑥, 𝑦) ≜ { 2|𝑥 -𝑦| ∀ (𝑥, 𝑦) ∈ {(0, 1) , (1, 0)} (dilated Euclidean) |𝑥 -𝑦| otherwise (Euclidean) } is a distance on ℝ.
Note some characteristics of the distance space (ℝ, 𝖽):

(1) (ℝ, 𝖽) is not a metric space because 𝖽 does not satisfy the triangle inequality:

𝖽(0, 1) ≜ 2|0 -1| = 2 ≰ 1 = |0 -1 /2| + | 1 /2 -1| ≜ 𝖽(0, 1 /2) + 𝖽( 1 /2, 1)
(2) The function 𝖽 is discontinuous:

lim 𝑛→∞ (𝖽(1 -1 /𝑛, 1 /𝑛)) ≜ lim 𝑛→∞ (|1 -1 /𝑛 -1 /𝑛|) = 1 ≠ 2 = 2|0 -1| ≜ 𝖽(0, 1) = 𝖽 ( lim 𝑛→∞ (1 -1 /𝑛) , lim 𝑛→∞ ( 1 /𝑛) ) .
( (5) In (𝑋, 𝖽), the limits of convergent sequences are unique. This is demonstrated in Example 4.22 (page 25) using additional structure developed in Section 4. ( 6) In (𝑋, 𝖽), convergent sequences are Cauchy. This is also demonstrated in Example 4.22 (page 25). 34 The distance function 𝖽 and item (2) page 14 can in essence be found in 📘 [Blumenthal(1953)] page 9 version 0.30
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The distance functions in Example 3.21 (page 12)-Example 3.23 (page 14) were all discontinuous. In the absence of the triangle inequality and in light of these examples, one might try replacing the triangle inequality with the weaker requirement of continuity. However, as demonstrated by the next example, this also leads to an arguably disastrous result.

Example 3.24 35 The function 𝖽 ∈ ℝ ℝ×ℝ such that 𝖽(𝑥, 𝑦) ≜ (𝑥 -𝑦) 2 is a distance on ℝ. Note some characteristics of the distance space (ℝ, 𝖽):

(1) (ℝ, 𝖽) is not a metric space because the triangle inequality does not hold:

𝖽(0, 2) ≜ (0 -2) 2 = 4 ≰ 2 = (0 -1) 2 + (1 -2) 2 ≜ 𝖽(0, 1) + 𝖽(1, 2)
(2) The distance function 𝖽 is continuous in (𝑋, 𝖽). This is demonstrated in the more general setting of Section 4 in Example 4.23 (page 25).

(3) Calculating the length of curves in (𝑋, 𝖽) leads to a paradox: 36 (a) Partition [0 ∶ 1] into 2 𝘕 consecutive line segments connected at the points

( 0, 1 2 𝘕 , 2 2 𝘕 , 3 2 𝘕 , … , 2 𝘕 -1 1 2 𝘕 , 1 ) (b)
Then the distance, as measured by 𝖽, between any two consecutive points is

𝖽 ( 𝑝 𝑛 , 𝑝 𝑛+1) ≜ ( 𝑝 𝑛 -𝑝 𝑛+1) 2 = ( 1 2 𝘕 ) 2 = 1 2 2𝘕
(c) But this leads to the paradox that the total length of [0 ∶ 1] is 0: [Czerwik(1993)] page 5 ⟨b-metric; (1),( 2),(5)⟩, 📃 [Fagin et al.(2003a)Fagin, Kumar, and Sivakumar], 📃 [Fagin et al.(2003b)Fagin, Kumar, and Sivakumar] ⟨Definition 4.2 (Relaxed metrics)⟩, 📃 [Xia(2009)] page 453 ⟨Definition 2.1⟩, 📘 [Heinonen(2001)] page 109 ⟨14.1 Quasimetric spaces.⟩, 📘 [START_REF] Kirk | Fixed Point Theory in Distance Spaces[END_REF]] page 113 ⟨Definition 12.1⟩, 📘 [START_REF] Deza | Encyclopedia of Distances, 3rd Edition[END_REF]] page 7, 📃 [Hoehn and Niven(1985)] page 151, 📘 [Gibbons et al.(1977)Gibbons, Olkin, and Sobel] page 51 ⟨square-meanroot (SMR) (2.4.1)⟩, 📘 [Euclid(circa 300BC)] ⟨triangle inequality-Book I Proposition 20⟩

lim 𝘕 →∞ 2 𝘕 -1 ∑ 𝑛=0 1 2 2𝘕 = lim 𝘕 →∞ 2 𝘕 2 2𝘕 = lim 𝘕 →∞ 1 2 𝘕 = 0
39 metric space: 📘 [Dieudonné(1969)], page 28, 📘 [START_REF] Copson | Metric Spaces. No. 57[END_REF]], page 21, 📘 [Hausdorff(1937)] page 109, 📘 [Fréchet(1928)], 📃 [Fréchet(1906)] page 30 near metric space: 📃 [Czerwik(1993)] page 5 ⟨b-metric;

(1),( 2),(5)⟩, 📃 [Fagin et al.(2003a)Fagin, Kumar, and Sivakumar], 📃 [Fagin et al.(2003b)Fagin, Kumar, and Sivakumar] ⟨Definition 4.2 (Relaxed metrics)⟩, 📃 [Xia(2009)] page 453 ⟨Definition 2.1⟩, 📘 [Heinonen(2001)] page 109 ⟨14.1 Quasimetric spaces.⟩, 📘 [START_REF] Kirk | Fixed Point Theory in Distance Spaces[END_REF]] page 113 ⟨Definition 12.1⟩, 📘 [START_REF] Deza | Encyclopedia of Distances, 3rd Edition[END_REF] 

; 𝖽) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 2𝜎 max {𝖽(𝑥, 𝑧), 𝖽(𝑧, 𝑦)} for 𝑝 = ∞, ( MAXIMUM, corresponds to INFRAMETRIC SPACE) 2𝜎 [ 1 /2𝖽 2 (𝑥, 𝑧) + 1 /2𝖽 2 (𝑧, 𝑦) ]

Properties of power distance spaces

The power triangle inequality property of a power distance space axiomatically endows a metric with an upper bound. Lemma 4.9 (next) demonstrates that there is a complementary lower bound somewhat similar in form to the power triangle inequality upper bound. In the special case where 2𝜎 = 2 

✎PROOF:

(1) lemma: 2 (2𝜎) 𝑝 𝖽 𝑝 (𝑥, 𝑧) -𝖽 𝑝 (𝑧, 𝑦) ≤ 𝖽 𝑝 (𝑥, 𝑦) ∀ (𝑝, 𝜎) ∈ ℝ * × ℝ + : Proof: The rest follows because 𝗀(𝑥) ≜ 𝑥 1 𝑝 is strictly monotone in ℝ ℝ .

2 (2𝜎) 𝑝 𝖽 𝑝 (𝑥, 𝑧) -𝖽 𝑝 (𝑧, 𝑦) ≤ 2 (2𝜎) 𝑝 [ 2𝜎 [ 1 /2𝖽 𝑝 (𝑥, 𝑦) + 1 /2𝖽 𝑝 (𝑦, 𝑧) ]
40 in metric space ((𝑝, 𝜎) = (1, 1)): 📘 [Dieudonné(1969)] page 28, 📘 [Michel and Herget(1993)] page 266, 📘 [Berberian(1961) 

= { 𝑥 ∈ 𝑋 | [ 𝖽 𝑝 (𝜃, 𝑞) + 𝖽 𝑝 (𝑞, 𝑥) ] 1 𝑝 < 𝑟 } because 𝖿 (𝑥) ≜ 𝑥 1 𝑝 is monotone ⊆ { 𝑥 ∈ 𝑋 | 2 1-1 /𝑝 𝜎 [ 𝖽 𝑝 (𝜃, 𝑞) + 𝖽 𝑝 (𝑞, 𝑥) ] 1 𝑝 < 𝑟 } by hypothesis A which implies 2 1-1 /𝑝 𝜎 ≤ 1 = { 𝑥 ∈ 𝑋 | 2𝜎 [ 1 /2𝖽(𝜃, 𝑞) 𝑥 + 1 /2𝖽 𝑝 (𝑞, 𝑥) ] 1 𝑝 < 𝑟 } because 2 1-1 /𝑝 𝜎 = 2𝜎( 1 /2)
𝖽(𝑥, 𝑦) ≜ ⎧ ⎪ ⎨ ⎪ ⎩ 𝑦 ∀ (𝑥, 𝑦) ∈ {4} × (0 ∶ 2] (vertical half-open interval) 𝑥 ∀ (𝑥, 𝑦) ∈ (0 ∶ 2] × {4} (horizontal half-open interval) |𝑥 -𝑦| otherwise (Euclidean) ⎫ ⎪ ⎬ ⎪ ⎭ .
Note the following about the pair (ℝ, 𝖽):

(1) By Example 3.21 (page 12), (ℝ, 𝖽) is a distance space, but not a metric space-that is, the triangle relation ▵ ○(1, 1; 𝖽) does not hold in (ℝ, 𝖽).

(2) Observe further that (ℝ, 𝖽) is not a power distance space. In particular, the triangle relation ▵ ○(𝑝, 𝜎; 𝖽) does not hold in (ℝ, 𝖽) for any finite value of 𝜎 (does not hold for any 𝜎 ∈ ℝ + ): } .

𝖽(0, 4) = 4 ≰ 0 = lim 𝜀→0 2𝜎𝜀 = lim 𝜀→0 2𝜎 [ 1 /2|0 -𝜀| 𝑝 + 1 /2𝜀 𝑝 ] 1 𝑝 ≜ lim 𝜀→0 2𝜎 [ 1 /2𝖽 𝑝 (0, 𝜀) + 1 /2𝖽 𝑝 (𝜀, 4) ]
Note the following about the pair (ℝ, 𝖽):

(1) By Example 3.22 (page 13), (ℝ, 𝖽) is a distance space, but not a metric space-that is, the triangle relation ▵ ○(1, 1; 𝖽) does not hold in (ℝ, 𝖽).

(2) Observe further that (ℝ, 𝖽) is not a power distance space-that is, the triangle relation ▵ ○(𝑝, 𝜎; 𝖽) does not hold in (ℝ, 𝖽) for any value of (𝑝, 𝜎) ∈ ℝ * × ℝ + . } .

Note the following about the pair (ℝ, 𝖽):

(1) By Example 3.23 (page 14), (ℝ, 𝖽) is a distance space, but not a metric space-that is, the triangle relation ▵ ○(1, 1; 𝖽) does not hold in (ℝ, 𝖽).

(2) But observe further that (ℝ, 𝖽, 1, 2) is a power distance space:

(a) Proof that ▵ ○(1, 2; 𝖽) (Definition 4.3 page 16) holds for all (𝑥, 𝑦) ∈ {(0, 1) , ( 1 ≤ 𝜏(1, 2; 𝑥, 𝑦, 𝑧) by Corollary 4.6 (page 16) (3) In (𝑋, 𝖽), the limits of convergent sequences are unique. This follows directly from the fact that (ℝ, 𝖽, 1, 2) is a power distance space (item (2) page 25) and by Theorem 4.19 page 23.

(4) In (𝑋, 𝖽), convergent sequences are Cauchy. This follows directly from the fact that (ℝ, 𝖽, 1, 2) is a power distance space (item (2) page 25) and by Theorem 4.16 page 21.

Example 4.23

Let 𝖽 be a function in ℝ ℝ×ℝ such that 𝖽(𝑥, 𝑦) ≜ (𝑥 -𝑦) 2 . Note the following about the pair (ℝ, 𝖽):

(1) It was demonstrated in Example 3.24 (page 15) that (ℝ, 𝖽) is a distance space, but that it is not a metric space because the triangle inequality does not hold.

(2) However, the tuple (ℝ, 𝖽, 𝑝, 𝜎) is a power distance space (Definition 4.3 page 16) for any (𝑝, 𝜎) ∈ ℝ * × [2 ∶ ∞): In particular, for all 𝑥, 𝑦, 𝑧 ∈ ℝ, the power triangle inequality (Definition 4.3 page 16) must hold.

The "worst case" for this is when a third point 𝑧 is exactly "halfway between" 𝑥 and 𝑦 in 𝖽(𝑥, 𝑦); 

≜ 2𝜎 [ 1 /2(𝑥 -𝑧) 2𝑝 + 1 /2(𝑧 -𝑦) 2𝑝 ] 1 𝑝 by definition of 𝖽 = 2𝜎 [ 1 /2|𝑥 -𝑧| 2𝑝 + 1 /2|𝑧 -𝑦| 2𝑝 ] 1 𝑝 because (𝑥) 2 = |𝑥| 2 for all 𝑥 ∈ ℝ = 2𝜎 [ 1 /2 | 𝑥 - 𝑥 + 𝑦 2 | 2𝑝 + 1 /2 | 𝑥 + 𝑦 2 -𝑦 | 2𝑝 ] 1 𝑝 because 𝑧 = 𝑥 + 𝑦 2 is the "worst case" scenario = 2𝜎 [ 1 /2 | 𝑦 -𝑥 2 | 2𝑝 + 1 /2 | 𝑥 -𝑦 2 | 2𝑝 ] 1 𝑝 = 2𝜎 [ | 𝑥 -𝑦 2 | 2𝑝 ] 1 𝑝 = 2𝜎 4 |𝑥 -𝑦| 2 ⟹ (𝑝, 𝜎) ∈ ℝ * × [2 ∶ ∞)
(3) The power distance function 𝖽 is continuous in (ℝ, 𝖽, 𝑝, 𝜎) for any (𝑝, 𝜎) such that 𝜎 ≥ 2 and 2𝜎 = 𝑝 1 𝑝 . This follows directly from Theorem 4.18 (page 23).

Appendix A Topological Spaces

Definition A.1 48 Let 𝛤 be a set with an arbitrary (possibly uncountable) number of elements. Let 𝟚 𝑋 be the power set of a set 𝑋 (Definition 2.2 page 4 𝟚 𝑋 is a topology in 𝒯 (𝑋)

(discrete topology)
48 📘 [Munkres(2000)] page 76, 📘 [Riesz(1909)], 📘 [Hausdorff(1914)], 📃 [Tietze(1923)], 📘 [Hausdorff(1937)] page 258

49 📘 [Munkres(2000)], page 77, 📘 [Kubrusly(2011)] page 107 ⟨Example 3.J⟩, 📘 [START_REF] Steen | Counterexamples in Topology, 2nd Edition[END_REF] Example A.7 (the standard topology on the real line) 54 The set 𝑩 ≜ {(𝑎 ∶ 𝑏) |𝑎, 𝑏 ∈ ℝ, 𝑎 < 𝑏 } is a base for the metric space (ℝ, |𝑏 -𝑎|) (the usual metric space on ℝ).

