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Abstract This paper deals with the difficult problem

of video colorization. Methods in the literature are gen-

erally based on spatio-temporal video blocks, or on fra-

me-to-frame color propagation methods, each technique

having its own advantages and drawbacks. In this pa-

per, we present both a novel automatic frame-to-frame

propagation approach and an interactive correction me-

thod within a variational framework. The proposed me-

thod propagates colors from an initial colorized frame

to the whole grayscale video sequence. The automatic

propagation results may be visually unsuitable in some

cases. To overcome this limitation, a spatio-temporal

functional with a user-guided correction is introduced.

Two primal-dual algorithms are designed to solve the

proposed variational models. Numerical results show
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the efficiency and the potentiality of the proposed ap-

proach in comparison with state-of-the-art methods.
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1 Introduction

To restore old black-and-white movies and make them

more attractive, among young people for instance, cin-

ema and entertainment industries frequently broadcast

colorized versions. In France, in 2014, Apocalypse, a his-

torical documentary by I. Clarke and D. Costelle was

realized from archives colorized by F. Montpellier. The

broadcast gathered over 18.5% of viewers over the age
bracket 11-14 during the first two episodes [20]. The

colorization for movies is mostly performed manually,

which is a very tedious work. As an example, the colo-

rization of about four hours of video sequences for the

Apocalypse documentary required forty-seven weeks by

F. Montpellier and his team.

In this work, we assume that a grayscale video is

available and one of its frames is colorized. This frame

can be colorized by an expert or automatically [36,27,

28]. Video colorization results have to be visually nat-

ural on both constant and textured parts, while a tem-

poral consistency has to be respected.

Traditionally, colorization methods (image or video)

assume that the grayscale image corresponds to a lumi-

nance channel Y. The Y channel is defined as a weighted

average of the RGB channels: Y = 0.299R + 0.587G+

0.114B. The luminance-chrominance spaces propose to

integrate the Y channel with two other ones, called

chrominances. In practice, given the luminance chan-

nel Y, colorization methods estimate two chrominance
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channels before converting into the RGB space while

keeping the luminance Y unchanged. Luminance-chro-

minance spaces usually used in image or video colori-

zation are the lαβ [8], YUV [21] or YCbCr [37].

For image colorization, state-of-the-art methods can

be divided into three categories: the first ones that dif-

fuse scribbles over the image (e.g., [21,37]), the second

ones that use non-local techniques (e.g., [36,14]), and

the others combining the two approaches (e.g., [17,27]).

Extension from image to video colorization are also

proposed. State-of-the-art methods can be divided into

two categories: the ones that diffuse colors from scrib-

bles over a three dimensional block (2D images + time),

and the others that propagate colors from one frame

to its adjacent ones until the whole video sequence is

colorized. This last category is called frame-to-frame

propagation in this paper.

The three dimensional diffusion approaches. The colo-

rization methods described in this paragraph perform

results with a visually natural temporal consistency.

To recover a colorized video, it is required to com-

pute the chrominance channels. In the seminal paper

[21], Levin et al. propose to propagate the values of

chrominances of some scribbles given by a user. The

propagation over the whole video sequence is performed

by minimizing a quadratic function that favours a cou-

pling of luminance and chrominance contours. This cri-

terion is based on neighbor pixels differences in both

spatial and temporal dimensions. Neighborhoods in the

temporal dimension are built after image registration

from Lucas-Kanade optical flow estimation [22]. By con-

sidering three dimensional blocks, the method natu-

rally deals with occlusions and dis-occlusions. Inspired

from [17], Zhen et al. [38] extend the method of [21]

to automatic exemplar-based video colorization (see,

e.g., [36]). The approach of [21] being dependent on the

optical flow computation, Lang et al. [19] propose to

compute a more robust estimation, based on an energy

minimization, to improve colorization results.

The initial quadratic function of [21] is not adapted

to textured images. Sheng et al. [32] replace the spa-

tial distance by a function depending on Gabor fea-

tures [23]. The definition of the optical flow is also ex-

tended to the Gabor feature space. The method can

deal with textures and is more robust to the noise than

the original function of [21].

All these techniques are based on the minimization

of a quadratic criterion computed on the whole video

sequence.

Heu et al. [15] diffuse the chrominances of the scrib-

bles to the other pixels with a priority order. The meth-

od estimates the reliability of a color for each pixel to

its neighbors. For the video colorization, the reliability

is computed between frames with a block-matching ap-

proach. Hyun et al. [16] extend [15] and modify the re-

liability within a multi-scale framework. These two last

methods perform suitable results on smooth images but

the extension to textured videos is only proposed as a

perspective.

Finally, two methods interpolate chrominance chan-

nels. Yatziv et al. [37] blend the colors of the scribbles

according to the spatio-temporal geodesic distance from

one pixel to each scribble.

For textured images, Kang et al. [29] use the Re-

producing Kernel Hilbert Space for the interpolation

of chrominances on textured images. The video colori-

zation is performed by extending the functions to the

three dimensions.

Methods working on the three dimensional blocks

can deal with occlusion and dis-occlusion problems. In

contrast, the interactivity is difficult to reach due to

the large amount of pixels to process and the computa-

tional burden. Indeed, the whole video sequence has to

be processed and checked by the user after scribbling.

The division of the video in some smaller sequences can

be considered, but the concatenation of the colorized

sequences may produce temporal inconsistencies.

To tackle these issues, the frame-to-frame approaches

are presented in the following.

The frame-to-frame approaches. In the seminal paper

[36], Welsh et al. apply their exemplar-based image co-

lorization method to each frame of a video sequence.

This method is neither able to perform temporal nor

spatial consistency.

Sykora et al. [33] address the problem of cartoon co-

lorization. This approach is based on patch comparisons

and manage large displacements and rotations. The cor-

respondence map between patches not being dense, it

is not adapted for textured images and complex motion

of natural videos.

Jacob et al. [18] propose to colorize an image from

scribbles given by a user. To propagate the color of a

frame to the whole video sequence, a search in the pre-

vious frame for the closest patch is performed according

to the sum of squared differences distance, and the color

of the best matching pixel is considered. The search for

the closest patch is computed in a neighborhood de-

pending on a motion estimation.

In Pan et al. [24], the color is transferred to the

adjacent frames, based on the motion estimation of [4].

Teng et al. [34] propose to use a refined block-matching

algorithm to propagate colors over the frames. The user

has to choose when the refined version is used instead

of the original one.
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Fig. 1 Overview of the whole approach. For most of the sequence, the frame-to-frame propagation model computes suitable
results (in green). In the case of dis-occlusion area, a user-guided approach is mixed with the unsuitable result (in red). After
that, the frame-to-frame propagation restarts from the visually suitable frame.

All the frame-to-frame approaches use a specific mo-

tion estimation, each having its own advantage. These

methods are sensitive to mistakes since the result is re-

used and unsuitable colors are propagated.

In this paper, we propose a variational framework

that merges the advantages of different correspondence

maps including some motion estimations and reduces

the propagation of unsuitable colors.

Temporal consistency for video colorization. State-of-

the-art approaches generally use at least one of these

techniques: patch correspondence, optical flow algori-

thm or regularization. Each of these techniques have

their own advantages and drawbacks. The optical flow

is reliable because it is based on physical interpreta-

tion of the motion through the illumination equation.

In contrast, it is not able to deal with large displace-

ment or dis-occlusion. The computation of the neigh-

bor map from patch comparison is able to tackle this

issue, but being not based on physical assumption, it

is more artificial than a real motion, which has to be

continuous. The methods based on regularization are

not adapted to textured or noisy sequences, but can

deal with the occlusion and dis-occlusion problems. The

comparisons between all the cited state-of-the-art ap-

proaches are summarized in Table 1.

Contributions. In this paper, we first propose a frame-

to-frame variational model and an algorithm able to

compute a solution. The method uses both color and

map regularization to propagate colors. It is based on

one or many correspondence maps. In this work, for

the sake of clarity, we only focus on the case of two

correspondence maps without loss of generality.

Next, we explain how the previous frame-to-frame

propagation model can be extended to user interaction

Table 1 Summary of the state-of-the-art methods. We pro-
pose to merge all their advantages into a variational frame-
work.

Methods Patch based Optical Flow Regularization
[33]

√
×

√

[18,15,16]
√

× ×
[32,38,19,21] ×

√ √

[34] ×
√

×
[24,37,29] × ×

√

Our
√ √ √

where color scribbles can be added on an unsuitable

colorized frame of the video sequence. The user cor-

rection is merged with the previous result produced by

the frame-to-frame propagation model. Contrary to the

proposed propagation, the correction one is performed

over a three dimensional representation of the video se-
quence to solve occlusion or dis-occlusion problems.

