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INTERACTIVE VIDEO COLORIZATION WITHIN A VARIATIONAL1

FRAMEWORK2

F. PIERRE†‡§¶, J.-F. AUJOL†‡ , A. BUGEAU§¶, AND V.-T. TA¶‖3

Abstract. This paper deals with the difficult problem of video colorization. Methods in the4
literature are generally based on spatio-temporal video blocks, or on frame-to-frame color propagation5
methods, each technique having its own advantages and drawbacks. In this paper, we present both a6
novel automatic frame-to-frame propagation approach and an interactive correction method within7
a variational framework. The proposed method propagates colors from an initial colorized frame to8
the whole grayscale video sequence. The automatic propagation results may be visually unsuitable in9
some cases. To overcome this limitation, a spatio-temporal functional with a user-guided correction10
is introduced. Two fast primal-dual algorithms are designed to solve the proposed variational models.11
Numerical results show the efficiency and the potentiality of the proposed approach in comparison12
with state-of-the-art methods.13

Key words. colorization, optimization, non-local methods14
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1. Introduction. To restore old black-and-white movies and make them more16

attractive, among young people for instance, cinema and entertainment industries17

frequently broadcast colorized versions. In France, in 2014, Apocalypse, a historical18

documentary by I. Clarke and D. Costelle was realized from archives colorized by F.19

Montpellier. The broadcast gathered over 18.5% of viewers over the age bracket 11-1420

during the first two episodes [21]. The colorization for movies is mostly performed21

manually, which is a very tedious work. As an example, the colorization of about four22

hours of video sequences for the Apocalypse documentary required forty-seven weeks23

by F. Montpellier and his team.24

In this work, we assume that a grayscale video is available and one of its frames25

is colorized. This frame can be colorized by an expert or automatically [37, 28, 29].26

Video colorization results have to be visually natural on both constant and textured27

parts, while a temporal consistency has to be respected.28

Traditionally, colorization methods (image or video) assume that the grayscale29

image corresponds to a luminance channel Y. The Y channel is defined as a weighted30

average of the RGB channels: Y = 0.299R + 0.587G + 0.114B. The luminance-31

chrominance spaces propose to integrate the Y channel with two other ones, called32

chrominances. In practice, given the luminance channel Y, colorization methods esti-33

mate two chrominance channels before converting into the RGB space while keeping34

the luminance Y unchanged. Luminance-chrominance spaces usually used in image35

or video colorization are the lαβ [9], YUV [22] or YCbCr [38].36

For image colorization, state-of-the-art methods can be divided into three cate-37

gories: the first ones that diffuse scribbles over the image (e.g., [22, 38]), the second38

ones that use non-local techniques (e.g., [37, 15]), and the others combining the two39

approaches (e.g., [18, 28]).40

Extension from image to video colorization are also proposed. State-of-the-art41

methods can be divided into two categories: the ones that diffuse colors from scribbles42
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2 F. PIERRE, J.-F. AUJOL, A. BUGEAU AND V.-T. TA

over a three dimensional block (2D images + time), and the others that propagate43

colors from one frame to its adjacent ones until the whole video sequence is colorized.44

This last category is called frame-to-frame propagation in this paper.45

The three dimensional diffusion approaches.. The colorization methods described46

in this paragraph perform results with a visually natural temporal consistency.47

To recover a colorized video, it is required to compute the chrominance channels.48

In the seminal paper [22], Levin et al. propose to propagate the values of chrominances49

of some scribbles given by a user. The propagation over the whole video sequence is50

performed by minimizing a quadratic function that favours a coupling of luminance51

and chrominance contours. This criterion is based on neighbor pixels differences in52

both spatial and temporal dimensions. Neighborhoods in the temporal dimension53

are built after image registration from Lucas-Kanade optical flow estimation [23].54

By considering three dimensional blocks, the method naturally deals with occlusions55

and dis-occlusions. Inspired from [18], Zhen et al. [39] extend the method of [22] to56

automatic exemplar-based (see, e.g., [37]) video colorization. The approach of [22]57

being dependent on the optical flow computation, Lang et al. [20] propose to compute58

a more robust estimation, based on an energy minimization, to improve colorization59

results.60

The initial quadratic function of [22] is not adapted to textured images. Sheng et61

al. [33] replace the spatial distance by a function depending on Gabor features [24].62

The definition of the optical flow is also extended to the Gabor feature space. The63

method can deal with textures and is more robust to the noise than the original64

function of [22].65

All these techniques are based on the minimization of a quadratic criterion com-66

puted on the whole video sequence.67

Heu et al. [16] diffuse the chrominances of the scribbles to the other pixels with68

a priority order. The method estimates the reliability of a color for each pixel to its69

neighbors. For the video colorization, the reliability is computed between frames with70

a block-matching approach. Hyun et al. [17] extend [16] and modify the reliability71

within a multi-scale framework. These two last methods perform suitable results on72

smooth images but the extension to textured videos is only proposed as a perspective.73

Finally, two methods interpolate chrominance channels. Yatziv et al. [38] blend74

the colors of the scribbles according to the spatio-temporal geodesic distance from75

one pixel to each scribble.76

For textured images, Kang et al. [30] use the Reproducing Kernel Hilbert Space77

for the interpolation of chrominances on textured images. The video colorization is78

performed by extending the functions to the three dimensions.79

Methods working on the three dimensional blocks can deal with occlusion and dis-80

occlusion problems. In contrast, the interactivity is difficult to reach due to the large81

amount of pixels to process and the computational burden. Indeed, the whole video82

sequence has to be processed and checked by the user after scribbling. The division83

of the video in some smaller sequences can be considered, but the concatenation of84

the colorized sequences may produce temporal inconsistencies.85

To tackle these issues, the frame-to-frame approaches are presented in the follow-86

ing.87

The frame-to-frame approaches.. In the seminal paper [37], Welsh et al. apply88

their exemplar-based image colorization method to each frame of a video sequence.89

This method is able to perform neither temporal nor spatial consistency.90

Sykora et al. [34] address the problem of cartoon colorization. This approach91
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Table 1
Summary of the state-of-the-art methods. We propose to merge all their advantages into a

variational framework.

Methods Patch based Optical Flow Regularization
[34]

√
×

√

[19, 16, 17]
√

× ×
[33, 39, 20, 22] ×

√ √

[35] ×
√

×
[25, 38, 30] × ×

√

Our
√ √ √

time

Quality control by 
the user, and 

correction with 
scribbles

Correction
Model (31)

Frame-to-frame
propagation Model (1)

Initial frame

Frame-to-frame
propagation Model (1)

Fig. 1. Overview of the whole approach. For most of the sequence, the frame-to-frame propa-
gation model computes suitable results (in green). In the case of dis-occlusion area, a user-guided
approach is mixed with the unsuitable result (in red). After that, the frame-to-frame propagation
restarts from the visually suitable frame.

is based on patch comparisons and manage large displacements and rotations. The92

correspondence map between patches not being dense, it is not adapted for textured93

images and complex motion of natural videos.94

Jacob et al. [19] propose to colorize an image from scribbles given by a user. To95

propagate the color of a frame to the whole video sequence, a search in the previous96

frame for the closest patch is performed according to the sum of squared differences97

distance, and the color of the best matching pixel is considered. The search for the98

closest patch is computed in a neighborhood depending on a motion estimation.99

In Pan et al. [25], the color is transferred to the adjacent frames, based on the100

motion estimation of [4]. Teng et al. [35] propose to use a refined block-matching101

algorithm to propagate colors over the frames. The user has to choose when the102

refined version is used instead of the original one.103

All the frame-to-frame approaches use a specific motion estimation, each having104

its own advantage. These methods are sensitive to mistakes since the result is re-used105

and unsuitable colors are propagated.106

In this paper, we propose a variational framework that merges the advantages of107

different correspondence maps including motion estimations and reduces the propa-108

gation of unsuitable colors.109

Temporal consistency for video colorization.. State-of-the-art approaches gener-110

ally use at least one of these techniques: patch correspondence, optical flow algorithm111

or regularization. Each of these techniques have their own advantages and draw-112

backs. The optical flow is reliable because it is based on physical interpretation of113
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the motion through the illumination equation. In contrast, it is not able to deal with114

large displacement or dis-occlusion. The computation of the neighbor map from patch115

comparison is able to tackle this issue, but being not based on physical assumption,116

it is more artificial than a real motion, which has to be continuous. The methods117