Definition A.8 55 Let (𝑋, 𝑻 ) be a topological space (Definition A.1 page 26). Let 𝟚 𝑋 be the power set of 𝑋 .

The set

𝐴 -is the closure of 𝐴 ∈ 𝟚 𝑋 if 𝐴 -≜ ⋂ { 𝐷 ∈ 𝟚 𝑋 | 𝐴 ⊆ 𝐷 and 𝐷 is closed } . The set 𝐴 ∘ is the interior of 𝐴 ∈ 𝟚 𝑋 if 𝐴 ∘ ≜ ⋃ { 𝑈 ∈ 𝟚 𝑋 | 𝑈 ⊆ 𝐴 and 𝑈 is open } . A point 𝑥 is a closure point of 𝐴 if 𝑥 ∈ 𝐴 -. A point 𝑥 is an interior point of 𝐴 if 𝑥 ∈ 𝐴 ∘ . A point 𝑥 is an accumulation point of 𝐴 if 𝑥 ∈ (𝐴⧵{𝑥}) - A point 𝑥 in 𝐴 -is a point of adherence in 𝐴 or is adherent to 𝐴 if 𝑥 ∈ 𝐴 -.
Proposition A.9 56 Let (𝑋, 𝑻 ) be a TOPOLOGICAL SPACE (Definition A.1 page 26). Let 𝐴 -be the CLOSURE, 𝐴 ∘ the INTERIOR, and 𝜕𝐴 the BOUNDARY of a set 𝐴. Let 𝟚 𝑋 be the POWER SET of 𝑋 .

1. 𝐴 -is CLOSED ∀𝐴∈𝟚 𝑋 . 2. 𝐴 ∘ is OPEN ∀𝐴∈𝟚 𝑋 .
Lemma A.10 57 Let 𝐴 -be the CLOSURE, 𝐴 ∘ the INTERIOR, and 𝜕𝐴 the BOUNDARY of a set 𝐴 in a topological space (𝑋, 𝑻 ). Let 𝟚 𝑋 be the POWER SET of 𝑋 .

1. 𝐴 ∘ ⊆ 𝐴 ⊆ 𝐴 - ∀𝐴∈𝟚 𝑋 . 2. 𝐴 = 𝐴 ∘ ⟺ 𝐴 is OPEN ∀𝐴∈𝟚 𝑋 . 3. 𝐴 = 𝐴 -⟺ 𝐴 is CLOSED ∀𝐴∈𝟚 𝑋 .
50 📘 [Joshi(1983)] page 92 ⟨(3. Example A.12 Some continuous/discontinuous functions are illustrated in Figure 3 (page 28).

Definition A.11 (previous definition) defines continuity using open sets. Continuity can alternatively be defined using closed sets or closure (next theorem).

Theorem A.13 59 Let (𝑋, 𝑻 ) and (𝑌 , 𝑺) be topological spaces. Let 𝖿 be a function in 𝑌 𝑋 .

The following are equivalent:

1. 𝖿 is CONTINUOUS ⟺ 2. 𝐵 is closed in (𝑌 , 𝑺) ⟹ 𝖿 -1 (𝐵) is closed in (𝑋, 𝑻 ) ∀𝐵∈𝟚 𝑌 ⟺ 3. 𝖿(𝐴 -) ⊆ 𝖿 (𝐴) - ∀𝐴∈𝟚 𝑋 ⟺ 4. 𝖿 -1 (𝐵) -⊆ 𝖿 -1 (𝐵 -) ∀𝐵∈𝟚 𝑌
Remark A.14 A word of warning about defining continuity in terms of topological spaces-continuity is defined in terms of a pair of topological spaces, and whether function is continuous or discontinuous in general depends very heavily on the selection of these spaces. This is illustrated in Proposition A.15 (next). The ramification of this is that when declaring a function to be continuous or discontinuous, one must make clear the assumed topological spaces.

Proposition A.15 60 Let (𝑋, 𝑻 ) and (𝑌 , 𝑺) be TOPOLOGICAL SPACEs. Let 𝖿 be a FUNCTION in (𝑌 , 𝑺) (𝑋,𝑻 ) . ⟹ contradiction of (𝑥 𝑛 ) → 𝑥 hypothesis ⟹ 𝖿((𝑥 𝑛 )) → 𝖿(𝑥)

1. 𝑻 is the DISCRETE TOPOLOGY ⟹ 𝖿 is CONTINUOUS ∀𝖿∈(𝑌 ,𝑺) (𝑋,𝑻 ) 2. 𝑺 is the INDISCRETE TOPOLOGY ⟹ 𝖿 is CONTINUOUS ∀𝖿∈(𝑌 ,𝑺) (𝑋,
(2) Proof for the ⟸ case (proof by contradiction):

(a) Let 𝐷 be a closed set in (𝑌 , 𝑺).

(b) Suppose 𝖿 -1 (𝐷) is not closed… (c) then by the closed set theorem (Theorem A.19 page 29), there must exist a convergent sequence (𝑥 𝑛 ) in (𝑋, 𝑻 ), but with limit 𝑥 not in 𝖿 -1 (𝐷). (d) Note that 𝖿(𝑥) must be in 𝐷. Proof:

(i) by definition of 𝐷 and 𝖿 , 𝖿((𝑥 𝑛 )) is in 𝐷 (ii) by left hypothesis, the sequence 𝖿((𝑥 𝑛 )) is convergent with limit 𝖿 (𝑥) (iii) by closed set theorem (Theorem A.19 page 29), 𝖿(𝑥) must be in 𝐷. (e) Because 𝖿(𝑥) ∈ 𝐷, it must be true that 𝑥 ∈ 𝖿 -1 (𝐷). (f) But this is a contradiction to item (2c) (page 30), and so item (2b) (page 30) must be wrong, and 𝖿 -1 (𝐷) must be closed. (g) And so by Theorem A.13 (page 28), 𝖿 is continuous. Simon(2011)] page 2, 📘 [ Barvinok(2002)] page 2, 📘 [Bollobás(1999)], page 3, 📘 [Jensen(1906)], page 176

✏

Appendix B Finite sums

B.1 Convexity Definition B.1 65 A function 𝖿 ∈ ℝ ℝ is convex if 𝖿 ( 𝜆𝑥 + [1 -𝜆]𝑦 ) ≤ 𝜆𝖿 (𝑥) + (1 -𝜆) 𝖿 (𝑦) ∀𝑥, 𝑦 ∈ ℝ and ∀𝜆 ∈ (0 ∶ 1) A function 𝗀 ∈ ℝ ℝ is strictly convex if 𝗀 ( 𝜆𝑥 + [1 -𝜆]𝑦 ) = 𝜆𝗀(𝑥) + (1 -𝜆) 𝗀(𝑦) ∀𝑥, 𝑦 ∈ 𝐷, 𝑥 ≠ 𝑦, and ∀𝜆 ∈ (0 ∶ 1) A function 𝖿 ∈ ℝ ℝ is concave if -𝖿 is convex. A function 𝖿 ∈ ℝ ℝ is affine if 𝖿 is convex and concave. Theorem B.2 (Jensen's Inequality) 66 Let 𝖿 ∈ ℝ ℝ be a function. ⎧ ⎪ ⎨ ⎪ ⎩ 1. 𝖿 is CONVEX (Definition B.1 page 30) and 2. 𝘕 ∑ 𝑛=1 𝜆 𝑛 = 1 ( WEIGHTS) ⎫ ⎪ ⎬ ⎪ ⎭ ⟹ { 𝖿 ( 𝘕 ∑ 𝑛=1 𝜆 𝑛 𝑥 𝑛 ) ≤ 𝘕 ∑ 𝑛=1 𝜆 𝑛 𝖿 ( 𝑥 𝑛) ∀𝑥 𝑛 ∈ 𝐷, 𝘕 ∈ ℕ } 65 📘 [
66 📘 [Mitrinović et al.(2010)Mitrinović, Pečarić, and Fink] page 6, 📘 [Bollobás(1999)] page 3, 📃 [Jensen(1906) The ⦇𝜆 𝑛 ⦈ 𝘕 1 weighted 𝜙-mean of a tuple ⦇𝑥 𝑛 ⦈ 𝘕 1 is defined as

𝖬 𝜙( ⦇𝑥 𝑛 ⦈ ) ≜ 𝜙 -1 ( 𝘕 ∑ 𝑛=1 𝜆 𝑛 𝜙 ( 𝑥 𝑛) )
where 𝜙 is a continuous and strictly monotonic function in ℝ ℝ ⊢ and ⦇𝜆 𝑛 ⦈ 𝘕 𝑛=1 is a sequence of weights for which

𝘕 ∑ 𝑛=1 𝜆 𝑛 = 1.
Lemma B.4 68 Let 𝖬 𝜙( ⦇𝑥 𝑛 ⦈ ) be the ⦇𝜆 𝑛 ⦈ 𝘕 1 weighted 𝜙-mean and 𝖬 𝜓 ( ⦇𝑥 𝑛 ⦈ ) the

⦇𝜆 𝑛 ⦈ 𝘕 1 weighted 𝜓 - mean of a tuple ⦇𝑥 𝑛 ⦈ 𝘕 1 . 𝜙𝜓 -1 is CONVEX and 𝜙 is INCREASING ⟹ 𝖬 𝜙( ⦇𝑥 𝑛 ⦈ ) ≥ 𝖬 𝜓 ( ⦇𝑥 𝑛 ⦈ ) 𝜙𝜓 -1 is CONVEX and 𝜙 is DECREASING ⟹ 𝖬 𝜙( ⦇𝑥 𝑛 ⦈ ) ≤ 𝖬 𝜓 ( ⦇𝑥 𝑛 ⦈ ) 𝜙𝜓 -1 is CONCAVE and 𝜙 is INCREASING ⟹ 𝖬 𝜙( ⦇𝑥 𝑛 ⦈ ) ≤ 𝖬 𝜓 ( ⦇𝑥 𝑛 ⦈ ) 𝜙𝜓 -1 is CONCAVE and 𝜙 is DECREASING ⟹ 𝖬 𝜙( ⦇𝑥 𝑛 ⦈ ) ≥ 𝖬 𝜓 ( ⦇𝑥 𝑛 ⦈ )
One of the most well known inequalities in mathematics is Minkowski's Inequality. In 1946, H.P. Mulholland submitted a result that generalizes Minkowski's Inequality to an equal weighted ɸ-mean. 69 And Milovanović and Milovanovć (1979) generalized this even further to a weighted ɸ-mean (next). 67 📘 [Bollobás(1999)] page 5 68 📘 [Pečarić et al.(1992)Pečarić, Proschan, and Tong] page 107, 📘 [Bollobás(1999)] page 5, 📘 [START_REF] Hardy | Inequalities, 2nd Edition[END_REF] page 75

69 📃 [Minkowski(1910)] page 115, 📃 [Mulholland(1950)], 📘 [Hardy et al.(1952)Hardy, Littlewood, and Pólya] ⟨Theorem 24⟩, 📃 [Tolsted(1964)] page 7, 📃 [Maligranda(1995)] page 258, 📘 [Carothers(2000)], page 44, 📘 [Bullen(2003)] page 179 70 📃 [START_REF] Milovanović | On a generalization of certain results of a. ostrowski and a. lupaş[END_REF]], 📘 [Bullen(2003)] page 306 ⟨Theorem 9⟩ 71 📘 [Bullen(2003)] page 175, 📘 [Bollobás(1999)] page 6 72 📘 [Bullen(2003)] pages 175-177 ⟨see also page 203⟩, 📘 [Bollobás(1999)] pages 6-8, 📃 [Bullen(1990)] page 250, 📃 [Besso(1879)], 📃 [START_REF] Bienaymé | Société philomatique de paris-extraits des procès-verbaux[END_REF]] page 68, 📃 [Brenner(1985)] page 160 (2) Proof that 𝖬 𝜙(𝑥;𝑝) is continuous in 𝑝 for 𝑝 ∈ ℝ⧵0: The sum of continuous functions is continuous.

For the cases of 𝑝 ∈ {-∞, 0, ∞}, see the items that follow. 74 📘 [Rudin(1976)] page 109 ⟨5.13 Theorem⟩ 75 📘 [Bullen(2003)] page 71, 📘 [Bollobás(1999)] page 5, 📘 [Cauchy(1821)] pages 457-459 ⟨Note II, theorem 17⟩, 📃 [Jensen(1906)] page 183, 📃 [Hoehn and Niven(1985) ⎫ ⎪ ⎬ ⎪ ⎭

⎫ ⎪ ⎬ ⎪ ⎭ ⟹ ⎧ ⎪ ⎨ ⎪ ⎩ 1. 𝜙 -1 (0) = {0}
76 📃 [Young(1912)] page 226, 📘 [Hardy et al.(1952)Hardy, Littlewood, and Pólya] ⟨Theorem 24⟩, 📃 [Tolsted(1964)] page 5, 📃 [Maligranda(1995)] page 257, 📘 [Carothers(2000)], page 43

77 📘 [Minkowski(1910)], page 115, 📘 [Hardy et al.(1952)Hardy, Littlewood, and Pólya] ⟨Theorem 24⟩, 📃 [Maligranda(1995)] page 258, 📘 [Tolsted(1964)], page 7, 📘 [Carothers(2000)], page 44, 📘 [Bullen(2003)] page 179

78 📘 [Vallin(1999)], page 849 ⟨Definition 1.1⟩, 📘 [Corazza(1999)], page 309, 📘 [START_REF] Deza | Encyclopedia of Distances[END_REF]] page 80

