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In order to obtain accurate classification results of hyperspectral images, both the spectral and spatial information should be fully exploited in the classification process. In this paper, we propose a novel method using independent component analysis (ICA) and edge-preserving filtering (EPF) via an ensemble strategy for the classification of hyperspectral data. First, several subsets are randomly selected from the original feature space. Second, ICA is used to extract spectrally independent components followed by an effective EPF method, to produce spatial features. Two strategies (i.e., parallel and concatenated) are presented to include the spatial features in the analysis. The spectralspatial features are then classified with a random forest (RF) or rotation forest (RoF) classifier. Experimental results on two real hyperspectral datasets demonstrate the effectiveness of the proposed methods. A sensitivity analysis of the new classifiers is also performed.

I. INTRODUCTION

During the past two decades, the development of hyperspectral sensors have resulted in great improvement for the image acquisition capabilities. Hyperspectral sensors are now able to provide images with both high spectral and spatial resolutions. Hence, hyperspectral data offers a unique opportunity to monitor the Earth surface. Thematic applications include environmental mapping and crop monitoring [START_REF] Chang | Hyperspectral Imaging: Techniques for Spectral Detection and Classification[END_REF], [START_REF] Chang | Hyperspectral Data Exploitation: Theory and Applications[END_REF]. Supervised classification is one of the most important problems in the remote sensing community. Given a set of training samples (i.e., pixel vectors for hyperspectral image), the aim of classification is to assign a unique class label to each pixel after a training process. Classical techniques, such as maximum likelihood and nearest neighbor classifiers, can be used to perform a supervised classification of hyperspectral data. Nevertheless, their classification accuracy is relatively low because a sufficient number of training samples is often not available for the wide range of spectral bands. This often causes an unbalance between the high dimensionality of spectral bands and the limited number of training samples, known as the curse of dimensionality (also referred to as the Hughes phenomenon) [START_REF] Hughes | On the mean accuracy of statistical pattern recognizers[END_REF]. In addition, the spectral bands of hyperspectral data are highly correlated and might show some redundancy. Furthermore, due to the spatial variability observed for high-resolution data, classification algorithms exploiting only the spectral information generally demonstrate a low performance. To overcome this, spatial contextual information (relationship between neighboring pixels) should be included in the analysis, resulting in spectral-spatial classifiers [START_REF] Fauvel | Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles[END_REF], [START_REF] Fauvel | Advances in spectral-spatial classification of hyperspectral images[END_REF]. In recent years, many spectral and/or spatial classification methods have been developed to alleviate the aforementioned issues, i.e., high dimensionality of the feature space, correlated features and spatial variability, in order to improve the classification performance of hyperspectral data.

A popular strategy for providing enhanced classification performance is the random subspace (RS) ensemble [START_REF] Ho | The random subspace method for constructing decision forests[END_REF].

The idea is intuitive and simple: subsets of feature sets are used in the ensemble instead of using all features. Each classifier in the ensemble is constructed on a different feature subset by randomly sampling the original feature set. The rationale behind the RS ensemble is to break down a complex high-dimensional problem into several lower-dimensional sub-problems, hence allowing to address the curse of dimensionality problem [START_REF] Kuncheva | Random subspace ensembles for fMRI classification[END_REF].

Discriminative classifiers, e.g., support vector machines (SVMs) [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF]- [START_REF] Camps-Valls | Kernel-based methods for hyperspectral image classification[END_REF], random forest (RF) [START_REF] Breiman | Random forests[END_REF], [START_REF] Chan | Evaluation of Random Forest and AdaBoost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery[END_REF] and rotation forest (RoF) classifiers [START_REF] Rodriguez | Rotation forest: A new classifier ensemble method[END_REF], [START_REF] Xia | Hyperspectral remote sensing image classification based on rotation forest[END_REF], are the most widely used pixel-wise classifier for hyperspectral data.

Those classifiers provide good performances in terms of classification accuracies. In [START_REF] Xia | Hyperspectral remote sensing image classification based on rotation forest[END_REF], Xia et al. propose RoF for the classification of hyperspectral data and note its superior performance to RF and completion with the SVMs.

Compared to the SVMs, the two main advantages of RF and RoF, i.e., low computational complexity and few parameters to tune, motivate us to select them as the base classifiers in this work. However, to improve the classification performance of RF and RoF, the input features should be independent [START_REF] Zhang | Random forests with ensemble of feature spaces[END_REF], [START_REF] Xia | Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles[END_REF].

In order to obtain independent features, a feature extraction (FE) step is generally employed. Principal component analysis (PCA) is one of the most frequently used FE method in the remote sensing community [START_REF] Richards | Remote sensing digitial image analysis[END_REF]. Recently, independent component analysis (ICA) has received attention for FE of hyperspectral remote sensing images [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Applications[END_REF]- [START_REF] Falco | A study on the effectiveness of different independent component analysis algorithms for hyperspectral image classification[END_REF]. In particular, ICA extracts underlying source components that give rise to the mixed signal measured by the sensor and the informative components present in the scene [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Applications[END_REF], [START_REF] Falco | A study on the effectiveness of different independent component analysis algorithms for hyperspectral image classification[END_REF]. Classically, when ICA is employed to hyperspectral data, PCA is performed first, and then, ICA is performed on a percentage of the top most important principal components, while the remaining components are discarded [START_REF] Falco | A study on the effectiveness of different independent component analysis algorithms for hyperspectral image classification[END_REF]- [START_REF] Jutten | How to apply ICA on actual data ? example of mars hyperspectral image analysis[END_REF]. However, the PCA process might lead to a loss of useful information in the discarded components, which may contain discriminant information to improve the classification accuracy. In [START_REF] Du | Independent-component analysis for hyperspectral remote sensing imagery classification[END_REF], it has been suggested that a noise-adjusted principal component analysis (NAPCA) offers more useful information of objects in the original data than those obtained from PCA. In order to enhance the classification performance by using ICA without losing useful information in the PCA process, we propose to use a random subspace ensemble approach, in which several subsets are randomly selected from the original spectral bands and then ICA is applied on each subset. Furthermore, the classification result can be improved by the integration of spatial contextual information.