Outline. In Section 2, we describe a variational ap-

proach computing a regularized result from the corre-

spondence maps. This model is solved by a primal-dual

like algorithm. A scribble correction technique is pro-

posed in Section 3, where a primal-dual algorithm is

designed to solve it. In Section 4, we describe some

implementation details, in particular, we explain how

the two proposed models interact with each other. Fig-

ure 1 summarizes the basis of our approach. Finally,

in Section 5 we present results and comparisons with

state-of-the-art methods.

2 Frame-to-Frame Propagation Model

In this section we propose to introduce a new func-

tional for video colorization that propagates colors from
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Grayscale frames 
at time t -1 and t

Minimization of
Model (1)

Color frame at time t -1
Grayscale frame at time t

Video colorization result

Correspondence maps computation

Fig. 2 Overview of the frame-to-frame propagation method. In this example, two correspondence maps between grayscale
frames at times t − 1 and t are computed in a first step. The frame-to-frame propagation method estimates both an optimal
correspondence map and the final color for the frame at time t. The green arrows represent the correspondences between
two frames for a considered pixel. The first step provides two correspondence maps, while the minimization of Functional (1)
computes the optimal one.

a frame to an adjacent one. The proposed method com-

putes an optimal correspondence map between the video

frames, based on a trade-off between the regularity of

the map and the resulting color. This regularization is

performed with total variation (TV).

2.1 Overview of the Frame-to-Frame

Propagation Method

Our approach combines correspondence maps that can

be obtained with different techniques (e.g., [3,13]). Cor-

respondence maps enable the mapping of chrominance

values and the propagation of colors through the video

sequence. Our approach considers multiple correspon-

dence maps and the proposed model select the best

one. As illustrated in Figure 2, the first step of our

frame-to-frame propagation method computes the cor-

respondence maps, which can be performed as a pre-

processing. Each correspondence map provides a color

candidate.

Next, from a colorized initial frame, the method es-

timates the best candidate by minimizing the functional

described in Section 2.2. The minimization provides

both the colorized frame and the optimal correspon-

dence map. They are both regularized by a TV term.

This aspect is detailed in Section 2.3.

Figure 2 summarizes our frame-to-frame propaga-

tion approach.

2.2 A New Functional Based on Color Regularization

and Correspondence Maps

In this section, a model performing both a choice be-

tweenM correspondence maps and computing the color

of a frame is proposed.

A video, denoted by u is assumed to be a finite

sequence of T frames, indexed in time by a discrete

variable t ∈ J1;T K. The video is considered in RGB

and converted into the YUV color space. u(t) denotes

the chrominance channels (U, V ) of the frame at time

t. The initial grayscale video sequence is supposed to

be the luminance channel of the final colorized video.

The computation of the chrominance channels U and V

enables to recover the RGB corresponding colors. The

image domain is denoted as Ω.
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Fig. 3 Example of correspondence maps between two frames
(M = 2). From a given result at time t − 1, two possible
propagation results are provided at time t from the two maps.
The frame-to-frame model computes a regularized optimal
final color.

For each pair of frames u(t−1) and u(t), the proposed

functional chooses, at each position x, one correspon-

dence map between the M available.

This selection of the best correspondence is com-

puted within a variational framework. The related work

of Pierre et al. [26] performs a choice between different

colors under an assumption of regularity of the final

result. We extend this model for both correspondence

maps and the final color, and we propose the following

new functional:

(û(t), ŵ(t)) = argminu(t),w(t) αTVC(u(t)) + β TV(v(t))

+ λ

∫
Ω

M∑
i=1

w
(t)
i (x)‖u(t)(x)− c(t)i (x)‖22 dx

+ χR(u(t)) + χ∆(w(t)). (1)

c
(t)
i is the color candidate given from the frame u(t−1),

by the correspondence map v
(t)
i , thanks to its definition

available in Equation (5) and (6). A trade-off between

the regularity of the map v(t) and the colors of the

result u(t) is controlled by the parameters α, β and λ.

w(t) is a weight parameter that measures the pixel-wise

contribution between the correspondence maps.

TVC(u(t)) is a regularization term based on the min-

imization of the total variation [30] of chrominance chan-

nels of the frame u(t) at time t:

TVC(u(t)) =

∫
Ω

(
γ‖∇Y ‖22 + ‖∇U‖22 + ‖∇V ‖22

)1/2
, (2)

where ∇ = (∂x, ∂y) is the spatial gradient of a frame.

The parameter γ controls the coupling of the luminance

channel Y with the chrominance ones, avoiding halo

effects [26].

TV(v(t)) enforces the regularity of the final corre-

spondence map and is detailed in Section 2.3 (see Equa-

tion (7)). The correspondence map at time t denoted

by v(t) is defined as a weighted average of the v
(t)
i :

v(t) =

M∑
i=1

w
(t)
i v

(t)
i . (3)

Finally, χR(u(t)) guaranties that the minimizer of

the functional is in the chrominance standard range

(see, e.g., [26]) and χ∆(w(t)) constrains w(t) to be in the

probability simplex (i.e., 0 ≤ w(t)
i ≤ 1 and

∑M
i=1 w

(t)
i =

1).

The definition of the data-fidelity term is based on

the set of colors of the initial frame. Let us denote the

propagated color ĉ(t−1) at time t− 1 as:

ĉ(t−1) =

M∑
i=1

ŵ
(t−1)
i c

(t−1)
i . (4)

Therefore, the candidates in the data-fidelity term are:

c
(t)
i (x) = ĉ(t−1)(v

(t)
i (x)), i = 1, ...,M, (5)

and

c
(1)
i (x) = u(1)(v

(1)
i (x)), i = 1, ...,M. (6)

With these definitions, Functional (1) computes an op-

timal map between the frames u(t−1) and u(t) with a

regularization of both maps and colors.

Once the minimum of the functional with respect to

w(t) is reached, the values of the optimum ŵ(t) are pro-

jected onto the canonical basis that avoids the melting

of colors. In practice, the w
(t)
i , which has the maximum

value gets 1, while the others get 0. The definition of

ĉ(t), given by (6) and (5) preserves the set of colors of

the initial frame, i.e., the chrominances used at time t
are only the initial ones. Indeed, since the weights are 0

or 1, by Equation (5), ĉ(t) is one of the color candidates

of the previous frame, without any melting. Thus, by

induction, the data-fidelity term at time t is only com-

posed with colors of the initial frame. This induction

is illustrated in Figure 4. Since the regularization of

the chrominance channels may produce new colors, the

preservation of initial frame colors is important.

Figure 3 illustrates the computation of the data-

fidelity term. While theM initial maps provideM col-

ors, based on the previous result, the frame-to-frame

model computes the optimal one.

With Functional (1), the computation of the solu-

tion only depends on the result of the optimization at

the previous frame. The computations are performed

iteratively from the initial frame to the last one. The

minimization of the functional provides an optimal map

among the initial ones (see Equation (3)).

The TV regularization of the correspondence maps

is detailed in the next section.
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Fig. 4 Illustration of the color propagation from the first frame. The colors are transferred from frame 1 to frame 2 with

respect to the optimal map v̂(1) =
∑M
i=1 ŵ

(1)
i v

(1)
i computed by the proposed frame-to-frame propagation algorithm. The data-

fidelity term available for a frame is only composed of chrominances existing in the previous one. By induction, the successive
data-fidelity term are only composed of colors available in frame 1.

2.3 Correspondence Maps Regularization

We propose to regularize both correspondence maps

and colors of the result. Similar approach for map reg-

ularization is proposed by [12] to compute an aggrega-

tion of optical flows. In [12], the result is only based

on the map regularization whereas our model considers

the regularity of both maps and chrominances. In [10],

a similar technique enables both the estimation of the

optical flow and the denoising of the image. It differs

from video colorization where the optical flow is com-

puted on the luminance channel, whereas the final es-

timation is performed on chrominance channels. Other

approaches preserving geometric structures have been

proposed for inpainting problems [2,1].

The correspondence map v is a two dimensional vec-

tor corresponding to the relative displacement of the

objects between two frames. The two coordinates of v

are denoted by ϕ (horizontal displacement) and ψ (ver-

tical displacement).

The map regularization is based on the following

term in Functional (1):

TV(v) = ‖∇v‖1,2 =

∫
Ω

‖∇v(x)‖2 dx. (7)

The total variation of v favors constant parts of the cor-

respondence maps. This regularization term provides a

map preserving the textures from the initial frame. If

the relative correspondence map is piece-wise constant

between two frames, some parts of these frames have

a similar content. Therefore, it mimics a copy-paste

method from a frame to the next one. When this map is

used to propagate the values of chrominance channels,

some parts of adjacent frames that have similar lumi-

nance are colorized with the same chrominances. With

this approach, the richness of the color in textures is

preserved.