79 📘 [Corazza(1999)], page 310 ⟨Proposition 2.1⟩, 📘 [START_REF] Deza | Encyclopedia of Distances[END_REF]] page 80 , 30, 30, 31, 32 continuity, 3, 4, 12, 15, 17, 28-30 continuous, 1, 3, 6, 11, 11, 12, 15, 17, 23, 25, 26, 28, 28 13, 23, 29 open, 2-4, 6, 7, 7, 8, 9, 12-14, 20, 21, 26, 26, 27-29 open ball, 3, 4, 6, 6, 7-9, 12-14, 19-21 open balls, 12, 20 open interval, 5, 12 open set, 7, 7, 8, 12, 13, 20, 27 1, 3, 15, 15, 16, 17, 22, 23 power triangle inequality, 1, 3, 15, 16, 16, 17, 18, 21-23, 25, 26 power triangle triangle space, 18 preorder, 5 probabilistic metric spaces, 16 properties adherent, 27 affine, 17,5 bounded,2,[START_REF] Choquet | Theory of capacities[END_REF]9,10,21,22 Cauchy,2,3,[START_REF] Choquet | Theory of capacities[END_REF]9,10,[START_REF]semimetric space"⟩, 📃 [Bessenyei and Pales[END_REF]14,21,22,25 Cauchy condition,9 closed,7,7,10,11,26,27,29,30 closed set,4 commutative,18,23 complete,9,10,11 concave,30,30,31,32 continuity,3,4,12,15,17,[28][29][30][START_REF]A distance space is called semimetric provided…[END_REF]3,[START_REF] Choquet | Theory of capacities[END_REF]11,11,12,15,17,23,25,26,28,28,[29][30][31][32]9 convergence,3,4,[START_REF]semimetric space"⟩, 📃 [Bessenyei and Pales[END_REF]22,30 convergent,3,[START_REF] Choquet | Theory of capacities[END_REF]9,9,[10][11][12][START_REF]semimetric space"⟩, 📃 [Bessenyei and Pales[END_REF][14]21,22,25,29 13, 23, 29 open, 2, 3, 6, 7, 7, 8, 9, 12-14, 20, 21, 26, 26, 27, 28 open set, 8 power triangle inequality, 17,18,26 reflexive, 5 strictly convex, 30 strictly monontone, 15 strictly monotone, 10, 17, 18, 22, 25, 31, 32 strictly monotonic, 31 subadditive, 5, 35, 36 submultiplicative, 5 symmetric, 6, 18, 19, 22 transitive, 5 triangle inequality, 2, 3, 5, 12-15, 23, 25 unique, 3, 6, 10, 12-14, 25, 29 quadratic 1-3, 5, 12-16, 16, 18, 23, 25 triangle relation, 16, 24, 25 trivial topology, 26 unique, 3, 6, 10, 12-14, 25 

⎫ ⎪ ⎬ ⎪ ⎭ ⟹ ⎧ ⎪ ⎨ ⎪ ⎩ 𝜙 is a METRIC PRESERVING FUNCTION (Definition C.1 page 35). ⎫ ⎪ ⎬ ⎪ ⎭ 0 1 2 0 1 2 3 4 𝛼 = 1 2 𝑥 0 1 2 0 1 2 3 4 𝛼 = 1 2 𝑥 0 1 2 0 1 2 3 4 𝑥 𝛼 = 1 (A) 𝛼-scaled/dilated ( 

  D1. ∅ and 𝑋 are open (Theorem 3.7 page 7) D2. the intersection of a finite number of open sets is open (Theorem 3.7 page 7) D3. the union of an arbitrary number of open sets is open (Theorem 3.7 page 7) D4. every Cauchy sequence is bounded (Proposition 3.14 page 9) D5. any subsequence of a Cauchy sequence is also Cauchy (Proposition 3.15 page 10) D6. the Cantor Intersection Theorem holds The following five properties (M1-M5) do hold in any metric space. However, the examples from Section 3 listed below demonstrate that the five properties do not hold in all distance spaces: M1. the metric function is continuous fails to hold in Example 3.21-Example 3.23 M2. open balls are open fails to hold in Example 3.21 and Example 3.22 M3. the open balls form a base for a topology fails to hold in Example 3.21 and Example 3.22 M4. the limits of convergent sequences are unique fails to hold in Example 3.21 M5. convergent sequences are Cauchy fails to hold in Example 3.22 Hence, Section 3 answers question Q1. Section 4 begins to answer question Q2 by first introducing a new function, called the power triangle function in a distance space (𝑋, 𝖽), as 𝜏(𝑝, 𝜎; 𝑥, 𝑦, 𝑧; 𝖽)

( 1

 1 M1) holds for any (𝑝, 𝜎) ∈ (ℝ * ⧵{0}) × ℝ + such that 2𝜎 = 2 1 𝑝 (Theorem 4.18 page 23) (M2) holds for any (𝑝, 𝜎) ∈ (ℝ * ⧵{0}) × ℝ + such that 2𝜎 ≤ 2 1 𝑝 (Corollary 4.14 page 21) (M3) holds for any (𝑝, 𝜎) ∈ (ℝ * ⧵{0}) × ℝ + such that 2𝜎 ≤ 2 1 𝑝 (Corollary 4.12 page 20) (M4) holds for any (𝑝, 𝜎) ∈ ℝ * × ℝ + (Theorem 4.19 page 23) (M5) holds for any (𝑝, 𝜎) ∈ ℝ * × ℝ + (Theorem 4.16 page 21) APPENDIX A briefly introduces topological spaces. The open balls of any metric space form a base for a topology. This is largely due to the fact that in a metric space, open balls are open. Because of this, in metric spaces it is convenient to use topological structure to define and exploit analytic concepts such as continuity, convergence, closed sets, closure, interior, and accumulation point. For example, in a metric space, the traditional definition of defining continuity using open balls and the topological definition using open sets, coincide with each other. Again, this is largely because the open balls of a metric space are open. 5 However, this is not the case for all distance spaces. In general, the open balls of a distance space are not open, and they are not a base for a topology. In fact, the open balls of a distance space are a base for a topology if and only if the open balls are open. While the open sets in a distance space do induce a topology, it's open balls may not. 6 Let ℝ be the set of real numbers. Let ℝ ⊢ ≜ {𝑥 ∈ ℝ |𝑥 ≥ 0 } be the set of non-negative real numbers. Let ℝ + ≜ {𝑥 ∈ ℝ |𝑥 > 0 } be the set of postive real numbers.

  ] page 4 ⟨ | 𝑌 𝑋 | ⟩; The notation 𝑌 𝑋 and 𝟚 𝑋𝑌 is motivated by the fact that for finite 𝑋 and 𝑌 , | 𝑌 𝑋 | = | 𝑌 | | 𝑋 | and | 𝟚 𝑋𝑌 | = 2 | 𝑋 |⋅| 𝑌 | .

and 3 .

 3 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 ⟹ 𝑥 = 𝑦 ∀𝑥,𝑦∈𝑋 (anti-symmetric) An ordered set is the pair (𝑋, ≤). Definition 2.9 12 In an ordered set ( 𝑋, ≤), the set [𝑥 ∶ 𝑦] ≜ {𝑧 ∈ 𝑋 |𝑥 ≤ 𝑧 ≤ 𝑦 } is a closed interval and the set (𝑥 ∶ 𝑦] ≜ {𝑧 ∈ 𝑋 |𝑥 < 𝑧 ≤ 𝑦 } is a half-open interval and the set [𝑥 ∶ 𝑦) ≜ {𝑧 ∈ 𝑋 |𝑥 ≤ 𝑧 < 𝑦 } is a half-open interval and the set (𝑥 ∶ 𝑦) ≜ {𝑧 ∈ 𝑋 |𝑥 < 𝑧 < 𝑦 } is an open interval. Definition 2.10 Let ( ℝ, ≤) be the ordered set of real numbers (Definition 2.8 page 5).

  ⋅ |𝑦| 𝑥,𝑦∈ℝ (homogeneous / submultiplicative) and 4. |𝑥 + 𝑦| ≤ |𝑥| + |𝑦| 𝑥,𝑦∈ℝ (subadditive / triangle inequality) Reference: 📘 [Cohn(2002 December 6)] page 312 Monday 27 th April, 2015 1:07pm UTC Properties of distance spaces with power triangle inequalities function 𝖽 in the set ℝ 𝑋×𝑋 (Definition 2.3 page 4) is a distance if 1. 𝖽(𝑥, 𝑦) ≥ 0 ∀𝑥,𝑦∈𝑋 (non-negative) and 2. 𝖽(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦 ∀𝑥,𝑦∈𝑋 (nondegenerate) and 3. 𝖽(𝑥, 𝑦) = 𝖽(𝑦, 𝑥) ∀𝑥,𝑦∈𝑋 (symmetric)

  a) By definition of open set (Definition 3.6 page 7), 𝑋 is open ⟺ ∀𝑥 ∈ 𝑋 ∃𝑟 such that 𝖡(𝑥, 𝑟) ⊆ 𝑋 . (b) By definition of open ball (Definition 3.5 page 6), it is always true that 𝖡(𝑥, 𝑟) ⊆ 𝑋 in (𝑋, 𝖽). (c) Therefore, 𝑋 is open in (𝑋, 𝖽). (2) Proof that ∅ is open in (𝑋, 𝖽): (a) By definition of open set (Definition 3.6 page 7), ∅ is open ⟺ ∀𝑥 ∈ 𝑋 ∃𝑟 such that 𝖡(𝑥, 𝑟) ⊆ ∅. (b) By definition of empty set ∅ (Definition 2.7 page 5), this is always true because no 𝑥 is in ∅. (c) Therefore, ∅ is open in (𝑋, 𝖽).

  a metric space, all open balls are open, the open balls form a base for a topology, the limits of convergent sequences are unique, and the metric function is continuous. In the distance space of the next example, none of these properties hold. Example 3.21 32 Let (𝑥, 𝑦) be an ordered pair in ℝ 2 . Let (𝑎 ∶ 𝑏) be an open interval and (𝑎 ∶ 𝑏] a halfopen interval in ℝ. Let |𝑥| be the absolute value of 𝑥 ∈ ℝ. The function 𝖽(𝑥, 𝑦) ∈ ℝ ℝ×ℝ such that

  ] page 8. Definitions for Example 3.21: (𝑥, 𝑦): Definition 2.3 (page 4); (𝑎 ∶ 𝑏) and (𝑎 ∶ 𝑏]: Definition 2.9 (page 5); |𝑥|: Definition 2.10 (page 5); ℝ ℝ×ℝ : Definition 2.3 (page 4); distance: Definition 3.1 (page 6); open ball: Definition 3.5 (page 6); open: Definition 3.6 (page 7); base: Definition A.3 (page 27); topology: Definition A.1 (page 26); open set: Definition 3.6 (page 7); topological space induced by (ℝ, 𝖽): Definition 3.9 (page 8); discontinuous: Definition 3.19 (page 11); version 0.30 Properties of distance spaces with power triangle inequalities Monday 27 th April, 2015 1:07pm UTC page 13

4 )

 4 By item (2) and Theorem 3.10 (page 8), the open balls of (ℝ, 𝖽) do not form a base for a topology on ℝ.

  ) In (𝑋, 𝖽), open balls are open: (a) 𝗉 (𝑥, 𝑦) ≜ |𝑥 -𝑦| is a metric and thus all open balls in that do not contain both 0 and 1 are open. (b) By Example C.4 (page 36), 𝗊 (𝑥, 𝑦) ≜ 2|𝑥 -𝑦| is also a metric and thus all open balls containing 0 and 1 only are open. (c) The only question remaining is with regards to open balls that contain 0, 1 and some other element(s) in ℝ. But even in this case, open balls are still open. For example: 𝖡(-1, 2) = (-1 ∶ 2) = (-1 ∶ 1) ∪ (1 ∶ 2) Note that both (-1 ∶ 1) and (1 ∶ 2) are open, and thus by Theorem 3.7 (page 7), 𝖡(-1, 2) is open as well. (4) By item (3) and Theorem 3.10 (page 8), the open balls of (ℝ, 𝖽) do form a base for a topology on ℝ.

( 1 ( 1 𝖽

 11 (𝑥, 𝑧) + 𝖽(𝑧, 𝑦)] for 𝑝 = 1, ( ARITHMETIC MEAN, corresponds to NEAR METRIC SPACE) 2𝜎√𝖽(𝑥, 𝑧) √𝖽(𝑧, 𝑦) for 𝑝 = 0 HARMONIC MEAN) 2𝜎 min {𝖽(𝑥, 𝑧), 𝖽(𝑧, 𝑦)} for 𝑝 = -∞, ( MINIMUM) ✎PROOF: These follow directly from Theorem B.7 (page 31). ✏ Corollary 4.8 Let (𝑋, 𝖽) be a DISTANCE SPACE. 2𝜎 min {𝖽(𝑥, 𝑧), 𝖽(𝑧, 𝑦)} ≤ 4𝜎 [ 𝑥, 𝑧) √𝖽(𝑧, 𝑦) ≤ 𝜎[𝖽(𝑥, 𝑧) + 𝖽(𝑧, 𝑦)] ≤ 2𝜎 max {𝖽(𝑥, 𝑧), 𝖽(𝑧, 𝑦)} ✎PROOF: These follow directly from Corollary B.8 (page 34). ✏

1 𝑝 1 𝑝

 11 Figure 1: 𝜎 = 1 2 (2 1 𝑝 ) = 2 1 𝑝 -1 or 𝑝 = ln 2 ln(2𝜎) (see Lemma 4.9 page 18, Lemma 4.13 page 20, Corollary 4.14 page 21, Corollary 4.12 page 20, and Theorem 4.18 page 23).

Lemma 4 .

 4 9 40 Let (𝑋, 𝖽, 𝑝, 𝜎) be a POWER TRIANGLE TRIANGLE SPACE (Definition 4.3 page 16). Let |⋅| be the ABSOLUTE VALUE function (Definition 2.10 page 5). Let max {𝑥, 𝑦} be the maximum and min {𝑥, 𝑦} the minimum of any 𝑥, 𝑦 ∈ ℝ * . Then, for all (𝑝, 𝜎) ∈ ℝ * × ℝ + , 1. 𝖽 𝑝 (𝑥, 𝑦) ≥ max { 0, 2 (2𝜎) 𝑝 𝖽 𝑝 (𝑥, 𝑧) -𝖽 𝑝 (𝑧, 𝑦) , 2 (2𝜎) 𝑝 𝖽 𝑝 (𝑦, 𝑧) -𝖽 𝑝 (𝑧, 𝑥) } ∀𝑥,𝑦,𝑧∈𝑋 and 2. 𝖽(𝑥, 𝑦) ≥ |𝖽(𝑥, 𝑧) -𝖽(𝑧, 𝑦)| if 𝑝 ≠ 0 and 2𝜎 =

  𝑝 [ 1 /2𝖽 𝑝 (𝑥, 𝑦) + 1 /2𝖽 𝑝 (𝑦, 𝑧) ] -𝖽 𝑝 (𝑧, 𝑦) = [ 𝖽 𝑝 (𝑥, 𝑦) + 𝖽 𝑝 (𝑦, 𝑧) ] -𝖽 𝑝 (𝑦, 𝑧) by symmetric property of 𝖽 = 𝖽 𝑝 (𝑥, 𝑦) (2) Proof for (𝑝, 𝜎) ∈ ℝ * × ℝ + case: 𝖽 𝑝 (𝑥, 𝑦) ≥ 2 (2𝜎) 𝑝 𝖽 𝑝 (𝑥, 𝑧) -𝖽 𝑝 (𝑧, 𝑦) by (1) lemma 𝖽 𝑝 (𝑥, 𝑦) = 𝖽 𝑝 (𝑦, 𝑥) ≥ 2 (2𝜎) 𝑝 𝖽 𝑝 (𝑦, 𝑧) -𝖽 𝑝 (𝑧, 𝑥) by commutative property of 𝖽 and (1) lemma 𝖽 𝑝 (𝑥, 𝑦) ≥ 0 by non-negative property of 𝖽 (Definition 3.1 page 6)

1 .