Previous spectral-spatial classifiers include spatial contextual information, such as mathematical morphology (MM) and Markov random fields (MRFs). Li et al. [START_REF] Li | Generalized composite kernel framework for hyperspectral image classification[END_REF] have developed a generalized composite kernel (GCK) framework by combining spectral information and the most effective MM features: extended multi-attribute profiles (EMAPs). Falco et al. [START_REF] Falco | Spectral and Spatial Classification of Hyperspectral Images Based on ICA and Reduced Morphological Attribute Profiles[END_REF] proposed a spectral-spatial classifier based on ICA and reduced attribute profiles. Recently, Xia et al. have proposed two powerful classifiers, namely rotation forests with MRFs (RoF-MRF) [START_REF] Xia | Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields[END_REF] and random subspace ensembles with EMAPs (RS-EMAPs) [START_REF] Xia | Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles[END_REF]. The former combines the class posterior probabilities produced by RoF and the spatial information represented by MRF-based multilevel logistic (MLL) prior [START_REF] Xia | Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields[END_REF]. The latter uses random subspace ensembles to classify EMAPs features [START_REF] Xia | Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles[END_REF]. Recently, edge-preserving filters (EPF) have been successfully applied in many fields such as denoising [START_REF] He | Guided image filtering[END_REF]. Those filters are used to remove noise, weak edges, and small details whereas the overall structure of the image is preserved. Kang et al. have successfully combined a probabilistic SVM with an EPF for the classification of hyperspectral images [START_REF] Kang | Spectral-spatial hyperspectral image classification with edge-preserving filtering[END_REF]. Furthermore, they proposed to extract spatial features of hyperspectral images with image fusion and recursive filtering techniques (IFRF) [START_REF] Kang | Feature extraction of hyperspectral images with image fusion and recursive filtering[END_REF].

In order to tackle the three main issues of the classification of hyperspectral images with both high spectral and high spatial resolutions (i.e., high dimensionality of the feature space, correlated features and spatial variability), we present a new spectral-spatial classification scheme. First, several subsets are randomly selected from the original feature space to reduce the dimensionality. Second, ICA is used to extract independent features. Third, an EPF is used to reduce the spatial variability in the feature set. Parallel ensemble and concatenated models are finally used to include those spatial features into an RF or RoF classifier. The novelty of this work consists of:

• a new spectral-spatial classification scheme by using ICA and EPF via an ensemble strategy;

• introducing two novel ICA techniques, i.e., entropy bound minimization (EBM) [START_REF] Li | Independent component analysis by entropy bound minimization[END_REF] and entropy rate bound minimization (ERBM) [START_REF] Li | Blind spatiotemporal separation of second and/or higher-order correlated sources by entropy rate minimization[END_REF], [START_REF] Fu | Blind source separation by entropy rate minimization[END_REF], to the hyperspectral remote sensing community;

• exploiting the spatial contextual information by means of a recent and effective EPF, rolling guidance filter (RGF).

In this study, previous work that introduces such a parallel ensemble [START_REF] Xia | Classification of hyperspectral data with ensemble of subspace ICA and edge-preserving filtering[END_REF] is extended, proposing a concatenated model to supervised classification based on ICA and EPF. In addition, the new methodology is also validated on additional hyperspectral dataset.

The paper is organized as follows. Section II recalls the principle of ICA while Section III gives a brief overview of EPF. Section IV is devoted to the introduction of the proposed spectral-spatial classifier. Sections V and VI present some experimental results on two hyperspectral dataset. Conclusions and future work are finally reported in Section VII.

II. INDEPENDENT COMPONENT ANALYSIS (ICA)

ICA is an attractive solution to the blind source separation (BSS) problem, which decomposes an observed set of mixtures into a set of statistically independent components (ICs) [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Applications[END_REF]. We consider the observed mixture T are estimated by forming y = Wx, where W is the estimated demixing matrix that makes use of some form of diversity. The most widely used type of diversity is non-Gaussianity, i.e., higher-order-statistics (HOS). Two popular ICA approaches used in the remote sensing community are FastICA [START_REF] Hyvarinen | Fast and robust fixed-point algorithms for independent component analysis[END_REF] and Joint Approximate Diagonalization of Eigenmatrices (JADE) [START_REF] Cardoso | Blind beamforming for non-Gaussian signals[END_REF]. FastICA [START_REF] Hyvarinen | Fast and robust fixed-point algorithms for independent component analysis[END_REF] uses a fixed nonlinearity to maximize the non-Gaussianity while JADE [START_REF] Cardoso | Blind beamforming for non-Gaussian signals[END_REF] extracts the demixing matrix W by joint a diagonalization of the fourth-order cumulant matrix.

A more attractive approach to make use of HOS is to use a dynamic nonlinearity that is matched to each of the estimated source densities, y d , for d = 1, . . . , D separately. Entropy bound minimization (EBM) utilizes an efficient entropy estimator to approximate the density of the sources by maximizing the entropy bound and using a finite number of prespecified measuring functions [START_REF] Li | Independent component analysis by entropy bound minimization[END_REF]. It provides robust performance according to the four measuring functions proposed in [START_REF] Li | Independent component analysis by entropy bound minimization[END_REF] but also allows for selection of nonlinearities using prior information about the sources.