based on regularization are not adapted to textured or noisy sequences, but can deal118

with the occlusion and dis-occlusion problems. The comparisons between all the cited119

state-of-the-art approaches are summarized in Table 1.120

Contributions.. In this paper, we first propose a frame-to-frame variational model121

and a primal-dual like algorithm to compute a solution. The method uses both color122

and map regularization to propagate colors. It is based on one or many correspon-123

dence maps. In this work, for the sake of clarity, we only focus on the case of two124

correspondence maps without loss of generality.125

Next, we explain how the previous frame-to-frame propagation model can be126

extended to user interaction where color scribbles can be added on an unsuitable127

colorized frame of the video sequence. The user correction is merged with the previous128

result produced by the frame-to-frame propagation model. Contrary to the proposed129

propagation, the correction one is performed over a three dimensional representation130

of the video sequence to solve occlusion or dis-occlusion problems.131

Outline.. In Section 2, we describe a variational approach computing a regu-132

larized result from the correspondence maps. This model is solved by a primal-dual133

like algorithm. A scribble correction technique is proposed in Section 3, where a134

primal-dual algorithm is designed to solve it. In Section 4, we describe some imple-135

mentation details, in particular, we explain how the two proposed models interact136

with each other. Figure 1 summarizes the basis of our approach. Finally, in Section 5137

we present results and comparisons with state-of-the-art methods.138

2. Frame-to-Frame Propagation Model. In this section we propose to in-139

troduce a new functional for video colorization that propagates colors from a frame140

to an adjacent one. The proposed method computes an optimal correspondence map141

between the video frames, based on a trade-off between the regularity of the map and142

the resulting color. This regularization is performed with total variation (TV).143

2.1. Overview of the Frame-to-Frame144

Propagation Method . Our approach combines correspondence maps that can be145

obtained with different techniques (e.g., [3, 14]). Correspondence maps enable the146

mapping of chrominance values and the propagation of colors through the video se-147

quence. Our approach considers multiple correspondence maps and the proposed148

model select the best one. As illustrated in Figure 2, the first step of our frame-149

to-frame propagation method computes the correspondence maps, which can be per-150

formed as a pre-processing. Each correspondence map provides a color candidate.151

Next, from a colorized initial frame, the method estimates the best candidate by152

minimizing the functional described in Section 2.2. The minimization provides both153

the colorized frame and the optimal correspondence map. They are both regularized154

by a TV term. This aspect is detailed in Section 2.3.155

Figure 2 summarizes our frame-to-frame propagation approach.156

2.2. A New Functional Based on Color Regularization and Correspon-157

dence Maps. In this section, a model performing both a choice between M corre-158

spondence maps and computing the color of a frame is proposed.159

A video, denoted by u is assumed to be a finite sequence of T frames, indexed in160

time by a discrete variable t ∈ J1;T K. The video is considered in RGB and converted161
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Grayscale frames 
at time t -1 and t

Minimization of
Model (1)

Color frame at time t -1
Grayscale frame at time t

Video colorization result

Correspondence maps computation

Fig. 2. Overview of the frame-to-frame propagation method. In this example, two correspon-
dence maps between grayscale frames at times t−1 and t are computed in a first step. The frame-to-
frame propagation method estimates both an optimal correspondence map and the final color for the
frame at time t. The green arrows represent the correspondences between two frames for a consid-
ered pixel. The first step provides two correspondence maps, while the minimization of Functional
computes the optimal one.

into the YUV color space. u(t) denotes the chrominance channels (U, V ) of the frame162

at time t. The initial grayscale video sequence is supposed to be the luminance channel163

of the final colorized video. The computation of the chrominance channels U and V164

enables to recover the RGB corresponding colors. The image domain is denoted as Ω.165

For each pair of frames u(t−1) and u(t), the proposed functional chooses, at each166

position x, one correspondence map between the M available.167

This selection of the best correspondence is computed within a variational frame-168

work. The related work of Pierre et al. [27] performs a choice between different colors169

under an assumption of regularity of the final result. We extend this model for both170

correspondence maps and the final color, and we propose the following new functional:171

172

(1) (û(t), ŵ(t)) = argminu(t),w(t) αTVC(u(t)) + β TV(v(t))173

+ λ

∫
Ω

M∑
i=1

w
(t)
i (x)‖u(t)(x)− c(t)i (x)‖22 dx174

+ χR(u(t)) + χ∆(w(t)).175176

c
(t)
i is the color candidate given from the frame u(t−1), by the correspondence map177

v
(t)
i , thanks to its definition available in Equation (5) and (6). A trade-off between178

the regularity of the map v(t) and the colors of the result u(t) is controlled by the179

parameters α, β and λ. w(t) is a weight parameter that measures the pixel-wise180

contribution between the correspondence maps.181
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c
*

(t -1)

c
1

(t)

v
1

(t)(x)

v
2

(t)(x)

x

x

c
2

(t)

Fig. 3. Example of correspondence maps between two frames (M = 2). From a given result
at time t − 1, two possible propagation results are provided at time t from the two maps. The
frame-to-frame model computes a regularized optimal final color.

TVC(u(t)) is a regularization term based on the minimization of the total varia-182

tion [31] of chrominance channels of the frame u(t) at time t:183

(2) TVC(u(t)) =

∫
Ω

(
γ‖∇Y ‖22 + ‖∇U‖22 + ‖∇V ‖22

)1/2
,184

where ∇ = (∂x, ∂y) is the spatial gradient of a frame. The parameter γ controls185

the coupling of the luminance channel Y with the chrominance ones, avoiding halo186

effects [27].187

TV(v(t)) enforces the regularity of the final correspondence map and is detailed188

in Section 2.3 (see Equation (7)). The correspondence map at time t denoted by v(t)189

is defined as a weighted average of the v
(t)
i , i = 1, . . . ,M:190

(3) v(t) =

M∑
i=1

w
(t)
i v

(t)
i .191

Finally, χR(u(t)) guaranties that the minimizer of the functional is in the chro-192

minance standard range (see, e.g., [27]) and χ∆(w(t)) constrains w(t) to be in the193

probability simplex (i.e., 0 ≤ w(t)
i ≤ 1 and

∑M
i=1 w

(t)
i = 1).194

The definition of the data-fidelity term is based on the set of colors of the initial195

frame. Let us denote the propagated color ĉ(t−1) at time t− 1 as:196

(4) ĉ(t−1) =

M∑
i=1

ŵ
(t−1)
i c

(t−1)
i .197

Therefore, the candidates in the data-fidelity term are:198

(5) c
(t)
i (x) = ĉ(t−1)(v

(t)
i (x)), i = 1, ...,M,199

and200

(6) c
(1)
i (x) = u(1)(v

(1)
i (x)), i = 1, ...,M.201
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With these definitions, Functional (1) computes an optimal map between the frames202

u(t−1) and u(t) with a regularization of both maps and colors.203

Once the minimum of the functional with respect to w(t) is reached, the values of204

the optimum ŵ(t) are projected onto the canonical basis (i.e. using a a winner-takes-205

all approach), which avoids the melting of colors. In practice, the w
(t)
i which has the206

maximum value gets 1, while the others get 0. Hence, Equations (6) and (5) enforce207

the data-fidelity term to be composed of colors coming from the initial frame. The208

definition of ĉ(t−1) preserves the set of colors of the initial frame, i.e., the chrominances209

used at time t are only the initial ones. Indeed, since the weights are 0 or 1, by210

Equation (5), ĉ(t) is one of the color candidates of the previous frame. Thus, by211

induction, the data-fidelity term at time t is only composed with colors of the initial212

frame. This induction is illustrated in Figure 4. Since the regularization of the213

chrominance channels may produce new colors, the preservation of initial frame colors214

is important.215

Figure 3 illustrates the computation of the data-fidelity term. While the M216

initial maps provideM colors, based on the previous result, the frame-to-frame model217

computes the optimal one.218

Frame 1

v
1
(2)(x)

v
2
(2)(x)

xx

v (1)(v
1
(2)(x))

v (1)(v
2
(2)(x))

Frame 3Frame 2

^

^

Fig. 4. Illustration of the color propagation from the first frame. The colors are transferred

from frame 1 to frame 2 with respect to the optimal map v̂(1) =
∑M

i=1 ŵ
(1)
i v

(1)
i computed by the

proposed frame-to-frame propagation algorithm. The data-fidelity term available for a frame is only
composed of chrominances existing in the previous one. By induction, the successive data-fidelity
term are only composed of colors available in frame 1.

