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Adaptive Design of Experiments for
Conservative Estimation of Excursion Sets
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Julien Bect‖, Yann Richet∗∗

Abstract

We consider a Gaussian process model trained on few evaluations of an expensive-
to-evaluate deterministic function and we study the problem of estimating a fixed
excursion set of this function. We focus on conservative estimates as they allow
control on false positives while minimizing false negatives. We introduce adaptive
strategies that sequentially selects new evaluations of the function by reducing the
uncertainty on conservative estimates. Following the Stepwise Uncertainty Reduction
approach we obtain new evaluations by minimizing adapted criteria. We provide
tractable formulae for the conservative criteria and we benchmark the method on
random functions generated under the model assumptions in two and five dimensions.
Finally the method is applied to a reliability engineering test case. Overall, the
proposed strategy of minimizing false negatives in conservative estimation achieves
competitive performance both in terms of model based and a-posteriori indicators.
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1 Introduction

The problem of estimating the set of inputs that leads a system to a particular behavior is

common in many applications, notably reliability engineering (see, e.g., Bect et al., 2012;

Chevalier et al., 2014a), climatology (see, e.g., French and Sain, 2013; Bolin and Lindgren,

2015) and many other fields (see, e.g., Bayarri et al., 2009; Arnaud et al., 2010; Wheeler

et al., 2014). Here we consider a system modeled as a continuous expensive-to-evaluate

function f : X→ R, where X is a compact subset of Rd. Given few evaluations of f and a

fixed closed T ⊂ R, we are interested in estimates for the set

Γ∗ = {x ∈ X : f(x) ∈ T}. (1)

The function f is modeled as a realization of a Gaussian process (GP) and, follow-

ing Sacks et al. (1989), we emulate f with the posterior distribution of said process. Esti-

mates for Γ∗ can then be obtained from the posterior GP distribution.

A natural error measure for an estimate Γ of Γ∗ is the distance in measure, i.e., dµ(Γ∗,Γ) =

µ(Γ∗∆Γ) = µ
(
(Γ \ Γ∗) ∪ (Γ∗ \ Γ)

)
defined for Γ ⊂ X where µ is a finite measure on X

such as a probability distribution or the Lebesgue measure. This metric assigns the same

importance to the measure of false positives (Γ \ Γ∗), i.e. input points estimated to be in

Γ∗ when in fact they are not, and false negatives (Γ∗ \Γ), i.e. input points estimated to be

in X \ Γ∗ when in fact in Γ∗. Notably, Chevalier (2013); Chevalier et al. (2014a) estimate

Γ∗ with the Vorob’ev expectation which minimizes the expectation of the distance in mea-

sure among sets with measure equal to the expected measure. This estimate symmetrically

minimizes (the measure of) false positive and false negative. In most applications, however,

the cost of misclassification is not symmetric with higher penalties for false positives than

for false negatives. For this reason, practitioners and reliability engineers are interested in

estimates which would very likely be in the excursion set. Such property naturally gives

more importance to the minimization of false positives than of false negatives.

French and Sain (2013); Bolin and Lindgren (2015) introduced the concept of conser-

vatives estimates which select sets that are deliberately smaller – according to µ – than Γ∗

and are included in the excursion set with a large probability, say α ≈ 1. The empty set

trivially satisfies this probabilistic inclusion property, therefore conservative estimates are
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selected as the set with largest measure in this family. Conservative estimates minimize

the measure of false negatives among sets with a fixed (usually low) probability of false

positives. French and Sain (2013) and Bolin and Lindgren (2015) proposed an approach to

compute conservative estimates for a fixed Design of Experiments (DoE), however, to the

best of our knowledge, there is no study on how to reduce the uncertainty on conservative

estimates with adaptive strategies. Here we focus on this problem by considering a notion

of uncertainty for such sets and a sequential strategy to reduce the uncertainty.

Previous adaptive design of experiments strategies for excursion set estimation mainly

focused on recovering the boundaries of the set. In particular, Picheny et al. (2010) in-

troduced the targeted IMSE (tIMSE) criterion to add points at locations that improve

the accuracy of the model at a certain level of the response variable. Bect et al. (2012)

introduced the concept of Stepwise Uncertainty Reduction (SUR) strategies for GP (see

also Vazquez and Bect, 2009; Chevalier et al., 2014a). Those strategies, however are not

adapted to the conservative estimation case. Here, by shifting the focus on the control of

false positives, we extend the conservative estimation framework introduced by Bolin and

Lindgren (2015) to sequential design of experiments. We consider a definition of conserva-

tive estimates well suited to excursion sets of Gaussian processes and we provide a SUR

strategy with tractable criteria to reduce the uncertainty on conservative estimates.