Another important type of diversity, which is of particular interest here, is sample dependence. The adjacent pixels in an image are highly correlated and making use of this additional statistical property promises to further improve the performance of ICA [START_REF] Adali | Diversity in independent component and vector analyses: identifiability, algorithms, and applications in medical imaging[END_REF]. Entropy rate bound minimization (ERBM) [START_REF] Li | Blind spatiotemporal separation of second and/or higher-order correlated sources by entropy rate minimization[END_REF], [START_REF] Fu | Blind source separation by entropy rate minimization[END_REF] effectively combines the dynamic nonlinearity selection of EBM with an invertible filter model and hence achieves better performance in terms of minimization of mutual information rate

I r (y 1 ; ...; y D ) = D i=1 H r (y i ) -log |det(W)| -H r (x) (1) 
where, H r (y i ) is the (differential) entropy rate of the process y i and H r (x) is a constant with respect to W. For EBM, we can consider the same cost function where the entropy rate is simply replaced by the entropy. When the demixing matrix W is assumed to be orthogonal and the nonlinearity that corresponds to source distribution is fixed, we obtain FastICA [START_REF] Adali | Complex ICA using nonlinear functions[END_REF].

III. EDGE PRESERVING FILTER (EPF)

EPF is an image processing technique that aims to reduce the spatial variability. It smooths away textures whilst retaining sharp edges [START_REF] He | Guided image filtering[END_REF]. For high spatial resolution hyperspectral images, the neighboring pixels usually have strong relationships with each other. The use of EPF makes that the neighboring pixels on the same side of an edge have similar features values, which is beneficial for improving the classification performance. In this paper,

we propose to use one of the most recent and effective EPF filters, the RGF.

RGF, which is based on a modification of the bilateral filter [START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF], effectively removes noise and small details while preserving large-scale structures automatically, which the standard bilateral filter often fails to do [START_REF] Zhang | Rolling guidance filter[END_REF]. It is composed of two steps, i.e., small structure removal and edge recovery. Small structure removal can be done by a Gaussian filtering. Then, a joint bilateral filter is used to recover the edge iteratively. The result of the t-th iteration is denoted by J t+1 . J 1 is initially set as the output of the Gaussian filtering. J t+1 is calculated by a joint bilateral filtering form given the input image I and the previous iteration result J t .

J t+1 (i) = 1 Q i j∈Np exp - i -j 2 2σ 2 s - J t (i) -J t (j) 2 2σ 2 r I(j) (2) 
where,

Q i = j∈Np exp -i-j 2 2σ 2 s - J t (i)-J t (j) 2 2σ 2 r
. The indexes i and j are the coordinates of pixels in the image, N p denotes the set of neighbor pixels of i, σ s and σ r control the spatial and range weights respectively.

In general, those steps can be combined into one by starting the rolling guidance simply from a constant-value (equal to C) image. In this case, the initial step can be saved by starting rolling guidance from J 0 , where ∀i,

J 0 (i) = C. Algorithm 1 depicts the RGF implementation.

Algorithm 1 Rolling Guidance Filter

Input: I, σ s , σ r and n iter 1: Initialize J 0 as a constant image 2: For i = 1 : n iter 3:

J t ← JointBilateral(I, J t-1 , σ s , σ r ) using (2) 4: Endfor Output: The output image G ← J n iter

IV. CLASSIFICATION USING ICA AND EPF VIA AN ENSEMBLE STRATEGY

In this paper, we present two strategies to combine multiple features obtained for ICA and RGF. The first one is the parallel combination (referred as E-ICA-RGF P ) that is based on the separate classification of each feature group and on the fusion of the results obtained by the independent classifiers in order to generate the final decision result. The second one is the concatenated combination (referred as E-ICA-RGF C ), in which multiple features are integrated into one vector and then classified via a classifier. In comparison to the concatenation combination, the parallel combination keeps the dimensionality of the data low and increases the robustness of the results, particularly if different features generate classification results with sufficient diversity. However, even if complementary information can be extracted by considering different features, a great redundancy is present in the extracted features. Thus, it is advisable that a classification algorithm with excellent penalization capability is used for classifying the features in order to handle the increased dimensionality which can lead to the curse of dimensionality.

As shown in Fig. 1, the proposed methods (E-ICA-RGF P and E-ICA-RGF C ) consist of five steps:

• Step 1. Random subspace ensemble (E): number of subsets is set to K and M features in each subset are randomly selected without replacement from original spectral bands.

• Step 2. ICA: the aim of this step is to extract informative ICs for the classes in each subset, to be used for classification. Here, we propose to use EBM and ERBM due to their superior separation performance [START_REF] Li | Independent component analysis by entropy bound minimization[END_REF]- [START_REF] Fu | Blind source separation by entropy rate minimization[END_REF].

• Step 3. RGF: RGF is performed on each extracted component to obtain the mth feature in ith subset. produced by integrating the results from individual classifiers using a majority voting rule [START_REF] Rodriguez | Rotation forest: A new classifier ensemble method[END_REF], [START_REF] Xia | Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields[END_REF], [START_REF] Xia | Rotation-Based Ensemble Classifiers for High-Dimensional Data[END_REF]. For both RF and RoF, two parameters, i.e., the number of trees and the number of selected features, are empirically fixed. According to the study presented in [START_REF] Xia | Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles[END_REF], the number of trees of the RF and RoF classifiers are set to 100 and 20 respectively. Moreover, the number of selected features is set to √ M . considered when combining the results of the single classifiers relies on the sum of the votes of the classifiers applied to the features obtained from ICA and RGF, assigning each pixel to a class.

G m k ← Algorithm 1 IC m k , σ s , σ r , n iter (3) 

Concatenated combination (C)

• Step 4: concatenate the features together.

•

Step 5: perform classification on the concatenated features to produce the final result (the same with step 4 of parallel combination).