With Functional (1), the computation of the solution only depends on the result219

of the optimization at the previous frame. The computations are performed iteratively220

from the initial frame to the last one. The minimization of the functional provides an221

optimal map among the initial ones (see Equation (3)).222

The TV regularization of the correspondence maps is detailed in the next section.223

2.3. Correspondence Maps Regularization. We propose to regularize both224

correspondence maps and colors of the result. Similar approach for map regulariza-225

tion is proposed by [13] to compute an aggregation of optical flows. In [13], the result226

is only based on the map regularization whereas our model considers both maps and227

chrominances regularity. In [11], a similar technique enables both the estimation of228

the optical flow and the denoising of the image. It differs from video colorization229

where the optical flow is computed on the luminance channel, whereas the final esti-230

mation is performed on chrominance channels. Other approaches preserving geometric231

structures have been proposed for inpainting problems [2, 1].232
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8 F. PIERRE, J.-F. AUJOL, A. BUGEAU AND V.-T. TA

The correspondence map v is a two dimensional vector corresponding to the rel-233

ative displacement of the objects between two frames. The two coordinates of v are234

denoted by ϕ (horizontal displacement) and ψ (vertical displacement).235

The map regularization is based on the following term in Functional (1):236

(7) TV(v) = ‖∇v‖1,2 =

∫
Ω

‖∇v(x)‖2 dx.237

The total variation of v favors constant parts of the correspondence maps. This238

regularization term provides a map preserving the textures from the initial frame.239

If the relative correspondence map is piece-wise constant between two frames, some240

parts of these frames have a similar content. Therefore, it mimics a copy-paste method241

from a frame to the next one. When this map is used to propagate the values of242

chrominance channels, some parts of adjacent frames that have similar luminance are243

colorized with the same chrominances. With this approach, the richness of the color244

in textures is preserved.245

In the following, without loss of generality, and for the sake of clarity, we only246

consider the case of two correspondence maps (M = 2). The generalization to multiple247

correspondence maps is straightforward. The computation of (3) can be simplified248

with the following parametrization:249

(8) w1 = w, w2 = 1− w,250

with w ∈ [0, 1].251

With Parametrization (8):252

(9) v = w(v1 − v2) + v2.253

To compute the total variation, the gradient is defined as:254

(10) ∇v = (v1 − v2)⊗∇w + w(∇v1 −∇v2) +∇v2,255

where ⊗ is the Kronecker product:256

(11) (v1 − v2)⊗∇w =


(ϕ1 − ϕ2)∂xw
(ϕ1 − ϕ2)∂yw
(ψ1 − ψ2)∂xw
(ψ1 − ψ2)∂yw

 ,257

and vi = (ϕi, ψi)
T .258

We denote the linear operator on the variable w, in Equation (11), by A. Pixel-259

wise:260

(12) Aw =


ϕ1−ϕ2 0

0 ϕ1−ϕ2

ψ1−ψ2 0
0 ψ1−ψ2


︸ ︷︷ ︸

:=A1

∇w +


∂xϕ1−∂xϕ2

∂yϕ1−∂yϕ2

∂xψ1−∂xψ2

∂yψ1−∂yψ2


︸ ︷︷ ︸

:=A2

w.261

With these notations, TV(v) reads as ‖Aw +∇v2‖1,2.262

The following lemma provides the operator norm of A, which is required for the263

implementation of the minimization algorithm.264
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Lemma 2.1. The operator norm of A is bounded by265

(13) ‖A‖ ≤ 2
√

8(N +M) + 4(N +M),266

where M and N are the dimensions of a frame.267

The proof of this lemma is available in Appendix A.268

2.4. Algorithm for Color Propagation. In this section, we propose an iter-269

ative scheme solving Functional (1) with M = 2.270

2.4.1. General algorithm. For a proper and lower semi-continuous (lsc) func-271

tional F on RP with values in R ∪ {+∞} let us define F ∗, the Legendre-Fenchel272

transform, as follows:273

(14) F ∗(p) = max
u∈RU

〈p|u〉 − F (u).274

To design an algorithm for Model (1), we have to solve problems of the form:275

(15) min
u∈RU

max
p∈RP

〈Ku|p〉 −G∗(p) + F (u),276

where G∗ and F are proper, lsc and convex functions, and K is a linear and contin-277

uous operator that maps RU on RP . Chambolle and Pock [7] propose a primal-dual278

algorithm to solve this class of problems.279

In this work, we solve a problem of the form:280

281

(16) min
u∈RU ,w∈RW

max
p∈RP ,z∈RZ

F (u) + 〈Ku|p〉 −G∗(p)282

+ h(u,w) +H(w) + 〈Aw|z〉 − J∗(z)283284

with A linear and continuous operator, F , H, G and J are proper, lsc and convex285

functions, h is a proper, lsc function, convex with respect to each of its variables.286

To compute a saddle-point of Model (16), we propose to use Algorithm 1. σu, σw,

Algorithm 1 Primal-dual algorithm solving (16).

1: for n ≥ 0 do
2: pn+1 ← proxσuG∗ (pn + σuKu

n)
3: zn+1 ← proxσwJ∗ (zn + σwAw

n)
4: wn+1 ← proxτw(H+h(un,.))

(
wn − τwA∗zn+1

)
5: un+1 ← proxτu(F+h(.,wn))

(
un − τuK∗pn+1

)
6: un+1 ← 2un+1 − un
7: wn+1 ← 2wn+1 − wn
8: end for

287
τw and τu are time steps. The proximal operator of a proper, lsc and convex function288

f : RU → R is defined as (see, e.g. [10]):289

(17) proxf (v) = argminu∈RU ‖u− v‖22 + f(u).290
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2.4.2. Dual version of Model (1) . To solve Model (1), the 1, 2−norm, recalled291

in Equation (7), is written in the dual form:292

(18) β‖u‖1,2 = max
p∈RP

〈u|p〉 − χBRP (0,β)(p),293

with u ∈ RU , and BRP (0, β) the β radius ball in RP with L2-norm.294

Once again, for the sake of clarity we consider M = 2 in the following, but the295

extension to higher values ofM is straightforward. Let us rewrite the total variation296

of the correspondence map (see Equation (7)), where n is the number of pixel, the297

correspondence maps are identified to vectors of Rn×2:298

TV(v) = ‖(v1 − v2)⊗∇w + w (∇v1 −∇v2) +∇v2‖1,2299

= max
z∈RN×4

〈(v1 − v2)⊗∇w + w (∇v1 −∇v2) +∇v2|z〉300

− χBRP (0,β)(z)301

= max
z∈RN×4

〈Aw|z〉+ 〈∇v2|z〉 − χBRP (0,β)(z),(19)302
303

with A defined in (12).304

Let us compute the dual operator A∗ of A as follows:305

(20) A∗ = A∗1 +A∗2,306

with the pixel-wise multiplication:307

(21) (∇v1 −∇v2)
∗

= ∇v1 −∇v2,308

and with:309

(22) ((v1 − v2)⊗∇)
∗

= div(I2 ⊗ (v1 − v2)T ),310

where (v1 − v2)T is equal to the transpose of the matrix A1 defined in (12), and I2 is311

the identity matrix of size 2.312

Model (1) is rewritten in the primal-dual form:313

314

(23) min
u(t),w(t)

max
p,z
〈p(x)|∇u〉+ 〈Aw|z〉+ 〈∇v2|z〉315

+ λ

∫
Ω

w‖u− c1‖22 + (1− w)‖u− c2‖22316

− χB(0,α)(p)− χBRP (0,β)(z) + χR(u) + χ[0,1](w).317
318

2.4.3. Final reading of the algorithm. Since the terms of Equation (23) are319

pixel-wise separable, we then remove the N ×M notations. We apply Algorithm 1320

to (23) with the following identifications:321

• F (u) = χR(u)322

• G∗(p) = χBR6 (0,α)(p)323

• H(w) = χ[0,1](w)324

• J∗(z) = χBR4 (0,β)(z)− 〈∇v2|z〉325

• h(u,w) = λ
(
w‖u− c1‖22 + (1− w)‖u− c2‖22

)
326

The proximal operators are given by the following lemmas.327
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Lemma 2.2. The proximal operator of σwJ
∗ is:328