 1 ] page 37 ⟨Theorem II.4.1⟩ version 0.30 Properties of distance spaces with power triangle inequalities Monday 27 th April, 2015 1𝑝 𝖽 𝑝 (𝑥, 𝑧) -𝖽 𝑝 (𝑧, 𝑦) , 2 (2𝜎) 𝑝 𝖽 𝑝 (𝑦, 𝑧) -𝖽 𝑝 (𝑧, 𝑥) } 1 𝑝 by item (2) (page 18) = max {0, 𝖽(𝑥, 𝑧) -𝖽(𝑧, 𝑦) , 𝖽(𝑦, 𝑧) -𝖽(𝑧, 𝑥)} by 2𝜎 , (𝖽(𝑥, 𝑧) -𝖽(𝑧, 𝑦)), -(𝖽(𝑥, 𝑧) -𝖽(𝑧, 𝑦))} by symmetric property of 𝖽 = |(𝖽(𝑥, 𝑧) -𝖽(𝑧, 𝑦))| ✏ Theorem 4.10 Let (𝑋, 𝖽, 𝑝, 𝜎) be a POWER DISTANCE SPACE (Definition 4.3 page 16). Let 𝖡 be an OPEN BALL (Definition 3.5 page 6) on (𝑋, 𝖽). Then for all (𝑝, 𝜎) ∈ (ℝ * ⧵{0}) × ℝ + , ∃𝑟 𝑞 ∈ ℝ + such that 𝖡 ( 𝑞, 𝑟 𝑞 ) ⊆ 𝖡(𝜃, 𝑟) } ⟹ { B. 𝑞 ∈ 𝖡(𝜃, 𝑟) } ✎PROOF: (1) lemma: 𝑞 ∈ 𝖡(𝜃, 𝑟) ⟺ 𝖽(𝜃, 𝑞) < 𝑟 by definition of open ball (Definition 3.5 page 6) ⟺ 0 < 𝑟 -𝖽(𝜃, 𝑞) by field property of real numbers ⟺ ∃𝑟 𝑞 ∈ ℝ + such that 0 < 𝑟 𝑞 < 𝑟 -𝖽(𝜃, 𝑞) by The Archimedean Property 41 (2) Proof that (𝐴), (𝐵) ⟹ (1): 𝖡 ( 𝑞, 𝑟 𝑞 ) ≜ { 𝑥 ∈ 𝑋 | 𝖽(𝑞, 𝑥) < 𝑟 𝑞 } by definition of open ball (Definition 3.5 page 6) = { 𝑥 ∈ 𝑋 | 𝖽 𝑝 (𝑞, 𝑥) < 𝑟 𝑝 𝑞 ∈ ℝ + } because 𝖿 (𝑥) ≜ 𝑥 𝑝 is monotone ⊆ {𝑥 ∈ 𝑋 |𝖽 𝑝 (𝑞, 𝑥) < 𝑟 𝑝 -𝖽 𝑝 (𝜃, 𝑞) } by hypothesis B and (1) lemma page 19 = {𝑥 ∈ 𝑋 |𝖽 𝑝 (𝜃, 𝑞) + 𝖽 𝑝 (𝑞, 𝑥) < 𝑟 𝑝 } by field property of real numbers

  𝑋 |𝜏(𝑝, 𝜎, 𝜃, 𝑥, 𝑞) < 𝑟 } by definition of 𝜏 (Definition 4.1 page 15) ⊆ {𝑥 ∈ 𝑋 |𝖽(𝜃, 𝑥) < 𝑟 } by definition of (𝑋, 𝖽, 𝑝, 𝜎) (Definition 4.3 page 16) ≜ 𝖡(𝜃, 𝑟) by definition of open ball (Definition 3.5 page 6) (3) Proof that (𝐵) ⟸ (1): 𝑞 ∈ {𝑥 ∈ 𝑋 |𝖽(𝑞, 𝑥) = 0 } by nondegenerate property (Definition 3.1 page 6) ⊆ { 𝑥 ∈ 𝑋 | 𝖽(𝑞, 𝑥) < 𝑟 𝑞 } because 𝑟 𝑞 > 0 ≜ 𝖡 ( 𝑞, 𝑟 𝑞 ) by definition of open ball (Definition 3.5 page 6) ⊆ 𝖡(𝜃, 𝑟) by hypothesis 2 41 📘 [Aliprantis and Burkinshaw(1998)] page 17 ⟨Theorem 3.3 ("The Archimedean Property") and Theorem 3.4⟩, 📘 [Zorich(2004)] page 53 ⟨ 6 ∘ ("The principle of Archimedes") and 7 ∘ ⟩ Monday 27 th April, 2015 1:07pm UTC Properties of distance spaces with power triangle inequalities version 0.30

  Let 𝖽(𝑥, 𝑦) ∈ ℝ ℝ×ℝ be defined such that 𝖽(𝑥, 𝑦) ≜ { |𝑥 -𝑦| for 𝑥 = 0 or 𝑦 = 0 or 𝑥 = 𝑦 (Euclidean) 1 otherwise (discrete)

  (a) Proof that ▵ ○(𝑝, 𝜎; 𝖽) does not hold for any (𝑝, 𝜎) ∈ {∞} × ℝ + :

  , 0)}: 𝖽(1, 0) = 𝖽(0, 1) ≜ 2|0 -1| = 2 by definition of 𝖽 ≤ 2 ≤ 2(|0 -𝑧| + |𝑧 -1|) ∀𝑧∈ℝ by definition of |⋅| (Definition 2.10 page 5) 𝖽) holds for all other (𝑥, 𝑦) ∈ ℝ * × ℝ + : 𝖽(𝑥, 𝑦) ≜ 2|𝑥 -𝑦| by definition of 𝖽 ≤ (|𝑥 -𝑧| + |𝑧 -𝑦|) by property of Euclidean metric spaces = 2𝜎( 1 /2|0 -𝑧| 𝑝 + 1 /2|𝑧 -1| 𝑝 ) 1 𝑝 for (𝑝, 𝜎) = (1, 1) ≜ 𝜏(1, 1; 𝑥, 𝑦, 𝑧) by definition of 𝜏 (Definition 4.1 page 15)

Theorem B. 5 1 . 7 72

 517 70 Let 𝜙 be a function in ℝ ℝ .{ 𝜙 is CONVEX and 2. 𝜙 is STRICTLY MONOTONE and 3. 𝜙(0) = 0 and 4. log ∘𝜙 ∘ exp is CONVEX } Let 𝖬 𝜙(𝑥;𝑝)( ⦇𝑥 𝑛 ⦈ ) be the ⦇𝜆 𝑛 ⦈ 𝘕 1 weighted 𝜙-mean of a non-negative tuple ⦇𝑥 𝑛 ⦈ 𝘕 1 . A mean 𝖬 𝜙(𝑥;𝑝)( ⦇𝑥 𝑛 ⦈ ) is a power mean with parameter 𝑝 if 𝜙(𝑥) ≜ 𝑥 𝑝 . That is, 𝖬 𝜙(𝑥;𝑝)( ⦇𝑥 𝑛 ⦈ Let 𝖬 𝜙(𝑥;𝑝)( ⦇𝑥 𝑛 ⦈ ) be the POWER MEAN with parameter 𝑝 of an 𝘕 -tuple ⦇𝑥 𝑛 ⦈ 𝘕 1 in which the elements are NOT all equal.

  (3) Lemma: 𝖬 𝜙(𝑥;-𝑝)( ⦇𝑥 𝑛 ⦈ ) = { 𝖬 𝜙(𝑥;𝑝)( ⦇𝑥 -

( 1 )

 1 These five means are all special cases of the power mean 𝖬 𝜙(𝑥∶𝑝) (Definition B.6 page 31): The inequalities follow directly from Theorem B.7 (page 31).

  Let 𝕄 be the set of all metric spaces (Definition 4.5 page 16) on a set 𝑋 . 𝜙 ∈ ℝ ⊢ ℝ ⊢ is a metric preserving function if 𝖽(𝑥, 𝑦) ≜ 𝜙 ∘ 𝗉 (𝑥, 𝑦) is a metric on 𝑋 for all (𝑋, 𝗉) ∈ 𝕄 Theorem C.2 (necessary conditions)79 Let 𝓡𝜙 be the RANGE of a function 𝜙.

  (𝑥 + 𝑦) ≤ 𝜙(𝑥) + 𝜙(𝑦) (𝜙 is SUBADDITIVE)

  (Definition 2.5 page 5) | 𝐴 | ∈ ℤ * 𝟚 𝑋 is the cardinality of 𝐴 such that Let | 𝑋 | be the cardinality (Definition 2.6 page 5) of a set 𝑋 . The structure ∅ is the empty set, and is a set such that | ∅ | = 0. 11 Let 𝑋 be a set. A relation ≤ is an order relation in 𝟚 𝑋𝑋 (Definition 2.3 page 4) if 1. 𝑥 ≤ 𝑥

	| 𝐴 | ≜ {	the number of elements in 𝐴 for finite 𝐴 ∞ otherwise }	∀𝐴 ∈ 𝟚 𝑋
	Definition 2.7 2.4 Order			
	Definition 2.8 ∀𝑥∈𝑋	(reflexive)	and	preorder
	2.			

𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 ⟹ 𝑥 ≤ 𝑧 ∀𝑥,𝑦∈𝑋 (transitive)

  Let (𝑋, 𝖽) be a distance space. Let 𝑋 ⧵𝐴 be the set difference of 𝑋 and a set 𝐴. A set 𝑈 is open in (𝑋, 𝖽) if 𝑈 ∈ 𝟚 𝑋 and for every 𝑥 in 𝑈 there exists 𝑟 ∈ ℝ + such that 𝖡(𝑥, 𝑟) ⊆ 𝑈 . A set 𝑈 is an open set in (𝑋, 𝖽) if 𝑈 is open in (𝑋, 𝖽). A set 𝐷 is closed in (𝑋, 𝖽) if (𝑋 ⧵𝐷) is open. A set 𝐷 is a closed set in (𝑋, 𝖽) if 𝐷 is closed in (𝑋, 𝖽).

	page 7
	Definition 3.6 3.2.2 Properties
	Theorem 3.7

). An open ball centered at 𝑥 with radius 𝑟 is the set 𝖡(𝑥, 𝑟) ≜ {𝑦 ∈ 𝑋 |𝖽(𝑥, 𝑦) < 𝑟 } . A closed ball centered at 𝑥 with radius 𝑟 is the set 𝖡 (𝑥, 𝑟) ≜ {𝑦 ∈ 𝑋 |𝖽(𝑥, 𝑦) ≤ 𝑟 } . 19 Let (𝑋, 𝖽) be a DISTANCE SPACE. Let 𝘕 be any (finite) positive integer. Let 𝛤 be a SET possibly with an uncountable number of elements.

1.

  𝑈 1 ∩ 𝑈 2 is open ⟺ ∀𝑥 ∈ 𝑈 1 ∩ 𝑈 2 ∃𝑟 such that 𝖡(𝑥, 𝑟) ⊆ 𝑈 1 ∩ 𝑈 2 . (b)By the left hypothesis above, 𝑈 1 and 𝑈 2 are open; and by the definition of open sets (Definition 3.6 page 7), there exists 𝑟 1 and 𝑟 2 such that 𝖡 ( 𝑥, 𝑟 1) ⊆ 𝑈 1 and 𝖡 ( 𝑥, 𝑟 2) ⊆ 𝑈 2 . Let (𝑋, 𝖽) be a DISTANCE SPACE. The set 𝑻 ≜ { 𝑈 ∈ 𝟚 𝑋 |𝑈 is OPEN in (𝑋, 𝖽) } is a TOPOLOGY on 𝑋 , and (𝑋, 𝑻 ) is a TOPOLOGOGICAL SPACE.

	𝘕 +1		𝘕			
	⋂ 𝑛=1	𝑈 𝑛 =	( ⋂ 𝑛=1	𝑈 𝑛 )	∩ 𝑈 𝘕 +1	by property of ⋂
		⟹ open		by "𝘕 case" hypothesis and (4) lemma page 7
						✏
	Corollary 3.8					
	(c) Let 𝑟 ≜ min { 𝑟 1 , 𝑟 2} . Then 𝖡(𝑥, 𝑟) ⊆ 𝑈 1 and 𝖡(𝑥, 𝑟) ⊆ 𝑈 2 .
	(d) By definition of set intersection ∩ then, 𝖡(𝑥, 𝑟) ⊆ 𝑈 1 ∩ 𝑈 2 .
	(e) By definition of open set (Definition 3.6 page 7), 𝑈 1 ∩ 𝑈 2 is open.

3) Proof that ⋃ 𝑈 𝛾 is open in (𝑋, 𝖽): (a) By definition of open set (Definition 3.6 page 7), ⋃ 𝑈 𝛾 is open ⟺ ∀𝑥 ∈ ⋃ 𝑈 𝛾 ∃𝑟 such that 𝖡(𝑥, 𝑟) ⊆ ⋃ 𝑈 𝛾 . (b) If 𝑥 ∈ ⋃ 𝑈 𝛾 , then there is at least one 𝑈 ∈ ⋃ 𝑈 𝛾 that contains 𝑥. (c) By the left hypothesis in (4), that set 𝑈 is open and so for that 𝑥, ∃𝑟 such that 𝖡(𝑥, 𝑟) ⊆ 𝑈 ⊆ ⋃ 𝑈 𝛾 . (d) Therefore, ⋃ 𝑈 𝛾 is open in (𝑋, 𝖽).

