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QUADRATIC PROGRAMMING IN MECHANICS: DYNAMICS OF 
ONE-SIDED CONSTRAINTS 

J. J. MOREAUt 

1. Let S be a frictionless mechanical system with n degrees of freedom; 
we denote by q1 , q2 , · • · , qn the generalized coordinates, representing the 
point q of a configuration space. A finite family of one-sided constraints 
is imposed on the system; the kinematic effect of these constraints is ex­
pressed by the conditions (assumed compatible) 

(1) fa(q, t) ~ 0, a E I, finite set of indexes. 

For instance, some solid parts of the system may be in contact or become 
detached but they can never overlap. These constraints are frictionless, 
i.e., as long as the equalities hold in ( 1), the motion of the system is 
governed by Lagrange's equations with multipliers "Aa , a E /.The mechani­
cal meaning of these multipliers is to describe the reaction forces associated 
with possible contacts and, conventionally, we have 

(2) 

i.e., the force of reaction is directed towards the region defined by ( 1) and 

(3) Aafa(q, f) = 0, for all a E /, 

i.e., as soon as a contact ceases, the corresponding reaction becomes zero. 
The set of the active forces experienced by the system is described by 

its covariant components Q' (continuous functions of q, t) relative to the 
coordinates ( q;). 

The kinetic energy is expressed as 

(4) T(q, q, t) = !L aik(q, t)q;qk + L b'(q, t)q; + c(q, t). 
i,k i 

We shall always assume that the considered configuration is regular with 
respect to the coordinates (q;) so that the quadratic part of this expression 
is positive definite. 

It is usual to study such a mechanical system by starting with the tenta­
tive hypothesis that all the contacts fa = 0 are present at any instant. 
Then, by putting aja/aq; = ua', then differential equations of Lagrange 
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(5) c!_ (a:) - aT= Qi + L Aa ua\ 
dt aq; aq; aEI 

together with the vanishing of fa (for every a E I), determine the func­
tions q;( t) and Aa( t). 

As long as the values "Aa so calculated are all nonnegative, the initial 
hypothesis of permanent contacts is accepted. When, on the contrary, some 
of the "Aa become negative, the hypothesis is rejected: some of the contacts 
must cease. But, as Delassus [1] pointed out, the contacts fa which cease 
are not necessarily those for which the above computation gives a negative 
"Aa (simple counterexamples may be formulated). Delassus' arguments to­
wards a correct solution were rather intricate; actually the author has 
proved [4] that the determination of the acceleration (i.e., the second 
derivatives ij;) is governed by a generalization of Gauss' variational prin­
ciple; this leads to a typical quadratic programming procedure. An ex­
tremal principle also holds which characterizes the values of the one-sided 
reactions (i.e., the "Aa), independently of the accelerations: this leads to a 
quadratic programming problem dual to the preceding one. 

2. Our problem may be expressed in the following manner. 
For t = t0 , the configuration q (i.e., the values of the q;(to)) and the 

velocity q (i.e., the values of the derivatives q;(to)) are given. These data 
are assumed compatible with the contacts fa = 0 for a E K C I; that 
means that 

(6) ( df a) - '"" i .. + aj a - 0 - - LJ Ua q, - - , 
dt t~to i at for all a E K, 

while fa> 0 for a \£ K. The question is to find the state of acceleration after 
to , i. e., the right-limits ij;( to + 0). 

By continuity, for a E£ K, we have fa> 0 during an interval (to, t0 + e) 
so that the corresponding contact does not intervene. For a E K, on the 
contrary, the conditions ( 1), together with ( 6), yield 

(7) 

where sa is a known quantity. Using the energy expression (4), Lagrange's 
equations, analogous to (5), may be written 

(8) 

where zi denotes known quantities. The Aa are nonnegative by virtue of (2), 
and ( 3) yields 

(9) 
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We can prove that the conditions (2), (7), (8), (9) define one and only one 
set of values for the unknowns q;, i = 1, 2, · · · , n, and Aa, a E K; this 
solution possesses the following variational characterization: in the Rn -space 
of q, the inequalities (7) define a closed convex polyhedral region e (non­
empty, since the set of inequalities ( 1) is assumed to permit a motion). One 
proves that the above solution corresponds to the unique point q of e where 
the function 

(10) G 1 " ik.. .. " i .. = 2 £...... a q;qk - £...... z q; 
i,k i 

attains its minimum. The proof may be derived from Kuhn and Tucker's 
theory of multipliers in nonlinear programming. A direct derivation may 
also be found in [4]. 

On the other hand, Gauss' principle (of "least deviation") may be formu­
lated, for the classical case of two-sided differentiable constraints, in the 
following way: given the configuration and the velocity state of such a 
classical system 8 at an instant to , the resulting acceleration state is, among 
all the acceleration states compatible with these data and with the con­
straints, that one which confers its minimum to the "Appell function" 

a= ! 1 r 2 dm - 1 r·dF, 
8 8 

where r denotes the acceleration of the generic element of 8, dm is the mass 
measure defined on 8, while the vectorial measure dF represents the active 
forces experienced by 8. Since it happens that, for an arbitrary motion de­
fined by some q;(t), the function a has exactly the expression G written in 
(10) (disregarding an additive constant), the variational characterization 
given above for the solution of our problem means that Gauss' principle is 
still valid for systems with one-sided frictionless constraints. 