(24) proxσwJ∗ = PBRN×4 (0,β)(z̃ + σw∇v2),329

where PBRN×4 (0,β) is the pixel-wise projection onto the L2 ball of radius β.330

Proof. The function is −σw 〈∇v2|.〉+ χBRN×4 (0,β).331

332

(25) prox−σw〈∇v2|.〉+χBRN×4 (0,β)
(z̃)333

= argminz∈R4

‖z − z̃‖22
2σw

− 〈∇v2|z〉+ χBRN×4 (0,β)(z),334
335

thus:336

(26) prox−σw〈∇v2|.〉+χBRN×4 (0,β)
(z̃) = PBRN×4 (0,β)(z̃ + σw∇v2).337

Lemma 2.3. The proximal operator of τwh(u,w) + τwH(w) is pixel-wise:338

(27) proxτw(h(u,w)+H(w))(w̃) = P[0,1]

(
w̃ − τwλ(‖u− c1‖22 − ‖u− c2‖22)

)
,339

where P[0,1] is the orthogonal projection onto [0, 1].340

Proof. The function is λw‖u− c1‖22 + τwλ(1− w)‖u− c2‖22 + χ[0,1](w):341

proxτw(h(u,w)+H(w))(w̃) = argminw
‖w − w̃‖22

2
342

+ τwλw‖u− c1‖22 + τwλ(1− w)‖u− c2‖22343

+ χ[0,1](w)344

= argminw
‖w − w̃‖22

2
345

+ τwλw(‖u− c1‖22 − ‖u− c2‖22)346

+ χ[0,1](w)347

= P[0,1]

(
w̃ − τwλ(‖u− c1‖22 − ‖u− c2‖22)

)
.(28)348349

Lemma 2.4. The proximal operator of h(u,w) + F (u) is:350

(29) proxτu(h(u,w)+F (u))(ũ) = PR

(
ũ− τuλ2(wc1 + (1− w)c2)

1 + 2τuλ

)
,351

where PR is the pixel-wise projection onto the standard range for chrominances.352

Proof. The function is353
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τuλw‖u− c1‖22 + τuλ(1− w)‖u− c2‖22 + χR(u):354

proxτu(h(u,w)+F (u))(ũ) = argminu ‖u− ũ‖22 + 2τuλw‖u− c1‖22355

+ 2τuλ(1− w)‖u− c2‖22 + χR(u)356

= argminu ‖u‖22 − 2〈u|ũ〉 − 4τuλ〈u|wc1〉+ 2τuλw‖u‖22357

− 4τuλ〈u|(1− w)c2〉+ 2τuλ(1− w)‖u‖22 + χR(u)358

= argminu(2 + 2τuλ)‖u‖22 − 4τuλ〈u|wc1 + (1− w)c2〉359

− 2〈u|ũ〉+ χR(u)360

= argminu ‖u‖22 − 2

〈
u| ũ+ τuλ2(wc1 + (1− w)c2)

2 + 2τuλ

〉
361

+ χR(u)362

= PR

(
ũ+ τuλ2(wc1 + (1− w)c2)

1 + τuλ

)
.(30)363

364

The final algorithm, solving (1) for one frame reads as Algorithm 2. PB(0,α) and365

PBRP (0,β) represent the projection onto the L2 ball of radius α and β respectively.366

P[0,1] is the truncation of the coordinates between 0 and 1. PR is the projection onto367

the standard range for chrominances.368

After iterating, the values of w are projected onto the canonical basis to have369

binary values and to avoid melting of colors or correspondence maps. A binarization370

of the variable w by truncation enables the computation of the correspondence map371

v. The algorithm computes two colors for each pixel: one corresponding to the final372

result u and another one,
∑
i wici corresponding to the transfer of colors from the373

initial frame through the sequence.374

A theoretical analysis of Algorithm 2 and its relationship with the PALM algo-375

rithm of [5] is studied in Appendix B. The convergence is numerically verified by376

computing the value of the functional during the iterations. The values are shown in377

Figure 5. We can see that the functional is decreasing and becomes asymptotically378

constant, which shows the numerical convergence.379

3. Interactive Scribble-based Correction. As it is difficult to provide a fully380

automatic method for image colorization (e.g., [28]), it is also hard to design an un-381

supervised frame-to-frame approach. Indeed, occlusions or dis-occlusions may occur,382

and new objects can appear in the video sequence whose color information is not383

present in the beginning of the sequence. For instance, Figure 15 shows a video384

sequence where the frame-to-frame propagation model is suitable. In contrast, in385

Figure 14, the method requires an intervention of the user to correct a dis-occlusion.386

To cope with this limitation, we propose in this section a manual correction of387

the frames that extends the frame-to-frame approach. We also describe a variational388

framework for the scribble correction, as well as a minimization algorithm.389

3.1. Overview of the User-guided390

Correction Method . To correct the visually unsuitable results of the proposed391

frame-to-frame propagation approach (1), we design a user-guided correction method392

widely inspired by the model proposed by Pierre et al. [28]. We extend this work to393

the case of videos, where 3D blocks are considered (2D + t). Frequently, occlusion or394

dis-occlusion parts of the video sequence produces undesirable results, which is not395

always easily visible on the first frame it occurs. Thus, in our method, the user can396

define the sub-sequence to correct.397
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Algorithm 2 Minimization of (23) with M = 2.

Input: v1,2, c1,2
1: w = 0.5 and u0 =

∑2
i=1 wici.

2: p0 ← ∇u0

3: z0 ← Aw0

4: for n ≥ 0 do
5: pn+1 ← PB(0,α) (pn + σu∇un)
6: zn+1 ← PBRP (0,β)(z

n + σw((v1 − v2)⊗∇wn + (∇v1 −∇v2)wn + σw∇v2))
7:

wn+1 ← P[0,1](w
n + τw((∇v1 −∇v2)zn+1

+ div(I2 ⊗ (v1 − v2)T vn+1)− τwλ(‖u− ci‖)i))

8: un+1 ← PR

un + τu

(
div(pn+1) + λ

∑2
i=1 w

n+1
i ci

)
1 + τuλ


9: wn+1 ← 2wn+1 − wn

10: un+1 ← 2un+1 − un
11: end for

12: woptimal ←
{

0 if w∞ ≤ 0.5
1 otherwise.

Output: û← u∞;
13: ŵ ← w∞;
14: v̂ ← ŵv1 + (1− ŵ)v2.

The correction of a dis-occlusion artefact requires the computation of a color398

on an object that appears on the scene. Thus, this pixel cannot have a reliable399

correspondence map from the previous frame, so the computation of a correspondence400

map is unreliable in dis-occlusion areas.401

The correction algorithm, through the minimization of a new functional, com-402

putes a trade-off between the previous propagation result and the color provided by403

the scribbles. Compared to existing manual methods [38], as we use the current co-404

lorization result, few scribbles are necessary. The user intervention is thus reduced.405

The overview of the correction method is presented in Figure 6.406

3.2. User-guided Correction Model. Assume that a first result c̃1 has been407

computed from Model (1), from time 1 to time n, and that the user adds S scribbles408

on the unsuitable result on the n-th frame, providing S candidates c̃i, i = 2 . . . S + 1.409

One candidate is providing for all the pixels of the video sequence.410

The next step corrects the video sequence between time t1 (defined by the user)411

and time n. Generally, the number of unsuitable frames is enough small (less than 5)412

to correct the result with a limited computation time.413

In the same context, authors of [28] propose to unify a user-guided image colo-414

rization with an exemplar-based one within a variational framework. The following415

model, which is a direct extension of [28] to spatio-temporal blocks, is minimized,416
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Fig. 5. The values of the functional decrease during the iterations of Algorithm 2 and become
asymptotically constant. This behavior highlights the numerical convergence of this algorithm.