(4) Proof that 𝑈 1 and 𝑈 2 are open ⟹ 𝑈 1 ∩ 𝑈 2 is open: (a) By definition of open set (Definition 3.6 page 7), (5) Proof that ⋂ 𝘕 𝑛=1 𝑈 𝑛 is open (by induction): (a) Proof for 𝘕 = 1 case: ⋂ 𝘕 𝑛=1 𝑈 𝑛 = ⋂ 1 𝑛=1 𝑈 𝑛 = 𝑈 1 is open by hypothesis. 19 in metric space: 📘 [Dieudonné(1969)], pages 33-34, 📘 [Rosenlicht(1968)] page 39 Monday 27 th April, 2015 1:07pm UTC Properties of distance spaces with power triangle inequalities version 0.30 3.2 OPEN SETS IN DISTANCE SPACES (b) Proof that 𝘕 case ⟹ 𝘕 + 1 case: ✎PROOF: This follows directly from the definition of an open set (Definition 3.6 page 7), Theorem 3.7 (page 7), and the definition of topology (Definition A.1 page 26).

3 Sequences in distance spaces 3.3.1 Definitions Definition 3.11 23

  every open ball in 𝑩 is open ⟹ for every 𝑥 in 𝐵 𝑦 ∈ 𝑩 there exists 𝑟 ∈ ℝ + such that 𝖡(𝑥, 𝑟) ⊆ 𝐵 𝑦 by definition of open (Definition 3.6 page 7) Let (𝑥 𝑛 ∈ 𝑋) 𝑛∈ℤ be a sequence in a distance space (𝑋, 𝖽). The sequence (𝑥 𝑛 ) converges to a limit 𝑥 if for any 𝜀 ∈ ℝ + , there exists 𝘕 ∈ ℤ such that for all 𝑛 > 𝘕 , 𝖽 ( 𝑥 𝑛 , 𝑥 ) < 𝜀.

					page 9
	✎PROOF:			
	⟹ {	for every 𝑥 ∈ 𝑋 and for every 𝐵 𝑦 ∈ 𝑩 containing 𝑥, there exists 𝐵 𝑥 ∈ 𝑩 such that 𝑥 ∈ 𝐵 𝑥 ⊆ 𝐵 𝑦 .	}	because ∀ (𝑥, 𝑟) ∈ 𝑋 × ℝ + , 𝖡(𝑥, 𝑟) ⊆ 𝑋
	⟹ 𝑩 is a base for 𝑻			by Theorem A.4 page 27
	⟹ {	for every 𝑥 ∈ 𝑋 and for every 𝑈 ⊆ 𝑻 containing 𝑥, there exists 𝐵 𝑥 ∈ 𝑩 such that 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑈 .	}	by Theorem A.4 page 27
	⟹ {	for every 𝑥 ∈ 𝑋 and for every 𝐵 𝑦 ∈ 𝑩 ⊆ 𝑻 containing 𝑥, there exists 𝐵 𝑥 ∈ 𝑩 such that 𝑥 ∈ 𝐵 𝑥 ⊆ 𝐵 𝑦 .	}	by definition of base (Definition A.3 page 27)
	⟹ {	for every 𝑥 ∈ 𝐵 𝑦 ∈ 𝑩 ⊆ 𝑻 , there exists 𝐵 𝑥 ∈ 𝑩 such that	𝑥 ∈ 𝐵 𝑥 ⊆ 𝐵 𝑦 . }	
	⟹ every open ball in 𝑩 is open			by definition of open (Definition 3.6 page 7)
	This condition can be expressed in any of the following forms:
	1. The limit of the sequence (𝑥 𝑛 ) is 𝑥.	3.	lim 𝑛→∞ (𝑥 𝑛 ) = 𝑥.
	2. The sequence (𝑥 𝑛 ) is convergent with limit 𝑥.	4. (𝑥 𝑛 ) → 𝑥.
	A sequence that converges		
		] pages 85-91 ⟨ §4.2 Examples of Topological Spaces⟩
	22 metric space: Definition 4.5 page 16; open ball: Definition 3.5 page 6; base: Definition A.3 page 27; topology:
	Definition A.1 page 26; not all open balls are open in a distance space: Example 3.21 (page 12) and Example 3.22
	(page 13);			
	version 0.30	Properties of distance spaces with power triangle inequalities	Monday 27 th April, 2015 1:07pm UTC

✏

3.

is convergent. Definition 3.12 24 Let (𝑥 𝑛 ∈ 𝑋) 𝑛∈ℤ be a sequence in a distance space (𝑋, 𝖽). The sequence (𝑥 𝑛 ) is a Cauchy sequence in (𝑋, 𝖽) if

  for every 𝜀 ∈ ℝ + , there exists 𝘕 ∈ ℤ such that ∀𝑛, 𝑚 > 𝘕 , 𝖽 ( 𝑥 𝑛 , 𝑥 𝑚) <

𝜀 (Cauchy condition). Definition 3.13 25

  Let (𝑥 𝑛 ∈ 𝑋) 𝑛∈ℤ be a sequence in a distance space (𝑋, 𝖽).

						3.3 SEQUENCES IN DISTANCE SPACES
	✎PROOF:			
	(𝑥 𝑛 ) is Cauchy ⟹ for every 𝜀 ∈ ℝ + , ∃𝘕 ∈ ℤ such that ∀𝑛, 𝑚 > 𝘕 , 𝖽 ( 𝑥 𝑛 , 𝑥 𝑚) < 𝜀	(by Definition 3.12 page 9)
		⟹ ∃𝘕 ∈ ℤ such that ∀𝑛, 𝑚 > 𝘕 , 𝖽 ( 𝑥 𝑛 , 𝑥 𝑚) < 1	(arbitrarily choose 𝜀 ≜ 1)
		⟹ ∃𝘕 ∈ ℤ such that ∀𝑛, 𝑚 ∈ ℤ, 𝖽 ( 𝑥 𝑛 , 𝑥 𝑚+1) < max { {1} ∪ { 𝖽 ( 𝑥 𝑝 , 𝑥 𝑞 ) |𝑝, 𝑞 ≯ 𝑁 }}
		⟹ (𝑥 𝑛 ) is bounded	(by Definition 3.3 page 6)
						✏
	Proposition 3.15 27 Let (𝑥 𝑛 ∈ 𝑋) 𝑛∈ℤ be a SEQUENCE in a DISTANCE SPACE (𝑋, 𝖽). Let 𝖿 ∈ ℤ ℤ (Definition 2.3
	page 4) be a STRICTLY MONOTONE function such that 𝖿(𝑛) < 𝖿 (𝑛 + 1).
	(𝑥 𝑛 ) 𝑛∈ℤ is CAUCHY ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟	⟹	( 𝑥 𝖿(𝑛)) 𝑛∈ℤ is CAUCHY ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
		sequence is CAUCHY		subsequence is also CAUCHY
	✎PROOF:			
	(𝑥 𝑛 ) 𝑛∈ℤ is Cauchy			
	⟹ for any given 𝜀 > 0, ∃𝘕 such that ∀𝑛, 𝑚 > 𝘕 , 𝖽 ( 𝑥 𝑛 , 𝑥 𝑚) < 𝜀	by Definition 3.12 page 9
	⟹ for any given 𝜀 > 0, ∃𝘕 ′ such that ∀𝖿(𝑛), 𝖿(𝑚) > 𝘕 ′ , 𝖽 ( 𝑥 𝖿 (𝑛) , 𝑥 𝖿 (𝑚)) < 𝜀
	⟹ ( 𝑥 𝖿 (𝑛)) 𝑛∈ℤ is Cauchy				by Definition 3.12 page 9
						✏
	Theorem 3.16 28 Let (𝑋, 𝖽) be a DISTANCE SPACE. Let 𝐴 -be the CLOSURE (Definition A.8 page 27) of a 𝐴 in a
	TOPOLOGICAL SPACE INDUCED BY (𝑋, 𝖽).	
	{	1. LIMITs are UNIQUE in (𝑋, 𝖽) (Definition 3.11 page 9) and 2. (𝐴, 𝖽) is COMPLETE in (𝑋, 𝖽) (Definition 3.13 page 9)	}	⟹	𝐴 is CLOSED in (𝑋, 𝖽) ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
						𝐴 = 𝐴 -
	The sequence (𝑥 𝑛 ∈ 𝑋) 𝑛∈ℤ is complete in (𝑋, 𝖽) if
	(𝑥 𝑛 ) is Cauchy in (𝑋, 𝖽)	⟹	(𝑥 𝑛 ) is convergent in (𝑋, 𝖽).
	3.3.2 Properties			
	Proposition 3.14 26 Let (𝑥 𝑛 ∈ 𝑋) 𝑛∈ℤ be a SEQUENCE in a DISTANCE SPACE (𝑋, 𝖽).
	{ (𝑥 𝑛 ) is CAUCHY in (𝑋, 𝖽) }	⟹	{ (𝑥 𝑛 ) is BOUNDED in (𝑋, 𝖽) }
	Monday 27 th April, 2015 1:07pm UTC	Properties of distance spaces with power triangle inequalities	version 0.30

  0 by definition of convergence (Definition A.16 page 28) 𝖡(4, 𝜀) is open ⟹ for each 𝑈 ∈ 𝑻 that contains 4, ∃𝘕 ∈ ℕ such that 1 /𝑛 ∈ 𝑈 ∀𝑛 > 𝘕 ⟺ ( 1 /𝑛) → 4 by definition of convergence (Definition A.16 page 28)

[START_REF] Choquet | Theory of capacities[END_REF] 

The distance function 𝖽 is discontinuous (Definition 3.19 page 11):

4 Distance spaces with power triangle inequalities 4.1 Definitions This

  Power means have the attractive properties of being continuous and strictly monontone with respect to a free parameter 𝑝 ∈ ℝ * (Theorem B.7 page 31). This fact is inherited and exploited by the power triangle inequality(Corollary 4.6 page 16). Let (𝑋, 𝖽) be a distance space (Definition 3.1 page 6). Let ℝ + be the set of all positive real numbers and ℝ * be the set of extended real numbers (Definition 2.1 page 4). 37 In the field of probabilistic metric spaces, a function called he triangle function was introduced by Sherstnev in 1962. However, the power triangle function as defined in this present paper is not a special case of (is not compatible with) the triangle function of Sherstnev. Another definition of triangle function has been offered by Bessenyei in 2014 with special cases of 𝛷(𝑢, 𝑣) ≜ 𝑐(𝑢 + 𝑣) and 𝛷(𝑢, 𝑣) ≜ (𝑢 𝑝 + 𝑣 𝑝 ) 1 𝑝 , which are similar to the definition of power triangle function offered in this present paper. Let (𝑋, 𝖽) be a distance space. Let 𝟚 𝑋𝑋𝑋 be the set of all trinomial relations (Definition 2.3 page 4) on 𝑋 . A relation ▵ ○(𝑝, 𝜎; 𝖽) in 𝟚 𝑋𝑋𝑋 is a power triangle inequality on (𝑋, 𝖽) if ▵ ○(𝑝, 𝜎; 𝖽) ≜ { (𝑥, 𝑦, 𝑧) ∈ 𝑋 3 |𝖽(𝑥, 𝑦) ≤ 𝜏(𝑝, 𝜎; 𝑥, 𝑦, 𝑧; 𝖽) } for some (𝑝, 𝜎) ∈ ℝ * × ℝ + . The tupple (𝑋, 𝖽, 𝑝, 𝜎) is a power distance space and 𝖽 a power distance or power distance function if (𝑋, 𝖽) is a distance space in which the triangle relation ▵ ○(𝑝, 𝜎; 𝖽) holds.The power triangle function can be used to define some standard inequalities (next definition). SeeCorollary 4.7 (page 17) for some justification of the definitions.

					4.2 PROPERTIES
	Remark 4.2 Definition 4.3 1. ▵ ○( ∞, 𝜎 /2; 𝖽 ) is the σ-inframetric inequality		6. ▵ ○( 1 /2, 2; 𝖽 ) is the square mean root inequality
	2. ▵ ○( ∞, 1 2 ; 𝖽 ) is the inframetric inequality 3. ▵ ○( 2, √2/2; 𝖽 ) is the quadratic inequality		7. ▵ ○( 0, 1 2 ; 𝖽 ) is the geometric inequality 8. ▵ ○( -1, 1 4 ; 𝖽 ) is the harmonic inequality
	4.			
				1 = 𝜆 2 = 1 2	(Definition B.6 page 31).
	Definition 4.1 The power triangle function 𝜏
	on (𝑋, 𝖽) is defined as			
	𝜏(𝑝, 𝜎; 𝑥, 𝑦, 𝑧; 𝖽) ≜ 2𝜎 [	1 2 𝖽 𝑝 (𝑥, 𝑧) + 1 2 𝖽 𝑝 (𝑧, 𝑦) ]	1 𝑝	∀(𝑝,𝜎)∈ℝ * ×ℝ ⊢ , 𝑥,𝑦,𝑧∈𝑋

paper introduces a new relation called the power triangle inequality

(Definition 4.3 page 16)

. It is a generalization of other common relations, including the triangle inequality

(Definition 4.4 page 16)

. The power triangle inequality is defined in terms of a function herein called the power triangle function (next definition). This function is a special case of the power mean with 𝘕 = 2 and 𝜆 35 📘

[Blumenthal(1953)

] pages 12-13, 📘

[START_REF] Laos | Topics in Mathematical Analysis and Differential Geometry[END_REF]

] pages 118-119 36 This is the method of "inscribed polygons" for calculating the length of a curve and goes back to Archimedes: 📘

[Brunschwig et al.(2003)

Brunschwig, Lloyd, and Pellegrin] page 26, 📘 [Walmsley(1920)], page 200 ⟨ §158⟩, Monday 27 th April, 2015 1:07pm UTC Properties of distance spaces with power triangle inequalities version 0.30 Definition 4.4 38 Let ▵ ○(𝑝, 𝜎; 𝖽) be a power triangle inequality on a distance space (𝑋, 𝖽). ▵ ○( 1, 𝜎; 𝖽 ) is the relaxed triangle inequality 9. ▵ ○( -∞, 1 2 ; 𝖽 ) is the minimal inequality 5. ▵ ○( 1, 1; 𝖽 ) is the triangle inequality Definition 4.5 39 Let (𝑋, 𝖽) be a distance space (Definition 3.1 page 6). 1. (𝑋, 𝖽) is a metric space if the triangle inequality holds in 𝑋. 2. (𝑋, 𝖽) is a near metric space if the relaxed triangle inequality holds in 𝑋. 3. (𝑋, 𝖽) is an inframetric space if the inframetric inequality holds in 𝑋. 4. (𝑋, 𝖽) is a σ-inframetric space if the σ-inframetric inequality holds in 𝑋.

4.