1.1 Motivating test case

In reliability engineering applications, the set Γ∗ often represents safe inputs for a system.

In such settings, it is vital to avoid flagging unsafe regions as safe. With a broad use of

hypothesis testing terminology we refer to this as type I error or false positive.

Figure 1 shows an example of such reliability engineering applications: a test case from

the French Institute for Radiological Protection and Nuclear Safety (IRSN). We briefly

sketch the test case in this subsection, see section 5 for detailed results. The problem

at hand concerns a nuclear storage facility and we are interested in estimating the set of

parameters that lead to a safe storage of the material. Since this is closely linked to the

production of neutrons, the safety of a system is evaluated with the neutron multiplication

factor produced by fissile materials, called k-effective or k-eff : X→ [0,+∞). In our appli-
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estimate (Vorob’ev expecta-
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(c) Conservative (α = 0.95,

green) and non-conservative

estimate (Vorob’ev expecta-

tion, red) after 75 evaluations.

Figure 1: Nuclear criticality safety test case. k-eff function (left), conservative and non-

conservative estimates with 15 (LHS design, middle) and 75 (15+60 strategy C) evaluations.

cation X = [0.2, 5.2]×[0, 5] with the two parameters representing the fissile material density,

PuO2, and the water thickness, H2O. We are interested in the set of safe configurations

Γ∗ = {(PuO2,H2O) ∈ X : k-eff(PuO2,H2O) ≤ 0.92}, (2)

where the threshold t = 0.92 was chosen, for safety reasons, lower than the true critical

case (k-eff > 1.0) when an uncontrolled chain reaction occurs. Figure 1a shows the set Γ∗

shaded in blue and the contour levels for the true function computed from evaluations over

a 50× 50 grid, used as ground truth.

Figure 1b shows a conservative estimate at level α = 0.95 (shaded green) and a non

conservative one (Vorob’ev expectation, shaded red) computed from a GP model trained

on n = 15 evaluations of k-eff, the true set Γ∗ is delimited in blue. The DoE is a Latin

Hypercube Sample (LHS). The conservative approach with α = 0.95 provides an estimate

inside the true set with high probability. Figure 1c shows that, as more evaluations are

available, conservative and non-conservative estimates both get closer to the true excursion

set. The estimates in this example are computed from 75 function evaluations, where the

last 60 points were selected sequentially with an adaptive strategy (Strategy C in section 4).
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In this paper we propose a method to compute conservative estimates well suited to

examples such as figure 1. This method was used to compute the conservative estimates

in figures 1b and 1c and to quantify the uncertainty on conservative estimates. The defini-

tion of an uncertainty allows us to define natural SUR strategies, which require the, possibly

computationally challenging, evaluation of criteria. Here we provide tractable formulae for

such criteria in order to mitigate the strategies’ computational burden.

1.2 Outline of the paper

The remainder of the paper is structured as follows. In the next section we briefly recall

some background material necessary to follow the contributions. In particular, section 2.1

reviews set estimates preliminary to this work and section 2.2 recalls the concept of SUR

strategies. In section 3 we motivate our definition of conservative estimates and we intro-

duce the metrics used to quantify the uncertainty on such estimates. In section 4, we detail

the proposed sequential strategies, we derive closed-form formulae for the criteria and we

illustrate their implementation. Section 5 presents the results obtained on the IRSN test

case introduced in this section and section 6 shows a benchmark study on Gaussian pro-

cess realizations. In supplementary material we further apply the proposed strategies on a

coastal flood problem. All proofs are in appendices A and B.

2 Background

In this work we assume that the function f is observed with measurement noise, i.e.

yi = f(xi) + τ(xi)εi xi ∈ X, εi ∼ N(0, 1), i = 1, . . . , n

with εi independent measurement noise and τ 2 a known heterogeneous noise variance.

In a Bayesian framework (see, e.g., Chilès and Delfiner, 2012, and references therein)

we consider f as a realization of an a.s. continuous Gaussian process (GP) ξ ∼ GP (mξ,Kξ),

with mean function mξ(x) := E[ξx] and covariance function Kξ(x, x′) := Cov(ξx, ξx′), x, x
′ ∈

X. We consider the process Zx = ξx + τ(x)εx, defined for x ∈ X with εx ∼ N(0, 1) i.i.d.

and independent from ξ for each x ∈ X. The process Z is Gaussian and we denote by
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m and with K its mean and covariance functions respectively. For n > 0, we denote

by yn = (y1, . . . , yn) ∈ Rn the observations at an initial design of experiments (DoE)

Xn = (x1, . . . , xn) ∈ Xn. The posterior distribution of the process is Gaussian with mean

and covariance computed as the conditional mean mn and conditional covariance Kn given

the observations, see, e.g., Santner et al. (2003) for the closed form formulae.