V. DATASETS AND SETUP FOR EXPERIMENTAL RESULTS

A. Hyperspectral datasets

Two different real hyperspectral data are used to evaluate the performances of the proposed approaches. The two hyperspectral images provide different characteristics in terms of spatial and spectral resolutions in order to validate the methods in very different scenarios. The scenes have the following characteristics: 

B. Experimental setup

We conducted several experiments with these hyperspectral images in order to investigate several relevant aspects of our proposed methods, such as spectral analysis, spectral-spatial analysis and parameter sensitivity analysis. A small set of labeled samples (30 samples per class) are randomly selected from the reference data as the training set. The rest of the pixels forms the testing set 1 . In order to increase the statistical significance of the results, we perform ten Monte Carlo runs with a set of different training samples each run. Experiments for the two hyperspectral datasets consist in:

• Spectral analysis: we present the classification results for the proposed parallel method without the filtering step (E-ICA) and compare it with the ICA applied to the lower-dimensional space (PCA as the dimensionality reduction technique) and high-dimensional space (entire dataset). In this case, K is set to 10, and M is set equal to the number of classes. For this case, when ICA is applied to the lower-dimensional space (referred as PCA-ICA), we first use PCA on the original space and then apply ICA to the obtained feature subset. The procedure is repeated for each ICA algorithm, resulting in different subsets of the kept components, starting from a minimum of 5 components up to 40 components. Only the best results are reported. For the strategy of high-dimensional space, ICA is applied to the entire data set and then the most informative features are selected by using the Relief method [START_REF] Robnik-Sikonja | Theoretical and empirical analysis of ReliefF and RReliefF[END_REF]. We do not consider JADE and ERBM in this case, since their computational load increase significantly with dimensionality.

• Spectral-spatial analysis: we present results obtained from the parallel and concatenated combinations: E-ICA-RGF P and E-ICA-RGF C , and compare them with the following algorithms: 1) random subspace ensemble (E): proposed method without ICA and RGF; 2) random subspace ensemble with ICA (E-ICA): proposed method without RGF and 3) random subspace ensemble with RGF (E-RGF): proposed method without ICA.

To evaluate the influence of the final classifier, a comparison between and RF and RoF is shown. It should be noted that E, E-ICA and E-RGF are constructed in a parallel way, and σ s and σ r in RGF are set to 7 and 0.1, respectively.

• Parameter sensitivity analysis. We evaluate the influences of K, M , σ s and σ r on classification performances.

• Comparisons with other state-of-the art classifiers. Five state-of-the-art spectral-spatial classifiers, such as generalized composite kernels (GCK) [START_REF] Li | Generalized composite kernel framework for hyperspectral image classification[END_REF], rotation forest with Markov random fields (RoF-MRF) [START_REF] Xia | Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields[END_REF], random subspace with extended morphological attribute profiles (RS-EMAPs) [START_REF] Xia | Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles[END_REF], the SVMs with edge preserving filtering (SVM-EPF) [START_REF] Kang | Spectral-spatial hyperspectral image classification with edge-preserving filtering[END_REF] and image fusion and recursive filtering (IFRF) [START_REF] Kang | Feature extraction of hyperspectral images with image fusion and recursive filtering[END_REF], are added for comparison against the proposed methods. The settings of these methods can be found in the original references.

The following measures are used to evaluate the performances:

• Overall accuracy (OA): the percentage of correctly classified samples; and

• Average accuracy (AA): average percentage of correctly classified samples for individual class. 

A. Spectral analysis

We test the proposed E-ICA approach for spectral analysis and show the results on the two datasets. Tables II and III show the OAs and AAs obtained from the E-ICA method in comparison to ICA applied to the lower-and high-dimensional spaces for the AVIRIS and ROSIS images. From Tables II and III, it can be found that the average OA (AA) obtained for RF and RoF classifiers when applied to the original feature space of AVIRIS image are 61.60% (71.39%) and 66.46% (75.59%), respectively. The average OAs (AAs) achieved by RF and RoF classifiers when applied to the original feature space of ROSIS image are 69.18% (78.53%) and 75.62% (83.41%), respectively.

As observed in these two tables, the ICA results for the high-dimensional space do not improve the performances as the selected components in this case tend to be noisy, resulting in low accuracy classification. On the contrary, PCA-ICA approach leads to significant increase in the classification accuracy. This indicates that the pre-processing step (e.g., dimensionality reduction) helps ICA to provide better features for obtaining accurate classification results.

These results are consistent with the study presented in [START_REF] Falco | A study on the effectiveness of different independent component analysis algorithms for hyperspectral image classification[END_REF]. The proposed E-ICA method significantly increases the classification accuracy in comparison to the other two strategies since it adopts an ensemble strategy to combine the results obtained for ICA on the lower dimensional spaces (the subsets) while retaining spectral information. In particular, the two ICA algorithms, EBM and ERBM, yield better results and lower standard deviations than JADE and FastICA. Indeed, ERBM not only matches a wide range of distributions like EBM [START_REF] Li | Independent component analysis by entropy bound minimization[END_REF] but also considers sample dependence [START_REF] Li | Blind spatiotemporal separation of second and/or higher-order correlated sources by entropy rate minimization[END_REF], [START_REF] Fu | Blind source separation by entropy rate minimization[END_REF].

B. Spectral-spatial analysis

In this section, the results obtained for the proposed spectral-spatial classifiers, E-ICA-RGF P and E-ICA-RGF C are presented. With the help of RGF, E-ICA-RGF P and E-ICA-RGF C significantly improve the classification results compared with the classifiers which consider only spectral information (seen in Section VI.A). We would like to Thus, considering the balance of classification performance and computational complexity, EBM provides a good trade-off. In the following, we only present results obtained from the proposed spectral and spatial methods using EBM.