3. In order to deal with duality, it is useful to introduce additional geo­
metrical terminology. Let (e;), i = 1, 2, · · · , n, represent a base in an 
n-dimensionallinear space E and let ( e;) be the dual base in the dual space 
E'; we denote by (, ) the duality bilinear form. The symmetric positive 
regular matrix aik represents, relative to these bases, a one-to-one linear 
mapping A of E' onto E. We provide E with an Euclidean metric by de­
fining, for every pair x E E, y E E, the scalar product 

Let us put 

(xI y) = (x, A-1(y)) = (y, A-\x)). 

q = Lii;e; E E', 
i 
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so that the system of Lagrange's equations (8) is written as an equation 
inE, 

(11) A(ij) = Z + L AaUa • 
aEK 

Instead of ij E E', we now introduce the new unknown x = A ( q) E E, so 
that ( 11) becomes 

(12) X-L AaUa = Z. 
aEK 

The inequalities (7) are rewritten as 

(13) ( Ua I X) - Sa ~ 0, 

defining thereby a closed convex polyhedral region C in E. 

for all a E K, 

Then the variational characterization stated above is formulated with 
regard to the Euclidean metric of the space E: the solution x is, in C, the 
nearest point from the known point z. 

4. We are now prepared to invoke the author's duality-decomposition 
theorem on quadratic programming (cf. [3], [8]). This theorem wasderived 
for the more general case of infinite-dimensional Hilbert spaces in connection 
with problems of unilaterality in the mechanics of continua. In contrast 
with other duality treatments, the elements of a pair of dual problems belong 
to the same self-dual (Hilbert) space, so that they may be added together. 

Let us first recall Fenchel's [2] concept of conjugate convex functions 
(slightly modified by the author, in order to accept + oo as a value for such 
functions): we denote by fo(E) the totality of the functions everywhere 
defined in E, taking their values in (- oo, + oo ], which are convex, lower 
semicontinuous, and other than the constant + oo . For instance, given a 
nonempty subset P of E, the indicatrix function 

if X E P, 
if X EE P, 

belongs to f 0(E) if and only if P is closed and convex. Now one easily 
proves that a one-to-one involutory mapping of f 0(E) onto itself is defined 
by associating to any f E f 0(E) its conjugate or dual function 

(14) g(y) = sup [(xI y) - f(x)]. 
:&EE 

In other words, g is the smallest element in the set of functions for which 

(15) f(x) + g(y) ~ (xI y) 
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for every x andy in E. The points x andy are called conjugate, relative to the 
pair of dual functions (f, g), if the equality holds in ( 15). 

For any z E E and f E ro(E) we denote by prox1 z (proximal point of z 
with regard to the function f) the point where the function 

u -7! II z- u 11 2 + f(u) 

attains its minimum (existence and uniqueness of this point are assured) : 
specifically, iff is the indicatrix function of a closed convex set C, prox1 z is 
the nearest point from z which lies inC, denoted by proj 0 z. 

Then our duality-decomposition theorem may be stated in the following 
form: Iff and g are dual functions, every z E E equals the sum of x = prox1 z 
and y = prox0 z; the points x and y are conjugate relative to (f, g) and they 
embody the unique decomposition of z into a sum of two such terms. 

A particularly interesting case occurs when f and g are the indicatrices 
of two mutually polar closed convex cones P and Q, i.e., 

Q = {y E E: (xI y) ~ 0 for every x E P} 

(and conversely). Here the theorem gives: Every z E E equals the sum of 
x = projp z andy = projQ z; the elements x andy are orthogonal and embody 
the unique decomposition of z into a sum of two orthogonal elements respectively 
belonging toP and Q. This result may be regarded as a generalization of the 
classical decomposition of E into the direct sum of two orthogonal com­
plementary subspaces. 

5. Returning to our mechanical problem, let us take as f the indicatrix 
of the set C defined by ( 13). The dual function 

g(y) = sup [(xI y) - f(x)] = sup (xI y) 
xEE xEC 

is the support function of C. Our generalization of Gauss' principle means 
that the unknown x defined in §3 has the value x = prox1 z. Then, by the 
duality -decomposition theorem, ( 12) leads to a variational characterization 
of the (abstract) reaction exerted by the system against its set of one-sided 
constraints, i.e., the term 

This term equals the proximal point prox0 z. 
Incidentally, we may note that, in the present case, the set Cis a (non­

homogeneous) cone with vertex at the point xo which would be found for x, 
in the case where the system underwent the two-sided constraints fa = 0, 
a E K. That leads to an alternate characterization of prox0 z: it is the near­
est point from Z - Xo in the convex polyhedral homogeneOUS COne C1 gener-
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ated by the -ua, a E K. Actually, z - x0 is the value found for there­
action in this hypothetical case of two-sided constraints; in that sense, it can 
be said that the motion :in the presence of one-sided constraints takes place 
in such a way that the one-sided reactions differ the least from the reactions 
corresponding to the two-sided case. 

6. In conclusion, we hope that such a theory may prove useful in studying 
the dynamical response of mechanical transmissions affected by looseness. 
The author's main concern in mechanics is with the infinite-dimensional 
cases appearing in the mechanics of continua, e.g., inception of cavitation 
in a liquid flow ( cf. [6], [7]). In this connection, conjugate convex functions 
in topological linear spaces, more general than Hilbert's, have been in­
tensively studied for three years, together with various related notions such 
as subdifferentiability, inf-convolution (see, e.g., [5]). 
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