2 Properties 4.2.1 Relationships of the power triangle function Corollary 4.6 Let

  

𝜏(𝑝, 𝜎; 𝑥, 𝑦, 𝑧; 𝖽) be the POWER TRIANGLE FUNCTION

(Definition 4.1 page 15) 

in the DISTANCE SPACE (Definition 3.1 page 6) (𝑋, 𝖽). Let (ℝ, |⋅|, ≤) be the ORDERED METRIC SPACE with the usual ordering relation 37 📘

[START_REF] Sherstnev | Random normed spaces. questions of completeness[END_REF]

], page 4, 📘

[START_REF] Schweizer | Probabilistic Metric Spaces[END_REF]

] page 9 ⟨(1.6.1)-(1.6.4)⟩, 📃

[START_REF] Bessenyei | A contraction principle in semimetric spaces[END_REF]

] page 2

38 

📃

[START_REF] Bessenyei | A contraction principle in semimetric spaces[END_REF]

] page 2, 📃

  The function 𝜏(𝑝, 𝜎; 𝑥, 𝑦, 𝑧; 𝖽) is CONTINUOUS and STRICTLY MONOTONE in (ℝ, |⋅|, ≤) with respect to both the variables 𝑝 and 𝜎 . Proof that 𝜏(𝑝, 𝜎; 𝑥, 𝑦, 𝑧; 𝖽) is continuous and strictly monotone with respect to 𝑝: This follows directly from Theorem B.7 (page 31). (2) Proof that 𝜏(𝑝, 𝜎; 𝑥, 𝑦, 𝑧; 𝖽) is continuous and strictly monotone with respect to 𝜎 : 𝑝, 𝑥, 𝑦, 𝑧)where 𝖿 is defined as above ⟹ 𝜏 is affine with respect to 𝜎 ⟹ 𝜏 is continuous and strictly monotone with respect to 𝜎: Let 𝜏(𝑝, 𝜎; 𝑥, 𝑦, 𝑧; 𝖽) be the POWER TRIANGLE FUNCTION in the DISTANCE SPACE (Definition 3.1 page 6) (𝑋, 𝖽).

	✎PROOF:	
	(1) 𝜏(𝑝, 𝜎; 𝑥, 𝑦, 𝑧; 𝖽) ≜ 2𝜎 [ ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 1 2 𝖽 𝑝 (𝑥, 𝑧) + 1 2 𝖽 𝑝 (𝑧, 𝑦) ] 1 𝑝	by definition of 𝜏 (Definition 4.1 page 15)
	𝖿(𝑝, 𝑥, 𝑦, 𝑧)	
	= 2𝜎𝖿(	
		]
	page 7	
	version 0.30	

Properties of distance spaces with power triangle inequalities Monday 27 th April, 2015 1:07pm UTC page 17 ≤ and usual metric |⋅| on ℝ. ✏ Corollary 4.7 𝜏(𝑝, 𝜎; 𝑥, 𝑦, 𝑧

  Let (𝑋, 𝖽, 𝑝, 𝜎) be a POWER DISTANCE SPACE. Then for all (𝑝, 𝜎) ∈ (ℝ * ⧵{0}) × ℝ + , Let (𝑋, 𝖽, 𝑝, 𝜎) be a POWER DISTANCE SPACE. Let 𝑩 be the set of all OPEN BALLs in (𝑋, 𝖽). Figure 2: open set (see Lemma 4.13 page 20) Lemma 4.13 (next) demonstrates that every point in an open set is contained in an open ball that is contained in the original open set (see also Figure 2 page 20).𝖽 ( 𝑥 𝑛 , 𝑥 𝑚) ≤ 𝜏(𝑝, 𝜎; 𝑥 𝑛 , 𝑥 𝑚 , 𝑥) by definition of power triangle inequality (Definition 4.3 page 16) Theorem 4.18 46 Let (𝑋, 𝖽, 𝑝, 𝜎) be a POWER DISTANCE SPACE. Let (ℝ, 𝗊) be a metric space of real numbers with the usual metric 𝗊(𝑥, 𝑦) ≜ |𝑥 -𝑦|. Then It is not always possible to find a triangle relation (Definition 4.3 page 16) ▵ ○(𝑝, 𝜎; 𝖽) that holds in every distance space (Definition 3.1 page 6), as demonstrated by Example 4.20 and Example 4.21 (next two examples). Let 𝖽(𝑥, 𝑦) ∈ ℝ ℝ×ℝ be defined such that

				4.2 PROPERTIES page 21 4.2 PROPERTIES 4.3 EXAMPLES
	(2) Proof that ((𝐵) ⟸ (1)) case: ✎PROOF: (2) Proof that 𝑥 = 𝑦 (proof by contradiction):		✏
	Corollary 4.11 { 2𝜎 ≤ 2 1 𝑝 } ✎PROOF: This follows from Theorem 4.10 (page 19) and Theorem 3.10 (page 8). ⟹ { every OPEN BALL in (𝑋, 𝖽) is OPEN } Corollary 4.12 Then for all (𝑝, 𝜎) ∈ (ℝ * ⧵{0}) × ℝ + , { 2𝜎 ≤ 2 1 𝑝 } ⟹ { 𝑩 is a BASE for (𝑋, 𝑻 ) } ✎PROOF: 𝑈 = ⋃ {𝑥 ∈ 𝑋 |𝑥 ∈ 𝑈 } 𝑥 ≠ 𝑦 ⟹ 𝖽(𝑥, 𝑦) ≠ 0 by the nondegenerate property of 𝖽 (Definition 3.1 page 6) by definition of union operation ⋃ = ⋃ { 𝖡(𝑥, 𝑟) | 𝑥 ∈ 𝑈 and 𝖡(𝑥, 𝑟) ⊆ 𝑈 } ⟹ 𝖽(𝑥, 𝑦) > 0 by non-negative property of 𝖽 (Definition 3.1 page 6) by hypothesis (1) ⟹ 𝑈 is open by Corollary 4.12 page 20 and Corollary 3.8 page 8 ≜ 2𝜎 [ 1 2 𝖽 𝑝 ( 𝑥 𝑛 , 𝑥 ) + 1 2 1 𝑝 by definition of power triangle function (Definition 4.1 page 15) { 2𝜎 = 2 1 𝑝 } ⟹ ⟹ ∃𝜀 such that 𝖽(𝑥, 𝑦) > 2𝜎𝜀 { 𝖽 is CONTINUOUS in (ℝ, 𝗊) } ⟹ contradiction to (1) lemma page 23 𝖽 𝑝 ( 𝑥 𝑚 , 𝑥 ) ] < 2𝜎 [ 1 2 𝜀 𝑝 + 1 2 𝜀 𝑝 ] ✎PROOF: ⟹ 𝖽(𝑥, 𝑦) = 0 1 𝑝 by convergence hypothesis (Definition A.16 page 28) ⟹ 𝑥 = 𝑦 | 𝖽(𝑥, 𝑦) -𝖽 ( 𝑥 𝑛 , 𝑦 𝑛)| ≤ | 𝖽(𝑥, 𝑦) -𝖽 ( 𝑥 𝑛 , 𝑦 )| + | 𝖽 ( 𝑥 𝑛 , 𝑦 ) -𝖽 ( 𝑥 𝑛 , 𝑦 𝑛)| by triangle inequality of (ℝ, |𝑥 -𝑦|) Corollary 4.14 42 Let (𝑋, 𝖽, 𝑝, 𝜎) be a POWER DISTANCE SPACE. Let 𝖡 be an OPEN BALL on (𝑋, 𝖽). Then ✏ ✏ = 2𝜎𝜀 by definition of convergence (Definition A.16 page 28) = | 𝖽(𝑥, 𝑦) -𝖽 ( 𝑦, 𝑥 𝑛)| + | 𝖽 ( 𝑦, 𝑥 𝑛) -𝖽 ( 𝑥 𝑛 , 𝑦 𝑛)| by commutative property of 𝖽 (Definition 3.1 page 6) ✏ for all (𝑝, 𝜎) ∈ (ℝ * ⧵{0}) × ℝ + , { 2𝜎 ≤ 2 1 𝑝 } ⟹ { every OPEN BALL 𝖡(𝑥, 𝑟) in (𝑋, 𝖽) is OPEN } = 2𝜎 max {𝜀, 𝜀} by convergent hypothesis (Definition A.16 page 28) ✎PROOF: ⟹ Cauchy by definition of Cauchy (Definition 3.12 page 9) 𝖽 ( 𝑥 𝑛 , 𝑥 𝑚) ≤ 𝜏(∞, 𝜎; 𝑥 𝑛 , 𝑥 𝑚 , 𝑥) ≤ 𝖽 ( 𝑥, 𝑥 𝑛) + 𝖽 ( 𝑦, 𝑦 𝑛) by 2𝜎 = 2 1 𝑝 and Lemma 4.9 (page 18) by definition of power triangle inequality at 𝑝 = ∞ = 2𝜎 max { 𝖽(𝑥 𝑛 , 𝑥), 𝖽(𝑥 𝑚 , 𝑥) } by Corollary 4.7 (page 17) = 0 as 𝑛 → ∞ 4.3 Examples
		The union of any set of open balls is open = 2𝜎𝜀 by definition of max	by Corollary 4.12 page 20
	⟹ the union of a set of just one open ball is open 𝖽 ( 𝑥 𝑛 , 𝑥 𝑚) ≤ 𝜏(-∞, 𝜎; 𝑥 𝑛 , 𝑥 𝑚 , 𝑥) by definition of power triangle inequality at 𝑝 = -∞ Example 4.20
		⟹ every open ball is open. = 2𝜎 min { 𝖽(𝑥 𝑛 , 𝑥), 𝖽(𝑥 𝑚 , 𝑥) }	by Corollary 4.7 (page 17)	✏
		= 2𝜎 min {𝜀, 𝜀}	by convergent hypothesis (Definition A.16 page 28)
	𝑝 1 by definition of min 𝑝 2 𝑝 4 𝑝 5 𝑝 7 𝑝 8 ⟺ ∃𝖡(𝑥, 𝜀) such that 𝑥 𝑛 ∈ 𝖡(𝑥, 𝜀) ∀𝑛 > 𝘕 = 2𝜎𝜀 𝑝 6 (𝑥 𝑛 ) → 𝑥 ⟺ 𝑥 𝑛 ∈ 𝑈 ∀𝑈 ∈ 𝑁 𝑥 , 𝑛 > 𝘕 ⟺ 𝖽 ( 𝑥 𝑛 , 𝑥 ) < 𝜀 × ℝ + } ⟹ {𝑥 = 𝑦} ≜ 2𝜎 [ 1 2 𝖽 𝑝 ( 𝑥, 𝑥 𝑛) + 1 2 𝖽 𝑝 ( 𝑥 𝑛 , 𝑦 ) ] 1 𝑝 by definition of power triangle function (Definition 4.1 page 15) 𝑝 3 by Definition A.16 page 28 by Lemma 4.13 page 20 by Definition 3.5 page 6 < 2𝜎 [ 1 2 𝜀 𝑝 + 1 2 𝜀 𝑝 ] 1 𝑝 by left hypothesis and for 𝑝 ∈ ℝ * ⧵{-∞, 0, ∞} 𝖽 ( 𝑥 and ✎PROOF: ✎PROOF: 2. ( 𝑥 𝖿(𝑛)) 𝑛∈ℤ is CONVERGENT } ⟹ = 2𝜎𝜀 { (𝑥 𝑛 ) 𝑛∈ℤ is CONVERGENT. } 𝖽(𝑥, 𝑦) ≤ 𝜏(∞, 𝜎; 𝑥, 𝑦, 𝑥 𝑛 ) by definition of power triangle inequality at 𝑝 = ∞
	✎PROOF:	= 2𝜎 max { 𝖽(𝑥, 𝑥 𝑛 ), 𝖽(𝑥 𝑛 , 𝑦) }	by Corollary 4.7 (page 17)
	Then for all OPEN in (𝑋, 𝖽) } B. 𝑈 is For any (𝑥 𝑛 ) is BOUNDED 1. ∀𝑥 ∈ 𝑈 , ∃𝑟 ∈ ℝ + such that 𝖡(𝑥, 𝑟) ⊆ 𝑈 } ⟹ { ⟹ { ⟹ { (1) Proof that for ((𝐴), (𝐵) ⟹ (1)): (𝑝, 𝜎) ∈ (ℝ * ⧵{0}) × ℝ + , { A. 2𝜎 ≤ 2 1 𝑝 and B. 𝑈 is OPEN in (𝑋, 𝖽) } ✎PROOF: (𝑝, 𝜎) ∈ ℝ * × ℝ + , { (𝑥 𝑛 ) is CONVERGENT in (𝑋, 𝖽) } (𝑥 𝑛 ) is CAUCHY in (𝑋, 𝖽) } ⟹ { in (𝑋, 𝖽) 𝖽 ( 𝑥 𝑛 , 𝑥 ) = 𝖽 ( 𝑥, 𝑥 𝑛) < 2𝜎𝜀 by left hypothesis by symmetric property of 𝖽 ≤ 𝜏(𝑝, 𝜎; 𝑥, 𝑥 𝑛 , 𝑥 𝖿(𝑛) ) 𝖽(𝑥, 𝑦) ≤ 𝜏(-∞, 𝜎; 𝑥, 𝑦, 𝑥 𝑛 ) by definition of power triangle inequality at 𝑝 = -∞ by definition of power triangle inequality (Definition 4.3 page 16) ≜ 2𝜎 [ 1 2 𝖽 𝑝 ( 𝑥, 𝑥 𝖿(𝑛)) + 1 𝖽 𝑝 ( 𝑥 𝖿(𝑛) , 𝑥 𝑛) ] = 2𝜎 min { 𝖽(𝑥, 𝑥 𝑛 ), 𝖽(𝑥 𝑛 , 𝑦) } by Corollary 4.7 (page 17) 1 𝑝 by definition of power triangle function (Definition 4.1 page 15) < 2𝜎𝜀 by left hypothesis 2 = 2𝜎 [ 1 2 𝜀 + 1 2 𝖽 𝑝 ( 𝑥 𝖿(𝑛) , 𝑥 𝑛) ] 1 𝖽(𝑥, 𝑦) ≤ 𝜏(0, 𝜎; 𝑥, 𝑦, 𝑥 𝑛 ) by definition of power triangle inequality at 𝑝 = 0 𝑝 by left hypothesis 2 = 2𝜎√𝖽(𝑥, 𝑥 𝑛 ) √𝖽(𝑥 𝑛 , 𝑦) by Corollary 4.7 (page 17) } 42 in metric space ((𝑝, 𝜎) = (1, 1)): 📘 [Rosenlicht(1968)] pages 40-41, 📘 [Aliprantis and Burkinshaw(1998)] page 35 = 2𝜎 [ 1 2 𝜀 𝑝 + 1 2 𝜀 𝑝 1 𝑝 by left hypothesis 1 = 2𝜎√𝜀 √𝜀 by left hypothesis ] = 2𝜎𝜀 < 2𝜎𝜀 by property of real numbers
		⟹ convergent	by definition of convergent (Definition A.16 page 28)

[START_REF]A distance space is called semimetric provided…[END_REF] 

The set of all open balls in (𝑋, 𝖽) is a base for (𝑋, 𝑻 ) by

Corollary 4.11 (page 20) 

and Theorem A.4 (page 27).