Tables IV and V report the classification accuracies achieved for the proposed methods as well as other compared methods using RF and RoF classifiers, respectively (Indian Pines AVIRIS image). Classification accuracies of University of Pavia ROSIS image are shown in Tables VI and VII. Figs. 4 and5 provide the classification maps (one sample out of the ten Monte Carlo runs). It can be seen that random subspace ensemble method does not improve the performance. The main reason is that we select a small number of features in each subset. For AVIRIS image, E-ICA and E-RGF produce higher OAs and AAs than RS and original, indicating the effectiveness of ICA and RGF techniques. E-RGF is superior to E-ICA for this dataset. For ROSIS image, the classification accuracy for classes 2, 5 and 8 decrease, leading to lower AA of E-RGF than the one of original E-ICA. This is due to the fact that when RGF is directly applied to the original feature space, it neglects the informative parts with small structures, such as shadow (class 2), trees (class 5) and asphalt (class 8). The ensemble strategy that combines the results obtained for ICA can extract the informative class-specific features, even for classes with small-scale objects. Followed by RGF, it ensures that the neighboring pixels belonging to the same class have similar feature values, thus decreasing the variability within regions belonging to the same class. This explains why the proposed methods have shown significantly better performances than E-RGF (see McNemar's test 2 in Table VIII).

In this case, the classification results obtained for the parallel combination (AVIRIS image) achieved 31.6, 31.5, 2 McNemar's test (Z) is calculated by

Z = f 12 -f 21 √ f 12 +f 21
, where, f 12 means the number of samples correctly classified by classifier 1 and incorrectly classified by classifier 2. The difference between classifiers 1 and 2 is to be statistically significant if |Z| > 1.96. Z > 0 indicates that classifier 1 is more accurate than classifier 2. TABLE IV: Indian Pines AVIRIS image. Classification results achieved by the RF classifier. For each method, "OA (%)", "AA (%)" and class-specific accuracies, "CA (%)" are reported.

Class

Original 

C. Parameter sensitivity analysis

In this part, we investigate the sensitivity of the proposed methods to parameter choice. Figs. 6 and 7 plot the OA as a function of the key parameters for the proposed E-ICA-RGF P (AVIRIS image) and E-ICA-RGF C (ROSIS image) with RF classifier. From Figs. 6 and7, it is observed that: 1) There is no pattern of dependence between K and the accuracy. The OA of concatenated combination does not decrease as K increases, indicating that RF is not sensitive to the increased dimensionality; 2) When M increases, the proposed method tends to give better performance at the expense of increased computational complexity; 3) For AVIRIS image, the proposed method achieves the best classification performance when σ s = 7 but the performance is satisfactory over a wide range of values as well. For the ROSIS image, the OA of the proposed method increases with σ s ; 4). The best range of σ r for the two datasets is between 0.1 to 0.3. Hence, based on the results obtained from AVIRIS and ROSIS images, selection of parameters is not very critical for the proposed methodology, which is an important added advantage.

The only parameter that seems to provide better performance in a small range is σ r . In practice, the users might select a small value of σ r as in our case to better preserve the edges of hyperspectral data and hence increase the discrimination between different classes. Finally, we present comparisons of the proposed methods against the aforementioned state-of-the-art spectralspatial classifiers, including GCK [START_REF] Li | Generalized composite kernel framework for hyperspectral image classification[END_REF], RoF-MRF [START_REF] Xia | Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields[END_REF], RS-EMAPs [START_REF] Xia | Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles[END_REF], SVM-EPF [START_REF] Kang | Spectral-spatial hyperspectral image classification with edge-preserving filtering[END_REF] and IFRF [START_REF] Kang | Feature extraction of hyperspectral images with image fusion and recursive filtering[END_REF], by considering different numbers of training samples (i.e., 10, 20, 30, 40, 50 samples per class). From Tables IX and X, we observe that the proposed methods outperform those methods in terms of classification accuracies and are more stable (with lower standard deviations) than other spectral-spatial classifiers. 

E. Discussion

For spectral information based classification, the proposed E-ICA is superior to ICA applied to either high or low dimensional space. The rationale behind the success is that random subspace ensemble is introduced to combine the results obtained for the subsets via ICA techniques. In this case, we can enhance the classification performance without losing spectral information. The results in Tables II andIII show that EBM and ERBM provide better classification results than JADE and FastICA in all the cases. The main reason is that EBM is a flexible density model to estimate the ICs [START_REF] Li | Independent component analysis by entropy bound minimization[END_REF], and ERBM, in addition to the use of this density model, incorporates sample dependence into the estimation procedure [START_REF] Li | Blind spatiotemporal separation of second and/or higher-order correlated sources by entropy rate minimization[END_REF], [START_REF] Fu | Blind source separation by entropy rate minimization[END_REF].

The proposed spectral-spatial methods, E-ICA-RGF P and E-ICA-RGF C , significantly improve the classification results compared with the use of only spectral information (E-ICA), indicating the importance of RGF in extracting spatial contextual information. The results shown in Tables IV, V, VI and VII indicate that both E-ICA-RGF P and E-ICA-RGF C are superior to E-ICA and E-RGF, demonstrating the effectiveness of combining ICA and RGF via an ensemble strategy. It should be noted that the orders of ICA and RGF are very important in our proposed methods. We have done an experiment by switching the ICA and RGF steps. Experimental results indicated that the classification accuracies are lower than our proposed methods, however, still higher than the ones of E-ICA and E-RGF. This is due to the fact that useful spectral information is lost after application of RGF, which prevents ICA to extract effective ICs. Moreover, other EPF techniques (e.g., relative total variation [START_REF] Xu | Structure extraction from texture via relative total variation[END_REF]) have also been tested An additional advantage of the proposed methods is the fact that parameter choice is not critical and does not need to be tuned finely. The users might select a small value of σ r as in our case to increase the classification performance of the proposed method.

VII. CONCLUSION

In this paper, a new methodology for spectral-spatial supervised classification of hyperspectral remote sensing image has been proposed. The presented methodology uses a combination of ICA and edge preserving filter. In particular, an ensemble strategy that combines the results obtained for ICA on the subsets is designed to retrieve effective spectral features in a high-dimensionality scenario without losing spectral information, i.e., where no prior dimensionality reduction is applied. More specifically, the ICA techniques are applied to each subset, which are randomly selected from the original feature space, and then the classification results obtained from ICs in each subset via a supervised classifier (e.g., RF or RoF) are integrated. Moreover, EBM and ERBM are introduced to the remote sensing community. EBM make uses of the non-Gaussianity property based on a flexible density model [START_REF] Li | Independent component analysis by entropy bound minimization[END_REF] and ERBM [START_REF] Li | Blind spatiotemporal separation of second and/or higher-order correlated sources by entropy rate minimization[END_REF], [START_REF] Fu | Blind source separation by entropy rate minimization[END_REF] adds the use of sample dependence into the estimation procedure. Hence, both provide attractive alternatives for performing ICA for remote sensing applications as well.