2.1 Vorob’ev expectation and conservative estimates

There exists different approaches to estimate Γ∗ from the posterior distribution of Z and

to quantify the uncertainty on such estimates, see, e.g. Chevalier et al. (2014a); Bolin and

Lindgren (2015); Azzimonti (2016) for more details. In this section we briefly review the

Vorob’ev expectation and the conservative estimate approach.

The prior distribution on Z induces a distribution on the (random) excursion set Γ =

{x ∈ X : ξx ∈ T}. Summaries of the posterior distribution of the random closed set Γ,

provide estimates for Γ∗. A central tool for the approach presented here is the coverage

probability function of a random closed set Γ, defined as

pΓ(x) = P (x ∈ Γ), x ∈ X.

In our case we consider the posterior coverage function pΓ,n = pn, defined with the posterior

probability Pn(·) = P (· | ZXn = yn), where ZXn = (Zx1 , . . . , Zxn) and we drop the subscript

Γ as the set is clear from the context. If T = (−∞, t], then pn(x) = Φ
(
t−mn(x)
sn(x)

)
, where Φ(·)

is the CDF of a standard Normal random variable and sn(x) =
√
Kn(x, x). The coverage

function defines the family of Vorob’ev quantiles

Qn,ρ = {x ∈ X : pn(x) ≥ ρ}, (3)

with ρ ∈ [0, 1]. These sets are closed for each ρ ∈ [0, 1] as the coverage function is upper

semi-continuous, see Molchanov (2005), Proposition 1.34.

The level ρ can be selected in different ways. A non-conservative choice with ρ = 0.5

leads to the Vorob’ev median. The Vorob’ev expectation (Vorob’ev, 1984; Molchanov, 2005;

Chevalier et al., 2013) is defined through a finite measure µ on X as the quantile Qn,ρV

such that the measure µ(Qn,ρV ) is as close as possible to E[µ(Γ)], the expected measure
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Table 1: Summary values for example in figure 2, estimated from 100 GP realizations.

ρ Type I error (mean ± sd) Type II error (mean ± sd) P̂ (Qρ ⊂ Γ)

QρV 0.393 0.046± 0.029 0.053± 0.058 0.02

Q0.5 0.500 0.035± 0.026 0.061± 0.058 0.07

Q0.95 0.950 5.7× 10−4 ± 1.9× 10−3 0.168± 0.063 0.87

CE0.95 0.987 9.0× 10−5 ± 4.7× 10−4 0.187± 0.063 0.95

of Γ. The measure µ is often a probability measure or the Lebesgue measure on X. The

set Qn,ρV is also the minimizer of E[µ(Γ∆M)] among all sets such that µ(M) = E[µ(Γ)],

see, e.g., Molchanov (2005, Theorem 2.3, Chapter 2). The Vorob’ev expectation minimizes

symmetrically the expected measure of false positives (E[µ(M \ Γ)]) and false negatives

(E[µ(Γ \ M)]) among sets with measure equal to the expected measure. In section 3

we prove a similar result for generic Vorob’ev quantiles. The quantity E[µ(Γ1∆Γ2)], for

two random sets Γ1,Γ2 ⊂ X, is the probabilistic equivalent of the distance in measure

introduced in section 1 and it is often called expected distance in measure. In the Ph.D.

thesis of Chevalier (2013), this notion was introduced to adaptively reduce the uncertainty

on Vorob’ev expectations. Here, it is used in section 3.2 to provide uncertainty functions

for conservative estimates.

Conservative estimates (Bolin and Lindgren, 2015; French and Sain, 2013) are a different

type of set estimate that embed a probabilistic control on false positives in the estimator.

Denote with C a family of closed subsets in X. A conservative estimate at level α for Γ∗ is

a set CEα,n defined as

CEα,n ∈ arg max
C∈C

{µ(C) : Pn(C ⊂ Γ) ≥ α}. (4)

The condition Pn(C ⊂ Γ) = Pn(C \ Γ = ∅) ≥ α controls the probability of false positives.

Figure 2 shows estimates for the excursion set of a one-dimensional example generated as

a realization of a mean zero GP with Matérn (ν = 3/2, l = 0.3, σ2 = 0.3) covariance.

In particular, figure 2a shows how false positive (type I error, red) and false negatives

(type II error, green) are symmetrically minimized by the Vorob’ev expectation. Figure 2b

instead shows that a conservative estimate with α = 0.95 has low probability of false
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(a) Vorob’ev expectation (QV , blue dotted).