Scribbles propagation
with coarse approach 

● Weights computation
● New candidates

User input
Scribbles on one

frame

Minimization of
Model (31)

Unsuitable frame
Result from the

propagation algorithm

Fig. 6. Interactive Scribble-based Correction. The correction algorithm provides a trade-off
between the colors produced by the frame-to-frame propagation method, and the ones given by the
user. A coarse approach (the geodesic distance diffusion for instance) is used to provide a first
scribble diffusion, which is then refined by minimizing Functional (31).
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where u is a 2D+t chrominance block:417
418

(31) (û, ŵ) = argminu,w αTV[t1,n](u)419

+ λ

∫
Ω×[t1,n]

S+1∑
i=1

w
(t)
i (x)‖u(t)(x)− c̃(t)i (x)‖22 dx dt420

+ χR(u) + χE(w).421422

The minimizer of the data-fidelity term423

(32)

∫
Ω×[t1,n]

S+1∑
i=1

w
(t)
i ‖u

(t)(x)− c̃(t)i (x)‖22 dx dt,424

with respect to u, is equal to the average of c̃i weighted by wi. We add χE(w), which425

constrains w onto the canonical basis. This constraint prevents the final result to be426

a melting of input colors.427

The total variation (TV) of a chrominance block (U, V ) reads:428

(33) TV[t1,n](u) =

∫
Ω×[t1,n]

(
γ‖Λ∇Y ‖22 + ‖Λ∇U‖22 + ‖Λ∇V ‖22

) 1
2 ,429

with ∇ = (∂x, ∂y, ∂t),430

(34) Λ :=

1 0 0
0 1 0
0 0 µ

 .431

The temporal regularization is more important for Model (31) than for Model (1).432

Indeed, in Model (1), in the set of the initial correspondence maps, it may be possible433

to use temporally consistent maps, such as optical flow. In contrast, for the scribble434

correction model, the result is temporally regularized by adding a time derivative435

in the total variation term. The parameter µ controls the influence of the temporal436

regularization with respect to the spatial one.437

3.3. Algorithm. For the minimization of Model (31), the algorithm presented438

in [27] is directly used. The composition of operator Λ with the gradient and the439

divergence is not restrictive to apply the general algorithm of [27]. Finally, the mini-440

mization of Model (31) is achieved with Algorithm 3, where cn∗ states for the closest441

candidate c̃i from un, and τ, σ are time steps. This Algorithm would contain an442

update for the variable w with the following form:443

(35) wn+1 ← argminw ‖w − wn‖22 + ρ

S+1∑
i=1

wi‖un − c̃i‖22 + χ∆(w).444

The convergence of such implicit numerical scheme does not depend on the ρ variable445

and it is pushed forward to +∞. The line (35) becomes:446

(36) wn+1 ← argminw

S+1∑
i=1

wi‖un − c̃i‖22 + χ∆(w),447

and it is minimised by w∗ = (0, . . . , 1, 0, . . . , 0) with 1 in the i-th position, where448

‖un − ci‖ is the lowest one. Thus
∑S+1
i=1 w

∗ci = cj with ci the closest candidate from449

un and denoted by cn∗ .450
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Algorithm 3 Minimization of (31).

1: u0 =
∑S+1
i=1 wici.

2: p0 ← ∇u
3: for n ≥ 0 do
4: pn+1 ← PB(0,α) (pn + σΛ∇un)

5: un+1 ← PR

(
un + τ

(
div(Λpn+1) + 2λcn∗

)
1 + 2τuλ

)
6: un+1 ← 2un+1 − un
7: end for

With the combination of Algorithm 2 for color propagation and Algorithm 3 for451

scribble correction, we propose, in this work, a complete framework for video coloriza-452

tion. It is composed of a frame-to-frame propagation approach, which is unsupervised,453

and a correction step when occlusions or dis-occlusions occur. The interaction between454

the two models is detailed in the next section.455

(a) PatchMatch propagation. (b) TVL1 optical flow propagation. (c) Propagation result with
Model (1).

Fig. 7. Combination of PatchMatch and optical flow correspondence maps. The PatchMatch
(resp. TVL1) propagation of colors is illustrated in (a) (resp. (b)). The result with Model (1)
is illustrated in (c). By combining the advantages of both maps, the frame-to-frame propagation
Model (1) performs a visually suitable result, whereas the initial maps produces visually unsuitable
parts (see in red boxes).

4. Implementation Details. In this section, we describe implementation de-456

tails. In particular, we present the computation of the correspondence maps and the457

initialisation of the correction algorithm. We also explain how the two models for458

propagation and correction interact with each other.459

4.1. Global Workflow of the Proposed Video Colorization Method.460

Currently, many state-of-the-art methods are applied to a 3D representation of the461

video (2D + t). The frame-to-frame propagation Model (1) could be extended to 3D462

representation where the whole video sequence is processed in a single shot. In the463

case of manual intervention, the whole video sequence needs to be computed again.464

By working frame-by-frame, the speed-up enables us to provide an interactive ap-465

proach. Indeed, if the results are visually unsuitable and unexpected, this is visible466

after a short processing time. The user can add scribbles after a reduced waiting time.467

In our approach, we assume that one frame of the grayscale sequence is colorized468

(for instance by [29]) and the colors are propagated to the adjacent ones, until the469

whole video sequence is colorized. The required intervention of the user is simple: he470

can check the solution; if the frame is unsuitable, he can add scribbles on the result471

and the correction Algorithm 3 is applied. In practical cases the frame-to-frame472
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propagation efficiency reduces user’s interventions. This efficiency is demonstrated in473

Section 5.474

The global workflow is illustrated in Figure 1. The video is colorized by the475

propagation algorithm, until an unsuitable result can appear (i.e., because of an476

occlusion). The user adds scribbles to correct the last unsuitable frame and the477

proposed correction method described in Section 3 computes a solution for the subset478

of frames. After that, the frame-to-frame propagation method can be re-applied from479

the last colorized frame.480

4.2. Computation of the Correspondence Maps. Our method propagates481

colors from an initial frame to the final one, through an optimal correspondence map482

that is computed from initial correspondence maps with Equation (1). In this work,483

we compute two initial maps, from the luminance channel of the video sequence, with484

the PatchMatch method [3] and the TVL1 optical flow [7].485

The PatchMatch method consists in computing a nearest-neighbor map between486

two adjacent frames. For each pixel at position x in the frame u(t) at time t, the487

nearest-neighbor map consists in the position ŷ in the frame u(t−1) at time t− 1 such488

that:489

(37) ŷ = argminy∈Ω ‖P (x)− P (y)‖2,490

where P (x) (resp. P (y)) is the patch centred at position x (resp. y) in frame u(t)491

(resp. u(t−1)). The computation of this correspondence map through exhaustive492

search being extremely computationally expensive, PatchMatch algorithm [3] is used493

to compute an approximate correspondence map between two adjacent frames.494

A second correspondence map is computed by the TVL1 optical flow with the495

algorithm of Chambolle-Pock [7]. The optical flow estimates the apparent motion be-496

tween two frames of a video sequence. This estimation solves the brightness constancy497

constraint [36]:498

(38) ρ(u, v) = ∂tu+ 〈∇x,yu|v〉+ βu,499

where ∇x,yu is the spatial gradient and v : Ω→ R2 is the motion field. TV is defined500

as in Equation (7). The following functional is minimized:501

(39) min
v

TV(v) + TV(u) + ‖ρ(u, v)‖1,502

which gives the TVL1 optical flow.503

These two correspondence maps, one computed by PatchMatch and the other one504

from TVL1 optical flow differ in term of quality: the first one is more piece-wise, and505

the second one is more regular. The PatchMatch algorithm, being less regularized,506

produces some colorization artefacts that are propagated over time. Nevertheless,507

it can deal with large displacements. In contrast, the regularity of the TVL1 map508

enforces the suitability of the estimated flow, but the brightness constancy constraint509

may not be reliable on some part like dis-occlusions.510

The approximate nearest-neighbor map provided by the PatchMatch method is511

experimentally piece-wise constant. This geometrical property enables to simulate a512

copy-paste technique. Thus, the combination of the optical flow with the PatchMatch513

correspondence map can be understood as follows: for small and controlled motions,514

the TVL1 optical flow provides a suitable colorization; in the case of large displace-515

ments or dis-occlusions, PatchMatch copy-pastes colorized parts from another area of516

the image.517
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Figure 7 shows the differences of visually unsuitable results produced by Patch-518

