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Gauss' principle of least constraint is solved in a sequential fashion via dynamic programming in this paper. The solution itself constitutes a new principle for constrained motion, which we may name the Bellman-Gauss principle for constrained motion.

INTRODUCTION

In 1829, C. F. Gauss stated his celebrated principle of least constraint, which subsumes all of analytical mechanics [1 J. The principle takes the form of a constrained quadratic optimization problem. In this paper, Bellman's principle of optimality is used to solve Gauss' problem in a sequential fashion. The solution itself constitutes a new principle of analytical mechanics, which we may name the Bellman-Gauss principle for constrained motion.

GAUSS' PRINCIPLE OF LEAST CONSTRAINT

Consider a system of p particles, the ith particle of which has mass mi, displacement vector xi in inertial Cartesian coordinates, velocity vector xi, and acceleration vector Xi• The external force on the ith particle in rectangular coordinates in the inertial frame of reference is fi. If there were no constraints present, the free motion acceleration of the ith particle would be 8i = f/mi. Assume, though, that the particles are subject to equality constraints of both holonomic and nonholonomic type. A task of theoretical mechanics is to determine, at any timet, the actual accelerations x, x 2 , ... , :Xp resulting from both the impressed forces and the constraint forces. Let x be the n x 1 actual acceleration vector obtained by stacking the three-dimensional ac- celeration vectors X1, x2, ... , Xp in the usual fashion, n = 3p, and a be the n x 1 free motion acceleration vector obtained by stacking the'three-dimensional free motion acceleration vectors a 1 , a 2 , ... , ap. Then, Gauss' principle of least constraint states that the actual acceleration vee-tor x is the one that minimizes G, where [START_REF] Gauss | Uber ein neues allgemeines Grundgesetz der Mechanik[END_REF] subject to whatever the constraints might be on the accelerations. As usual, superscript T denotes transposition, and M is the n x n diagonal mass matrix.

For all the bilateral constraints treated iD Lagrangian mechanics, upon differentiating the holonomic constraints twice and the nonholonomic constraints once with respect to the time t, one is left with a consistent linear system of constraint equations for the acceleration vector x Ax=b,

where A is an m x n matrix and b is an m x 1 vector in which m is the number of constraints.

The matrix A need not be of full rank. Given initial conditions on x and x, such differentiations of the constraints do not produce any loss in generality. In this case, Gauss' principle actually takes the form of minimizing G subject to the linear constraints [START_REF] Lawson | Solving Least Squares Problems[END_REF]. The matrix A and the vector b may be functions oft, x, and x.

To recast Gauss' principle, let

so that

x = M-1 1 2 y +a. (4) 
Consequently, equations ( 1) and ( 2) are equivalent to [START_REF] Kalaba | Algorithms for generalized inverses[END_REF] and

AM-1 1 2 y = b -Aa. (6) 
Gauss' principle is then reduced to the problem of finding the shortest length vector y such that the consistent equation ( 6) is satisfied. As is known [START_REF] Lawson | Solving Least Squares Problems[END_REF], the solution to this problem is [START_REF] Bellman | Numerical Inversion of Laplace Transforms[END_REF] or equivalently [START_REF] Kalaba | On constrained motion[END_REF][START_REF] Udwadia | On motion[END_REF],

x =a+ M-1 1 2 ( AM-1 1 2 ) +(b-Aa), (8) 
where (AM-1 1 2 )+ is the Moore-Penrose generalized inverse [START_REF] Kalaba | Algorithms for generalized inverses[END_REF] of the matrix AM-1 1 2 .

In the following, we present an alternative approach to solving this shortest length problem via Bellman's principle of optimality [START_REF] Bellman | Dynamic Programming[END_REF][START_REF] Bellman | Numerical Inversion of Laplace Transforms[END_REF].

SOLUTION VIA BELLMAN'S PRINCIPLE OF OPTIMALITY

Let C = AM-1 1 2 and d = b-Aa. Apparently, C is an m x n matrix and d is an m x 1 vector.

Suppose that the rank of the matrix C is r, and its first r columns, c1. c 2 , ..• , Cr, are linearly independent (if C is not in this form, it can be transformed into this form in various ways [START_REF] Kalaba | Solving shortest length least squares problems via dynamic programming[END_REF]). Let ck be the kth column of the matrix C, k = 1, 2, ... , n. Gauss' principle is then equivalent to the problem of finding the set of scalars Y1, Y2, ... , Yn such that y~ + y~ + • • • + y~ is minimum, and concurrently the consistent set of linear equations C1Y1 + C2Y2 + • • • + CnYn = d is satisfied.

The imbedding procedure of dynamic programming suggests the following. Let gk(dk) be the value of y~ + y~ + • • • +y~ when using an optimal set of scalars Y1, y2, ... , Yk, where c1Y1 + C2Y2 + • • • + CkYk = dk is a consistent set of linear algebraic equations, dk is an m x 1 vector, and k = r, r + 1, ... , n. Optimal is in the sense that this particular set of scalars Ylt y2, ... , Yk makes the value of Y? + y~ + • • • + y~ be minimum. Then, Bellman's principle of optimality1 leads to the basic recurrence relationship k = r + 1, r + 2, ... , n. [START_REF] Kagiwada | Numerical Derivatives and Nonlinear Analysis[END_REF] . ~ This is because once Yk is chosen, there is an immediate cost of y~, and Y1. Y2, ... , Yk-1 have to be chosen so that Y?