(b) Conservative estimate (α = 0.95, green dotted).

Figure 2: 1-dimensional example: true function and set (red, dashed), posterior GP mean

(black) and posterior realizations (black, dashed) with n = 10 evaluations. Type I/II errors

for Vorob’ev expectation and conservative estimate.
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positives, however results in much larger false negatives. Table 1 reports the values for the

expected volume of type I and II errors and the estimated probability of inclusion. This

example shows that the Vorob’ev expectation might be closer to the truth than conservative

estimates, however CEα,n gives control on the probability of false positives. Table 1 also

reports the values for the Vorob’ev quantile Q0.95; in particular note that P (Q0.95 ⊂ Γ ) <

0.95. This is a consequence of the quantile’s definition based on the marginal probability

pn(x) ≥ 0.95, x ∈ X, which does imply any joint probability statement.

The computation of CEα,n in equation (4) requires a set of maximum measure which is

included in the random set Γ with probability at least α. Such an optimization procedure

can be very challenging and crucially depends on the choice of the family C. Often (see,

e.g., French and Sain, 2013; Bolin and Lindgren, 2015; Azzimonti and Ginsbourger, 2017)

C is a parametric family of nested sets depending on a one dimensional parameter. Here

we rely on the family of Vorob’ev quantiles {Qρ : ρ ∈ [0, 1]} and, in section 3, we provide

motivation for this choice.

2.2 SUR strategies

Sequential design of experiments adaptively chooses the next evaluations according to a

strategy with the aim of improving the final estimate. We follow the Stepwise Uncertainty

Reduction (SUR, see, e.g., Fleuret and Geman, 1999; Bect et al., 2012; Chevalier et al.,

2014a; Bect et al., 2017) approach and we select a sequence of points X1, X2, . . . , Xn in order

to reduce the uncertainty on selected quantities of interest. In the remainder of the paper we

denote by En[·] = E[· | ZXn = yn] the expectation conditional on ZXn = yn. Moreover in a

sequential setting the locations X1, . . . , Xn and the evaluations at those points are random,

therefore we denote by An the σ-algebra generated by the couples X1, ZX1 , . . . , Xn, ZXn .

Finally En,x(q) [·] denotes the conditional expectation with respect to An+q given the first n

evaluations and with (Xn+1, . . . , Xn+q) = x(q) for a fixed x(q) = (xn+1, . . . , xn+q) ∈ Xq.

For a specific problem, we define a measure of residual uncertainty at step n, denoted

by Hn, a An-measurable random variable. If the first n locations and evaluations are

known, then Hn is a (deterministic) real number quantifying the residual uncertainty on
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the estimate. A SUR strategy selects the next locations

X∗n+q ∈ arg min
x(q)∈Xq

En,x(q) [Hn+q], (5)

i.e. a minimizer of the future uncertainty in expectation. For a more complete and the-

oretical perspective on SUR strategies see, e.g., Bect et al. (2017) and references therein.

There are many ways to proceed with the minimization introduced above, see, e.g., Os-

borne et al. (2009); Ginsbourger and Le Riche (2010); Bect et al. (2012); González et al.

(2016) and references therein. Here we focus on batch-sequential sub-optimal strategies,

also called one-step lookahead strategies, that select the next batch of locations by greed-

ily minimizing a one-step lookahead sampling criterion. The objective function in equa-

tion (5) is called batch sequential one-step lookahead sampling criterion and is denoted by

Jn : x(q) ∈ Xq 7→ En,x(q) [Hn+q] ∈ R. By minimizing this criterion we obtain the new lo-

cations where to evaluate f . Batch sequential sampling criteria are often used in practice

because parallel function evaluations can save user time.

In sections 3.2 and 4, we introduce uncertainty functions and SUR criteria tailored for

conservative estimates. Let us first specify our definition of conservative estimates.

3 Static properties of conservative estimate

3.1 Conservative estimates with Vorob’ev quantiles

The conservative estimate definition in equation (4) requires a family C where to search for

the optimal set CEα,n. In practice, it is convenient to choose a parametric family indexed

by a real parameter. Here we choose Cρ = {Qρ : ρ ∈ [0, 1]}, i.e., the Vorob’ev quantiles.