The analysis is also extended to the spatial information domain with the definition of RGF for extracting spatial information. RGF effectively removes noise and small details while preserving large-scale structures. In this case, it can provide complementary spatial information of the structures present in the scene following the application of ICA in each subset. Moreover, the parallel (E-ICA-RGF P ) and concatenated (E-ICA-RGF C ) strategies are proposed to combine multiple features via ICA and RGF. The proposed methods (i.e., E-ICA-RGF P and E-ICA-RGF C ) are tested on two real hyperspectral images, which are different in terms of spectral/spatial resolution. The results show the effectiveness of the proposed methods in extracting spectral and spatial features, providing higher classification accuracies when compared with state-of-the-art methods.

In our future studies, we will utilize other data sources (e.g., multi-temporal datasets) in the classification process.

Furthermore, the optimization of our algorithms to reduce the computational burden and classification problems will be investigated.
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  = [x 1 , ..., x D ] T = As, which can be viewed as a linear combination of D random variables-or random processes when sample dependence is taken into account-s = [s 1 , ..., s n ] T through a D × D non-singular mixing matrix A. The statistically ICs y = [y 1 , ..., y D ]

Fig. 1 :

 1 Fig. 1: Schematic of the proposed classification methods. (a) Parallel combination: E-ICA-RGF P . (b) Concatenated combination: E-ICA-RGF C .

•

  Step 5: combine the results together to generate the final classification map by a majority vote rule. The rule[START_REF] Plaza | Recent advances in techniques for hyperspectral image processing[END_REF] DRAFT
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 12 Indian Pines AVIRIS: The first hyperspectral image is recorded by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over the Indian Pines in Northwestern Indiana, USA. This scene, which comprises 220 spectral bands in the wavelength range from 0.4 to 2.5 µm with a spectral resolution of 10 nm, is composed of 145 × 145 pixels, and the spatial resolution is 20 m/pixel. The reference data with sixteen classes of interest is composed of 10336 pixels (seen in TableI). Figs.2(a) and (b) show respectively the three-band color composite image and the ground truth of AVIRIS hyperspectral data. University of Pavia ROSIS: The second experiment was carried out on the University of Pavia image of an urban area operated by Reflective Optics Spectrographic Imaging System (ROSIS)-03 optical airborne sensor.The original image is composed by 610 × 340 pixels, with a very high spatial resolution of 1.3 m/pixel and 115 spectral bands. In this work, 12 noisy channels were removed and the remaining 103 spectral bands are used for the investigation[START_REF] Plaza | Recent advances in techniques for hyperspectral image processing[END_REF]. Nine land cover classes were considered for classification (seen in TableI). Fig.3shows the three-band color composite image and reference map of University of Pavia data.[START_REF] Plaza | Recent advances in techniques for hyperspectral image processing[END_REF] DRAFT

Fig. 2 :

 2 Fig. 2: (a) Three-band color composite of AVIRIS image. (b) Ground truth.

Fig. 3 :

 3 Fig. 3: (a) Three-band color composite image of AVIRIS data. (b) Reference map.

  4 percentage points over original, E, E-ICA and E-RGF, respectively. From Figs. 4 and 5, without RGF smoothing, the classification maps of the original, E and E-ICA look noisy due to the existence of mixed pixels. The classification maps obtained for methods involving spatial information (see Figs. 4 and 5(e)-(f)) show more homogeneous regions.

Fig. 4 :

 4 Fig. 4: Indian Pines AVIRIS image. Classification results of (a) Original, OA = 62.04%. (b) E, OA = 62.84%. (c) E-ICA, OA = 69.37%. (d) E-RGF, OA = 73.27%. (e) E-ICA-RGF P , OA = 94.87%. (f) E-ICA-RGF C , OA = 95.32%.

Fig. 5 :

 5 Fig. 5: University of Pavia ROSIS image. Classification results of (a) Original, OA = 75.13%. (b) E, OA = 70.14%. (c) E-ICA, OA = 78.06%. (d) E-RGF, OA = 79.47%. (e) E-ICA-RGF P , OA = 94.93%. (f) E-ICA-RGF C , OA = 93.87%.

Fig. 6 :Fig. 7 :

 67 Fig. 6: Indian Pines AVIRIS image. Sensitivity of the proposed method: (a) influence of K (M = 16, σs = 7 and σr = 0.1), (b) influence of M (K = 10, σs = 7 and σr = 0.1), (c) influence of σs (K = 10, M = 16 and σr = 0.1) and (d) influence of σr (K = 10, M = 16 and σs = 7)

TABLE I :

 I Indian Pines AVIRIS and University of Pavia ROSIS image: class name and number of samples in reference

		AVIRIS		ROSIS
	No.	Name	Reference data	Name	Reference data
	1	Alfalfa	54	Bricks	3682
	2	Corn-no till	1434	Shadows	947
	3	Corn-min till	834	Metal Sheets	1345
	4	Bldg-Grass-Tree-Drives	234	Bare Soil	5029
	5	Grass/pasture	497	Trees	3064
	6	Grass/trees	747	Meadows	18649
	7	Grass/pasture-mowed	26	Gravel	2099
	8	Corn	489	Asphalt	6631
	9	Oats	20	Bitumen	1330
	10	Soybeans-no till	968		
	11	Soybeans-min till	2468		
	12	Soybeans-clean till	614		
	13	Wheat	212		
	14	Woods	1294		
	15	Hay-windrowed	380		
	16	Stone-steel towers	95		

TABLE II :

 II Indian Pines AVIRIS image. Overall and average accuracies obtained from the proposed E-ICA method in comparison to the ICA applied on the lower-dimensional space (PCA as dimensionality reduction) and high-dimensional space (entire dataset).