In the following, without loss of generality, and for

the sake of clarity, we only consider the case of two

correspondence maps (M = 2). The generalization to

multiple correspondence maps is straightforward. The

computation of (3) can be simplified with the following

parametrization:

w1 = w, w2 = 1− w, (8)

with w ∈ [0, 1].

With Parametrization (8):

v = w(v1 − v2) + v2. (9)

To compute the total variation, the gradient is defined

as:

∇v = (v1 − v2)⊗∇w + w(∇v1 −∇v2) +∇v2, (10)

where ⊗ is the Kronecker product:

(v1 − v2)⊗∇w =


(ϕ1 − ϕ2)∂xw

(ϕ1 − ϕ2)∂yw

(ψ1 − ψ2)∂xw

(ψ1 − ψ2)∂yw

 , (11)

and vi = (ϕi, ψi)
T .

We denote the linear operator on the variable w, in

Equation (11), by A. Pixel-wise:

Aw =


ϕ1−ϕ2 0

0 ϕ1−ϕ2

ψ1−ψ2 0

0 ψ1−ψ2


︸ ︷︷ ︸

:=A1

∇w+


∂xϕ1−∂xϕ2

∂yϕ1−∂yϕ2

∂xψ1−∂xψ2

∂yψ1−∂yψ2


︸ ︷︷ ︸

:=A2

w. (12)
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With these notations, TV(v) reads as ‖Aw +∇v2‖1,2.

The following lemma provides the operator norm

of A, which is required for the implementation of the

minimization algorithm.

Lemma 1 The operator norm of A is bounded by

‖A‖ ≤ 2
√

8(N +M) + 4(N +M), (13)

where M and N are the dimensions of a frame.

The proof of this lemma is available in Appendix A.

2.4 Algorithm for Color Propagation

In this section, we propose an iterative scheme solving

Functional (1) with M = 2.

2.4.1 General algorithm

For a proper and lower semi-continuous (lsc) functional

F on RP with values in R∪{+∞} let us define F ∗, the

Legendre-Fenchel transform, as follows:

F ∗(p) = max
u∈RU

〈p|u〉 − F (u). (14)

To design an algorithm for Model (1), we have to solve

problems of the form:

min
u∈RU

max
p∈RP

〈Ku|p〉 − F ∗(p) +G(u), (15)

where F ∗ and G are proper, lsc and convex functions,

and K is a linear and continuous operator that maps

RU on RP . Chambolle and Pock [6] propose a primal-

dual algorithm to solve this class of problems.

In this work, we solve a problem of the form:

min
u∈RU ,w∈RW

max
p∈RP ,z∈RZ

F (u) + 〈Ku|p〉 −G∗(p)

+ h(u,w) +H(w) + 〈Aw|z〉 − J∗(z) (16)

with A linear and continuous operator, F , H, G and J

are proper, lsc and convex functions, h is a proper, lsc

function, convex with respect to each of its variables.

To compute a saddle-point of Model (16), we pro-

pose to use Algorithm 1. σu, σw, τw and τu are time

steps. The proximal operator of a proper, lsc and con-

vex function f : RU → R is defined as (see, e.g. [9]):

proxf (v) = argminu∈RU ‖u− v‖22 + f(u). (17)

Algorithm 1 Primal-dual algorithm solving (16).

1: for n ≥ 0 do
2: pn+1 ← proxσuG∗ (pn + σuKun)

3: zn+1 ← proxσwJ∗ (zn + σwAwn)

4: wn+1 ← proxτw(H+h(un,.))

(
wn − τwA∗zn+1

)
5: un+1 ← proxτu(F+h(.,wn))

(
un − τuK∗pn+1

)
6: un+1 ← 2un+1 − un
7: wn+1 ← 2wn+1 − wn
8: end for

2.4.2 Dual version of Model (1)

To solve Model (1), the 1, 2−norm, recalled in Equa-

tion (7), is written in the dual form:

β‖u‖1,2 = max
p∈RP

〈u|p〉 − χBRP (0,β)(p), (18)

with u ∈ RU , and BRP (0, β) the β radius ball in RP
with L2-norm.

Once again, for the sake of clarity we considerM =

2 in the following, but the extension to higher values of

M is straightforward. Let us rewrite the total variation

of the correspondence map (see Equation (7)):

TV(v) = ‖(v1 − v2)⊗∇w + w (∇v1 −∇v2) +∇v2‖1,2
= max

z∈R4
〈(v1 − v2)⊗∇w + w (∇v1 −∇v2) +∇v2|z〉

− χBRP (0,β)(z)

= max
z∈R4

〈Aw|z〉+ 〈∇v2|z〉 − χBRP (0,β)(z), (19)

with A defined in (12).

Let us compute the dual operator A∗ of A as follows:

A∗ = A∗1 +A∗2, (20)

with the pixel-wise multiplication:

(∇v1 −∇v2)
∗

= ∇v1 −∇v2, (21)

and with:

((v1 − v2)⊗∇)
∗

= div(I2 ⊗ (v1 − v2)T ), (22)

where (v1−v2)T is equal to the transpose of the matrix

A1 defined in (12), and I2 is the identity matrix of size

2.

Model (1) is rewritten in the primal-dual form:

min
u(t),w(t)

max
p,z
〈p(x)|∇u〉+ 〈Aw|z〉+ 〈∇v2|z〉

+ λ

∫
Ω

w‖u− c1‖22 + (1− w)‖u− c2‖22

− χB(0,α)(p)− χBRP (0,β)(z) + χR(u) + χ[0,1](w).

(23)
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2.4.3 Final reading of the algorithm

Since the terms of Equation (23) are pixel-wise separa-

ble, we remove the N ×M notations. We apply Algori-

thm 1 to (23) with the following identifications:

• F (u) = χR(u)

• G∗(p) = χBR6 (0,α)(p)

• H(w) = χ[0,1](w)

• J∗(z) = χBR4 (0,β)(z)− 〈∇v2|z〉
• h(u,w) = λ

(
w‖u− c1‖22 + (1− w)‖u− c2‖22

)
The proximal operators are given by the following

lemmas.

Lemma 2 The proximal operator of σwJ
∗ is:

proxσwJ∗ = PBR4 (0,β)(z̃ + σw∇v2), (24)

where PBR4 (0,β) is the projection onto the L2 ball of ra-

dius β.

Proof The function is −σw 〈∇v2|.〉+ χBR4 (0,β).

prox−σw〈∇v2|.〉+χBR4 (0,β)
(z̃)

= argminz∈R4

‖z − z̃‖22
2σw

− σ 〈∇v2|z〉+ χBR4 (0,β)(z),

(25)

thus:

prox−σw〈∇v2|.〉+χBR4 (0,β)
(z̃) = PBR4 (0,β)(z̃ + σw∇v2).

(26)

ut

Lemma 3 The proximal operator of τwh(u,w)+τwH(w)

is:

proxτw(h(u,w)+H(w))(w̃)

= P[0,1]

(
w̃ − τwλ(‖u− c1‖22 − ‖u− c2‖22)

)
, (27)

where P[0,1] is the orthogonal projection onto [0, 1].

Proof The function is λw‖u − c1‖22 + τwλ(1 − w)‖u −
c2‖22 + χ[0,1](w):

proxτw(h(u,w)+H(w))(w̃)

= argminw
‖w − w̃‖22

2

+ τwλw‖u− c1‖22 + τwλ(1− w)‖u− c2‖22
+ χ[0,1](w)

= argminw
‖w − w̃‖22

2

+ τwλw(‖u− c1‖22 − ‖u− c2‖22)

+ χ[0,1](w)

= P[0,1]

(
w̃ − τwλ(‖u− c1‖22 − ‖u− c2‖22)

)
. (28)

ut

Lemma 4 The proximal operator of h(u,w)+F (u) is:

proxτu(h(u,w)+F (u))(ũ)

= PR

(
ũ− τuλ2(wc1 + (1− w)c2)

1 + 2τuλ

)
, (29)

where PR is the pixel-wise projection onto the standard

range for chrominances.

Proof The function is

τuλw‖u− c1‖22 + τuλ(1− w)‖u− c2‖22 + χR(u):

proxτu(h(u,w)+F (u))(ũ)

= argminu ‖u− ũ‖22 + 2τuλw‖u− c1‖22
+ 2τuλ(1− w)‖u− c2‖22 + χR(u)

= argminu ‖u‖22 − 2〈u|ũ〉 − 4τuλ〈u|wc1〉+ 4τuλw‖u‖22
− 4τuλ〈u|(1− w)c2〉+ 4τuλ(1− w)‖u‖22 + χR(u)

= argminu(1 + 2τuλ)‖u‖22 − 4τuλ〈u|wc1 + (1− w)c2〉
+ χR(u)

= argminu ‖u‖22 − 2

〈
u| ũ+ τuλ2(wc1 + (1− w)c2)

1 + 2τuλ

〉
+ χR(u)

= PR

(
ũ− τuλ2(wc1 + (1− w)c2)

1 + 2τuλ

)
. (30)

ut

The final algorithm, solving (1) for one frame reads

as Algorithm 2. PB(0,α) and PBRP (0,β) represent the pro-

jection onto the L2 ball of radius α and β respectively.