This is a nested family indexed by ρ ∈ [0, 1] where Q0 = X ∈ Cρ and, for each ρ1 > ρ2,

Qρ1 ⊂ Qρ2 , Qρ1 , Qρ2 ∈ Cρ. (6)

We now detail how to compute CEα,n based on Cρ, for a fixed α ∈ [0, 1] from n ob-

servations. For each ρ ∈ [0, 1], we define the function ψΓ : [0, 1] → [0, 1] that associates

to each ρ the probability ψΓ(ρ) := Pn(Qρ ⊂ Γ). The function ψΓ is non decreasing due

to the nested property in equation (6). Moreover, µ(Qρ1) ≤ µ(Qρ2) for ρ1 ≥ ρ2. The
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computation of CEα,n amounts to finding the smallest ρ = ρ? such that ψΓ(ρ?) ≥ α, which

is achievable, for example, with a simple dichotomic search. For T = (−∞, t], we approxi-

mate ψΓ(ρ) ≈ Pn(Zq1 ≤ t, . . . , Zq` ≤ t), where {q1, . . . , q`} ⊂ Qρ is a set of ` points in Qρ,

with ` large, and use the computationally efficient integration proposed by Azzimonti and

Ginsbourger (2017). The procedure above is valid for any nested family of sets indexed by

a real parameter, however, the Vorob’ev quantiles, in addition, have the following property.

Proposition 1. Consider a measure µ such that µ(X) < ∞ and an arbitrary ρ ∈ [0, 1].

A Vorob’ev quantile Qρ minimizes the expected distance in measure with Γ among all mea-

surable M such that µ(M) = µ(Qρ).

Proposition 1 is an extension of Theorem 2.3, Molchanov (2005) to a generic Vorob’ev

quantile. As a consequence, a conservative estimate CEα,n = Qn,ραn computed with Vorob’ev

quantiles minimizes the expected measure of false negatives (Γ\Qn,ραn) for fixed probability

of false positives (Qn,ραn \ Γ). In general, the Vorob’ev quantile chosen for CEα,n with this

procedure is not the set S with the largest measure satisfying the property P (S ⊂ Γ) ≥ α.

See supplementary material for a counterexample.

In the remainder of the paper we consider only conservative estimates obtained with

Vorob’ev quantiles thus CEα,n is also denoted as Qn,ραn .

3.2 Uncertainty quantification on conservative estimates

Our object of interest is Γ∗, therefore we require uncertainty functions that take into

account the whole set. Chevalier et al. (2013); Chevalier (2013) evaluate the uncertainty

on the Vorob’ev expectation with the Vorob’ev uncertainty, i.e. the expected distance in

measure between the current estimate Qn,ρn and the set Γ. In this section we introduce

an uncertainty adaptive to conservative estimates. The idea is to describe the uncertainty

by looking at the expected measure of false negatives. In the example of figure 2b, this

quantity is the mean measure of the sets in green. Expected distance in measure and false

negatives are related concepts and, in order to highlight this connection, let us first recall

that the Vorob’ev uncertainty of a quantile Qρ is

Hn,ρ = En[µ(Γ∆Qn,ρ)] = En[µ(Qn,ρ \ Γ)] + En[µ(Γ \Qn,ρ)], ρ ∈ [0, 1]. (7)
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Figure 3: Sets Qn,ρ\Γ (red) and Γ\Qn,ρ (green) for one realization Γ(ω) from the conditional

distribution of Γ given n = 15 evaluations of k-eff.

In the following sections, this uncertainty measure is computed with ρ = 0.5, the Vorob’ev

median and with ρ = ραn, the conservative estimate at level α. Let us denote by G
(1)
n (ρ) =

µ(Qn,ρ \ Γ) and G
(2)
n (ρ) = µ(Γ \Qn,ρ) the random variables associated with the measure of

the first and the second set difference in equation (7).

Proposition 2. Consider the conservative estimate Qn,ραn , then the ratio between the er-

ror En[G
(1)
n (ραn)] and the measure µ(Qn,ραn) is bounded by 1 − α, the chosen level for the

conservative estimates.

A conservative estimate Qn,ραn aims at controlling the error En[G
(1)
n (ραn)]. We call Type

I and Type II errors given n observations the quantities En[G
(1)
n (ραn)] and En[G

(2)
n (ραn)]

respectively. Figure 3 shows the sets Γ(ω)\Qn,ρ (green region) and Qn,ρ \Γ(ω) (red region)

for one realization Γ(ω), ω ∈ Ω, of the posterior distribution of Γ given n = 15 evaluations

of f in the IRSN example presented in figure 1. Notice how the conservative estimate

(α = 0.95, figure 3b) results in a smaller red region and in a much larger green region than

Q0.5. Conservative estimates at high levels α tend to select regions inside Γ. In particular
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if the posterior GP mean provides a good approximation of the function f , conservative

estimates with high α tend to be inside the true excursion set Γ∗. In such situations the

Type I error is usually very small, as shown in proposition 2, while Type II error could

be rather large. For the IRSN example in figures 1 and 3, the type II error is equal to

2.18 × 10−1 for the conservative level, while it is equal to 1.76 × 10−2 for ρn = 0.5. Type

II error provides a quantification of the residual uncertainty on the conservative estimate;

we formalize this concept with the following definition.