Match and the TVL1 optical flow (red boxes focus on the problems). Model (1)519

produces a visually suitable result from these two initial maps.520

4.3. Scribble Correction with Geodesic Distance. With the correction521

Model (31), we compute a solution from the frame-to-frame propagation result and522

user’s scribbles. This model performs a scribble diffusion thanks to the total variation523

minimization. To help the propagation of the scribbles, a technique inspired by [38]524

is used. The geodesic distance is computed on a three dimensional block, composed525

of the two spatial dimensions with the temporal one. This geodesic distance pro-526

vides, for each pixel, a weight wi associated to the chrominance candidate c̃i given527

by one of the scribbles. c̃1 is the previous frame-to-frame propagation result, c̃i with528

i = 2, . . . , S + 1 is the chrominance given by one scribble.529

In practical cases, the three dimensional gradient norm is filtered by a Gaussian530

kernel. The geodesic distance map, denoted by D, is computed with the fast marching531

algorithm [32], with potential:532

(40)
(
θ + ‖∇u‖22

)−r
,533

inspired by [8]. θ and r are shape parameters. D is normalized with an affine mapping534

to have a range between 0 and 1. We use the implementation of [26] to compute the535

geodesic distance.536

The weights wi of Algorithm 3, corresponding to the scribble candidates c̃i, are537

initialized with 1 − Di where Di is the geodesic distance from the scribble. The538

variable w1, corresponding to the candidate c̃1 coming from the previous frame-to-539

frame propagation model, is initialized with 1 −
∑S+1
i=2 wi. When

∑S+1
i=2 wi > 1, the540

weights are divided by this sum to avoid that w1 < 0. If the geodesic distance is low,541

pixels get the color of the scribble. In contrast, if the geodesic distance is high, they542

are not influenced by the scribble and they get the color of the previous frame-to-frame543

propagation result.544

Algorithm 3 is pixel-wise initialized with
∑S+1
i=1 wi c̃i to favor the scribbled re-545

sult. Model (31) being non-convex, the result of the minimization directly depends546

on the initialization of Algorithm 3. Thanks to the diffusion by the geodesic distance,547

the iterative Algorithm 3 begins closer to the desired result and is thus faster. The548

geodesic distance computes a coarse but fast propagation. In contrast, the minimiza-549

tion of Functional (31) is slower, but produces a finer result.550

Figure 6 illustrates the correction workflow. The geodesic distance propagates the551

color of the scribble. The minimization of Model (31) refines this first propagation552

that can be re-used by the frame-to-frame propagation algorithm since the result is553

visually suitable for the user.554

4.4. Parameter Settings. The results presented in Section 5 have been per-555

formed with the following set of parameters: λ = 0.1, α = 25 and γ = 35, in Equa-556

tions (1) and (31), β = 0.1 in Equation (1), µ = 0.1 in Equation (31), and θ = 45,557

r = 8 in Equation (40). These parameters are the same for all the videos. We consider558

2000 iterations for Algorithms 2 and 3, that are computed in about 1 second per frame559

at image resolution 352×256 with an unoptimized NVIDIA CUDA implementation.560

This computation time is about the same for the propagation step and the correction561

one. It is fast enough to consider the user-guided interaction.562

5. Numerical Results. In this section, we compare our approach with state-563

of-the-art methods. First, we compare our approach with [38] and [22]. Next, we564
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Fig. 8. Comparison with [38] on the Nemo video sequence. We use the last colorized frame
given by the method of [38] and we propagate its colors. No scribble correction has been used for
our results. With our method, the fishtail is better colorized, zooms are available in Figure 9.
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Fig. 9. Zooms on Figure 8. The contours are better preserved with our approach (see, e.g.,
contours in the red boxes).
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Fig. 10. Comparison with [38] on the Chaplin video sequence. We use the first colorized frame
given by the method of [38] and we propagate its colors. No scribble correction has been used for
our results. With our method, the corncob is better colorized, zooms are available in Figure 11.

Result of [38] at t = 21. Model (1) at t = 21.

Fig. 11. Zooms on Figure 10. In the red box, the method of [38] mixes the yellow of the
corncob with the color of the skin. With our method, the colors of the initial frame are less blended
and the contours better preserved.

propose some experiments on historical grayscale video sequences whose colorization565

is more challenging.566

The data used for experiments have been taken from videos available on authors’567

websites, which contain noise from compression artefacts. Even with this low quality,568

our method performs promising results, which shows its robustness to the noise.569

5.1. Comparison with Chrominance Blending [38]. First, let us compare570

our method to [38]. The two videos tested in Figures 8 and 10 have been taken571

from [38]. The video sequences Nemo and Chaplin are colorized by a propagation of572

one frame. The initial colored frame has been taken from the results of [38].573

Figure 8 (resp. Figure 10) shows frames of the results from [38] and the colori-574

zation performed with our propagation algorithm on the video Nemo (resp. on the575

video Chaplin).576

For the video Chaplin, the results produced with our method are comparable with577

the one of [38]. There are no visible artifacts and the final palette of colors is visually578
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Fig. 12. Comparison with [22] on the Toddler video sequence. We use the first colorized frame
given by the method of [22] and we propagate its colors. Our method requires one scribble at time
t = 29 (visible in the red box). Details of the correction step are available in Figure 6.

the same.579

For the Nemo video sequence, the fishtail is better colorized with our method.580

Figure 9 shows zooms of Figure 8. With our method, the contours are better preserved581

(see in red boxes) thanks to the coupled total variation (2). The method of [38] pro-582

duces an artefact at the bottom of the tail on the last frame (an orange scratch blows583

in the background). Although our method propagates result of [38], it corrects this584

visually unsuitable result automatically, thanks to the total variation regularization.585

Figure 10 presents experiments on the Chaplin video sequence. The frame-to-586

frame propagation is used without scribble correction. In Figure 11 we can see zooms587

on Figure 10. In the red box, after 20 frame-to-frame propagations, the method588

of [38] mixes the yellow color with the background. In contrast, with our method, the589

contours are better preserved.590

As a conclusion of these experiments, our method is suitable on video sequences591

with large and constant parts.592

5.2. Comparison with Quadratic Optimization [22]. Now, let us compare593

our method on examples taken from [22].594

These examples are difficult to process with a frame-to-frame model because some595

new objects appear in the scene, and occlusions and dis-occlusions occur. In these596

videos, it is required to add scribbles to some frames of the sequence to correct visually597

unsuitable results of our frame-to-frame propagation algorithm. The method of [22]598

being based on a spatio-temporal processing of the sequence, it is naturally able to599

deal with occlusion problems. We show that our method tackles this issue with a600

small number of scribbles.601
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Fig. 13. Comparison of our method with [22] for the Birthday video sequence. We use the first
colorized frame given by the method of [22] and we propagate its colors. For our method, the user
draws about 50 scribbles to correct the propagation algorithm.

Figure 12 shows the result of our method in comparison with [22]. The results are602

visually the same. For the method of [22], it is required to add scribbles on some key603

frames of the video, and the result is computed in one step with no more interaction.604

To ensure to use the same color set, we use the first frame of the colorized result of [22]605

as initial frame for the frame-to-frame propagation Model (1). On this sequence we606

only use one scribble to correct the result (in the red box). In contrast, the method607

of [22] requires more than 50 scribbles.608

Figure 13 shows another comparison with [22]. The initial color frame used by our609

algorithm comes from the result of [22]. In this example, we use about 50 scribbles to610

correct the unsuitable propagation results, whereas the method of [22] uses hundreds611

of it.612

Moreover, with our approach, it is not needed to process and the user to check613

the whole video sequence after adding scribble, because the correction algorithm only614

focuses on few frames.615

5.3. Experiments on Historical Videos. In this section, we consider the616

challenging problem of colorization of historical videos. The difficulties come from617

the noise, the flickering effect and the scratches.618

First, we perform the colorization of a textured historical sequence. The first619
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Fig. 14. Result of our method on the De Gaulle video sequence from the French Institut National
des Archives. The initial frame (t = 1) is obtained by the unified method of Pierre et al. [28]. The
colors of the initial frame are then propagated over the whole video sequence with only one scribble
correction, drawn on the thumb into the red box, on the frame at t = 25.

frame is colorized with [29]. In the De Gaulle video sequence, the thumb is hidden at620

the beginning of the sequence before appearing. Thus, it is unsuitably colorized by the621

propagation algorithm. We add a scribble onto the thumb when it appears (in the red622

box) and the correction algorithm integrates it. Finally, the propagation algorithm623

computes the colorization of the sequence. The 50 frames with image resolution of624

352×256 pixels are colorized in about 1 min with our GPU implementation.625

Finally, we apply our algorithm to the sequence Pieds Nickelés that is a very626

noisy video (Figure 15). This sequence is processed with the method of [12] to remove627

flicker effect. It contains a residual flicker effect as well as many scratches. Moreover,628

some of the displacements are very large, for instance, the heads of the characters. In629

spite of these challenging problems, our method is able to propagate colors over the630

100 frames of the whole sequence without any correction. The grayscale sequence of631

our method is available on the first and the third rows, whereas the result is on the632

second and fourth ones. The initialization is the initial frame at t = 1.633

The complete video colorization results are available online at:634

http://www.labri.fr/perso/fpierre/video/video.html.635

6. Conclusion. In this paper, we have proposed a novel variational model able636

to merge multiple correspondence maps to provide a suitable frame-to-frame prop-637

agation algorithm. A correction model integrating user scribbles is also proposed.638
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Fig. 15. Result of our method for the Pieds Nickelés [12] video sequence. The initialization
is the first frame at time t = 1, colorized with the method of [28]. For this sequence, besides the
colorization of the first frame, no scribble has been added. This experiment shows that our approach
is reliable on scratched videos with large displacements.