	Methods		OA	RF	AA	OA	RoF	AA
	Original		61.60±1.33 71.39±0.72 66.46±1.28 75.59±0.75
	Entire data-ICA	EBM FastICA 35.14±3.46 54.12±3.12 41.64±3.78 62.37±2.98 58.44±2.54 70.12±1.85 61.08±2.17 71.14±1.41
		EBM	65.91±1.71 76.46±1.61 67.58±1.65 77.92±1.43
	PCA-ICA	ERBM JADE	68.69±1.65 78.23±1.46 69.08±1.67 78.86±1.38 60.95±1.81 72.25±1.24 61.18±1.74 72.91±1.61
		FastICA 64.36±1.69 75.41±1.51 62.04±1.81 72.57±1.64
		EBM	68.82±1.62 79.33±1.50 68.02±1.21 78.28±0.81
	E-ICA	ERBM JADE	72.61±1.27 83.55±1.15 69.27±1.38 81.11±0.96 65.36±1.82 71.67±1.62 61.54±1.64 70.49±1.21
		FastICA 65.29±1.65 72.27±1.57 61.54±1.79 69.19±1.46
		VI. EXPERIMENTAL RESULTS AND DISCUSSION	

TABLE III :

 III University of Pavia ROSIS image. Overall and average accuracies obtained from the proposed E-ICA method in comparison to the ICA applied on the lower-dimensional space (PCA as dimensionality reduction) and high-dimensional space (entire dataset). this work we performed E-ICA-RGF P and E-ICA-RGF C with different ICA methods (e.g., EBM, ERBM, FastICA and JADE) and found that E-ICA-RGF P and E-ICA-RGF C with EBM and ERM perform slightly better than the ones with other ICA methods. The main weakness of ERBM is high computational complexity.

	Methods		OA	RF	AA	OA	RoF	AA
	Original		69.18±2.74 78.53±0.93 75.62±2.14 83.41±0.89
	Entire data-ICA	EBM FastICA 58.53±3.12 68.42±1.42 61.64±3.45 74.35±1.58 65.17±2.61 74.12±1.01 67.25±1.81 75.14±0.92
		EBM	75.68±2.11 83.19±1.01 73.92±1.95 82.70±0.86
	PCA-ICA	ERBM JADE	76.98±2.12 83.59±1.06 77.34±1.86 85.86±0.81 71.93±2.45 78.96±1.24 69.89±2.01 79.50±1.01
		FastICA 74.06±2.32 80.87±1.14 72.47±2.06 79.17±1.13
		EBM	76.61±2.00 84.46±0.77 76.37±1.73 84.05±0.68
	E-ICA	ERBM JADE	77.12±1.91 85.31±0.78 77.89±1.81 85.10±0.71 75.42±2.08 82.43±0.81 75.61±1.96 82.25±0.78
		FastICA 73.97±2.16 80.43±0.91 77.14±1.91 81.58±0.83
	emphasize that in						

TABLE V :

 V Indian Pines AVIRIS image. Classification results achieved by the RoF classifier. For each method, "OA (%)", "AA (%)" and class-specific accuracies, "CA (%)" are reported.

	Class	Original	E	E-ICA	E-RGF	E-ICA-RGF P E-ICA-RGF C
	1	82.50	84.58	90.42	96.25	96.88	96.67
	2	54.49	50.75	76.57	75.73	93.01	90.33
	3	57.67	61.63	57.10	76.53	91.17	88.72
	4	80.83	79.12	81.47	94.71	99.71	98.38
	5	85.05	84.43	87.69	85.93	95.46	93.75
	6	84.20	86.92	96.22	86.56	99.07	98.12
	7	80.00	85.38	87.69	98.46	99.23	100.00
	8	84.14	90.11	93.33	97.06	99.41	98.95
	9	83.00	87.00	63.00	95.00	99.00	99.00
	10	69.89	72.63	69.50	64.22	90.28	89.63
	11	45.44	52.91	32.68	58.40	82.78	83.21
	12	63.32	55.17	71.59	73.07	92.64	92.74
	13	96.43	95.44	99.62	92.86	99.34	97.31
	14	86.26	86.55	92.16	79.83	97.67	95.83
	15	61.57	51.89	59.51	86.97	97.54	98.43
	16	94.62	97.85	94.00	97.54	96.77	96.77
	OA	66.46±1.28 66.99±1.45 68.02±1.21 74.40±1.67	91.97±0.92	91.01±0.84
	AA	75.59±0.75 76.40±0.89 78.28±0.81 84.94±0.94	95.56±0.63	94.86±0.61

TABLE VI :

 VI University of Pavia ROSIS image. Classification results achieved by the RF classifier. For each method, "OA (%)", "AA (%)" and class-specific accuracies, "CA (%)" are reported.

	Class	Original	E	E-ICA	E-RGF	E-ICA-RGF P E-ICA-RGF C
	1	70.38	73.05	80.81	71.30	95.81	94.23
	2	100.00	100.00	99.72	74.81	95.64	95.32
	3	99.15	99.18	99.76	94.85	99.22	99.00
	4	64.97	65.73	77.01	87.12	96.68	97.78
	5	90.47	91.07	95.36	72.25	93.24	92.29
	6	62.59	60.84	69.75	73.89	94.45	97.57
	7	64.19	57.65	72.05	71.36	90.88	92.08
	8	68.40	69.16	75.66	59.60	92.76	92.18
	9	86.62	86.89	90.00	67.67	96.41	97.91
	OA	69.18±2.74 68.59±2.64 76.61±2.00 73.24±1.88	94.54±1.83	95.83±1.37
	AA	78.53±0.93 78.17±0.91 84.46±0.77 74.76±1.37	95.01±0.67	95.37±0.62
	D. Comparisons with other-state-of-the art classifiers			

TABLE VII :

 VII University of Pavia ROSIS image. Classification results achieved by the RoF classifier. For each method, "OA (%)", "AA (%)" and class-specific accuracies, "CA (%)" are reported.