Definition 1 (Type II uncertainty). Consider the Vorob’ev quantile Qn,ραn corresponding

to the conservative estimate at level α for Γ. The Type II uncertainty is defined as

Ht2
n,ραn

:= En[G(2)
n (ραn)] = En[µ(Γ \Qn,ραn)]. (8)

4 SUR strategies for conservative estimates

The measures of residual uncertainty introduced in the previous section can be used to

define SUR strategies for conservative estimates. We consider a set up where the Xn and

the respective function evaluations are known and we introduce one-step lookahead SUR

criteria for conservative estimates. In a sequential algorithm we minimize such criteria to

select the next batch of q > 0 locations Xn+1, . . . , Xn+q ∈ X where to evaluate the function.

4.1 SUR criteria

Since the locations Xn+1, . . . , Xn+q and the responses ZXn+1 , . . . , ZXn+q are unknown, the

uncertainty Hn+q and the conservative level ραn+q are An+q-measurable random variables.

The criteria introduced below (equations (9) and (12)) are properly defined for ρ = ραn+q,

however, there are no closed form formulae to solve the expectations in their definitions.

For this reason, the criteria’s implementations use the last known level ραn. We consider

two sampling criterion based on the uncertainty functions in equations (7) and (8).

The conservative Jn criterion is defined as
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Jn(x(q); ραn) = En,x(q)

[
Hn+q,ραn

]
= En,x(q)

[
µ(Γ∆Qn+q,ραn)

]
(9)

for x(q) = (xn+1, . . . , xn+q) ∈ Xq, where Qn+q,ραn is the Vorob’ev quantile obtained with n+q

evaluations of the function at level ραn, the conservative level obtained with n evaluations.

This is an adaptation of the Vorob’ev criterion introduced by Chevalier (2013) based on

the Vorob’ev deviation (Vorob’ev, 1984; Molchanov, 2005; Chevalier et al., 2013).

Chevalier (2013), Chapter 4.2, derives the formula for this criterion for the Vorob’ev

expectation, i.e. the quantile at level ρ = ρn,V . In the following proposition we extend this

result to any An measurable quantile ρn.

Proposition 3 (Criterion Jn). Consider Γ∗ = {x ∈ X : f(x) ∈ T} with T = [t,+∞),

where t ∈ R is a fixed threshold, then the criterion Jn can be expanded in closed-form as

Jn(x(q); ρn) = En,x(q) [µ (Γ∆Qn+q,ρn)]

=

∫
X

(
2Φ2

 an+q(u)

Φ−1(ρn)− an+q(u)

 ;

1 + γn+q(u) −γn+q(u)

−γn+q(u) γn+q(u)


− pn(u) + Φ

(
an+q(u)− Φ−1(ρn)√

γn+q(u)

))
dµ(u), (10)

where

an+q(u) =
mn(u)− t
sn+q(u)

, bn+q(u) =
K−1
q Kn(x(q), u)

sn+q(u)
, (11)

γn+q(u) = bTn+q(u)Kqbn+q(u) pn(u) = Φ

(
mn(u)− t
sn(u)

)
, u ∈ X,

with Kn(x(q), u) = (Kn(xn+1, u), . . . ,Kn(xn+q, u))T , Kq = Kn(x(q),x(q)) + τ 2(x(q))Iq, where

Kn(x(q),x(q)) = [Kn(xn+i, xn+j)]i,j=1,...,q and Φ2(·; Σ) is the bivariate centered Normal dis-

tribution with covariance matrix Σ.

In the case of conservative estimates with high level α, each term of equation (7) does

not contribute equally to the expected distance in measure, as observed in proposition 2.

It is thus reasonable to consider the Type II criterion, based on the Type II uncertainty
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(definition 1), defined as follows.

Jt2
n (x(q); ραn) = En,x(q)

[
Ht2
n+q(ρ

α
n)
]

(12)

= En,x(q)

[
G(2)
n (Qn+q,ραn)

]
, for x(q) ∈ Xq.

Proposition 4 (Type II criterion). In the case Γ∗ = {x ∈ X : f(x) ∈ T} with T = [t,+∞),

where t ∈ R is a fixed threshold, the criterion Jt2
n (·; ραn) can be expanded in closed-form as

Jt2
n (x(q); ραn) = En,x(q)

[
G(2)
n (Qn+q,ραn)

]
(13)

=

∫
X

Φ2

 an+q(u)

Φ−1(ραn)− an+q(u)

 ;

1 + γn+q(u) −γn+q(u)

−γn+q(u) γn+q(u)

 dµ(u).

4.2 Implementation details

Propositions 3 and 4 provide closed-form expressions for the criteria, however their com-

putation requires numerical approximations. In particular, the evaluation of Jn and Jt2
n

require the computation of an integral over X with respect to µ. We compute this integral

with an importance sampling Monte Carlo procedure, where the evaluation points for the

integrand are chosen with space filling designs, such as Sobol’ sequence or uniform sam-

pling. The Monte Carlo weights were chosen uniform in the applications presented in the

next sections. We exploit the kriging update formulas (Chevalier et al., 2014b; Emery,

2009) for faster updates of the posterior mean and covariance when new evaluations are

added. A sequential strategy then adds new evaluations by minimizing the criteria intro-

duced above. We use the genetic algorithm using derivatives of Mebane and Sekhon (2011)

to solve the optimization problem.

The strategies are implemented in the R programming language (R Core Team, 2016),

with the packages DiceKriging (Roustant et al., 2012) for Gaussian modelling, KrigInv

(Chevalier et al., 2014c) for already existing sampling criterion, rgenoud for the opti-

mization routine and anMC (Azzimonti and Ginsbourger, 2017) to compute the conser-

vative estimates. The current implementation only allows a homogeneous noise variance

τ(x) ≡ τ ∈ R. See ??, supplementary materials, for a full description.
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Table 2: Strategies implemented in the test cases.

Strategy Criterion Parameters

Benchmark 1 IMSE

Benchmark 2 tIMSE target=t

A Jn(·; ρn) ρn = 0.5

B Jn(·; ραn) α = 0.95

C Jt2
n (·; ραn) α = 0.95

5 Results on reliability engineering test case

In this section we review the test case introduced in figure 1b and apply the sequential

strategies from the previous section to reduce the uncertainty on the conservative estimate.

Recall that the object of interest is the excursion set of k-eff below t = 0.92, equation (2),

which represents the set of safe configurations for a nuclear storage facility. One evaluation

of the function k-eff is an expensive computer experiment and we aim to provide an estimate

for Γ∗ from few evaluations of k-eff and to quantify its uncertainty. The true data result

from a MCMC simulation and have a heterogeneous noise variance. Here we consider the

k-eff function in figure 1 obtained from 50 × 50 evaluations of k-eff smoothed with a GP

model that accounts for the true noise variance. In what follows k-eff refers to this posterior

mean given 2500 evaluations.

We consider a GP model with covariance function Matérn (ν = 5/2, see, e.g., Rasmussen

and Williams, 2006, Chapter 4, for details on the parametrization) and homogeneous noise

variance estimated from the data. The initial DoE is a Latin hypercube sample design with

n0 = 15 function evaluations at the points plotted as triangles in figure 1a. We compare the

strategies in table 2 on mdoe = 10 different initial DoEs of size n0 = 15, obtained with the

function optimumLHS from the package lhs in R. The design of experiments in figure 1a

is one of those 10. The covariance hyper-parameters and the noise variance are estimated

with maximum likelihood from each initial DoE.

We now test how to adaptively reduce the uncertainty on the estimate with the strategies

in table 2. We run n = 20 iteration of each strategy and at each step we select a batch
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Figure 4: Nuclear criticality safety test case, randomized initial DoEs.

of q = 3 new points where k-eff is evaluated. The covariance hyper-parameters are re-

estimated at each iteration. The conservative estimates are computed with the Lebesgue

measure µ on X, figure 1b shows CEα,15, α = 0.95. Figure 1c shows the coverage function of

Γ obtained after 75 function evaluations at locations selected with Strategy C and CEα,75.

Figure 4a shows a comparison of the type II error at the last iteration, i.e. after 75

evaluations of the function, for each initial DoE and each strategy. Strategy C achieves a

median type II error 27% lower than IMSE. Strategy B median type II error is 25% lower

than IMSE and strategy A’s 12% lower than IMSE.

Figure 4b shows the relative volume error as a function of the iteration number for

strategies IMSE, tIMSE, A,B,C. The relative volume error is computed by comparing the

conservative estimate with a ground truth for Γ∗ obtained from evaluations of k-eff on a

grid 50 × 50. The volume of Γ∗ computed with Monte Carlo integration from this grid

of evaluations is 88.16%. All strategies show a strong decrease in relative volume error in

the first 10 iteration, i.e. until 30 evaluations of k-eff are added. In particular strategies

B,C show the strongest decline in error in the first 5 iterations. Overall, strategy C, the

minimization of the expected type II error, seem to provide the best uncertainty reductions

both in terms of relative volume error and in terms of type II error.
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Table 3: Test cases parameter choices.