P[0,1] is the truncation of the coordinates between 0

and 1. PR is the projection onto the standard range for

chrominances.

At convergence, the values of w are projected onto

the canonical basis to have binary values and to avoid

melting of colors or correspondence maps. A binariza-

tion of the variable w by truncation enables the com-

putation of the correspondence map v. The algorithm

computes two colors for each pixel: one corresponding

to the final result u and another one,
∑
i wici corre-

sponding to the transfer of colors from the initial frame

through the sequence.

2.4.4 Theoretical properties

In this section, we propose a theorem that states the

convergence of Algorithm 1 under some hypotheses.

Since Functional (1) is not convex, the definition of a

saddle-point for the primal variables (u,w) and the dual

ones (p, z) is not adapted to our problem. So, we extend

the definition of saddle-point. For a given w ∈ W, let

us consider the reduced problem

min
u∈U

max
p∈P
〈Ku|p〉 − F ∗(p) +G(u) + h(u,w). (31)
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Algorithm 2 Minimization of (23) with M = 2.

Input: v1,2, c1,2
1: w = 0.5 and u0 =

∑2
i=1 wici.

2: p0 ← ∇u0

3: z0 ← Aw0

4: for n ≥ 0 do
5: pn+1 ← PB(0,α) (pn + σu∇un)
6:

zn+1 ← PBRP (0,β)(z
n + σw((v1 − v2)⊗∇wn

+ (∇v1 −∇v2)wn + σw∇v2))

7:

wn+1 ← P[0,1](w
n + τw((∇v1 −∇v2)zn+1

+ div(I2 ⊗ (v1 − v2)T vn+1)− τwλ(‖u− ci‖)i))

8:

un+1 ←

PR

un + τu
(

div(pn+1) + 2λ
∑C
i=1 w

n+1
i ci

)
1 + 2τuλ


9: wn+1 ← 2wn+1 − wn

10: un+1 ← 2un+1 − un
11: end for

12: woptimal ←
{

0 if w∞ ≤ 0.5
1 otherwise.

Output: û← u∞;
13: ŵ ← w∞;
14: v̂ ← ŵv1 + (1− ŵ)v2.

Since the only variables are u and p, and the sumG(u)+

h(u,w) plays the role of a unique function convex with

respect to the variable u, (31) can be cast within the

framework of saddle-point computation (e.g., [6]). Thus,

it admits a saddle-point (û, p̂) such that

∀(u, p, w) ∈ U × P ×W:

〈Ku|p̂〉 − F ∗(p̂) +G(u) + h(u,w)

≥ 〈Kû|p〉 − F ∗(p) +G(û) + h(û, w). (32)

Moreover, for a given u ∈ U , the reduced problem

min
w∈W

max
z∈Z
〈Aw|z〉 − J∗(z) +H(w) + h(u,w) , (33)

is considered in the same way as Equation (31), and

it admits a saddle-point (ŵ, ẑ) such that ∀(w, z, u) ∈
W ×Z × U :

〈Aw|ẑ〉 − J∗(ẑ) +H(w) + h(u,w)

≥ 〈Aŵ|z〉 − J∗(z) +H(ŵ) + h(u, ŵ). (34)

Definition 1 We call a bisaddle-point of Problem (16)

a point (û, p̂, ŵ, ẑ) ∈ U×P×W×Z such that ∀(u, p, w, z) ∈

U × P ×W ×Z:

〈Ku|p̂〉+ 〈Aw|ẑ〉 − F ∗(p̂)− J∗(ẑ)
+G(u) +H(w) + 2h(u,w)

≥ 〈Kû|p〉+ 〈Aŵ|z〉 − F ∗(p)− J∗(z)
+G(û) +H(ŵ) + h(u, ŵ) + h(û, w). (35)

The existence of such points is stated in Lemma 5.

We call a critical bisaddle-point of Problem (16) a

point (û, p̂, ŵ, ẑ) ∈ U × P ×W ×Z such that

∀(u, p, w, z) ∈ U × P ×W ×Z:

〈Ku|p̂〉+ 〈Aw|ẑ〉 − F ∗(p̂)− J∗(ẑ)
+G(u) +H(w) + h(û, w) + h(u, ŵ)

≥ 〈Kû|p〉+ 〈Aŵ|z〉 − F ∗(p)− J∗(z)
+G(û) + H(ŵ) + 2h(û, ŵ). (36)

The existence of such points is a direct consequence of

Theorem 1.

Lemma 5 is a key ingredient to demonstrate the

convergence of Algorithm 1.

Lemma 5 There exists (û, p̂, ŵ, p̂) verifying (35), i.e.,

there exists bisaddle-point for Problem (16).

Proof From the existence of saddle-points for the vari-

able w and u, Equations (32) and (34) hold true. Equa-

tion (35) is obtained by summing (32) and (34). This

shows the existence of bisaddle-point for Problem (16).

ut

We recall the definition of isolated points used in

Theorem 1 stated below.

Definition 2 The point of a subset S of Rn are isolated

if ∃ε > 0 such that ∀x, y ∈ S, ‖x− y‖ ≥ ε.

Algorithm 1 converges to a critical bisaddle-point of

Problem (16) under some conditions stated in Theorem

1.

Theorem 1 Let L = ‖K‖, Q = ‖A‖, choose τuσuL
2 <

1, τwσwQ
2 < 1 and let (un, pn, wn, zn) be defined in

Algorithm 1. For the sake of simplicity, assume that U ,

P, W and Z are of finite dimension.

(a) ∀n > 0

‖pn − p̂‖22
2σu

+
‖un − û‖22

2τu
+
‖wn − ŵ‖22

2τw
+
‖zn − ẑ‖22

2σw

≤ β
(
‖p0 − p̂‖22

2σu
+
‖u0 − û‖22

2τu

+
‖w0 − ŵ‖22

2τw
+
‖z0 − ẑ‖22

2σw

)
(37)

where β ≤ (min(1− τuσuL2, 1− τwσwQ2))−1.
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(b) There exists a cluster point, which is a fixed-

point of Algorithm 1.

(c) Assume moreover that the critical bisaddle-points

are isolated. Then, there exists a fixed-point (u∗, p∗, w∗,

z∗) such that the sequence (un, pn, wn, zn) converges to

it.

With Theorem 1, the convergence is not guaranteed

since we cannot prove that critical bisaddle-points are

isolated. Nevertheless, the proof of Theorem 1, given in

Appendix B, guaranties that

‖(pn, un, wn, zn)− (pn+1, un+1, wn+1, zn+1)‖22 −→
n→+∞

0.

(38)

This assertion states that the stopping criterion

‖(pn, un, wn, zn)− (pn+1, un+1, wn+1, zn+1)‖22 < ε (39)

is reached, for all ε > 0.

3 Interactive Scribble-based Correction

As it is difficult to provide a fully automatic method

for image colorization (e.g., [27]), a frame-to-frame ap-

proach also may requires a manual intervention from

the user. Indeed, occlusions or dis-occlusions may oc-

cur, and new objects can appear in the video sequence

whose color information is not present in the begin-

ning of the sequence. For instance, Figure 14 shows a

video sequence where the frame-to-frame propagation

model is suitable. In contrast, in Figure 13, the method

requires an intervention of the user to correct a dis-

occlusion.

To cope with this limitation, we propose in this sec-

tion a manual correction of the frames that extends

the frame-to-frame approach. We also describe a varia-

tional framework for the scribble correction, as well as

a minimization algorithm.

3.1 Overview of the User-guided

Correction Method

To correct the visually unsuitable results of the pro-

posed frame-to-frame propagation approach (1), we de-

sign a user-guided correction method inspired by the

model proposed by Pierre et al. [27]. We extend this

work to the case of videos, where 3D blocks are con-

sidered (2D + t). Frequently, occlusion or dis-occlusion

parts of the video sequence produces undesirable re-

sults, which is not always easily visible on the first frame

it occurs. Thus, in our method, the user can define the

sub-sequence to correct.

The correction of a dis-occlusion artefact requires

the computation of a color on an object that appears

on the scene. Thus, this pixel cannot have a reliable

correspondence map from the previous frame, so the

computation of a correspondence map is unreliable in

dis-occlusion areas.

The correction algorithm, through the minimiza-

tion of a new functional, computes a trade-off between

the previous propagation result and the color provided

by the scribbles. Compared to existing manual meth-

ods [37], as we use the current colorization result, few

scribbles are needed. The overview of the correction

method is presented in Figure 5.

3.2 User-guided Correction Model

Assume that a first result c̃1 has been computed from

Model (1), from time 1 to time n, and that the user

adds S scribbles on the unsuitable result at n-ith frame,

providing S candidates c̃i, i = 2 . . . S + 1.

The next step corrects the video sequence between

time t1 (defined by the user) and time n.

In the same context, the authors of [27] propose to

unify a user-guided image colorization with an exem-

plar-based one within a variational framework. The fol-

lowing model, which is a direct extension of [27] to spa-

tio-temporal blocks, is minimized, where u is a 2D+t

chrominance block:

(û, ŵ) = argminu,w αTV[t1,n](u)

+ λ

∫
Ω×[t1,n]

S+1∑
i=1

w
(t)
i (x)‖u(t)(x)− c̃(t)i (x)‖22 dx dt

+ χR(u) + χE(w). (40)

The minimizer of the data-fidelity term

∫
Ω×[t1,n]

S+1∑
i=1

w
(t)
i ‖u

(t)(x)− c̃(t)i (x)‖22 dx dt, (41)

with respect to u, is equal to the average of c̃i weighted

by wi. We add χE(w), which constrains w to be onto

the canonical basis. This constraint prevents the final

result to be a melting of input colors.

The total variation (TV) of a chrominance block

(U, V ) reads:

TV[t1,n](u)

=

∫
Ω×[t1,n]

(
γ‖Λ∇Y ‖22 + ‖Λ∇U‖22 + ‖Λ∇V ‖22

) 1
2 ,

(42)
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Scribbles propagation

with coarse approach 
● Weights computation
● New candidates

User input
Scribbles on one

frame

Minimization of
Model (40)

Unsuitable frame
Result from the

propagation algorithm

Fig. 5 Interactive scribble-based correction. The correction algorithm provides a trade-off between the colors produced by
the frame-to-frame propagation method, and the ones given by the user. A coarse approach (the geodesic distance diffusion
for instance) is used to provide a first scribble diffusion, which is then refined by minimizing Functional (40).

with ∇ = (∂x, ∂y, ∂t),

Λ :=

1 0 0

0 1 0

0 0 µ

 . (43)

The temporal regularization is more important for Mo-

del (40) than for Model (1). Indeed, in Model (1), in

the set of the initial correspondence maps, it may be

possible to use temporally consistent maps, such as op-

tical flow. In contrast, for the scribble correction model,

the result is temporally regularized by adding a time

derivative in the total variation term. The parameter

µ controls the influence of the temporal regularization

with respect to the spatial one.

3.3 Algorithm

For the minimization of Model (40), the algorithm pre-

sented in [26] is directly used. The composition of op-

erator Λ with the gradient and the divergence is not

restrictive to apply the general algorithm of [26]. Fi-

nally, the minimization of Model (40) is achieved with

Algorithm 3, where cn∗ states for the closest candidate

c̃i from un, and τ, σ are time steps. Even if the model is

not convex, the convergence to a critical point is guar-

anteed by Theorem 2.9 of [26].

With the combination of Algorithm 2 for color prop-

agation and Algorithm 3 for scribble correction, we pro-

pose, in this work, a complete framework for video co-

lorization. It is composed of a frame-to-frame propaga-

tion approach, which is unsupervised, and a correction

step when occlusions or dis-occlusions occur. The inter-
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(a) PatchMatch propagation. (b) TVL1 optical flow propagation. (c) Propagation result with Model (1).

Fig. 6 Combination of PatchMatch and optical flow correspondence maps. The PatchMatch (resp. TVL1) propagation of
colors is illustrated in (a) (resp. (b)). The result with Model (1) is illustrated in (c). By combining the advantages of both
maps, the frame-to-frame propagation Model (1) performs a visually suitable result, whereas the initial maps produces visually
unsuitable parts (see in red boxes).

Algorithm 3 Minimization of (40).

1: u0 =
∑S+1
i=1 wici.

2: p0 ← ∇u
3: for n ≥ 0 do
4: pn+1 ← PB(0,α) (pn + σΛ∇un)

5: un+1 ← PR

(
un + τ

(
div(Λpn+1) + 2λcn∗

)
1 + 2τuλ

)
6: un+1 ← 2un+1 − un
7: end for

action between the two models is detailed in the next

section.

4 Implementation Details

In this section, we describe implementation details. In

particular, we present the computation of the corre-

spondence maps and the initialisation of the correc-

tion algorithm. We also explain how the two models for

propagation and correction interact with each other.

4.1 Global Workflow of the Proposed Video

Colorization Method

Currently, many state-of-the-art methods are applied to

a 3D representation of the video (2D + t). The frame-

to-frame propagation Model (1) could be extended to

3D representation where the whole video sequence is

processed in a one step. In the case of manual inter-

vention, the whole video sequence needs to be com-

puted again. By working frame-by-frame, the speed-up

enables us to provide an interactive approach. Indeed,

if the results are visually unsuitable and unexpected,

this is visible after a short processing time. The user

can add scribbles after a reduced waiting time.

In our approach, we assume that one frame of the

grayscale sequence is colorized (for instance by [28])

and the colors are propagated to the adjacent ones, un-

til the whole video sequence is colorized. The required

intervention of the user is simple: he can check the solu-

tion; if the frame is unsuitable, he can add scribbles on

the result and the correction Algorithm 3 is applied. In

practical cases the frame-to-frame propagation model

is enough suitable to reduce user’s interventions. This

efficiency is demonstrated in Section 5.

The global workflow is illustrated in Figure 1. The

video is colorized by the propagation algorithm, un-

til an unsuitable result can appear (i.e., because of an

occlusion). The user adds scribbles to correct the last

unsuitable frame and the proposed correction method

described in Section 3 computes a solution for the sub-

set of frames. After that, the frame-to-frame propaga-

tion method can be re-applied from the last colorized

frame.

4.2 Computation of the Correspondence Maps

Our method propagates colors from an initial frame

to the final one, through an optimal correspondence
map that is computed from initial correspondence maps

with Equation (1). In this work, we compute two ini-

tial maps, from the luminance channel of the video se-

quence, with the PatchMatch method [3] and the TVL1

optical flow [6].

The PacthMatch method consists in computing a

nearest-neighbor map between two adjacent frames. For

each pixel at position x in the frame u(t) at time t, the

nearest-neighbor map consists in the position ŷ in the

frame u(t−1) at time t− 1 such that:

ŷ = argminy∈Ω ‖P (x)− P (y)‖2, (44)

where P (x) (resp. P (y)) is the patch centred at posi-

tion x (resp. y) in frame u(t) (resp. u(t−1)). The com-

putation of this correspondence map through exhaus-

tive search being extremely computationally expensive,

PatchMatch algorithm [3] is used to compute an ap-

proximate correspondence map between two adjacent

frames.
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A second correspondence map is computed by the

TVL1 optical flow with Chambolle-Pock algorithm [6].

The optical flow estimates the apparent motion between

two frames of a video sequence. This estimation solves

the Optical Flow Constraint Equation [35]:

ρ(u, v) = ∂tu+ 〈∇x,yu|v〉+ βu, (45)

where ∇x,yu is the spatial gradient and v : Ω → R2 is

the motion field. The following functional is minimized,

where TV is defined as in Equation (7):

min
v

TV(v) + TV(u) + ‖ρ(u, v)‖1, (46)

which gives the TVL1 optical flow.

These two correspondence maps, one computed by

PatchMatch and the other one from TVL1 optical flow

differ in term of quality: the first one is more piece-

wise, and the second one is more regular. The Patch-

Match algorithm, being less regularized, produces some

colorization artefacts that are propagated over time.

Nevertheless, it can deal with large displacements. In

contrast, the regularity of the TVL1 map enforces the

relevance of the estimated flow, but the Optical Flow

Constraint Equation may not be reliable on some part

like dis-occlusions.

The approximate nearest-neighbor map provided by

the PatchMatch method is experimentally piece-wise

constant. This geometrical property enables to simu-

late a copy-paste technique. Thus, the combination of

the optical flow with the PatchMatch correspondence

map can be understood as follows: for small and con-

trolled motions, the TVL1 optical flow provides a suit-

able colorization; in the case of large displacements or

dis-occlusions, PatchMatch produces some copy-pastes
of colorized parts from another area of the image.

Figure 6 shows the differences of visually unsuitable

results produced by PatchMatch and the TVL1 optical

flow (red boxes focus on the problems). Model (1) pro-

duces a visually suitable result from these two initial

maps.

4.3 Scribble Correction

The correction Model (40) computes a solution from the

frame-to-frame propagation result and user’s scribbles.

This model performs a scribble diffusion thanks to the

total variation minimization. To help the propagation

of the scribbles, a technique inspired by [37] is used.

The geodesic distance is computed on a three dimen-

sional block, composed of the two spatial dimensions

with the temporal one. This geodesic distance provides,

for each pixel, a weight wi associated to the chromi-

nance candidate c̃i given by one of the scribbles. c̃1 is

the previous frame-to-frame propagation result, c̃i with

i = 2, . . . , S + 1 is the chrominance given by one scrib-

ble.

In practical cases, the three dimensional gradient

norm is filtered by a Gaussian kernel. The geodesic dis-

tance map, denoted by D, is computed with the fast

marching algorithm [31], with potential:(
θ + ‖∇u‖22

)−r
, (47)

inspired by [7]. θ and r are shape parameters. D is nor-

malized with an affine mapping to have a range between

0 and 1. We use the implementation of [25] to compute

the geodesic distance.

The weights wi of Algorithm 3, corresponding to

the scribble candidates c̃i, are initialized with 1 − Di

where Di is the geodesic distance from the scribble. The

variable w1, corresponding to the candidate c̃1 coming

from the previous frame-to-frame propagation model, is

initialized with 1 −
∑S+1
i=2 wi. When

∑S+1
i=2 wi > 1, the

weights are divided by this sum to avoid that w1 < 0.

If the geodesic distance is low, pixels get the color of

the scribble. In contrast, if the geodesic distance is high,

they are not influenced by the scribble and they get the

color of the previous frame-to-frame propagation result.

Algorithm 3 is pixel-wise initialized with
∑S+1
i=1 wi c̃i

to favor the scribbled result. Model (40) being non-

convex, the result of the minimization directly depends

on the initialization of Algorithm 3. Thanks to the diffu-

sion by the geodesic distance, the iterative Algorithm 3

begins closer to the desired result and is thus faster. The

geodesic distance computes a coarse but fast propaga-

tion. In contrast, the minimization of Functional (40)

is slower, but produces a finer result.

Figure 5 illustrates the correction workflow. The

geodesic distance propagates the color of the scribble.

The minimization of Model (40) refines this first propa-

gation that can be re-used by the frame-to-frame prop-

agation algorithm since the result is visually suitable

for the user.

4.4 Parameter Settings

The results presented in Section 5 have been performed

with the following set of parameters: λ = 0.1, α = 25

and γ = 35, in Equations (1) and (40), β = 0.1 in

Equation (1), µ = 0.1 in Equation (40), and θ = 45,

r = 8 in Equation (47). These parameters are the same

for all the videos. We consider 2000 iterations for Algo-

rithms 2 and 3, that are computed in about 1 second

per frame at image resolution 352×256 with an unopti-

mized GPU implementation. This computation time is
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Fig. 7 Comparison with [37] on the Nemo video sequence. We use the last colorized frame given by the method of [37] and
we propagate its colors. No scribble correction has been used for our results. With our method, the fishtail is better colorized,
zooms are available in Figure 8.
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Fig. 8 Zooms on Figure 7. The contours are better preserved with our approach (see, e.g., contours in the red boxes).

about the same for the propagation step and the correc-

tion one. It is fast enough to consider the user-guided

interaction.

5 Numerical Results

In this section, we compare our approach with state-

of-the-art methods. First, we compare our approach

with [37] and [21]. Next, we propose some experiments
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Fig. 9 Comparison with [37] on the Chaplin video sequence. We use the first colorized frame given by the method of [37] and
we propagate its colors. No scribble correction has been used for our results. With our method, the corncob is better colorized,
zooms are available in Figure 10.

Result of [37] at t = 21. Model (1) at t = 21.

Fig. 10 Zooms on Figure 9. In the red box, the method of [37] mixes the yellow of the corncob with the color of the skin.
With our method, the colors of the initial frame are less blended and the contours better preserved.

on historical grayscale video sequences whose coloriza-

tion is more challenging1.

The data used for experiments have been taken from

videos available on authors’ websites, which contain

noise from compression artefacts. Even with this low

quality, our method performs promising results, which

shows its robustness to the noise.

5.1 Comparison with Chrominance Blending [37]

First, let us compare our method to [37]. The two videos

tested in Figures 7 and 9 have been taken from [37]. The

video sequences Nemo and Chaplin are colorized by a

propagation of one frame. The initial colored frame has

been taken from the results of [37].

Figure 7 (resp. Figure 9) shows frames of the re-

sults from [37] and the colorization performed with our

1 The complete video colorization results are available on-
line at:
http://www.labri.fr/perso/fpierre/video/video.html

propagation algorithm on the video Nemo (resp. on the

video Chaplin).

For the video Chaplin, the results produced with

our method are comparable with the one of [37]. There

are no visible artifacts and the final palette of colors is

visually the same.

For the Nemo video sequence, the fishtail is bet-

ter colorized with our method. Figure 8 shows zooms

of Figure 7. With our method, the contours are better

preserved (see in red boxes) thanks to the coupled total

variation (2). The method of [37] produces an artefact

at the bottom of the tail on the last frame (an orange

scratch blows in the background). Although our method

propagates result of [37], it corrects this visually unsuit-

able result automatically, thanks to the total variation

regularization.

Figure 9 presents experiments on the Chaplin video

sequence. The frame-to-frame propagation is used with-

out scribble correction. In Figure 10 we can see zooms

on Figure 9. In the red box, after 20 frame-to-frame

propagations, the method of [37] mixes the yellow color
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Fig. 11 Comparison with [21] on the Toddler video sequence. We use the first colorized frame given by the method of [21]
and we propagate its colors. Our method requires one scribble at time t = 29 (visible in the red box). Details of the correction
step are available in Figure 5.

U
se

r
in

p
u

t
fo

r
[2

1
]

O
u

r
u

se
r

in
p

u
t

R
es

u
lt

s
o
f

[2
1
]

O
u

r
re

su
lt

s

t = 1 t = 14 t = 29 t = 44 t = 58

Fig. 12 Comparison of our method with [21] for the Birthday video sequence. We use the first colorized frame given by the
method of [21] and we propagate its colors. For our method, the user draws about 50 scribbles to correct the propagation
algorithm.
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Fig. 13 Result of our method on the De Gaulle video sequence from the French Institut National des Archives. The initial
frame (t = 1) is obtained by the unified method of Pierre et al. [27]. The colors of the initial frame are then propagated over
the whole video sequence with only one scribble correction, drawn on the thumb into the red box, on the frame at t = 25.

with the background. In contrast, with our method, the
contours are better preserved.

As a conclusion of these experiments, our method

is suitable on video sequences with large and constant

parts.

5.2 Comparison with Quadratic Optimization [21]

Now, let us compare our method on examples taken

from [21].

These examples are difficult to process with a frame-

to-frame model because some new objects appear in the

scene, and occlusions and dis-occlusions occur. In these

videos, it is required to add scribbles to some frames

of the sequence to correct visually unsuitable results of

our frame-to-frame propagation algorithm. The method

of [21] being based on a spatio-temporal processing of

the sequence, it is naturally able to deal with occlusion

problems. We show that our method tackles this issue

with a small number of scribbles.

Figure 11 shows the result of our method in com-

parison with [21]. The results are visually the same.

For the method of [21], it is required to add scribbles

on some key frames of the video, and the result is com-

puted in one step with no more interaction. To ensure

to use the same color set, we use the first frame of the

colorized result of [21] as initial frame for the frame-to-

frame propagation Model (1). On this sequence we only

use one scribble to correct the result (in the red box).

In contrast, the method of [21] requires more than 50

scribbles.

Figure 12 shows another comparison with [21]. The

initial color frame used by our algorithm comes from the

result of [21]. In this example, we use about 50 scribbles

to correct the unsuitable propagation results, whereas

the method of [21] uses hundreds of it.

Moreover, with our approach, it is not needed that

the user checks the whole video sequence after the cor-

rection algorithm integrates scribbles, because only few

frames are processed.
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Fig. 14 Result of our method for the Pieds Nickelés [11] video sequence. The initialization is the first frame at time t = 1,
colorized with the method of [27]. For this sequence, besides the colorization of the first frame, no scribble has been added.
This experiment shows that our approach is reliable on scratched videos with large displacements.

5.3 Experiments on Historical Videos

In this section, we consider the challenging problem of

colorization of historical videos. The difficulties come

from the noise, the flickering effect or the scratches.

First, we perform the colorization of a textured his-

torical sequence. The first frame is colorized with [28].

In the De Gaulle video sequence, the thumb is hidden at

the beginning of the sequence before appearing. Thus,

it is unsuitably colorized by the propagation algorithm.

We add a scribble onto the thumb when it appears (in

the red box) and the correction algorithm integrates it.

Finally, the propagation algorithm computes the colo-

rization of the sequence.

Finally, we apply our algorithm to the sequence Pieds

Nickelés that is a very noisy video (Figure 14). This se-

quence is beforehand processed with the method of [11]

to remove flicker effect. Despite this pre-processing step,

it contains a residual flicker effect as well as many scrat-

ches. Moreover, some of the displacements are very large,

for instance, the heads of the characters. In spite of

these challenging problems, our method is able to prop-

agate colors over the 100 frames of the whole sequence

without any correction. The grayscale sequence of our

method is available on the first and the third rows,

whereas the result is on the second and fourth ones.

The initialization is the first frame at t = 1.

6 Conclusion

In this paper, we have proposed a novel variational

model able to merge multiple correspondence maps to

provide a suitable frame-to-frame propagation algori-

thm. A correction model integrating user scribbles is

also proposed. These models are solved by primal-dual

like algorithms that compute a solution, integrated into

an interactive framework. With our GPU implemen-

tation, we reach a high enough speed to consider an

interactive software. Comparisons with state-of-the-art

methods show the efficiency of our method and its abil-

ity to consider historical videos. As a future work, a

data-fidelity term with L1-norm could be considered to

better preserve the color set.

A Computation of the Map Operator

In this section, we propose a proof of Lemma 1, which states
an upper bound for the value of the operator norm of A.

Proof (of Lemma 1) First of all, by triangular inequality:

‖A‖ ≤ ‖A1‖ ‖∇‖+ ‖A2‖ . (48)

Let us compute an upper bound for each term in (48). It
is known (see, e.g., [5]) that ‖∇‖2 = 8.
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Let us compute ‖A1‖:

‖A1‖ = ‖A∗1‖ =

∥∥∥∥(ϕ1 − ϕ2 0 ψ1 − ψ2 0
0 ϕ1 − ϕ2 0 ψ1 − ψ2

)∥∥∥∥
≤
∥∥∥∥(ϕ1 − ϕ2 0

0 ϕ1 − ϕ2

)∥∥∥∥+

∥∥∥∥(ψ1 − ψ2 0
0 ψ1 − ψ2

)∥∥∥∥
= |ϕ1 − ϕ2| + |ψ1 − ψ2|. (49)

The last quantity can be computed explicitly from the input
data. This term can be bounded:

‖A1‖ ≤ 2(N +M). (50)

Let us compute ‖A2‖:

‖A2‖ = ‖A∗2‖
=
∥∥(∂xϕ1 − ∂xϕ2 ∂yϕ1 − ∂yϕ2

∂xψ1 − ∂xψ2 ∂yψ1 − ∂yψ2

)∥∥
≤ |∂xϕ1 − ∂xϕ2|+ |∂yϕ1 − ∂yϕ2|

+ |∂xψ1 − ∂xψ2|+ |∂yψ1 − ∂yψ2|. (51)

This upper bound can be explicitly computed. This term can
be bounded thanks to the bounding of the partial derivatives
in Equation (51):

‖A2‖ ≤ 4(N +M), (52)

where N and M are the height and width of the frame.
Finally, a bounding of A reads as:

‖A‖ ≤ 2
√

8(N +M) + 4(N +M). (53)

The operator norm depends linearly on the size of the frame.
ut

B Proof of Theorem 1

In this section, we present some technical aspects needed to
state the convergence of Algorithm 1. We then demonstrate
the convergence itself. First, let us state a characterization
theorem.

Theorem 2 Fixed points of Algorithm 1 verify (36), i.e.,
fixed points of Algorithm 1 are critical bisaddle-point.

Proof Let us consider (u∗, p∗, w∗, z∗) a fixed point of Algori-
thm 1. We recall a characterization of the proximal operator
of a convex function f on a Hilbert space E:

r = proxf (s)⇔ ∀t ∈ E , 〈t− r|s− r〉+ f(r) ≤ f(t). (54)

We write four inequalities from the four first lines of Algori-
thm 1:

p∗ = proxσF ∗ (p∗ + σKu∗) . (55)

With the characterization (54), we then obtain ∀p ∈ P:

〈p− p∗|p∗ + σKu∗ − p∗〉+ σF∗(p∗) ≤ σF∗(p). (56)

Simplifying, we obtain:

〈p− p∗|Ku∗〉+ F∗(p∗) ≤ F∗(p). (57)

In the same way, only by substitution, we can obtain:

〈z − z∗|Aw∗〉+ J∗(z∗) ≤ J∗(z). (58)

Recalling that, the third step of Algorithm 1 reads

u∗ = proxτG+τh(.,w∗) (u∗ − τK∗p∗) , (59)

we have ∀u ∈ U :

−〈u− u∗|K∗p∗〉+G(u∗)+h(u∗, w∗) ≤ G(u)+h(u,w∗). (60)

In the same way, we can obtain:

−〈w − w∗|A∗z∗〉+H(w∗) + h(u∗, w∗) ≤ H(w) + h(u∗, w).

(61)

Summing now (57), (58), (60) and (61), leads to
∀(u, p, w, z) ∈ U × P ×W ×Z:

〈Aw|z∗〉+ 〈Ku|p∗〉 − F∗(p∗)− J∗(z∗)
+H(w) +G(u) + h(u∗, w) + h(u,w∗)

≥ 〈Aw∗|z〉+ 〈Ku∗|p〉 − F∗(p)− J∗(z)
+H(w∗) +G(u∗) + 2h(u∗, w∗). (62)

Fixed points of the algorithm are thus critical bisaddle-points.
ut

We now state the proof of Theorem 1, inspired from the
one of Theorem 1 of [6].

Proof (a) Bound of the sequence. We write the four itera-
tions in the general form:

pn+1 = proxσuF ∗ (pn + σuKu) ,
zn+1 = proxσwJ∗ (zn + σwAw) ,
wn+1 = proxτwH+τwh(un+1,.) (wn − τwA∗z) ,
un+1 = proxτuG+τuh(.,wn+1) (un − τuK∗p) .

(63)

u, z, p, and w denote a relaxation of the previous iterates.
This relaxation will be different for the variables u and w. Due
to the convexity of the functions, ∀(u, p, w, z) ∈ U×P×W×Z
we deduce the following four inequalities:

F∗(p) ≥ F∗(pn+1) +

〈
pn − pn+1

σu
|p− pn+1

〉
+
〈
Ku|p− pn+1

〉
, (64)

J∗(z) ≥ J∗(zn+1) +

〈
zn − zn+1

σw
|z − zn+1

〉
+
〈
Aw|z − zn+1

〉
, (65)

h(w, un+1) +H(w) ≥ H(wn+1) + h(wn+1, un+1)

+

〈
wn − wn+1

τw
|w − wn+1

〉
+
〈
A(w − wn+1)|z

〉
, (66)

h(wn+1, u) +G(u) ≥ G(un+1) + h(wn+1, un+1)

+

〈
un − un+1

τ
|u− un+1

〉
+
〈
K(u− un+1)|p

〉
. (67)

Summing the four inequalities (64), (65), (66) and (67)
and using Cauchy-Schwarz inequality, we obtain:
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‖p− pn‖22
2σu

+
‖z − zn‖22

2σw
+
‖w − wn‖22

2τw
+
‖u− un‖22

2τu

≥ [
〈
Kun+1|p

〉
+
〈
Awn+1|z

〉
− J∗(z)− F∗(p) +G(un+1)

+H(wn+1) + h(un+1, wn+1) + h(un+1, wn+1)]

− [
〈
Ku|pn+1

〉
+
〈
Aw|zn+1

〉
− J∗(zn+1)− F∗(pn+1)

+G(u) +H(w) + h(u,wn+1) + h(un+1, w)]

+
‖p− pn+1‖22

2σu
+
‖z − zn+1‖22

2σw
+
‖u− un+1‖22

2τu

+
‖w − wn+1‖22

2τw
+
‖pn − pn+1‖22

2σu
+
‖zn − zn+1‖22

2σw

+
‖un − un+1‖22

2τu
+
‖wn − wn+1‖22

2τw

+
〈
A(wn+1 − w)|zn+1 − z

〉
−
〈
A(wn+1 − w)|zn+1 − z

〉
+
〈
K(un+1 − u)|pn+1 − p

〉
−
〈
K(un+1 − u)|pn+1 − p

〉
(68)

We choose p = pn+1 and u = 2un − un−1. The two last
terms of (68) becomes:

〈
K(un+1 − u)|pn+1 − p

〉
−
〈
K(un+1 − u)|pn+1 − p

〉
=〈

K((un+1 − un)− (un − un−1))|pn+1 − p
〉

=〈
K(un+1 − un)|pn+1 − p

〉
−
〈
K(un − un−1)|pn − p

〉
−
〈
K(un − un−1)|pn+1 − pn

〉
≥
〈
K(un+1 − un)|pn+1 − p

〉
−
〈
K(un − un−1)|pn − p

〉
−L‖un − un−1‖2‖pn+1 − pn‖2

(69)

where L = |||K|||. As for a, b ∈ R and α > 0 the inequality

2ab ≤ αa2 + b2/α (70)

holds, and we obtain

L‖un − un−1‖2‖pn+1 − pn‖2

≤
Lατu

2τu
‖un − un−1‖22 +

Lσu

2ασu
‖pn − pn−1‖22. (71)