(2) 𝑻 is a topology on 𝑋 by Definition A.3 (page 27). Lemma 4.13 Let (𝑋, 𝖽, 𝑝, 𝜎) be a POWER DISTANCE SPACE. Let 𝖡 be an OPEN BALL on (𝑋, 𝖽). 𝑈 = ⋃ { 𝖡 ( 𝑥 𝛾 , 𝑟 𝛾 ) | 𝖡 ( 𝑥 𝛾 , 𝑟 𝛾 ) ⊆ 𝑈 } by left hypothesis and Corollary 4.12 page 20 ⊇ 𝖡(𝑥, 𝑟) because 𝑥 must be in one of those balls in 𝑈 version 0.30 Properties of distance spaces with power triangle inequalities Monday 27 th April, 2015 1:07pm UTC ✏ Theorem 4.15 43 Let (𝑋, 𝖽, 𝑝, 𝜎) be a POWER DISTANCE SPACE. Let (𝑋, 𝑻 ) be a TOPOLOGICAL SPACE IN-DUCED BY (𝑋, 𝖽). Let (𝑥 𝑛 ∈ 𝑋) 𝑛∈ℤ be a sequence in (𝑋, 𝖽). (𝑥 𝑛 ) converges to a limit 𝑥 ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ (Definition A.16 page 28) ⟺ { for any 𝜀 ∈ ℝ + , there exists 𝘕 ∈ ℤ such that for all 𝑛 > 𝘕 , 𝖽 ( 𝑥 𝑛 , 𝑥 ) < 𝜀 } ✏ In distance spaces (Definition 3.1 page 6), not all convergent sequences are Cauchy (Example 3.22 page 13). However in a distance space with any power triangle inequality (Definition 4.3 page 16), all convergent sequences are Cauchy (next theorem). Theorem 4.16 44 Let (𝑋, 𝖽, 𝑝, 𝜎) be a POWER DISTANCE SPACE. Let 𝖡 be an OPEN BALL on (𝑋, 𝖽). 43 in metric space: 📘 [Rosenlicht(1968)] page 45, 📘 [Giles(1987)] page 37 ⟨3.2 Definition⟩ 44 in metric space: 📘 [Giles(1987)] page 49 ⟨Theorem 3.30⟩, 📘 [Rosenlicht(1968)] page 51, 📘 [Apostol(1975)] pages 72-73 ⟨Theorem 4.6⟩ Monday 27 th April, 2015 1:07pm UTC Properties of distance spaces with power triangle inequalities version 0.30 (1) Proof that convergent ⟹ Cauchy: 𝑛 , 𝑥 𝑚) ≤ 𝜏(0, 𝜎; 𝑥 𝑛 , 𝑥 𝑚 , 𝑥) by definition of power triangle inequality at 𝑝 = 0 = 2𝜎√𝖽(𝑥 𝑛 , 𝑥) √𝖽(𝑥 𝑚 , 𝑥) by Corollary 4.7 (page 17) = 2𝜎√𝜀 √𝜀 by convergent hypothesis (Definition A.16 page 28) = 2𝜎𝜀 by property of ℝ (2) Proof that Cauchy ⟹ bounded: by Proposition 3.14 (page 9). ✏ Theorem 4.17 45 Let (𝑋, 𝖽, 𝑝, 𝜎) be a POWER DISTANCE SPACE. Let 𝖿 ∈ ℤ ℤ be a STRICTLY MONOTONE function such that 𝖿 (𝑛) < 𝖿 (𝑛 + 1). For any (𝑝, 𝜎) ∈ ℝ * × ℝ + { 1. (𝑥 𝑛 ) 𝑛∈ℤ is CAUCHY 45 in metric space: 📘 [Rosenlicht(1968)] page 52 version 0.30 Properties of distance spaces with power triangle inequalities Monday 27 th April, 2015 1:07pm UTC page 23 ✏ ✏ In distance spaces and topological spaces, limits of convergent sequences are in general not unique (Example 3.21 page 12, Example A.17 page 29). However Theorem 4.19 (next) demonstrates that, in a power distance space, limits are unique. Theorem 4.19 (Uniqueness of limit) 47 Let (𝑋, 𝖽, 𝑝, 𝜎) be a POWER DISTANCE SPACE. Let 𝑥, 𝑦, ∈ 𝑋 and let (𝑥 𝑛 ∈ 𝑋) be an 𝑋 -valued sequence. { 1. {( (𝑥 𝑛 ) , (𝑦 𝑛 ) ) → (𝑥, 𝑦) } and 2. (𝑝, 𝜎) ∈ ℝ * (1) lemma: Proof that for all (𝑝, 𝜎) ∈ ℝ * × ℝ + and for any 𝜀 ∈ ℝ + , there exists 𝘕 such that 𝖽(𝑥, 𝑦) < 2𝜎𝜀: 𝖽(𝑥, 𝑦) ≤ 𝜏(𝑝, 𝜎; 𝑥, 𝑦, 𝑥 𝑛 ) by definition of power triangle inequality (Definition 4.3 page 16) 46 in metric space ((𝑝, 𝜎) = (1, 1) case): 📘 [Berberian(1961)] page 37 ⟨Theorem II.4.1⟩ 47 in metric space: 📘 [Rosenlicht(1968)] page 46, 📘 [Thomson et al.(2008)Thomson, Bruckner, and Bruckner] page 32 ⟨Theorem 2.8⟩ Monday 27 th April, 2015 1:07pm UTC Properties of distance spaces with power triangle inequalities version 0.30

  𝜎; 𝖽) does not hold for any (𝑝, 𝜎) ∈ ℝ * × ℝ + : ByCorollary 4.6 (page 16), the triangle function (Definition 4.1 page 15) 𝜏(𝑝, 𝜎; 𝑥, 𝑦, 𝑧; 𝖽) is continuous and strictly monotone in (ℝ, |⋅|, ≤) with respect to the variable 𝑝. Item 2a demonstrates that ▵ ○(𝑝, 𝜎; 𝖽) fails to hold at the best case of 𝑝 = ∞, and so by Corollary 4.6, it doesn't hold for any other value of 𝑝 ∈ ℝ * either.

					page 25
	(b) Proof that ▵ ○(𝑝, Example 4.22 Let 𝖽 be a function in ℝ ℝ×ℝ such that	
	𝖽(𝑥, 𝑦) ≜ {	2|𝑥 -𝑦| ∀ (𝑥, 𝑦) ∈ {(0, 1) , (1, 0)} (dilated Euclidean) |𝑥 -𝑦| otherwise (Euclidean)
			/𝑚)}		by Corollary 4.7 (page 17)
		≥ lim 𝑛,𝑚→∞	2𝜎 [ 1 /2𝖽 𝑝 ( 1 /𝑛, 0) + 1 /2𝖽 𝑝 (0, 1 /𝑚) ]	1 𝑝	by Corollary 4.6 (page 16)
		≜ lim 𝑛,𝑚→∞		

𝜏(𝑝, 𝜎,

1 

/𝑛, 1 /𝑚, 0) by definition of 𝜏 (Definition 4.1 page 15) version 0.30 Properties of distance spaces with power triangle inequalities Monday 27 th April, 2015 1:07pm UTC

  Just as the power set 𝟚 𝑋 and the set {∅, 𝑋} are algebras of sets on a set 𝑋 , so also are these sets topologies on 𝑋 (next example):

			and
		2. 𝑋 ∈ 𝑻	and
		3. 𝑈 , 𝑉 ∈ 𝑻	⟹ 𝑈 ∩ 𝑉 ∈ 𝑻 and
		4. { 𝑈 𝛾 |𝛾 ∈ 𝛤 } ⊆ 𝑻 ⟹ ⋃
	Example A.2 49 Let 𝒯 (𝑋) be the set of topologies on a set 𝑋 and 𝟚 𝑋 the power set (Definition 2.2 page 4) on
	𝑋 .	{∅, 𝑋} is a topology in 𝒯 (𝑋)

). A family of sets 𝑻 ⊆ 𝟚 𝑋 is a topology on 𝑋 if 1. ∅ ∈ 𝑻 𝛾∈𝛤 𝑈 𝛾 ∈ 𝑻 .

The ordered pair

(𝑋, 𝑻 ) is a topological space if 𝑻 is a topology on 𝑋 . A set 𝑈 is open in (𝑋, 𝑻 ) if 𝑈 is any element of 𝑻 . A set 𝐷 is closed in (𝑋, 𝑻 ) if 𝐷 𝖼 is open in (𝑋, 𝑻 ).

(indiscrete topology or trivial topology)

  50 Let (𝑋, 𝑻 ) be a topological space. A set 𝑩 ⊆ 𝟚 𝑋 is a base for 𝑻 if 1. 𝑩 ⊆ 𝑻 and 2. ∀𝑈 ∈ 𝑻 , ∃ { 𝐵 𝛾 ∈ 𝑩 } such that 𝑈 = ⋃ Let (𝑋, 𝑻 ) be a TOPOLOGICAL SPACE. Let 𝑩 be a subset of 𝟚 𝑋 such that 𝑩 ⊆ 𝟚 𝑋 . 52 Let (𝑋, 𝑻 ) be a TOPOLOGICAL SPACE (Definition A.1 page 26) and 𝑩 ⊆ 𝟚 𝑋 . 𝑩 such that 𝑥 ∈ 𝐵 𝑥 and 2. 𝐵 1 , 𝐵 2 ∈ 𝑩 ⟹ 𝐵 1 ∩ 𝐵 2 ∈ 𝑩 Example A.6 53 Let (𝑋, 𝖽) be a metric space. The set 𝑩 ≜ {𝖡(𝑥, 𝑟) |𝑥 ∈ 𝑋, 𝑟 ∈ ℕ } (the set of all open balls in (𝑋, 𝖽)) is a base for a topology on (𝑋, 𝖽).

					𝐵 𝛾
					𝛾
	Theorem A.4 51 { 𝑩 is a BASE for 𝑻 }	⟺	{	For every 𝑥 ∈ 𝑋 and for every OPEN SET 𝑈 containing 𝑥, there exists 𝐵 𝑥 ∈ 𝑩 such that 𝑥 ∈ 𝐵 𝑥 ⊆ 𝑈 .	}
	Theorem A.5 𝑩 is a base for (𝑋, 𝑻 )	⟺	{	1. 𝑥 ∈ 𝑋	⟹ ∃𝐵 𝑥 ∈
						]
	pages 42-43 ⟨II.4⟩, 📘 [DiBenedetto(2002)] page 18
	version 0.30				

Properties of distance spaces with power triangle inequalities Monday 27 th April, 2015 1:07pm UTC page 27 Definition A.3

  📘 [Munkres(2000)] page 95 ⟨ §Closure and Interior of a Set⟩, 📘[Thron(1966)], pages 21-22 ⟨definition 4.8, defintion 4.9⟩, 📘 [Kelley(1955)] page 42, 📘 [Kubrusly(2001)] pages 115-116 Definition A.11 58 Let ( 𝑋, 𝑻 𝑥) and ( 𝑌 , 𝑻 𝑦) be topological spaces (Definition A.1 page 26). Let 𝖿 be a function in 𝑌 𝑋 . A function 𝖿 ∈ 𝑌 𝑋 is continuous if 𝑈 ∈ 𝑻 𝑦 ⏟

	⟹	𝖿 -1 (𝑈 ) ∈ 𝑻 𝑥 ⏟⏟⏟⏟⏟⏟⏟⏟⏟	.
	1) Definition⟩, 📘 [Davis(2005)] page 46 ⟨Definition 4.15⟩ 51 📘 [Joshi(1983)] pages 92-93 ⟨(3.2) Proposition⟩, 📘 [Davis(2005)] page 46 52 📘 [Bollobás(1999)] page 19 53 📘 [Davis(2005)] page 46 ⟨Example 4.16⟩ 54 📘 [Munkres(2000)] page 81, 📘 [Davis(2005)] page 46 ⟨Example 4.16⟩ open in ( 𝑋, 𝑻 𝑥) A function is discontinuous in ( 𝑋, 𝑻 𝑦) ( 𝑋,𝑻 𝑥) if it is not continuous in ( 𝑋, 𝑻 𝑦) ( 𝑋,𝑻 𝑥) . ) ( ) ( ) ( ) ( ) ( ] ( continuous continuous discontinuous 55 📘 [Gemignani(1972)] pages 55-56 ⟨Definition 3.5.7⟩, 📘 [McCarty(1967)] page 90, open in ( 𝑌 , 𝑻 𝑦) Figure 3: continuous/discontinuous functions (Example A.12 page 28)

56 📘 [McCarty(1967)

] page 90 ⟨IV.1 THEOREM⟩ 57 📘 [McCarty(1967)] pages 90-91 ⟨IV.1 THEOREM⟩, 📘 [ALIPRANTIS AND BURKINSHAW(1998)] PAGE 59 Monday 27 th April, 2015 1:07pm UTC Properties of distance spaces with power triangle inequalities version 0.30

  𝑻 ) Definition A.1661 Let (𝑋, 𝑻 ) be a topological space(Definition A.1 page 26). A sequence (𝑥 𝑛 ) 𝑛∈ℤ converges in (𝑋, 𝑻 ) to a point 𝑥 if for each open set (Definition A.1 page 26) 𝑈 ∈ 𝑻 that contains 𝑥 there exists 𝘕 ∈ ℕ such that 58 📘 [Davis(2005)] page 34 59 📘 [McCarty(1967)] pages 91-92 ⟨IV.2 THEOREM⟩, 📘 [SEARCóID(2006)] PAGE 130 ⟨"THEOREM 8.3.1 (CRITERIA FOR CONTINUITY)", SET IN metric spaceS⟩ If (𝑥 𝑛 ) → 𝑥, then 𝖿((𝑥 𝑛 )) ↛ 𝖿 (𝑥) ⟹ there exists no 𝘕 such that 𝖿(𝑥 𝑛 ) ∈ 𝑈 for all 𝑛 > 𝘕 by Definition A.16 (page 28) ⟹ there exists no 𝘔 such that 𝑥 𝑛 ∈ 𝖿 -1 (𝑈 ) for all 𝑛 > 𝘔 by definition of 𝖿 -1 ⟹ (𝑥 𝑛 ) ↛ 𝑥 by continuity hypothesis and def. of convergence (Definition A.16 page 28)