+ y~ + • • • + yL 1 is minimum subject to the consistent constraint (10)
But, by definition, this minimum is Yk-l(dk-CkYk). Therefore, Yk must be chosen to minimize the sum in equation [START_REF] Kagiwada | Numerical Derivatives and Nonlinear Analysis[END_REF]. The reason k starts from r + 1 is that there is one and only one set of scalars Y1, Y2, ... , Yr that fulfills the constraint C1Y1 + c2Y2 + • • • + CrYr = dr, and hence there is no freedom in choosing the scalars Yl. Y2, ... , Yk, when k ~ r, in view of the independence assumption.

Denote Cr to be the m x r matrix whose columns are c1, c2, ... , Cr and y(r) to be the r x 1 vector whose elements are y1, Y2, ... , Yr• Since c1, c2, ... , Cr are assumed to be independent, so that the matrix C~Cr is of dimension r x r with rank r, it follows that the inverse (C~Cr)-1 exists. Thus, the unique solution to the consistent set of linear algebraic equations Cry(r) = dr, in vector form, is

Y <rl -(eTc )-1 cT d - r r r r• (11)
Consequently, by definition,

where R,. is an m x m positive semidefinite symmetric matrix. Assuming Yk-1(dk-1) = dL 1 Rk-1dk-1, where Rk-1 is an m x m positive semidefinite symmetric matrix, we now prove that Yk(dk) has the form Yk(dk) = dJRkdk, where Rk is an m x m positive semidefinite symmetric matrix and k = r + 1, r + 2, ... , n.

From the recurrence relation ( 9), we see that fork= r + 1, r + 2, ... , n,

Yk(dk) =min {y~ + Yk-l(dk-CkYk)} =min {y~ + (dk-CkYk) TRk-l(dk-CkYk)} Yr. Yr.
=min {y~ + dJRk-1dk-2dJRk-1CkYk + cJRk-1CkYn

Yr.

(15) =min { (1 + cJRk-1ck) y~ + dJRk-ldk-2dJRk-1CkYk}.

Yr.

Since the first order condition for the minimizing value of Yk is (25)

k = k-1- TR ' 1+ck k-1Ck k = r + 1,r + 2, ... ,n.
Therefore, the sequence of Rn Rr+b ... , Rn is now obtainable through formulas ( 13) and ( 22).

The optimal values of y(r), Yr+1,Yr+2, ... ,JJn can be calculated via equation ( 11) and equation (23) or (24). In brief, to find the shortest length solution to the consistent set of linear algebraic equations Cy = d, where C is a matrix with rank r whose first r columns are linearly independent, we may use the following {3 -R algorithm. We carry out the following sequence of calculations:

(28)

f3n = Rn-lCn, D D f3nf3J ... "n = .L"n-l -1 + cJ f3n • (29) 
Only f3r+l, f3r+2, ... , f3n need to be stored. The optimal set of scalars Yn, Yn-1> ••• , Yl is then obtained by Once y is determined, xis obtained from equation (4).

THE BELLMAN-GAUSS PRINCIPLE FOR CONSTRAINED MOTION

Gauss' principle describes the relationship between the actual accelerations and the free motion accelerations. The algorithm derived from Bellman's principle of optimality gives an algorithm for converting a set of free motion accelerations to a set of actual accelerations. It is thus seen that equations (26)-(33) plus equation (4) constitute a free standing principle of analytical mechanics, which we may call the Bellman-Gauss principle for constrained motion.

AN APPLICATION

Consider a simple pendulum problem in mechanics, in which we want to find the equations of motion for a material point with mass m and• coordinates ( X1, x2). See Figure 1.

According to Gauss, the actual acceleration vector x for this pendulum is the one that minimizes 

-C2Y2 = m1/2x11 -(±~ + ±~) + gx2-m 2x2m2 X2 [gx2-(±~ + ±~)] { -1/2 1/2 } x 1 + x 2 (44) m 1 / 2 x1 [gx2-(±i + ±~)] = x2 + x2 1 2
From equation ( 4), it is seen that the equations of motion for the pendulum are .

. -1/2 opt YX1X2 -X1 (±i + ±~) x1 = m Y1 = 2 2 ' x1 +x2 X -gx21 -X2 (±21 + j;22) .. --1/2 opt - 2 [gx2 -(±21 + ±22)] -g = _ __;;_---::,..--'-:----"'-'- X2 -m Y2 -g -xi + X~ xi + X~ (45) 
which are seen to be correct by standard methods. These equations were derived for x1 =/:-0. However, they hold even when X1 = 0.

DISCUSSION

The Bellman-Gauss principle introduced in this paper provides new insights into the nature of constrained motion. Not only is the relationship between the actual accelerations and free motion accelerations specified in a new way, but also the interrelationship among the actual accelerations of all the particles is prescribed. Since Gauss' principle holds even when the system is described in generalized coordinates [START_REF] Kalaba | Solving shortest length least squares problems via dynamic programming[END_REF], the possibilities are far wider than is indicated above. In practical applications, the FEED (Fast and Efficient Evaluation of Derivatives [START_REF] Kagiwada | Numerical Derivatives and Nonlinear Analysis[END_REF]) procedure would be employed to automatically calculate all the needed derivatives for the holonomic and nonholonomic constraints. The potential utility of the Bellman-Gauss principle, both conceptually and computationally, remains to be explored further.
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 122 Figure 1. The motion of a pendulum.

Bellman's principle of optimality states: "An optimal policy has the property that whatever the initial decision is, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision."