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INTERACTIVE VIDEO COLORIZATION WITHIN A VARIATIONAL1

FRAMEWORK2

F. PIERRE†‡§¶, J.-F. AUJOL†‡ , A. BUGEAU§¶, AND V.-T. TA¶‖3

Abstract. This paper deals with the difficult problem of video colorization. Methods in the4
literature are generally based on spatio-temporal video blocks, or on frame-to-frame color propagation5
algorithms, each technique having its own advantages and drawbacks. In this paper, we present both6
a novel automatic frame-to-frame propagation approach and an interactive correction method within7
a variational framework. The proposed method propagates colors from an initial colorized frame to8
the whole grayscale video sequence. The automatic propagation results may be visually unsuitable in9
some cases. To overcome this limitation, a spatio-temporal functional with a user-guided correction10
is introduced. Two fast primal-dual algorithms are designed to solve the proposed variational models.11
Numerical results show the efficiency and the potentiality of the proposed approach in comparison12
with state-of-the-art methods.13
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1. Introduction. To restore old black-and-white movies and make them more16

attractive, among young people for instance, cinema and entertainment industries17

frequently broadcast colorized versions. In France, in 2014, Apocalypse, a historical18

documentary by I. Clarke and D. Costelle was realized from archives colorized by F.19

Montpellier. The broadcast gathered over 18.5% of viewers over the age bracket 11-1420

during the first two episodes [22]. The colorization for movies is mostly performed21

manually, which is a very tedious work. As an example, the colorization of about four22

hours of video sequences for the Apocalypse documentary required forty-seven weeks23

by F. Montpellier and his team.24

In this work, we assume that a grayscale video is available and one of its frames25

is colorized. This frame can be colorized by an expert or automatically [29, 30, 38].26

Video colorization results have to be visually natural on both constant and textured27

parts, while a temporal consistency has to be respected.28

Traditionally, colorization methods (image or video) assume that the grayscale29

image corresponds to a luminance channel Y. The Y channel is defined as a weighted30

average of the RGB channels: Y = 0.299R + 0.587G + 0.114B. The luminance-31

chrominance spaces propose to integrate the Y channel with two other ones, called32

chrominances. In practice, given the luminance channel Y, colorization methods esti-33

mate two chrominance channels before converting into the RGB space while keeping34

the luminance Y unchanged. Luminance-chrominance spaces usually used in image35

or video colorization are the lαβ [9], YUV [23] or YCbCr [39].36

For image colorization, state-of-the-art methods can be divided into three cate-37

gories: the first ones that diffuse scribbles over the image (e.g., [23, 39]), the second38

ones that use non-local techniques (e.g., [16, 38]), and the others combining the two39

approaches (e.g., [19, 29]). Recently, convolutional neural networks (CNN) were used40

with promising results [40]. Nevertheless, this last approach does not use any regu-41

larization, which produces hallo effects.42
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2 F. PIERRE, J.-F. AUJOL, A. BUGEAU AND V.-T. TA

Extension from image to video colorization are also proposed. State-of-the-art43

methods can be divided into two categories: the ones that diffuse colors from scribbles44

over a three dimensional block (2D images + time), and the others that propagate45

colors from one frame to its adjacent ones until the whole video sequence is colorized.46

This last category is called frame-to-frame propagation in this paper.47

The three dimensional diffusion approaches. The colorization methods described48

in this paragraph perform results with a visually natural temporal consistency. To49

recover a colorized video, it is required to compute the chrominance channels. In the50

seminal paper [23], Levin et al. propose to propagate the values of chrominances of51

some scribbles given by a user. The propagation over the whole video sequence is52

performed by minimizing a quadratic function that favours a coupling of luminance53

and chrominance contours. This criterion is based on neighbor pixels differences in54

both spatial and temporal dimensions. Neighborhoods in the temporal dimension55

are built after image registration from Lucas-Kanade optical flow estimation [24].56

By considering three dimensional blocks, the method naturally deals with occlusions57

and dis-occlusions. Inspired from [19], Zhen et al. [41] extend the method of [23] to58

automatic exemplar-based (see, e.g., [38]) video colorization. The approach of [23]59

being dependent on the optical flow computation, Lang et al. [21] propose to compute60

a more robust estimation, based on an energy minimization, to improve colorization61

results.62

The initial quadratic function of [23] is not adapted to textured images. Sheng et63

al. [34] replace the spatial distance by a function depending on Gabor features [25].64

The definition of the optical flow is also extended to the Gabor feature space. The65

method can deal with textures and is more robust to the noise than the original66

function of [23]. All these techniques are based on the minimization of a quadratic67

criterion computed on the whole video sequence.68

Heu et al. [17] diffuse the chrominances of the scribbles to the other pixels with69

a priority order. The method estimates the reliability of a color for each pixel to its70

neighbors. For the video colorization, the reliability is computed between frames with71

a block-matching approach. Hyun et al. [18] extend [17] and modify the reliability72

within a multi-scale framework. These two last methods perform suitable results on73

smooth images but the extension to textured videos is only proposed as a perspective.74

Finally, two methods interpolate chrominance channels. Yatziv et al. [39] blend75

the colors of the scribbles according to the spatio-temporal geodesic distance from76

one pixel to each scribble.77

For textured images, Kang et al. [31] use the Reproducing Kernel Hilbert Space78

for the interpolation of chrominances on textured images. The video colorization is79

performed by extending the functions to the three dimensions.80

Methods working on the three dimensional blocks can deal with occlusion and dis-81

occlusion problems. In contrast, the interactivity is difficult to reach due to the large82

amount of pixels to process and the computational burden. Indeed, the whole video83

sequence has to be processed and checked by the user after scribbling. The division84

of the video in some smaller sequences can be considered, but the concatenation of85

the colorized sequences may produce temporal inconsistencies. To tackle these issues,86

the frame-to-frame approaches are presented in the following.87

The frame-to-frame approaches. In the seminal paper [38], Welsh et al. apply88

their exemplar-based image colorization method to each frame of a video sequence.89

This method is able to maintain neither temporal nor spatial consistency.90

Sykora et al. [35] address the problem of cartoon colorization. This approach91
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Table 1
Summary of the state-of-the-art methods. We propose to merge all their advantages into a

variational framework.

Methods Patch based Optical Flow Regularization
[35]

√
×

√

[17, 18, 20]
√

× ×
[21, 23, 34, 41] ×

√ √

[36] ×
√

×
[26, 31, 39] × ×

√

Our
√ √ √

time

Quality control by 
the user, and 

correction with 
scribbles

Correction
Model (31)

Frame-to-frame
propagation Model (1)

Initial frame

Frame-to-frame
propagation Model (1)

Fig. 1. Overview of the whole approach. For most of the sequence, the frame-to-frame propa-
gation model computes suitable results (in green). In the case of dis-occlusion area, a user-guided
approach is mixed with the unsuitable result (in red). After that, the frame-to-frame propagation
restarts from the visually suitable frame.

is based on patch comparisons and manage large displacements and rotations. The92

correspondence map between patches not being dense, it is not adapted for textured93

images and complex motion of natural videos.94

Jacob et al. [20] propose to colorize an image from scribbles given by a user. To95

propagate the color of a frame to the whole video sequence, a search in the previous96

frame for the closest patch is performed according to the sum of squared differences97

distance, and the color of the best matching pixel is considered. The search for the98

closest patch is computed in a neighborhood depending on a motion estimation.99

In Pan et al. [26], the color is transferred to the adjacent frames, based on the100

motion estimation of [4]. Teng et al. [36] propose to use a refined block-matching101

algorithm to propagate colors over the frames. The user has to choose when the102

refined version is used instead of the original one.103

All the frame-to-frame approaches use a specific motion estimation, each having104

its own advantage. These methods are sensitive to mistakes since the result is re-used105

and unsuitable colors are propagated.106

In this paper, we propose a variational framework that merges the advantages of107

different correspondence maps including motion estimations and reduces the propa-108

gation of unsuitable colors.109

Temporal consistency for video colorization. State-of-the-art approaches gener-110

ally use at least one of these techniques: patch correspondence, optical flow algorithm111

or regularization. Each of these techniques have their own advantages and draw-112

backs. The optical flow is reliable because it is based on physical interpretation of113
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the motion through the illumination equation. In contrast, it is not able to deal with114

large displacement or dis-occlusion. The computation of the neighbor map from patch115

comparisons is able to tackle this issue, but being not based on physical assumption,116

it is more artificial than a real motion, which has to be continuous. The methods117

based on regularization are not adapted to textured or noisy sequences, but can deal118

with the occlusion and dis-occlusion problems. The comparisons between all the cited119

state-of-the-art approaches are summarized in Table 1.120

Contributions. In this paper, we first propose a frame-to-frame variational model121

and a primal-dual like algorithm to compute a solution. The method uses both color122

and map regularization to propagate colors. It is based on one or many correspon-123

dence maps. In this work, for the sake of clarity, we only focus on the case of two124

correspondence maps without loss of generality.125

Next, we explain how the previous frame-to-frame propagation model can be126

extended to user interaction where color scribbles can be added on an unsuitable127

colorized frame of the video sequence. The user correction is merged with the previous128

result produced by the frame-to-frame propagation model. Contrary to the proposed129

propagation, the correction one is performed over a three dimensional representation130

of the video sequence to solve occlusion or dis-occlusion problems.131

Outline. The global workflow of our approach is explained in Section 2. In132

Section 3, we describe a variational approach computing a regularized result from133

the correspondence maps. This model is solved by a primal-dual like algorithm. A134

scribble correction technique is proposed in Section 4, where a primal-dual algorithm135

is designed to solve it. In Section 5, we describe some implementation details. Figure 1136

summarizes the basis of our approach. Finally, in Section 6 we present results and137

comparisons with state-of-the-art methods.138

2. Global Workflow of the Proposed Video Colorization Method. Cur-139

rently, many state-of-the-art methods are applied to a 3D representation of the video140

(2D + t). Moreover, in these methods, the entire video sequence given by the algori-141

thm depends onto the input scribbles. In the case of manual intervention, the whole142

video sequence needs to be computed again if the user, unsatisfied with the result,143

wants to add additional scribbles. By working frame-by-frame or with a reduced num-144

ber of frames, the speed-up enables us to provide an interactive approach. Indeed, if145

the results are visually unsuitable and unexpected, it appears after a short processing146

time. The user can add scribbles after a reduced waiting time and the interactivity147

can be reached.148

In our approach, we assume that one frame of the grayscale sequence is colorized149

(for instance by [30]) and the colors are propagated to the adjacent ones, until the150

whole video sequence is colorized. The required intervention of the user is simple: he151

can check the solution; if the frame is unsuitable, he can add scribbles on the result152

and the correction Algorithm 3 is applied on a video block composed by both the153

scribbled frame and few previous frames (3 in practical cases). In practical cases the154

frame-to-frame propagation efficiency reduces user’s interventions. This efficiency is155

demonstrated in Section 6.156

The global workflow is illustrated in Figure 1. The video is colorized by the prop-157

agation algorithm and the user checks each frame, until an unsuitable result appears158

(i.e., because of an occlusion). The user adds scribbles to correct the unsuitable frame159

and the proposed correction method described in Section 4 computes a solution for160

the subset of frames (the scribbled frame and the few previous ones). If the user is161

unsatisfied, he can repeat the correction operation until he is satisfied with the result.162
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Grayscale frames 
at time t -1 and t

Minimization of
Model (1)

Color frame at time t -1
Grayscale frame at time t

Video colorization result

Correspondence maps computation

Fig. 2. Overview of the frame-to-frame propagation method. In this example, two correspon-
dence maps between grayscale frames at times t−1 and t are computed in a first step. The frame-to-
frame propagation method estimates both an optimal correspondence map and the final color for the
frame at time t. The green arrows represent the correspondences between two frames for a consid-
ered pixel. The first step provides two correspondence maps, while the minimization of Functional
computes the optimal one.

The frame-to-frame propagation method can be then re-applied from the last suitably163

colorized frame.164

3. Frame-to-Frame Propagation Model. In this section we propose to in-165

troduce a new functional for video colorization that propagates colors from a frame166

to an adjacent one. The proposed method computes an optimal correspondence map167

between the video frames, based on a trade-off between the regularity of the map and168

the resulting color. This regularization is performed with total variation (TV).169

3.1. Overview of the Frame-to-Frame Propagation Method. Our ap-170

proach combines correspondence maps that can be obtained with different techniques171

(e.g., [3, 15]). Correspondence maps enable the mapping of chrominance values and172

the propagation of colors through the video sequence. Our approach considers multi-173

ple correspondence maps and the proposed model selects the best one. As illustrated174

in Figure 2, the first step of our frame-to-frame propagation method computes the175

correspondence maps, which can be performed in a pre-processing step. Each corre-176

spondence map provides a color candidate. In practical cases, we use two correspon-177

dence maps, one computed with PatchMatch algorithm [3] and the other one with a178

TVL1 optical flow estimation [7], but it is not restrictive in our model. Other maps,179

such as registration ones, could be used.180

Next, from a colorized initial frame, the method estimates the best candidate by181

minimizing the functional described in Section 3.2. The minimization provides both182

the colorized frame and the optimal correspondence map. They are both regularized183

by a TV term. This aspect is detailed in Section 3.3. Figure 2 summarizes our184

frame-to-frame propagation approach.185
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Fig. 3. Example of correspondence maps between two frames (M = 2). From a given result
at time t − 1, two possible propagation results are provided at time t from the two maps. The
frame-to-frame model computes a regularized optimal final color.

3.2. A New Functional Based on Color Regularization and Correspon-186

dence Maps. In this section, a model performing both a choice between M corre-187

spondence maps and computing the color of a frame is proposed.188

A video, denoted by u is assumed to be a finite sequence of T frames, indexed in189

time by a discrete variable t ∈ J1;T K. The video is considered in RGB and converted190

into the YUV color space. u(t) denotes the chrominance channels (U, V ) of the frame191

at time t. The initial grayscale video sequence is supposed to be the luminance channel192

of the final colorized video. The computation of the chrominance channels U and V193

enables to recover the corresponding RGB colors. The image domain is denoted by194

Ω.195

For each pair of frames u(t−1) and u(t), the proposed functional chooses, at each196

position x, one correspondence map between the M available. From the M corre-197

spondence maps, M color candidates denoted by ci are computed, as illustrated in198

Figure 4. c
(t)
i can be seen as a family of functions from Ω to R2 indexed by i. The199

R2 vectors represent the chrominance values. v
(t)
i is a similar function, but the R2200

vectors represent a map (a relative displacement in R2) between two pixels on the201

frame domain Ω ⊂ R2.202

This selection of the best correspondence is computed within a variational frame-203

work. The related work of Pierre et al. [28] performs a choice between different colors204

under an assumption of regularity of the final result. We extend this model for both205

correspondence maps and the final color, and we propose the following new functional:206

207

(1) (û(t), ŵ(t)) = argminu(t),w(t) αTVC(u(t)) + β TV(v(t))208

+ λ

∫
Ω

M∑
i=1

w
(t)
i (x)‖u(t)(x)− c(t)i (x)‖22 dx209

+ χR(u(t)) + χ∆(w(t)).210211

c
(t)
i is the color candidate (chrominance) given from the frame u(t−1), by the corre-212
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spondence map v
(t)
i , thanks to its definition available in Equation (4) and (5). A213

trade-off between the regularity of the map v(t) and the colors of the result u(t) is214

controlled by the parameters α, β and λ. w(t) is a weight parameter that measures215

the pixel-wise contribution between the correspondence maps. It can be considered216

as a function from Ω to ∆ ⊂ RM. Finally, χR(u(t)) guaranties that the minimizer217

of the functional is in the chrominance standard range (see, e.g., [28]) and χ∆(w(t))218

constrains w(t) to be in the probability simplex (i.e., 0 ≤ w(t)
i ≤ 1 and

∑M
i=1 w

(t)
i = 1).219

Our method computes a trade-off between maps regularization and chrominance220

regularization. By computing a regularization of the chrominance, our model avoids221

the artifacts due to the estimation of the maps (see, e.g. the artifacts on Figure 7(a)).222

At the opposite, the total variation on the chrominance channels tends to flatten223

the values of the chrominance on the textures. The regularity of the correspondence224

maps balances this counter-effect by mimicking a copy-paste effect as explained in225

Section 3.3.226

TVC(u(t)) is a regularization term based on the minimization of the total varia-227

tion [32] of chrominance channels of the frame u(t) at time t:228

(2) TVC(u(t)) =

∫
Ω

(
γ‖∇Y ‖22 + ‖∇U‖22 + ‖∇V ‖22

)1/2
,229

where ∇ = (∂x, ∂y) is the spatial gradient of a frame. The parameter γ controls230

the coupling of the luminance channel Y with the chrominance ones, avoiding halo231

effects [28].232

Since the regularization of the chrominance channels may produce new colors,233

the preservation of initial frame colors is important. For instance, if two candidates234

coming from the previous frame are red and green, the melting of these two colors is235

yellow which is unsuitable if there is no yellow object in the scene. Once the minimum236

of the functional with respect to w(t) is reached, the values of the optimum ŵ(t) are237

projected onto the canonical basis (i.e., using a a winner-takes-all approach), which238

avoids the melting of colors. In practice, the w
(t)
i which has the maximum value gets239

1, while the others get 0.240

Formally, the definition of the data-fidelity term is based on the set of colors of241

the initial frame. Let us denote the propagated color ĉ(t−1) at time t− 1 as:242

(3) ĉ(t−1) =

M∑
i=1

ŵ
(t−1)
i c

(t−1)
i .243

Therefore, the candidates in the data-fidelity term are:244

(4) c
(t)
i (x) = ĉ(t−1)(v

(t)
i (x)), i = 1, ...,M,245

and246

(5) c
(1)
i (x) = u(1)(v

(1)
i (x)), i = 1, ...,M.247

Figure 3 illustrates the computation of the data-fidelity term. While the M248

initial maps provideM colors, based on the previous result, the frame-to-frame model249

computes the optimal one.250

Since the weights w are equal to 0 or 1, Equations (5) and (4) enforce the data-251

fidelity term to be composed of colors coming from the initial frame. The definition252

of ĉ(t−1) preserves the set of colors of the initial frame, i.e., the chrominances used at253
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8 F. PIERRE, J.-F. AUJOL, A. BUGEAU AND V.-T. TA

time t are only the initial ones. Indeed, since the weights are 0 or 1, by Equation (4),254

ĉ(t) is one of the color candidates of the previous frame. Thus, by induction, the255

data-fidelity term at time t is only composed with colors of the initial frame. This256

induction is illustrated in Figure 4.257

Frame 1

v
1
(2)(x)

v
2
(2)(x)

xx

v (1)(v
1
(2)(x))

v (1)(v
2
(2)(x))

Frame 3Frame 2

^

^

Fig. 4. Illustration of the color propagation from the first frame. The colors are transferred

from frame 1 to frame 2 with respect to the optimal map v̂(1) =
∑M

i=1 ŵ
(1)
i v

(1)
i computed by the

proposed frame-to-frame propagation algorithm. The arrows represent the maps between the frames.
The data-fidelity term available for a frame is only composed of chrominances existing in the previous
one. By induction, the successive data-fidelity term are only composed of colors available in frame
1.

With Functional (1), the computation of the solution only depends on the result258

of the optimization at the previous frame. The computations are performed iteratively259

from the initial frame to the last one. The minimization of the functional provides an260

optimal map among the initial ones (see Equation (6)).261

TV(v(t)) enforces the regularity of the final correspondence map. The correspon-262

dence map at time t denoted by v(t) is defined as a weighted average of the v
(t)
i ,263

i = 1, . . . ,M:264

(6) v(t) =

M∑
i=1

w
(t)
i v

(t)
i .265

With these definitions, Functional (1) computes an optimal map between the frames266

u(t−1) and u(t) with a regularization of both maps and colors.267

The TV regularization of the correspondence maps is detailed in the next section.268

3.3. Correspondence Maps Regularization. We propose to regularize both269

correspondence maps and colors of the result. Similar approach for map regulariza-270

tion is proposed by [14] to compute an aggregation of optical flows. In [14], the result271

is only based on the map regularization whereas our model considers both maps and272

chrominances regularity. In [11], a similar technique enables both the estimation of273

the optical flow and the denoising of the image. It differs from video colorization274

where the optical flow is computed on the luminance channel, whereas the final esti-275

mation is performed on chrominance channels. Other approaches preserving geometric276

structures have been proposed for inpainting problems [1, 2].277

The correspondence map v is a two dimensional vector corresponding to the rel-278

ative displacement of the objects between two frames. The two coordinates of v are279

denoted by ϕ (horizontal displacement) and ψ (vertical displacement).280
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INTERACTIVE VIDEO COLORIZATION WITHIN A VARIATIONAL FRAMEWORK 9

The map regularization is based on the following term in Functional (1):281

(7) TV(v) = ‖∇v‖1,2 =

∫
Ω

‖∇v(x)‖2 dx.282

The total variation of v favors constant parts of the correspondence maps. This283

regularization term provides a map that preserves the textures from the initial frame.284

If the relative correspondence map is piece-wise constant between two frames, some285

parts of these frames have a similar content. Therefore, it mimics a copy-paste method286

from a frame to the next one. When this map is used to propagate the values of287

chrominance channels, some parts of adjacent frames that have similar luminance are288

colorized with the same chrominances. With this approach, the richness of the color289

in textures is preserved.290

In the following, without loss of generality, and for the sake of clarity, we only291

consider the case of two correspondence maps (M = 2). The generalization to multiple292

correspondence maps is straightforward. The computation of (6) can be simplified293

with the following parametrization:294

(8) w1 = w, w2 = 1− w,295

with w ∈ [0, 1].296

With Parametrization (8):297

(9) v = w(v1 − v2) + v2.298

To compute the total variation, the gradient is defined as:299

(10) ∇v = (v1 − v2)⊗∇w + w(∇v1 −∇v2) +∇v2,300

where ⊗ is the Kronecker product:301

(11) (v1 − v2)⊗∇w =


(ϕ1 − ϕ2)∂xw
(ϕ1 − ϕ2)∂yw
(ψ1 − ψ2)∂xw
(ψ1 − ψ2)∂yw

 ,302

and vi = (ϕi, ψi)
T .303

We denote the linear operator on the variable w, in Equation (11), by A. Pixel-304

wise:305

(12) Aw =


ϕ1−ϕ2 0

0 ϕ1−ϕ2

ψ1−ψ2 0
0 ψ1−ψ2


︸ ︷︷ ︸

:=A1

∇w +


∂xϕ1−∂xϕ2

∂yϕ1−∂yϕ2

∂xψ1−∂xψ2

∂yψ1−∂yψ2


︸ ︷︷ ︸

:=A2

w.306

With these notations, TV(v) reads as ‖Aw +∇v2‖1,2.307

The following lemma provides the operator norm of A, which is required for the308

implementation of the minimization algorithm.309

Lemma 3.1. The operator norm of A is bounded by310

(13) ‖A‖ ≤ 2
√

8(N +M) + 4(N +M),311

where M and N are the dimensions of a frame.312

The proof of this lemma is available in Appendix A.313
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3.4. Algorithm for Color Propagation. In this section, we propose an iter-314

ative scheme solving Functional (1) with M = 2.315

3.4.1. General Algorithm. For a proper and lower semi-continuous (lsc) func-316

tional F on RP with values in R ∪ {+∞} let us define F ∗, the Legendre-Fenchel317

transform, as follows:318

(14) F ∗(p) = max
u∈RU

〈p|u〉 − F (u).319

To design an algorithm for Model (1), we have to solve problems of the form:320

(15) min
u∈RU

max
p∈RP

〈Ku|p〉 −G∗(p) + F (u),321

where G∗ and F are proper, lsc and convex functions, and K is a linear and contin-322

uous operator that maps RU on RP . Chambolle and Pock [7] propose a primal-dual323

algorithm to solve this class of problems.324

In this work, we solve a problem of the form:325

326

(16) min
u∈RU ,w∈RW

max
p∈RP ,z∈RZ

F (u) + 〈Ku|p〉 −G∗(p)327

+ h(u,w) +H(w) + 〈Aw|z〉 − J∗(z)328329

with A linear and continuous operator, F , H, G and J are proper, lsc and convex330

functions, h is a proper, lsc function, convex with respect to each of its variables.331

To compute a saddle-point of Model (16), we propose to use Algorithm 1. σu, σw,

Algorithm 1 Primal-dual algorithm solving (16).

1: for n ≥ 0 do
2: pn+1 ← proxσuG∗ (pn + σuKu

n)
3: zn+1 ← proxσwJ∗ (zn + σwAw

n)
4: wn+1 ← proxτw(H+h(un,.))

(
wn − τwA∗zn+1

)
5: un+1 ← proxτu(F+h(.,wn))

(
un − τuK∗pn+1

)
6: un+1 ← 2un+1 − un
7: wn+1 ← 2wn+1 − wn
8: end for

332
τw and τu are time steps. The proximal operator of a proper, lsc and convex function333

f : RU → R is defined as (see, e.g. [10]):334

(17) proxf (v) = argminu∈RU ‖u− v‖22 + f(u).335

3.4.2. Dual Version of Model (1) . To solve Model (1), the 1, 2−norm, re-336

called in Equation (7), is written in the dual form:337

(18) β‖u‖1,2 = max
p∈RP

〈u|p〉 − χBRP (0,β)(p),338

with u ∈ RU , and BRP (0, β) the β radius ball in RP with L2-norm.339

Once again, for the sake of clarity we consider M = 2 in the following, but the340

extension to higher values ofM is straightforward. Let us rewrite the total variation341

of the correspondence map (see Equation (7)), where n is the number of pixel, the342

correspondence maps are identified to vectors of Rn×2:343
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TV(v) = ‖(v1 − v2)⊗∇w + w (∇v1 −∇v2) +∇v2‖1,2344

= max
z∈RN×4

〈(v1 − v2)⊗∇w + w (∇v1 −∇v2) +∇v2|z〉345

− χBRP (0,β)(z)346

= max
z∈RN×4

〈Aw|z〉+ 〈∇v2|z〉 − χBRP (0,β)(z),(19)347
348

with A defined in (12).349

Let us compute the dual operator A∗ of A as follows:350

(20) A∗ = A∗1 +A∗2,351

with the pixel-wise multiplication:352

(21) (∇v1 −∇v2)
∗

= ∇v1 −∇v2,353

and with:354

(22) ((v1 − v2)⊗∇)
∗

= div(I2 ⊗ (v1 − v2)T ),355

where (v1 − v2)T is equal to the transpose of the matrix A1 defined in (12), and I2 is356

the identity matrix of size 2.357

Model (1) is rewritten in the primal-dual form:358
359

(23) min
u(t),w(t)

max
p,z
〈p(x)|∇u〉+ 〈Aw|z〉+ 〈∇v2|z〉360

+ λ

∫
Ω

w‖u− c1‖22 + (1− w)‖u− c2‖22361

− χB(0,α)(p)− χBRP (0,β)(z) + χR(u) + χ[0,1](w).362
363

3.4.3. Final Reading of the Algorithm. Since the terms of Equation (23) are364

pixel-wise separable, we then remove the N ×M notations. We apply Algorithm 1365

to (23) with the following identifications:366

• F (u) = χR(u)367

• G∗(p) = χBR6 (0,α)(p)368

• H(w) = χ[0,1](w)369

• J∗(z) = χBR4 (0,β)(z)− 〈∇v2|z〉370

• h(u,w) = λ
(
w‖u− c1‖22 + (1− w)‖u− c2‖22

)
371

The proximal operators are given by the following lemmas.372

Lemma 3.2. The proximal operator of σwJ
∗ is:373

(24) proxσwJ∗ = PBRN×4 (0,β)(z̃ + σw∇v2),374

where PBRN×4 (0,β) is the pixel-wise projection onto the L2 ball of radius β.375

Proof. The function is −σw 〈∇v2|.〉+ χBRN×4 (0,β).376

377

(25) prox−σw〈∇v2|.〉+χBRN×4 (0,β)
(z̃)378

= argminz∈R4

‖z − z̃‖22
2σw

− 〈∇v2|z〉+ χBRN×4 (0,β)(z),379
380

thus:381

(26) prox−σw〈∇v2|.〉+χBRN×4 (0,β)
(z̃) = PBRN×4 (0,β)(z̃ + σw∇v2).382
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Lemma 3.3. The proximal operator of τwh(u,w) + τwH(w) is pixel-wise:383

(27) proxτw(h(u,w)+H(w))(w̃) = P[0,1]

(
w̃ − τwλ(‖u− c1‖22 − ‖u− c2‖22)

)
,384

where P[0,1] is the orthogonal projection onto [0, 1].385

Proof. The function is λw‖u− c1‖22 + τwλ(1− w)‖u− c2‖22 + χ[0,1](w):386

proxτw(h(u,w)+H(w))(w̃) = argminw
‖w − w̃‖22

2
387

+ τwλw‖u− c1‖22 + τwλ(1− w)‖u− c2‖22388

+ χ[0,1](w)389

= argminw
‖w − w̃‖22

2
390

+ τwλw(‖u− c1‖22 − ‖u− c2‖22)391

+ χ[0,1](w)392

= P[0,1]

(
w̃ − τwλ(‖u− c1‖22 − ‖u− c2‖22)

)
.(28)393394

Lemma 3.4. The proximal operator of h(u,w) + F (u) is:395

(29) proxτu(h(u,w)+F (u))(ũ) = PR

(
ũ− τuλ2(wc1 + (1− w)c2)

1 + 2τuλ

)
,396

where PR is the pixel-wise projection onto the standard range for chrominances.397

Proof. The function is398

τuλw‖u− c1‖22 + τuλ(1− w)‖u− c2‖22 + χR(u):399

proxτu(h(u,w)+F (u))(ũ) = argminu ‖u− ũ‖22 + 2τuλw‖u− c1‖22400

+ 2τuλ(1− w)‖u− c2‖22 + χR(u)401

= argminu ‖u‖22 − 2〈u|ũ〉 − 4τuλ〈u|wc1〉+ 2τuλw‖u‖22402

− 4τuλ〈u|(1− w)c2〉+ 2τuλ(1− w)‖u‖22 + χR(u)403

= argminu(2 + 2τuλ)‖u‖22 − 4τuλ〈u|wc1 + (1− w)c2〉404

− 2〈u|ũ〉+ χR(u)405

= argminu ‖u‖22 − 2

〈
u| ũ+ τuλ2(wc1 + (1− w)c2)

2 + 2τuλ

〉
406

+ χR(u)407

= PR

(
ũ+ τuλ2(wc1 + (1− w)c2)

1 + τuλ

)
.(30)408

409

The final algorithm, solving (1) for one frame reads as Algorithm 2. PB(0,α) and410

PBRP (0,β) represent the projection onto the L2 ball of radius α and β respectively.411

P[0,1] is the truncation of the coordinates between 0 and 1. PR is the projection onto412

the standard range for chrominances.413

After iterating, the values of w are projected onto the canonical basis to have414

binary values and to avoid melting of colors or correspondence maps. A binarization415

of the variable w by truncation enables the computation of the correspondence map416

v. The algorithm computes two colors for each pixel: one corresponding to the final417
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Algorithm 2 Minimization of (23) with M = 2.

Input: v1,2, c1,2
1: w = 0.5 and u0 =

∑2
i=1 wici.

2: p0 ← ∇u0

3: z0 ← Aw0

4: for n ≥ 0 do
5: pn+1 ← PB(0,α) (pn + σu∇un)
6: zn+1 ← PBRP (0,β)(z

n + σw((v1 − v2)⊗∇wn + (∇v1 −∇v2)wn + σw∇v2))
7:

wn+1 ← P[0,1](w
n + τw((∇v1 −∇v2)zn+1

+ div(I2 ⊗ (v1 − v2)T vn+1)− τwλ(‖u− ci‖)i))

8: un+1 ← PR

un + τu

(
div(pn+1) + λ

∑2
i=1 w

n+1
i ci

)
1 + τuλ


9: wn+1 ← 2wn+1 − wn

10: un+1 ← 2un+1 − un
11: end for

12: woptimal ←
{

0 if w∞ ≤ 0.5
1 otherwise.

Output: û← u∞;
13: ŵ ← w∞;
14: v̂ ← ŵv1 + (1− ŵ)v2.

result u and another one,
∑
i wici corresponding to the transfer of colors from the418

initial frame through the sequence.419

A theoretical analysis of Algorithm 2 and its relationship with the PALM algo-420

rithm of [5] is studied in Appendix B. The convergence is numerically verified by421

computing the value of the functional during the iterations. The values are shown in422

Figure 5. We can see that the functional is decreasing and becomes asymptotically423

constant, which shows the numerical convergence.424

4. Interactive Scribble-based Correction. As it is difficult to provide a fully425

automatic method for image colorization (e.g., [29]), it is also hard to design an un-426

supervised frame-to-frame approach. Indeed, occlusions or dis-occlusions may occur,427

and new objects can appear in the video sequence whose color information is not428

present in the beginning of the sequence. For instance, Figure 15 shows a video429

sequence where the frame-to-frame propagation model is suitable. In contrast, in430

Figure 14, the method requires an intervention of the user to correct a dis-occlusion.431

To cope with this limitation, we propose in this section a manual correction of432

the frames that extends the frame-to-frame approach. We also describe a variational433

framework for the scribble correction, as well as a minimization algorithm.434

4.1. Overview of the User-guided Correction Method. To correct the435

visually unsuitable results of the proposed frame-to-frame propagation approach (1),436

we design a user-guided correction method widely inspired by the model proposed437

by Pierre et al. [29]. We extend this work to the case of videos, where 3D blocks438
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Fig. 5. The values of the functional decrease during the iterations of Algorithm 2 and become
asymptotically constant. This behavior highlights the numerical convergence of this algorithm.

are considered (2D + t). Frequently, occlusion or dis-occlusion in the video sequence439

produces undesirable results, that is not always easily visible when it occurs. Thus,440

in our method, the user can define the sub-sequence to correct.441

The correction of a dis-occlusion artefact requires the computation of a color442

on an object that appears on the scene. Thus, this pixel cannot have a reliable443

correspondence map from the previous frame, so the computation of a correspondence444

map is unreliable in dis-occlusion areas.445

The correction algorithm, through the minimization of a new functional, com-446

putes a trade-off between the previous propagation result and the color provided by447

the scribbles. Compared to existing manual methods [39], as we use the current co-448

lorization result, few scribbles are necessary. The user intervention is thus reduced.449

The overview of the correction method is presented in Figure 6.450

4.2. User-guided Correction Model. Assume that a first result c̃1 has been451

computed from Model (1), from time 1 to time n, and that the user adds S scribbles452

on the unsuitable result on the n-th frame, providing S candidates c̃i, i = 2 . . . S + 1.453

One candidate is providing for all the pixels of the video sequence.454

The next step corrects the video sequence between time t1 (defined by the user)455

and time n. Generally, the number of unsuitable frames is small enough (less than 5)456

to correct the result with a limited computation time.457

In the same context, authors of [29] propose to unify a user-guided image colo-458

rization with an exemplar-based one within a variational framework. The following459

model, which is a direct extension of [29] to spatio-temporal blocks, is minimized,460

where u is a 2D+t chrominance block:461

462

(31) (û, ŵ) = argminu,w αTV[t1,n](u)463

+ λ

∫
Ω×[t1,n]

S+1∑
i=1

w
(t)
i (x)‖u(t)(x)− c̃(t)i (x)‖22 dx dt464

+ χR(u) + χE(w).465466
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Scribbles propagation
with coarse approach 

● Weights computation
● New candidates

User input
Scribbles on one

frame

Minimization of
Model (31)

Unsuitable frame
Result from the

propagation algorithm

Fig. 6. Interactive Scribble-based Correction. The correction algorithm provides a trade-off
between the colors produced by the frame-to-frame propagation method, and the ones given by the
user. A coarse approach (the geodesic distance diffusion for instance) is used to provide a first
scribble diffusion, which is then refined by minimizing Functional (31).

The minimizer of the data-fidelity term467

(32)

∫
Ω×[t1,n]

S+1∑
i=1

w
(t)
i ‖u

(t)(x)− c̃(t)i (x)‖22 dx dt,468

with respect to u, is equal to the average of c̃i weighted by wi. We add χE(w), which469

constrains w onto the canonical basis. This constraint prevents the final result to be470

a melting of input colors.471

The total variation (TV) of a chrominance block (U, V ) reads:472

(33) TV[t1,n](u) =

∫
Ω×[t1,n]

(
γ‖Λ∇Y ‖22 + ‖Λ∇U‖22 + ‖Λ∇V ‖22

) 1
2 ,473

with ∇ = (∂x, ∂y, ∂t),474

(34) Λ :=

1 0 0
0 1 0
0 0 µ

 .475

The temporal regularization is more important for Model (31) than for Model (1).476

Indeed, in Model (1), in the set of the initial correspondence maps, it may be possible477
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to use temporally consistent maps, such as optical flow. In contrast, for the scribble478

correction model, the result is temporally regularized by adding a time derivative479

in the total variation term. The parameter µ controls the influence of the temporal480

regularization with respect to the spatial one.481

4.3. Algorithm. For the minimization of Model (31), the algorithm presented482

in [28] is directly used. The composition of operator Λ with the gradient and the483

divergence is not restrictive to apply the general algorithm of [28]. Finally, the mini-484

mization of Model (31) is achieved with Algorithm 3, where cn∗ states for the closest485

candidate c̃i from un, and τ, σ are time steps. This Algorithm would contain an486

update for the variable w with the following form:487

(35) wn+1 ← argminw ‖w − wn‖22 + ρ

S+1∑
i=1

wi‖un − c̃i‖22 + χ∆(w).488

The convergence of such implicit numerical scheme does not depend on the ρ variable489

and it is pushed forward to +∞. The line (35) becomes:490

(36) wn+1 ← argminw

S+1∑
i=1

wi‖un − c̃i‖22 + χ∆(w),491

and it is minimised by w∗ = (0, . . . , 1, 0, . . . , 0) with 1 in the i-th position, where492

‖un − ci‖ is the lowest one. Thus
∑S+1
i=1 w

∗ci = cj with ci the closest candidate from493

un and denoted by cn∗ .494

Algorithm 3 Minimization of (31).

1: u0 =
∑S+1
i=1 wici.

2: p0 ← ∇u
3: for n ≥ 0 do
4: pn+1 ← PB(0,α) (pn + σΛ∇un)

5: un+1 ← PR

(
un + τ

(
div(Λpn+1) + 2λcn∗

)
1 + 2τuλ

)
6: un+1 ← 2un+1 − un
7: end for

With the combination of Algorithm 2 for color propagation and Algorithm 3 for495

scribble correction, we propose, in this work, a complete framework for video colori-496

zation. It is composed of a frame-to-frame propagation approach, which is unsuper-497

vised, and a correction step when occlusions or dis-occlusions occur. The interaction498

between the two models was detailed in Section 2. In the next section, we present the499

implementation details.500

5. Implementation Details. In this section, we describe implementation de-501

tails. In particular, we present the computation of the correspondence maps and the502

initialisation of the correction algorithm.503

5.1. Computation of the Correspondence Maps. Our method propagates504

colors from an initial frame to the final one, through an optimal correspondence map505

that is computed from initial correspondence maps with Equation (1). In this work,506

we compute two initial maps, from the luminance channel of the video sequence, with507
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(a) PatchMatch propagation. (b) TVL1 optical flow propagation. (c) Propagation result with
Model (1).

Fig. 7. Combination of PatchMatch and optical flow correspondence maps. The PatchMatch
(resp. TVL1) propagation of colors is illustrated in (a) (resp. (b)). The result with Model (1)
is illustrated in (c). By combining the advantages of both maps, the frame-to-frame propagation
Model (1) performs a visually suitable result, whereas the initial maps produces visually unsuitable
parts (see in red boxes).

the PatchMatch method [3] and the TVL1 optical flow [7]. The TVL1 optical flow508

produces regularized maps, able to track large objects, whereas the PatchMatch map509

is more relevant on textures and on contours.510

The PatchMatch method consists in computing a nearest-neighbor map between511

two adjacent frames. For each pixel at position x in the frame u(t) at time t, the512

nearest-neighbor map consists in the position ŷ in the frame u(t−1) at time t− 1 such513

that:514

(37) ŷ = argminy∈Ω ‖P (x)− P (y)‖2,515

where P (x) (resp. P (y)) is the patch centred at position x (resp. y) in frame u(t)516

(resp. u(t−1)). The computation of this correspondence map through exhaustive517

search being extremely computationally expensive, PatchMatch algorithm [3] is used518

to compute an approximate correspondence map between two adjacent frames.519

A second correspondence map is computed by the TVL1 optical flow with the520

algorithm of Chambolle-Pock [7]. The optical flow estimates the apparent motion be-521

tween two frames of a video sequence. This estimation solves the brightness constancy522

constraint [37]:523

(38) ρ(u, v) = ∂tu+ 〈∇x,yu|v〉+ βu,524

where ∇x,yu is the spatial gradient and v : Ω→ R2 is the motion field. TV is defined525

as in Equation (7). The following functional is minimized:526

(39) min
v

TV(v) + TV(u) + ‖ρ(u, v)‖1,527

which gives the TVL1 optical flow.528

These two correspondence maps, one computed by PatchMatch and the other one529

from TVL1 optical flow differ in terms of quality: the first one is more piece-wise, and530

the second one is more regular. The PatchMatch algorithm, being less regularized,531

produces some colorization artefacts that are propagated over time. Nevertheless,532

it can deal with large displacements. In contrast, the regularity of the TVL1 map533

enforces the suitability of the estimated flow, but the brightness constancy constraint534

may not be reliable on some part like dis-occlusions.535

The approximate nearest-neighbor map provided by the PatchMatch method is536

experimentally piece-wise constant. This geometrical property enables to simulate a537

copy-paste technique. Thus, the combination of the optical flow with the PatchMatch538
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correspondence map can be understood as follows: for small and controlled motions,539

the TVL1 optical flow provides a suitable colorization; in the case of large displace-540

ments or dis-occlusions, PatchMatch copy-pastes colorized parts from another area of541

the image.542

Figure 7 shows the differences of visually unsuitable results produced by Patch-543

Match and the TVL1 optical flow (red boxes focus on the problems). Model (1)544

produces a visually suitable result from these two initial maps.545

5.2. Scribble Correction with Geodesic Distance. With the correction546

Model (31), we compute a solution from the frame-to-frame propagation result and547

user’s scribbles. This model performs a scribble diffusion thanks to the total variation548

minimization. To help the propagation of the scribbles, a technique inspired by [39]549

is used. The geodesic distance is computed on a three dimensional block, composed550

of the two spatial dimensions with the temporal one. This geodesic distance pro-551

vides, for each pixel, a weight wi associated to the chrominance candidate c̃i given552

by one of the scribbles. c̃1 is the previous frame-to-frame propagation result, c̃i with553

i = 2, . . . , S + 1 is the chrominance given by one scribble.554

In practical cases, the three dimensional gradient norm is filtered by a Gaussian555

kernel. The geodesic distance map, denoted by D, is computed with the fast marching556

algorithm [33], with potential:557

(40)
(
θ + ‖∇u‖22

)−r
,558

inspired by [8]. θ and r are shape parameters. D is normalized with an affine mapping559

to have a range between 0 and 1. We use the implementation of [27] to compute the560

geodesic distance.561

The weights wi of Algorithm 3, corresponding to the scribble candidates c̃i, are562

initialized with 1 − Di where Di is the geodesic distance from the scribble. The563

variable w1, corresponding to the candidate c̃1 coming from the previous frame-to-564

frame propagation model, is initialized with 1 −
∑S+1
i=2 wi. When

∑S+1
i=2 wi > 1, the565

weights are divided by this sum to avoid that w1 < 0. If the geodesic distance is low,566

pixels get the color of the scribble. In contrast, if the geodesic distance is high, they567

are not influenced by the scribble and they get the color of the previous frame-to-frame568

propagation result.569

Algorithm 3 is pixel-wise initialized with
∑S+1
i=1 wi c̃i to favor the scribbled re-570

sult. Model (31) being non-convex, the result of the minimization directly depends571

on the initialization of Algorithm 3. Thanks to the diffusion by the geodesic distance,572

the iterative Algorithm 3 begins closer to the desired result and is thus faster. The573

geodesic distance computes a coarse but fast propagation. In contrast, the minimiza-574

tion of Functional (31) is slower, but produces a finer result.575

Figure 6 illustrates the correction workflow. The geodesic distance propagates the576

color of the scribble. The minimization of Model (31) refines this first propagation577

that can be re-used by the frame-to-frame propagation algorithm since the result is578

visually suitable for the user.579

5.3. Parameter Settings. The results presented in Section 6 have been per-580

formed with the following set of parameters: λ = 0.1, α = 25 and γ = 35, in Equa-581

tions (1) and (31), β = 0.1 in Equation (1), µ = 0.1 in Equation (31), and θ = 45,582

r = 8 in Equation (40). These parameters are the same for all the videos. We consider583

2000 iterations for Algorithms 2 and 3, that are computed in about 1 second per frame584

at image resolution 352×256 with an unoptimized NVIDIA CUDA implementation.585

This manuscript is for review purposes only.



INTERACTIVE VIDEO COLORIZATION WITHIN A VARIATIONAL FRAMEWORK 19

t = 9 t = 5 t = 4 t = 1

G
ra

y
sc

a
le

se
q
u

en
ce

U
se

r
in

p
u

t
fo

r
[3

9]
(t

=
6)

R
es

u
lt

s
of

[3
9]

O
u

r
u

se
r

in
p

u
t

(t
=

9)

O
u

r
re

su
lt

s

Fig. 8. Comparison with [39] on the Nemo video sequence. We use the last colorized frame
given by the method of [39] and we propagate its colors. No scribble correction has been used for
our results. With our method, the fishtail is better colorized, zooms are available in Figure 9.

R
es

u
lt

s
of

[3
9
]

O
u

r
re

su
lt

s

t = 9 t = 5 t = 4 t = 1

Fig. 9. Zooms on Figure 8. The contours are better preserved with our approach (see, e.g.,
contours in the red boxes).
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Fig. 10. Comparison with [39] on the Chaplin video sequence. We use the first colorized frame
given by the method of [39] and we propagate its colors. No scribble correction has been used for
our results. With our method, the corncob is better colorized, zooms are available in Figure 11.

Result of [39] at t = 21. Model (1) at t = 21.

Fig. 11. Zooms on Figure 10. In the red box, the method of [39] mixes the yellow of the
corncob with the color of the skin. With our method, the colors of the initial frame are less blended
and the contours better preserved.

This computation time is about the same for the propagation step and the correction586

one. It is fast enough to consider the user-guided interaction.587

6. Numerical Results. In this section, we compare our approach with state-588

of-the-art methods. First, we compare our approach with [39] and [23]. Next, we589

propose some experiments on historical grayscale video sequences whose colorization590

is more challenging. Finally, a benchmark image with a PSNR value is presented for591

future competitors.592

The data used for experiments have been taken from videos available on authors’593

websites, which contain noise from compression artefacts. Even with this low quality,594

our method performs promising results, which shows its robustness to the noise.595

6.1. Comparison with Chrominance Blending [39]. First, let us compare596

our method to [39]. The two videos tested in Figures 8 and 10 have been taken597

from [39]. The video sequences Nemo and Chaplin are colorized by a propagation of598

one frame. The initial colored frame has been taken from the results of [39].599
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Fig. 12. Comparison with [23] on the Toddler video sequence. We use the first colorized frame
given by the method of [23] and we propagate its colors. Our method requires one scribble at time
t = 29 (visible in the red box). Details of the correction step are available in Figure 6.

Figure 8 (resp. Figure 10) shows frames of the results from [39] and the colori-600

zation performed with our propagation algorithm on the video Nemo (resp. on the601

video Chaplin).602

For the video Chaplin, the results produced with our method are comparable with603

the one of [39]. There are no visible artifacts and the final palette of colors is visually604

the same.605

For the Nemo video sequence (10 frames), the fishtail is better colorized with our606

method. Figure 9 shows zooms of Figure 8. With our method, the contours are better607

preserved (see in red boxes) thanks to the coupled total variation (2). The method608

of [39] produces an artefact at the bottom of the tail on the last frame (an orange609

scratch blows in the background). Although our method propagates result of [39],610

it corrects this visually unsuitable result automatically, thanks to the total variation611

regularization.612

Figure 10 presents experiments on the Chaplin video sequence (21 frames). The613

frame-to-frame propagation is used without scribble correction. In Figure 11 we can614

see zooms on Figure 10. In the red box, after 20 frame-to-frame propagations, the615

method of [39] mixes the yellow color with the background. In contrast, with our616

method, the contours are better preserved.617

As a conclusion of these experiments, our method is suitable on video sequences618

with large and constant parts.619

6.2. Comparison with Quadratic Optimization [23]. Now, let us compare620

our method on examples taken from [23].621

These examples are difficult to process with a frame-to-frame model because some622
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Fig. 13. Comparison of our method with [23] for the Birthday video sequence. We use the first
colorized frame given by the method of [23] and we propagate its colors. For our method, the user
draws about 50 scribbles to correct the propagation algorithm.

new objects appear in the scene, and occlusions and dis-occlusions occur. In these623

videos, it is required to add scribbles to some frames of the sequence to correct visually624

unsuitable results of our frame-to-frame propagation algorithm. The method of [23]625

being based on a spatio-temporal processing of the sequence, it is naturally able to626

deal with occlusion problems. We show that our method tackles this issue with a627

small number of scribbles.628

Figure 12 shows the result of our method in comparison with [23]. The video629

contains 43 frames. The results are visually the same. For the method of [23], it is630

required to add scribbles on some key frames of the video, and the result is computed631

in one step with no more interaction. To ensure to use the same color set, we use632

the first frame of the colorized result of [23] as initial frame for the frame-to-frame633

propagation Model (1). On this sequence we only use one scribble to correct the result634

(in the red box). In contrast, the method of [23] requires more than 50 scribbles.635

Figure 13 shows another comparison with [23] on a video with 62 frames. The636

initial color frame used by our algorithm comes from the result of [23]. In this example,637

we use about 50 scribbles to correct the unsuitable propagation results, whereas the638

method of [23] uses hundreds of it.639

In this result, hundred of scribbles are needed to colorize the video. From this640

point of view, there is few differences between the method of [23] and ours. However,641
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Fig. 14. Result of our method on the De Gaulle video sequence from the French Institut National
des Archives. The initial frame (t = 1) is obtained by the unified method of Pierre et al. [29]. The
colors of the initial frame are then propagated over the whole video sequence with only two scribble
corrections, drawn on the thumb into the red boxes, on the frame at t = 23 and t = 27.

after scribbling, the result of [23] may be unsuitable and the user has to modify his642

scribbling and to rerun the algorithm in the entire video. With our method, the user643

focuses on only one frame (in practical cases, the correction step is applied to the644

unsuitable frame and the three previous ones) and does not propagate on the next645

ones while it is not well colorized. Thus, only one small block of frames is recomputed646

between two user’s actions. Thus, our method is really interactive because the time647

between the user’s interventions is reduced.648

Let us address some limitations of our method. In Figure 12 some skin colour is649

propagated on the shadow at the left foot at the end of the sequence. The estimation650

of the optical TVL1 optical flow fails due to the shadow, introducing some propagation651

errors. In Figure 13, the toy flower looses its colourfulness from t = 14 to t = 58. This652

limitation comes from the natural bias on the TVL2 model which will be studied in653

future works (see, e.g., [12]).654

6.3. Experiments on Historical Videos. In this section, we consider the655

challenging problem of colorization of historical videos. The difficulties come from656

the noise, the flickering effect and the scratches.657

First, we perform the colorization of a textured historical sequence. The first658

frame is colorized with [30]. In the De Gaulle video sequence, the thumb is hidden at659

the beginning of the sequence before appearing. Thus, it is unsuitably colorized by the660
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Fig. 15. Result of our method for the Pieds Nickelés [13] video sequence. The initialization
is the first frame at time t = 1, colorized with the method of [29]. For this sequence, besides the
colorization of the first frame, no scribble has been added. This experiment shows that our approach
is reliable on scratched videos with large displacements.

(a) Original frame at time
t = 1.

(b) Gray frame at time
t = 2.

(c) Original color frame at
time t = 2.

(d) Our result at time
t = 2 with Model (1).

Fig. 16. Benchmark for future comparisons with propagation model (1). In Figure (a), we can
see the color frame at time t = 1, in (b), the gray frame at time t = 2. In Figure (c), we can see
the original color frame at time t = 2. In Figure (d), the result is produced by transfering the colors
from time t = 1 to t = 2 with Model (1). The PSNR for this result at time t = 2 is equal to 41.42.

propagation algorithm. We add two scribbles onto the thumb when it appears (in the661

red boxex) and the correction algorithm integrates it. Finally, the propagation algori-662

thm computes the colorization of the sequence. The 49 frames with image resolution663

of 352×256 pixels are colorized in about 1 min with our GPU implementation.664

Finally, we apply our algorithm to the sequence Pieds Nickelés that is a very noisy665

video (Figure 15). This sequence is processed with the method of [13] to remove flicker666

effect. It contains a residual flicker effect as well as many scratches. Moreover, some667

of the displacements are very large, for instance, the heads of the characters. In spite668

of these challenging problems, our method is able to propagate colors over the 101669

frames of the whole sequence without any correction. Even with a large number of670

frames, the video is well colorized with only the propagation algorithm. The grayscale671

sequence of our method is available on the first and the third rows, whereas the result672

is on the second and fourth ones. The initialization is the initial frame at t = 1.673

6.4. Benchmarking. Figure 16 shows the result of the propagation between674

two adjacent frames of a color video. Model (1) is used to propagate the colors of the675
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frame at t = 1 to the one at time t = 2. The original video being in color, it enables676

us to compute the PSNR of the frame at t = 2, which is equal to 41.42.677

The complete video colorization results as well as the benchmark are available678

online at: http://www.fabienpierre.fr/video/video.html.679

7. Conclusion. In this paper, we have proposed a novel variational model able680

to merge multiple correspondence maps to provide a suitable frame-to-frame prop-681

agation algorithm. A correction model integrating user scribbles is also proposed.682

These models are solved by primal-dual like algorithms integrated into an interac-683

tive framework. With our GPU implementation, we reach a high enough speed to684

consider an interactive software. Comparisons with state-of-the-art methods show685

the efficiency of our method and its ability to consider historical videos. As a future686

work, a data-fidelity term with L1-norm could be considered to better preserve the687

color set.688

Moreover, the lack of quantitative evaluation methods for colorization is a big689

challenge for the image processing community.690

Appendix A. Computation of the Map Operator.691

In this section, we propose a proof of Lemma 3.1, which states an upper bound692

for the value of the operator norm of A.693

Proof. (of Lemma 3.1) First of all, by triangular inequality:694

(41) ‖A‖ ≤ ‖A1‖ ‖∇‖+ ‖A2‖ .695

Let us compute an upper bound for each term in (41). It is known (see, e.g., [6])696

that ‖∇‖2 = 8.697

Let us compute ‖A1‖:698

699

(42) ‖A1‖ = ‖A∗1‖ =

∥∥∥∥(ϕ1 − ϕ2 0 ψ1 − ψ2 0
0 ϕ1 − ϕ2 0 ψ1 − ψ2

)∥∥∥∥700

≤
∥∥∥∥(ϕ1 − ϕ2 0

0 ϕ1 − ϕ2

)∥∥∥∥+

∥∥∥∥(ψ1 − ψ2 0
0 ψ1 − ψ2

)∥∥∥∥701

= |ϕ1 − ϕ2|+ |ψ1 − ψ2|.702703

The last quantity can be computed explicitly from the input data. This term can be704

bounded:705

(43) ‖A1‖ ≤ 2(N +M),706

where N and M are the height and width of the frame.707

Let us compute ‖A2‖:708

709

(44) ‖A2‖ = ‖A∗2‖710

=
∥∥(∂xϕ1 − ∂xϕ2 ∂yϕ1 − ∂yϕ2 ∂xψ1 − ∂xψ2 ∂yψ1 − ∂yψ2

)∥∥711

≤ |∂xϕ1 − ∂xϕ2|+ |∂yϕ1 − ∂yϕ2|+ |∂xψ1 − ∂xψ2|+ |∂yψ1 − ∂yψ2|.712713

This upper bound can be explicitly computed. This term can be bounded thanks to714

the bounding of the partial derivatives in Equation (44):715

(45) ‖A2‖ ≤ 4(N +M).716
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Finally, a bounding of A reads as:717

(46) ‖A‖ ≤ 2
√

8(N +M) + 4(N +M).718

The operator norm depends linearly on the size of the frame.719

Appendix B. Link between Algorithm 2 and PALM Algorithm of [5].720

The PALM algorithm proposed in [5] can be applied to Model (1). Indeed, this721

model can be written as722

(47) min
u∈RU ,w∈RW

F (u) + h(u,w) +H(w)723

with the same hypothesises as in Equation (16) for F and H, and h differentiable724

with respect to each variables with Lipschitz gradient. The PALM is recalled in725

Algorithm 4, where σ̃n and τ̃n are time steps. To ensure the convergence to a critical726

point, the following bounds have to be fulfilled:727

(48)


σ̃n <

γ1

L1(wn)

τ̃n <
γ2

L2(un+1)
,

728

with γ1 < 1, γ2 < 1, L1(wn) is the Lipschitz constant of ∇uh(u,wn) and L2(un+1) is729

the Lipschitz constant of ∇wh(un+1, w).730

To apply the PALM to (1), we propose to make the following identifications:731

• F (u) = αTVC(u) + χR(u),732

• h(u,w) =
λ

2

∫
Ω

∑M
i=1 wi(x)‖u(x)− ci(x)‖22 dx,733

• H(w) = β TV(v(t)) + χ∆(w(t)).734

Let us remark that, in this case, L1(wn) and L2(un+1) do not depend on n.735

Algorithm 4 PALM Algorithm of [5].

1: for n ≥ 0 do
2: un+1 ← proxσ̃nF (un − σ̃n∇uh(un, wn))
3: wn+1 ← proxτ̃nH

(
wn − τ̃n∇wh(un+1, wn)

)
4: end for

The proximal operators of H and G can be computed with the iterative primal-736

dual algorithm of Chambolle and Pock [7]. Indeed, let us compute proxσ̃F (ũ) in737

Algorithm 5. The time steps of this iterative algorithm are σ̃u and τ̃u.

Algorithm 5 Computation of proxσ̃F (ũ) with the algorithm of [7].

1: for n ≥ 0 do
2: pn+1 ← PB(0,α) (pn + σ̃u∇un)

3: un+1 ← PR

(
un + τ̃u

(
div(pn+1) + σ̃ũ

)
1 + τ̃uσ̃

)
4: un+1 ← 2un+1 − un
5: end for

738

Is the same way, we propose to compute proxτ̃H(w̃) with an iterative algorithm.739

The time steps of this iterative algorithm are σ̃w and τ̃w.740
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Algorithm 6 Computation of proxτ̃H(w̃) with the algorithm of [7].

1: for n ≥ 0 do
2: zn+1 ← PBRP (0,β)(z

n + σ̃w((v1 − v2)⊗∇wn + (∇v1 −∇v2)wn + σ̃w∇v2))
3:

wn+1 ← P[0,1]

(
1

1 + τ̃w τ̃
[wn + τ̃w((∇v1 −∇v2)zn+1

+ div(I2 ⊗ (v1 − v2)T vn+1) + τ̃w τ̃ w̃)]
)

4:

5: wn+1 ← 2wn+1 − wn
6: end for

With these two algorithms, it is possible to apply the PALM algorithm [5] to741

Model (1), using inner loops. To this aim, let us compute ∇uh(u,w) and ∇wh(u,w):742

∇uh(u,w) = ∇u

(
λ

2

∫
Ω

M∑
i=1

wi‖u− ci‖dx

)
(49)743

= λ

(
u−

M∑
i=1

wici

)
.(50)744

745
746

∇wh(u,w) = ∇w

(
λ

2

∫
Ω

M∑
i=1

wi‖u− ci‖dx

)
(51)747

= λ(‖u− ci‖)i.(52)748749

The complete PALM algorithm to solve Model (1) is written in Algorithm 7. The750

following proposition states the link between Algorithm 2 and the PALM one [5].751

Proposition B.1. Let us consider Algorithm 7 with only one iteration for the752

inner loops (i.e., Algorithm 5 and 6) and a common value for σ̃ and τ̃ . Let us choose753

τu =
τ̃u

1 + τ̃uσ̃ − τ̃uλσ̃2
, σu = σ̃u, τw =

τ̃w
1 + τ̃w τ̃

and σw = σ̃w. Then, Algorithm 7 is754

the same as Algorithm 2.755

The choice of the common value for σ̃ and τ̃ is not a restrictive hypothesis to756

prove the convergence of the PALM algorithm. Indeed, a bound for each time step757

is required to ensure the convergence (see, e.g., (48)). Taking the minimum between758

them, the two bound conditions are fulfilled.759

Proof. Assume now to use only one iteration for the internal loops of Algorithm 7.760

Thus, the line 9 can be included in line 12. In this case, line 12 becomes:761

(53) un+1 ← PR

un + τ̃u

(
div(pn+1) + σ̃

(
un − σ̃λ

(
un −

∑M
i=1 w

n
i ci

)))
1 + τ̃uσ̃

 .762

with simplification:763

(54) un+1 ← PR

un(1 + τ̃uσ̃ − τ̃uλσ̃2) + τ̃u

(
div(pn+1) + λσ̃2

∑M
i=1 w

n
i ci

)
1 + τ̃uσ̃

 .764
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Algorithm 7 PALM Algorithm of [5] applied to Model (1).

1: for k ≥ 0 do
2: w̃ ← wn − τ̃λ(‖un − ci‖)i
3: for n ≥ 0 do
4: zn+1 ← PBRP (0,β)(z

n + σ̃w((v1 − v2)⊗∇wn + (∇v1 −∇v2)wn + σ̃w∇v2))
5:

wn+1 ← P[0,1]

(
1

1 + τ̃w τ̃
[wn + τ̃w((∇v1 −∇v2)zn+1

+ div(I2 ⊗ (v1 − v2)T vn+1) + τ̃w τ̃ w̃)]
)

6:

7: wn+1 ← 2wn+1 − wn
8: end for
9: ũ← un − σ̃λ

(
un −

∑M
i=1 w

n+1
i ci

)
10: for n ≥ 0 do
11: pn+1 ← PB(0,α) (pn + σ̃u∇un)

12: un+1 ← PR

(
un + τ̃u

(
div(pn+1) + σ̃ũ

)
1 + τ̃uσ̃

)
13: un+1 ← 2un+1 − un
14: end for
15: end for

Choosing τu =
τ̃u

1 + τ̃uσ̃ − τ̃uλσ̃2
and λ̃ = λσ̃2, we have765

(55)
1 + τ̃uσ̃

1 + τ̃uσ̃ − τ̃uλσ̃2
= 1 + λ̃τu.766

Thus Equation (54) becomes:767

(56) un+1 ← PR

un + τu

(
div(pn+1) + λ

∑M
i=1 w

n
i ci

)
1 + λτu

 ,768

which is the same computation as line 8 of Algorithm 2.769

The line 2 of Algorithm 7 can also be included in line 5 and this last line becomes:770

771

(57) wn+1 ← P[0,1]

(
1

1 + τ̃w τ̃
[wn + τ̃w((∇v1 −∇v2)zn+1

772

+ div(I2 ⊗ (v1 − v2)T vn+1) + τ̃w τ̃(wn − τ̃λ(‖un − ci‖)i))]
)
.773774

With simplification:775

776

(58) wn+1 ← P[0,1](w
n +

τ̃w
1 + τ̃w τ̃

((∇v1 −∇v2)zn+1
777

+ div(I2 ⊗ (v1 − v2)T vn+1)− τ̃w τ̃
2

1 + τ̃w τ̃
λ(‖un − ci‖)i))778

779
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Choosing τw =
τ̃w

1 + τ̃w τ̃
, and λ̃ = λτ̃2, thus Equation (58) is the same computation780

as line 7 of Algorithm 2. The choice λ̃ = λτ̃2 is compatible with λ̃ = λσ̃2 if we assume781

that τ̃ = σ̃. That is not a restrictive hypothesis, since it is possible to use the same782

time step in the PALM algorithm, by choosing the minimum of them as a common783

value to ensure the convergence.784

As a conclusion, Algorithm 2, inspired by the primal-dual one of Chambolle and785

Pock [7], can be seen as the PALM algorithm of [5] where the proximal operator for786

the total variation would be computed by the Chambolle and Pock Algorithm itself787

with only one iteration. The advantage of the PALM algorithm is the theoretical788

guarantee of convergence to some critical point. For our algorithm, the decreasing of789

the energy cannot be proved since it is a saddle-point problem. Thus, the bare bones790

of the convergence proof of PALM cannot be adapted to Algorithm 2. However,791

Proposition B.1 explains the good behavior of Algorithm 2 whose convergence has792

been numerically verified (see, e.g., Figure 5).793
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