60 

📘

[Crossley(2006)

] page 18 ⟨Proposition 3.9⟩, 📘

[Ponnusamy(2002)

] page 98 ⟨2.64. Theorem.⟩ 61 📘

[Joshi(1983)

] page 83 ⟨(3.1) Definition⟩, 📘

[Leathem(1905)

], page 13 ⟨"→" symbol, section III.11⟩ version 0.30 Properties of distance spaces with power triangle inequalities Monday 27 th April, 2015 1:07pm UTC (c)

  Proof that 𝑀 𝜙(𝑥;𝑝) is strictly monotone in 𝑝:(a) Let 𝑝 and 𝑠 be such that -∞ < 𝑝 < 𝑠 < ∞. (b) Let 𝜙 𝑝 ≜ 𝑥 𝑝 and 𝜙 𝑠 ≜ 𝑥 𝑠 . Then 𝜙 𝑝 𝜙 -1 𝑠 = 𝑥 The composite function 𝜙 𝑝 𝜙 -1 𝑠 is convex or concave depending on the values of 𝑝 and 𝑠: 𝑝 < 0 (𝜙 𝑝 decreasing) 𝑝 > 0 (𝜙 𝑝 increasing)

						B.2 POWER MEANS
			𝘕			1 𝑝
	𝖬 𝜙(𝑥;𝑝)( ⦇𝑥 𝑛 ⦈ ) ≜	( ∑ 𝑛=1	𝜆 𝑛( 𝑥 𝑛) 𝑝	)	is CONTINUOUS and STRICTLY MONOTONE in ℝ * .
	𝖬 𝜙(𝑥;𝑝)( ⦇𝑥 𝑛 ⦈ ) =	⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩	max 𝑛=1,2,…,𝘕 𝘕 𝑥 𝜆 𝑛 𝑛 ∏ 𝑛=1 min 𝑛=1,2,…,𝘕	⦇𝑥 𝑛 ⦈ for 𝑝 = +∞ for 𝑝 = 0 ⦇𝑥 𝑛 ⦈ for 𝑝 = -∞
	✎PROOF:				
	(1) 𝑝 𝑠 .
	(c) 𝑠 < 0		convex		(not possible)
	𝑠 > 0		convex		concave
	(d) Therefore by Lemma B.4 (page 31),
	-∞ < 𝑝 < 𝑠 < ∞	⟹	𝖬 𝜙(𝑥;𝑝)( ⦇𝑥 𝑛 ⦈ ) < 𝖬 𝜙(𝑥;𝑠)( ⦇𝑥 𝑛 ⦈ ) .
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  Generalized AM-GM inequality: If one is only concerned with the arithmetic mean and geometric mean, their relationship can be established directly using Jensen's Inequality:

									page 35
	(3) 𝘕 𝑛=1 ∑	𝜆 𝑛 𝑥 𝑛 = 𝑏	log 𝑏( ∑ 𝘕 𝑛=1 𝜆 𝑛 𝑥 𝑛)
					≥ 𝑏 ( ∑ 𝘕 𝑛=1 𝜆 𝑛 log 𝑏 𝑥 𝑛)	by Jensen's Inequality (Theorem B.2 page 30)
					=	𝘕 ∏ 𝑛=1	𝑏 ( 𝜆 𝑛 log 𝑏 𝑥 𝑛) =	𝘕 ∏ 𝑛=1	𝑏 ( log 𝑏 𝑥 𝑛) 𝜆 𝑛 =	𝘕 𝑛=1 ∏	𝑥	𝜆 𝑛 𝑛
									✏
	B.3 Inequalities				
	Lemma B.9 (Young's Inequality) 76
	𝑥𝑦 <	𝑥 𝑝 𝑝	+	𝑦 𝑞 𝑞	with 1 𝑝 + 1 𝑞 = 1 ∀1 < 𝑝 < ∞, 𝑥, 𝑦 ≥ 0, but 𝑦 ≠ 𝑥 𝑝-1
	𝑥𝑦 =	𝑥 𝑝 𝑝	+	𝑦 𝑞 𝑞	with 1 𝑝 + 1 𝑞 = 1 ∀1 < 𝑝 < ∞, 𝑥, 𝑦 ≥ 0, and 𝑦 = 𝑥 𝑝-1
	Theorem B.10 (Minkowski's Inequality for sequences) 77 Let ⦇𝑥 𝑛 ∈ ℂ⦈ 𝘕 1 and ⦇𝑦 𝑛 ∈ ℂ⦈ 𝘕 1 be complex 𝘕 -tuples.
									] page 151
	version 0.30		Properties of distance spaces with power triangle inequalities	Monday 27 th April, 2015 1:07pm UTC

  (sufficient conditions)80 Let 𝜙 be a function in ℝ ℝ .

	⎧ ⎪ ⎨ ⎪ ⎩	1. 𝑥 ≥ 𝑦 ⟹ 𝜙(𝑥) ≥ 𝜙(𝑦) ∀𝑥,𝑦∈ℝ ⊢ ( ISOTONE) 2. 𝜙(0) = 0 3. 𝜙(𝑥 + 𝑦) ≤ 𝜙(𝑥) + 𝜙(𝑦) ∀𝑥,𝑦∈ℝ ⊢ ( SUBADDITIVE)	and and

Monday 27 th April, 2015 1:07pm UTC Properties of distance spaces with power triangle inequalities version 0.30 Theorem C.3

  (discrete metric preserving function)85 Let 𝜙 be a function in ℝ ℝ . Let 𝜙 be a function in ℝ ℝ .

				B) power transform/snowflake	(C) 𝛼-truncated/radar screen
		(Example C.4 page 36)			(Example C.5 page 36)			(Example C.6 page 36)	
	2			2					2				
	1			1					1				
	0			𝑥 0				𝑥	0				𝑥
	0	1 (D) bounded 2	3	4	0	1 (E) discrete 2	3	4	0	1	2 (F)	3	4
		(Example C.7 page 36)			(Example C.8 page 36)			(Example C.9 page 36)	
	Subject Index											
	Example C.7 (bounded metric) 84 Let (𝑋, 𝖽) be a metric space (Definition 4.5 page 16). 𝜙(𝑥) ≜ 𝛼 -scaled, 36 base, 3, 4, 6, 8, 9, 12-14, 20, 27, 30 𝑥 1 + 𝑥 𝛼 -scaled metric, 36 27 closed ball, 6 is a metric preserving function (see Figure 4 page 36 (D)). 𝛼 -truncated, 36 boundary, 27 closed interval, 5	
	𝛼 -truncated metric, 36 Example C.8 𝜙(𝑥) ≜ { 𝜙-mean, 31 0 for 𝑥 ≤ 0 1 otherwise } σ-inframetric inequality, 3, 16, Example C.9 𝜙(𝑥) ≜ { 𝑥 for 0 ≤ 𝑥 < 1, 𝑥 -1 for 2 < 𝑥 < 3, 80 📘 [Corazza(1999)] ⟨Proposition 2.3⟩, 📘 [Deza and Deza(2009)] page 80, 📘 [Kelley(1955)] page 131 bounded, 2, 6, 9, 10, 21, 22, 36 closed set, 3, 4, 7 bounded metric, 36 closed set theorem, 30 closure, 3, 4, 10, 27, 27, 29 is a metric preserving function (see Figure 4 page 36 (E)). 1 for 1 ≤ 𝑥 ≤ 2, 2 for 𝑥 ≥ 3 } is a metric preserving function (see Figure 4 page 36 (F)). ⟨Problem C⟩ 81 📘 [Deza and Deza(2006)] page 44 16 σ-inframetric space, 3, 16 absolute value, 5, 5, 12, 18 accumulation point, 3, 4, 27 Cauchy sequences, 9 mean inequality, 34 Cauchy sequence, 9 arithmetic mean geometric Cauchy condition, 9 arithmetic mean, 1, 3, 17 22, 25 anti-symmetric, 5 Cauchy, 2, 3, 6, 9, 10, 13, 14, 21, AM-GM inequality, 34 Cartesian product, 4 affine, 17, 30 cardinality of 𝐴, 5 adherent, 27 closure point, 27 Cantor Intersection Theorem, commutative, 18, 23 2 commutative ring, 5 Cantor intersection theorem, complete, 9, 10, 11 11, 11 cardinality, 5 concave
	b-metric, 16			closed, 7, 7, 10, 11, 26, 27, 29,					

Figure 4: metric preserving functions Example C.4 (𝛼 -scaled metric/dilated metric) 81 Let (𝑋, 𝖽) be a metric space (Definition 4.5 page 16). 𝜙(𝑥) ≜ 𝛼𝑥, 𝛼 ∈ ℝ + is a metric preserving function (Figure 4 page 36 (A)) ✎PROOF: The proofs for Example C.4-Example C.9 (page 36) follow from Theorem C.3 (page 36). ✏ Example C.5 (power transform metric/snowflake transform metric) 82 Let (𝑋, 𝖽) be a metric space (Definition 4.5 page 16). 𝜙(𝑥) ≜ 𝑥 𝛼 , 𝛼 ∈ (0 ∶ 1], is a metric preserving function (see Figure 4 page 36 (B)) Example C.6 (𝛼 -truncated metric/radar screen metric) 83 Let (𝑋, 𝖽) be a metric space (Definition 4.5 page 16).

𝜙(𝑥) ≜ min {𝛼, 𝑥}, 𝛼 ∈ ℝ + is a metric preserving function (see Figure

4

page 36 (C)). 82 📘

[START_REF] Deza | Encyclopedia of Distances[END_REF]

] page 81, 📘

[START_REF] Deza | Dictionary of Distances[END_REF]

] page 45 83 📘

[Giles(1987)

], page 33, 📘

[START_REF] Deza | Dictionary of Distances[END_REF]

] pages 242-243 84 📘

[Vallin(1999)

], page 849, 📘

[START_REF] Aliprantis | Principles of Real Analysis, 3rd Edition[END_REF]

] page 39 85 📘

[Corazza(1999)
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where ℝ * is the set of extended real numbers and ℝ + is the set of positive real numbers (Definition 2.1 page 4)

power triangle inequality: Definition

4.4 page 16; power distance space: Definition 4.3 page 16; examples of power distance space: Definition 4.5 page 16; 4 power triangle function: Definition 4.1 (page 15); power mean: Definition B.6 (page 31); power mean is continuous and monontone: Theorem B.7 (page 31); power triangle function is continuous and monontone: Corollary 4.6 (page 16); Special values of 𝑝: Corollary 4.7 (page 17), Corollary B.8 (page 34)

in metric space: 📘[START_REF] Rosenlicht | Introduction to Analysis[END_REF]] page 45, 📘[Giles(1987)] page 37 ⟨3.2 Definition⟩, 📘[START_REF] Khamsi | An Introduction to Metric Spaces and Fixed Point Theory[END_REF]] page 13 ⟨Definition 2.1⟩ "→" symbol: 📘[Leathem(1905)] page 13 ⟨section III.11⟩

in metric space: 📘[Apostol(1975)] page 73 ⟨4.7⟩, 📘[START_REF] Rosenlicht | Introduction to Analysis[END_REF]] page 51

in metric space: 📘[START_REF] Rosenlicht | Introduction to Analysis[END_REF]] page 52

in metric space: 📘[Giles(1987)] page 49 ⟨Theorem 3.30⟩

page 29 𝑥 𝑛 ∈ 𝑈 for all 𝑛 > 𝘕 . This condition can be expressed in any of the following forms:

1. The limit of the sequence (𝑥 𝑛 ) is 𝑥.

3. lim 𝑛→∞ (𝑥 𝑛 ) = 𝑥. 2. The sequence (𝑥 𝑛 ) is convergent with limit 𝑥. 4. (𝑥 𝑛 ) → 𝑥. A sequence that converges is convergent. A sequence that does not converge is said to diverge, or is divergent. An element 𝑥 ∈ 𝐴 is a limit point of 𝐴 if it is the limit of some 𝐴-valued sequence (𝑥 𝑛 ∈ 𝐴).

Example A.17 62 Let ( 𝑋, 𝑻 31) be a topological space where 𝑋 ≜ {𝑥, 𝑦, 𝑧} and 𝑻 31 ≜ {∅, {𝑥}, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑥, 𝑦, 𝑧}}. In this space, the sequence (𝑥, 𝑥, 𝑥, …) converges to 𝑥. But this sequence also converges to both 𝑦 and 𝑧 because 𝑥 is in every open set (Definition A.1 page 26) that contains 𝑦 and 𝑥 is in every open set that contains 𝑧. So, the limit (Definition A.16 page 28) of the sequence is not unique.

Example A.18

In contrast to the low resolution topological space of Example A.17, the limit of the sequence (𝑥, 𝑥, 𝑥, …) is unique in a topological space with sufficiently high resolution with respect to 𝑦 and 𝑧 such as the following: Define a topological space ( 𝑋, 𝑻 56) 

✎PROOF:

(1) Proof for the ⟹ case (proof by contradiction):

(a) Let 𝑈 be an open set in (𝑌 , 𝑻 ) that contains 𝖿(𝑥) but for which there exists no 𝘕 such that 𝖿(𝑥 𝑛 ) ∈ 𝑈 for all 𝑛 > 𝘕 . (b) Note that the set 𝖿 -1 (𝑈 ) is also open by the continuity hypothesis.

62 📘 [Munkres(2000)] page 98 ⟨Hausdorff Spaces⟩ 63 📘 [START_REF] Kubrusly | The Elements of Operator Theory, 1st Edition[END_REF]] page 118 ⟨Theorem 3.30⟩, 📘 [START_REF] Haaser | Real Analysis[END_REF]] page 75 ⟨6⋅9 Proposition⟩, 📘 [START_REF] Rosenlicht | Introduction to Analysis[END_REF]] pages 47-48

64 📘 [Ponnusamy(2002)] pages 94-96 ⟨"2.59. Proposition."; in the context of metric spaces; includes the "inverse image characterization of continuity" and "sequential characterization of continuity" terminology; this terminology does not seem to be widely used in the literature in general, but has been adopted for use in this text⟩ Monday 27 th April, 2015 1:07pm UTC Properties of distance spaces with power triangle inequalities version 0.30