These models are solved by primal-dual like algorithms integrated into an interac-639

tive framework. With our GPU implementation, we reach a high enough speed to640

consider an interactive software. Comparisons with state-of-the-art methods show641

the efficiency of our method and its ability to consider historical videos. As a future642

work, a data-fidelity term with L1-norm could be considered to better preserve the643

color set.644

Appendix A. Computation of the Map Operator.645

In this section, we propose a proof of Lemma 2.1, which states an upper bound646

for the value of the operator norm of A.647

Proof. (of Lemma 2.1) First of all, by triangular inequality:648

(41) ‖A‖ ≤ ‖A1‖ ‖∇‖+ ‖A2‖ .649

Let us compute an upper bound for each term in (41). It is known (see, e.g., [6])650

that ‖∇‖2 = 8.651

Let us compute ‖A1‖:652

653

(42) ‖A1‖ = ‖A∗1‖ =

∥∥∥∥(ϕ1 − ϕ2 0 ψ1 − ψ2 0
0 ϕ1 − ϕ2 0 ψ1 − ψ2

)∥∥∥∥654

≤
∥∥∥∥(ϕ1 − ϕ2 0

0 ϕ1 − ϕ2

)∥∥∥∥+

∥∥∥∥(ψ1 − ψ2 0
0 ψ1 − ψ2

)∥∥∥∥655

= |ϕ1 − ϕ2|+ |ψ1 − ψ2|.656657

The last quantity can be computed explicitly from the input data. This term can be658

bounded:659

(43) ‖A1‖ ≤ 2(N +M).660
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Let us compute ‖A2‖:661

662

(44) ‖A2‖ = ‖A∗2‖ =
∥∥(∂xϕ1 − ∂xϕ2 ∂yϕ1 − ∂yϕ2663

∂xψ1 − ∂xψ2 ∂yψ1 − ∂yψ2

)∥∥664

≤ |∂xϕ1 − ∂xϕ2|+ |∂yϕ1 − ∂yϕ2|665

+ |∂xψ1 − ∂xψ2|+ |∂yψ1 − ∂yψ2|.666667

This upper bound can be explicitly computed. This term can be bounded thanks to668

the bounding of the partial derivatives in Equation (44):669

(45) ‖A2‖ ≤ 4(N +M),670

where N and M are the height and width of the frame.671

Finally, a bounding of A reads as:672

(46) ‖A‖ ≤ 2
√

8(N +M) + 4(N +M).673

The operator norm depends linearly on the size of the frame.674

Appendix B. Link between Algorithm 2 and PALM Algorithm of [5].675

The PALM algorithm proposed in [5] can be applied to Model (1). Indeed, this676

model can be written as677

(47) min
u∈RU ,w∈RW

F (u) + h(u,w) +H(w)678

with the same hypothesises as in Equation (16) for F and H, and h differentiable679

with respect to each variables with Lipschitz gradient. The PALM is recalled in680

Algorithm 4, where σ̃n and τ̃n are time steps. To ensure the convergence to a critical681

point, the following bounds have to be fulfilled:682

(48)


σ̃n <

γ1

L1(wn)

τ̃n <
γ2

L2(un+1)
,

683

with γ1 < 1, γ2 < 1, L1(wn) is the Lipschitz constant of ∇uh(u,wn) and L2(un+1) is684

the Lipschitz constant of ∇wh(un+1, w).685

To apply the PALM to (1), we propose to make the following identifications:686

• F (u) = αTVC(u) + χR(u),687

• h(u,w) =
λ

2

∫
Ω

∑M
i=1 wi(x)‖u(x)− ci(x)‖22 dx,688

• H(w) = β TV(v(t)) + χ∆(w(t)).689

Let us remark that, in this case, L1(wn) and L2(un+1) do not depend on n.690

Algorithm 4 PALM Algorithm of [5].

1: for n ≥ 0 do
2: un+1 ← proxσ̃nF (un − σ̃n∇uh(un, wn))
3: wn+1 ← proxτ̃nH

(
wn − τ̃n∇wh(un+1, wn)

)
4: end for

The proximal operators of H and G can be computed with the iterative primal-691

dual algorithm of Chambolle and Pock [7]. Indeed, let us compute proxσ̃F (ũ) in692

Algorithm 5. The time steps of this iterative algorithm are σ̃u and τ̃u.693
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Algorithm 5 Computation of proxσ̃F (ũ) with the algorithm of [7].

1: for n ≥ 0 do
2: pn+1 ← PB(0,α) (pn + σ̃u∇un)

3: un+1 ← PR

(
un + τ̃u

(
div(pn+1) + σ̃ũ

)
1 + τ̃uσ̃

)
4: un+1 ← 2un+1 − un
5: end for

Algorithm 6 Computation of proxτ̃H(w̃) with the algorithm of [7].

1: for n ≥ 0 do
2:

zn+1 ← PBRP (0,β)(z
n + σ̃w((v1 − v2)⊗∇wn

+ (∇v1 −∇v2)wn + σ̃w∇v2))

3:

wn+1 ← P[0,1]

(
1

1 + τ̃w τ̃
[wn + τ̃w((∇v1 −∇v2)zn+1

+ div(I2 ⊗ (v1 − v2)T vn+1) + τ̃w τ̃ w̃)]
)

4:

5: wn+1 ← 2wn+1 − wn
6: end for

Is the same way, we propose to compute proxτ̃H(w̃) with an iterative algorithm.694

The time steps of this iterative algorithm are σ̃w and τ̃w.695

With these two algorithms, it is possible to apply the PALM algorithm [5] to696

Model (1), using inner loops. To this aim, let us compute ∇uh(u,w) and ∇wh(u,w):697

∇uh(u,w) = ∇u

(
λ

2

∫
Ω

M∑
i=1

wi‖u− ci‖dx

)
(49)698

= λ

(
u−

M∑
i=1

wici

)
.(50)699

700
701

∇wh(u,w) = ∇w

(
λ

2

∫
Ω

M∑
i=1

wi‖u− ci‖dx

)
(51)702

= λ(‖u− ci‖)i.(52)703704

The complete PALM algorithm to solve Model (1) is written in Algorithm 7. The705

following proposition states the link between Algorithm 2 and the PALM one [5].706

Proposition B.1. Let us consider Algorithm 7 with only one iteration for the707

inner loops (i.e., Algorithm 5 and 6) and a common value for σ̃ and τ̃ . Let us choose708

τu =
τ̃u

1 + τ̃uσ̃ − τ̃uλσ̃2
, σu = σ̃u, τw =

τ̃w
1 + τ̃w τ̃

and σw = σ̃w. Then, Algorithm 7 is709

the same as Algorithm 2.710
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Algorithm 7 PALM Algorithm of [5] applied to Model (1).