	Class	Original	E	E-ICA	E-RGF	E-ICA-RGF P E-ICA-RGF C
	1	77.46	81.53	84.53	82.64	95.88	88.64
	2	99.98	99.93	99.88	75.94	95.09	95.07
	3	99.18	99.33	99.85	94.63	99.49	98.21
	4	83.31	77.94	83.09	92.54	95.77	95.86
	5	93.12	92.92	95.54	81.97	92.55	90.39
	6	67.94	59.69	67.62	83.50	95.04	95.79
	7	69.48	64.09	64.28	82.72	89.33	87.86
	8	74.21	74.31	76.84	57.16	89.58	89.90
	9	86.00	86.01	84.78	82.09	95.70	94.97
	OA	75.62±2.14 71.47±1.98 76.37±1.73 80.39±2.15	94.06±1.02	93.53±1.03
	AA	83.41±0.89 81.75±0.92 84.05±0.85 81.47±0.95	94.27±0.61	92.97±0.63

TABLE VIII :

 VIII Statistic of the McNemar's test .Each case of the Table represents Z cr where c is the column and r is the row.

	Methods	AVIRIS RF RoF	ROSIS RF RoF
	Z cr		E-ICA-RGF C	
	Original	38.51 25.34 50.34 40.87
	E	39.27 24.83 51.24 42.65
	E-ICA	26.14 29.53 37.25 37.23
	E-RGF	16.15 18.21 39.41 30.24
	E-ICA-RGF P	1.21	-0.99	3.14	-2.01

TABLE IX :

 IX Indian Pines AVIRIS image. Classification accuracies obtained from the proposed methods in comparisons to other spatial-spectral classifiers.

	Samples per class	RoF-MRF [27]	GCK [25]	RS-EMAPs [16] SVM-EPF [29]	IFRF [30]	E-ICA-RGF P	E-ICA-RGF C
	10 samples	OA AA	74.14±3.21 84.21±1.63	81.21±2.78 86.78±1.52	82.15±2.20 88.14±1.42	62.57±3.25 67.84±1.78	77.05±3.01 72.47±1.72	84.44±1.85 91.39±1.15	86.30±2.15 91.86±1.39
	20 samples	OA AA	82.11±2.71 90.27±1.54	86.24±1.89 90.15±1.34	87.13±1.82 90.78±1.14	72.46±1.86 75.14±1.32	87.12±1.76 80.26±1.32	90.92±1.63 95.13±0.85	90.41±1.51 95.78±0.81
	30 samples	OA AA	86.24±2.65 92.76±1.21	88.35±1.59 92.62±0.73	92.14±1.20 94.71±0.68	78.51±2.13 80.43±1.14	89.65±1.85 82.53±1.09	93.15±1.19 96.23±0.59	93.43±0.99 96.23±0.60
	40 samples	OA AA	87.78±1.72 93.52±1.01	90.42±1.23 94.63±0.72	93.18±1.01 95.18±0.69	82.86±1.86 85.13±1.17	91.56±1.47 86.78±0.83	95.35±0.92 97.53±0.38	95.31±0.87 97.11±0.35
	50 samples	OA AA	90.74±1.34 94.02±0.86	92.88±1.02 95.52±0.68	93.84±0.86 95.80±0.52	85.19±1.32 86.74±0.59	94.11±1.04 88.26±0.82	95.78±0.69 97.63±0.46	95.90±0.72 97.89±0.48

TABLE X :

 X University of Pavia ROSIS image. Classification accuracies obtained from the proposed methods in comparisons to other spatial-

	spectral classifiers.							
	Samples per class	RoF-MRF [27]	GCK [25]	RS-EMAPs [16] SVM-EPF [29]	IFRF [30]	E-ICA-RGF P	E-ICA-RGF C
	10 samples	OA AA	79.14±3.65 85.62±1.23	84.53±3.19 89.79±1.14	85.16±3.23 89.15±1.27	76.35±4.08 78.42±1.49	77.18±3.31 78.51±1.24	86.12±2.95 90.46±1.12	85.79±3.15 90.60±1.09
	20 samples	OA AA	84.88±2.72 89.13±1.08	89.53±2.81 92.28±1.14	89.61±2.28 92.87±1.01	86.21±2.89 87.14±1.21	86.78±2.34 83.52±1.19	92.56±1.96 94.02±0.76	92.91±2.06 94.08±0.72
	30 samples	OA AA	89.27±2.35 91.46±1.27	90.62±2.59 94.53±0.97	92.87±1.98 94.46±0.87	88.19±2.46 87.51±1.31	89.32±2.11 84.41±1.18	94.54±1.83 95.01±0.67	95.83±1.37 95.37±0.62
	40 samples	OA AA	91.30±1.31 92.98±0.85	93.11±1.28 95.12±0.96	93.16±0.99 94.98±0.81	91.75±1.11 93.78±0.96	92.07±1.16 92.22±0.83	95.94±0.94 95.73±0.73	95.86±0.86 95.79±0.71
	50 samples	OA AA	92.75±1.00 94.11±0.65	94.25±1.04 96.03±0.45	94.18±0.91 95.87±0.53	93.05±0.98 93.78±0.61	93.18±0.89 92.86±0.86	96.73±0.72 96.82±0.34	96.49±0.70 96.24±0.36

[START_REF] Plaza | Recent advances in techniques for hyperspectral image processing[END_REF] DRAFT

For the minority class Grass/pasture-mowed and Oats, we select half of the samples for training (10 and 13 samples respectively).October 12, 
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