With Q = |||A|||, and β > 0, the same computation gives,
choosing z = zn+1 and w = 2wn − wn−1:

Q‖wn − wn−1‖2‖zn+1 − zn‖2

≤
Qβτw

2τw
‖wn − wn−1‖22 +

Qσw

2βσw
‖zn − zn−1‖22. (72)

Choosing α =
√
σu/τu, β =

√
σw/τw and summing (68),

(71) and (72):

‖p− pn‖22
2σu

+
‖z − zn‖22

2σw
+
‖u− un‖22

2τu
+
‖w − wn‖22

2τw
≥

[
〈
Kun+1|p

〉
+
〈
Awn+1|z

〉
− J∗(z)− F∗(p)

+G(un+1) +H(wn+1) + 2h(un+1, wn+1)]

− [
〈
Ku|pn+1

〉
+
〈
Aw|zn+1

〉
− J∗(zn+1)− F∗(pn+1)

+G(u) +H(w) + h(u,wn+1) + h(un+1, w)]

+
‖p− pn+1‖22

2σu
+
‖z − zn+1‖22

2σw
+
‖u− un+1‖22

2τu

+
‖w − wn+1‖22

2τw
+ (1−

√
σuτuL)

‖pn − pn+1‖22
2σu

+ (1−
√
σwτwQ)

‖zn − zn+1‖22
2σw

+
‖un − un+1‖22

2τu

−
√
σuτu

‖un − un−1‖22
2τu

+
‖wn − wn+1‖22

2τw
−
√
σwτw

‖wn − wn−1‖22
2τw

+
〈
K(un+1 − un)|pn+1 − p

〉
−
〈
K(un − un−1)|pn − p

〉
+
〈
A(wn+1 − wn)|zn+1 − z

〉
−
〈
A(wn − wn−1)|zn − z

〉
(73)

Now, summing with n from 0 to N − 1, it follows that
∀u, p, z, and w, with the convention that u−1 = u0 and
w−1 = w0:

N∑
n=1

{[
〈
Awn+1|z

〉
+
〈
Kun+1|p

〉
− F∗(p)− J∗(z)

+G(un+1) +H(wn+1) + 2h(un+1, wn+1)]

− [
〈
Aw|zn+1

〉
+
〈
Ku|pn+1

〉
− F∗(pn+1)− J∗(zn+1)

+G(u) +H(w) + h(u,wn+1) + h(un+1, w)]}

+
‖p− pN‖22

2σu
+
‖z − zN‖22

2σw
+
‖u− uN‖22

2τu
+
‖w − wN‖22

2σw

+ (1−
√
σuτuL)

N−1∑
n=1

(
‖pn − pn−1‖22

2σu
+
‖un − un−1‖22

2τu

)

+ (1−
√
σwτwQ)

N−1∑
n=1

(
‖zn − zn−1‖22

2σw
+
‖wn − wn−1‖22

2τw

)
+
〈
K(uN−1 − uN )|pN − p

〉
+
〈
A(wN−1 − wN )|zN − z

〉
≤
‖p− p0‖22

2σu
+
‖u− u0‖22

2τu
+
‖z − z0‖22

2σw
+
‖w − w0‖22

2τw
.

(74)

From (70) and using two Cauchy-Schwarz inequalities:

〈
K(uN − uN−1)|pN − p

〉
≤
‖uN − uN−1‖22

2τu
+ τuσuL

2 ‖p− pN‖22
2σu

, (75)

〈
A(wN − wN−1)|zN − z

〉
≤
‖wN − wN−1‖22

2τw
+ τwσwQ

2 ‖z − zN‖22
2σw

, (76)



Interactive Video Colorization within a Variational Framework 21

we write the inequality (74):

N∑
n=1

{[
〈
Awn+1|z

〉
+
〈
Kun+1|p

〉
− F∗(p)− J∗(z)

+G(un+1) +H(wn+1) + 2h(un+1, wn+1)]

− [
〈
Aw|zn+1

〉
+
〈
Ku|pn+1

〉
− F∗(pn+1)− J∗(zn+1)

+G(u) +H(w) + h(u,wn+1) + h(un+1, w)]}

(1− τuσuL2)
‖p− pN‖22

2σu
+ (1− τwσwQ2)

‖z − zN‖22
2σw

+

‖u− uN‖22
2τu

+
‖w − wN‖22

2τw

+ (1−
√
σuτuL)

N−1∑
n=1

(
‖pn − pn−1‖22

2σu
+
‖un − un−1‖22

2τu

)

+ (1−
√
σwτwQ)

N−1∑
n=1

(
‖zn − zn−1‖22

2σw
+
‖wn − wn−1‖22

2τw

)
≤
‖p− p0‖22

2σu
+
‖u− u0‖22

2τu
+
‖z − z0‖22

2σw
+
‖w − w0‖22

2τw
.

(77)

Choosing (u, p, w, z) as a bisaddle-point of the problem
and denoting it by (û, p̂, ŵ, ẑ), we have:

〈
Awn+1|ẑ

〉
+
〈
Kun+1|p̂

〉
− F∗(p̂)

− J∗(ẑ) +G(un+1) +H(wn+1) + 2h(un+1, wn+1) ≥〈
Aŵ|zn+1

〉
+
〈
Kû|pn+1

〉
− F∗(pn+1)

− J∗(zn+1) +G(û) +H(ŵ) + h(û, wn+1) + h(un+1, ŵ).
(78)

Thus, the two first lines of (77) are non-negative and the
first point of Theorem 1 follows because τuσuL2 < 1 and
τwσwQ2 < 1, ensuring the positivity of other lines.

(b) Existence of a cluster point, which is a critical bisad-
dle-point. Since U , P, W and Z are of finite dimensions, the
first point of Theorem 1 means that the sequence
(un, pn, wn, zn) produced by the algorithm is bounded.

Therefore, it admits a subsequence (unk , pnk , wnk , znk ),
which converges to (u∗, p∗, w∗, z∗). The relation (77) (tak-
ing a bisaddle-point, using the positivity of the terms and
observing the convergence of series) implies that

lim
n

(un − un−1) = 0 (79)

lim
n

(pn − pn−1) = 0

lim
n

(wn − wn−1) = 0

lim
n

(zn − zn−1) = 0.

Thus unk−1 , pnk−1, wnk−1 and znk−1 converge respectively
to u∗ , p∗, w∗ and z∗. It follows that (u∗, p∗, w∗, z∗) is a
fixed point of the algorithm and a critical bisaddle-point of
the problem.

Remark that this last point proves the existence of a crit-
ical bisaddle-point of the problem.

(c) Convergence. The cluster points are critical bisaddle-
point thanks to Theorem 2, thus they are isolated. Hence, the
sequence converges to a critical bisaddle-point according to
Proposition C.1 of [26].

ut
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25. Peyré, G.: Toolbox fast marching - a toolbox for
fast marching and level sets computations (2008).
http://www.mathworks.com

26. Pierre, F., Aujol, J.F., Bugeau, A., Papadakis, N., Ta,
V.T.: Luminance-chrominance model for image coloriza-
tion. SIAM Journal on Imaging Sciences 8(1), 536—-563
(2015)

27. Pierre, F., Aujol, J.F., Bugeau, A., Ta, V.T.: A unified
model for image colorization. In: Color and Photometry
in Computer Vision (ECCV Workshop), pp. 1–12 (2014)

28. Pierre, F., Aujol, J.F., Bugeau, A., Ta, V.T.:
Colociel. Dépôt Agence de Protection des Programmes
N◦ IDDN.FR.001.080021.000.S.P.2016.000.2100 (2016).
http://www.labri.fr/perso/fpierre/colociel.zip

29. Quang, M.H., Kang, S.H., Le, T.M.: Image and video co-
lorization using vector-valued reproducing kernel hilbert
spaces. Journal of Mathematical Imaging and Vision
37(1), 49–65 (2010)

30. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total varia-
tion based noise removal algorithms. Physica D: Nonlin-
ear Phenomena 60(1), 259–268 (1992)

31. Sethian, J.A.: Level set methods and fast marching meth-
ods: evolving interfaces in computational geometry, fluid
mechanics, computer vision, and materials science, vol. 3.
Cambridge university press (1999)

32. Sheng, B., Sun, H., Chen, S., Liu, X., Wu, E.: Colori-
zation using the rotation-invariant feature space. IEEE
computer graphics and applications 1(2), 24–35 (2011)
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