1: for k ≥ 0 do
2: w̃ ← wn − τ̃λ(‖un − ci‖)i
3: for n ≥ 0 do
4: zn+1 ← PBRP (0,β)(z

n + σ̃w((v1 − v2)⊗∇wn + (∇v1 −∇v2)wn + σ̃w∇v2))
5:

wn+1 ← P[0,1]

(
1

1 + τ̃w τ̃
[wn + τ̃w((∇v1 −∇v2)zn+1

+ div(I2 ⊗ (v1 − v2)T vn+1) + τ̃w τ̃ w̃)]
)

6:

7: wn+1 ← 2wn+1 − wn
8: end for
9: ũ← un − σ̃λ

(
un −

∑M
i=1 w

n+1
i ci

)
10: for n ≥ 0 do
11: pn+1 ← PB(0,α) (pn + σ̃u∇un)

12: un+1 ← PR

(
un + τ̃u

(
div(pn+1) + σ̃ũ

)
1 + τ̃uσ̃

)
13: un+1 ← 2un+1 − un
14: end for
15: end for

The choice of the common value for σ̃ and τ̃ is not a restrictive hypothesis to711

prove the convergence of the PALM algorithm. Indeed, a bound for each time step712

is required to ensure the convergence (see, e.g., (48)). Taking the minimum between713

them, the two bound conditions are fulfilled.714

Proof. Assume now to use only one iteration for the internal loops of Algorithm 7.715

Thus, the line 9 can be included in line 12. In this case, line 12 becomes:716

(53) un+1 ← PR

un + τ̃u

(
div(pn+1) + σ̃

(
un − σ̃λ

(
un −

∑M
i=1 w

n
i ci

)))
1 + τ̃uσ̃

 .717

with simplification:718

(54) un+1 ← PR

un(1 + τ̃uσ̃ − τ̃uλσ̃2) + τ̃u

(
div(pn+1) + λσ̃2

∑M
i=1 w

n
i ci

)
1 + τ̃uσ̃

 .719

Choosing τu =
τ̃u

1 + τ̃uσ̃ − τ̃uλσ̃2
and λ̃ = λσ̃2, we have720

(55)
1 + τ̃uσ̃

1 + τ̃uσ̃ − τ̃uλσ̃2
= 1 + λ̃τu.721
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Thus Equation (54) becomes:722

(56) un+1 ← PR

un + τu

(
div(pn+1) + λ

∑M
i=1 w

n
i ci

)
1 + λτu

 ,723

which is the same computation as line 8 of Algorithm 2.724

The line 2 of Algorithm 7 can also be included in line 5 and this last line becomes:725

726

(57) wn+1 ← P[0,1]

(
1

1 + τ̃w τ̃
[wn + τ̃w((∇v1 −∇v2)zn+1

727

+ div(I2 ⊗ (v1 − v2)T vn+1) + τ̃w τ̃(wn − τ̃λ(‖un − ci‖)i))]
)
.728729

With simplification:730

731

(58) wn+1 ← P[0,1](w
n +

τ̃w
1 + τ̃w τ̃

((∇v1 −∇v2)zn+1
732

+ div(I2 ⊗ (v1 − v2)T vn+1)− τ̃w τ̃
2

1 + τ̃w τ̃
λ(‖un − ci‖)i))733

734

Choosing τw =
τ̃w

1 + τ̃w τ̃
, and λ̃ = λτ̃2, thus Equation (58) is the same computation735

as line 7 of Algorithm 2. The choice λ̃ = λτ̃2 is compatible with λ̃ = λσ̃2 if we assume736

that τ̃ = σ̃. That is not a restrictive hypothesis, since it is possible to use the same737

time step in the PALM algorithm, by choosing the minimum of them as a common738

value to ensure the convergence.739

As a conclusion, Algorithm 2, inspired by the primal-dual one of Chambolle and740

Pock [7], can be seen as the PALM algorithm of [5] where the proximal operator for741

the total variation would be computed by the Chambolle and Pock Algorithm itself742

with only one iteration. The advantage of the PALM algorithm is the theoretical743

guarantee of convergence to some critical point. For our algorithm, the decreasing of744

the energy cannot be proved since it is a saddle-point problem. Thus, the bare bones745

of the convergence proof of PALM cannot be adapted to Algorithm 2. However,746

Proposition B.1 explains the good behavior of Algorithm 2 whose convergence has747

been numerically verified (see, e.g., Figure 5).748

Acknowledgment. This study has been carried out with financial support from749

the French State, managed by the French National Research Agency (ANR) in the750

frame of the Investments for the future Programme IdEx Bordeaux (ANR-10-IDEX-751

03-02). J-F. Aujol is a member of Institut Universitaire de France.752

REFERENCES753

[1] P. Arias, G. Facciolo, V. Caselles, and G. Sapiro, A variational framework for exemplar-754
based image inpainting, International Journal of Computer Vision, 93 (2011), pp. 319–347.755

[2] J.-F. Aujol, S. Ladjal, and S. Masnou, Exemplar-based inpainting from a variational point756
of view, SIAM Journal on Mathematical Analysis, 42 (2010), pp. 1246–1285.757

[3] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman, Patchmatch: a randomized758
correspondence algorithm for structural image editing, in Transactions on Graphics, ACM,759
2009, pp. 24–32.760

[4] M. J. Black and P. Anandan, The robust estimation of multiple motions: Parametric and761
piecewise-smooth flow fields, Computer vision and image understanding, 63 (1996), pp. 75–762
104.763

This manuscript is for review purposes only.



INTERACTIVE VIDEO COLORIZATION WITHIN A VARIATIONAL FRAMEWORK 29

[5] J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization for764
nonconvex and nonsmooth problems, Mathematical Programming, 146 (2014), pp. 459–765
494.766

[6] A. Chambolle, An algorithm for total variation minimization and applications, Journal of767
Mathematical Imaging and Vision, 20 (2004), pp. 89–97.768

[7] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with769
applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), pp. 120–770
145.771

[8] T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image772
Processing, 10 (2001), pp. 266–277.773

[9] G. Charpiat, M. Hofmann, and B. Schölkopf, Automatic image colorization via multimodal774
predictions, in European Conference on Computer Vision, Springer, 2008, pp. 126–139.775

[10] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,776
Multiscale Modeling & Simulation, 4 (2005), pp. 1168–1200.777

[11] S. Conti, J. Ginster, and M. Rumpf, A BV functional and its relaxation for joint motion778
estimation and image sequence recovery, ESAIM: Mathematical Modelling and Numerical779
Analysis, 49 (2015), pp. 1463–1487.780

[12] J. Delon and A. Desolneux, Stabilization of flicker-like effects in image sequences through781
local contrast correction, SIAM Journal on Imaging Sciences, 3 (2010), pp. 703–734.782

[13] D. Fortun, P. Bouthemy, and C. Kervrann, Aggregation of local parametric candidates783
with exemplar-based occlusion handling for optical flow, Computer Vision and Image Un-784
derstanding, (2015).785

[14] M. Ghanbari, The cross-search algorithm for motion estimation, IEEE Transactions on Com-786
munications, 38 (1990), pp. 950–953.787

[15] R. K. Gupta, A. Y.-S. Chia, D. Rajan, E. S. Ng, and H. Zhiyong, Image colorization using788
similar images, in ACM International Conference on Multimedia, 2012, pp. 369–378.789

[16] J.-H. Heu, D.-Y. Hyun, C.-S. Kim, and S.-U. Lee, Image and video colorization based on790
prioritized source propagation, in IEEE International Conference on Image Processing,791
2009, pp. 465–468.792

[17] D.-Y. Hyun, J.-H. Heu, C.-S. Kim, and S.-U. Lee, Prioritized image and video colorization793
based on gaussian pyramid of gradient images, Journal of Electronic Imaging, 21 (2012),794
pp. 023027–1.795

[18] R. Irony, D. Cohen-Or, and D. Lischinski, Colorization by example, in Eurographics Symp.796
on Rendering, vol. 2, Citeseer, 2005.797

[19] V. G. Jacob and S. Gupta, Colorization of grayscale images and videos using a semiautomatic798
approach, in IEEE International Conference on Image Processing, 2009, pp. 1653–1656.799

[20] M. Lang, O. Wang, T. Aydin, A. Smolic, and M. Gross, Practical temporal consistency for800
image-based graphics applications, in Transactions on Graphics, ACM, July 2012, pp. 34–801
42.802

[21] C. Lannaud, Fallait-il coloriser la guerre ?, L’express, (2009).803
http://www.lexpress.fr/culture/tele/fallait-il-coloriser-la-guerre 789380.html.804

[22] A. Levin, D. Lischinski, and Y. Weiss, Colorization using optimization, in Transactions on805
Graphics, ACM, 2004, pp. 689–694.806

[23] B. D. Lucas, T. Kanade, et al., An iterative image registration technique with an application807
to stereo vision., in International Joint Conference on Artificial Intelligence, vol. 81, 1981,808
pp. 674–679.809

[24] B. S. Manjunath and W.-Y. Ma, Texture features for browsing and retrieval of image data,810
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18 (1996), pp. 837–842.811

[25] Z. Pan, Z. Dong, and M. Zhang, A new algorithm for adding color to video or animation812
clips, UNION Agency-Science Press, 2004.813
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