Test case d covariance parameters mdoe ninit

GP 2 ν = 3/2, θ = [0.2, 0.2]T , σ2 = 1 10 3

GP 5 ν = 3/2, θ = [0.2, 0.2, 0.2, 0.2, 0.2]T , σ2 = 1 10 6

6 Numerical benchmarks

In this section we develop a benchmark study with Gaussian process realizations to study

the different behavior of the proposed strategies. We consider two cases with the following

shared setup. The input space is the unit hypercube X = [0, 1]d, for d = 2, 5 and (Zx)x∈X ∼

GP (m,K) with constant prior mean m ≡ 0 and tensor product Matérn covariance function

with known hyper-parameters fixed as in table 3. The noise variance here is constant and

equal to zero. The objective is a conservative estimate at level α = 0.95 for Γ = {x ∈ X :

Zx ≥ 1} and µ is the Lebesgue measure on X. We test the strategies in table 2.

We consider an initial design of experiments Xninit
, obtained with the function optimumLHS

from the package lhs and we simulate the field at Xninit
. The size ninit (see table 3) is cho-

sen small to highlight the differences between the sequential strategies. We select the next

evaluations by minimizing each sampling criteria detailed in table 2. Each strategy is run

for n = 80 (n = 120 if d = 5) iterations, updating the model with q = 1 new evaluations

at each step. We consider mdoe different initial design of experiments and, for each design,

we replicate the procedure 10 times with different initial values ZXninit
.

We evaluate the strategies by looking at the type I and type II errors for Qn,ραn , defined

in section 3.2, and by computing the measure µ(Qn,ραn). We report mean and median result

for each initial design. Expected type I error does not vary much among the different

strategies as it is controlled by the condition defining conservative estimate, as shown

in section 3. Type I error and total computing time are reported in supplementary material.

6.1 Dimension 2 GP realizations

Figure 5a shows the expected type II error at selected iteration numbers averaged across

different initial DoE. This quantity decreases for all strategies, however strategy B and
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Figure 5: Gaussian process realizations test case in dimension 2.

C outperform the others. The distribution of the expected volume En[µ(Qn,ραn)] after

n = 80 new evaluations, is shown in figure 5b. The strategies A,B,C all provide better

uncertainty reduction for conservative estimates than a standard IMSE strategy or than a

tIMSE strategy. In particular strategy C has the lowest mean type 2 error while at the

same time providing an estimate with the largest measure, thus yielding a conservative

set likely to be included in Γ∗ and, at the same time, not trivial. All estimates, however,

are very conservative: the final median ratio between the expected type I error and the

estimate’s volume is 0.016%, much smaller than the upper bound 1 − α = 5% computed

in proposition 2. On the other hand, the median ratio between the expected type II error

and the volume at the last iteration is between 31% (C) and 143% (IMSE).

6.2 Dimension 5 GP realizations

Figures 6a and 6b shows the mean expected type II error over selected iterations and the ex-

pected measure En[µ(Qn,ραn)] after 120 iterations of each strategy. Strategies A,B,C provide

better uncertainty reduction for conservative estimates than IMSE or tIMSE. Strategies

A and C provide a faster reduction of the type II error and a smaller final mean value
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Figure 6: Gaussian process realizations test case in dimension 5.

than the others with strategy A obtaining a slightly higher median value for the expected

measure at iteration 120. Also in this case, even if the iteration number is higher, the final

estimates provided by all methods are very conservative. The median ratio over all DoEs

and all replications between the expected type I error and volume is 0.02%, much smaller

than the upper bound 5%. The expected type II error is instead 3 orders of magnitude

larger than the estimate’s volume. This indicates that we have only recovered a small

portion of the true set Γ∗ and this estimate is very conservative.

6.3 Model-free comparison of strategies

The metrics presented in the previous sections are based on the GP model. In this section

we compare the strategies with a simpler metric independent from the underlying model.

We consider the number of evaluation points that are selected inside and outside the

excursion set. At each iteration i, this quantity is computed as
#{j:yj≥t, j=1,...,ni}

ni
, where ni

is the total number of points at iteration i and y1, . . . , yni are the evaluations. Figure 7

shows the proportion of points inside the excursion set at each iteration for the two GP

test cases. Strategy IMSE is a space filling strategy therefore the proportion of points
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Figure 7: GP realizations. Average number of design points inside the excursion region.

inside the excursion reflects the volume of excursion. Strategies A, tIMSE are adaptive to

the problem of estimating an excursion set, however they are not adaptive for conservative

estimation, as such they tend to select points around the boundary of Γ and not inside.

Strategies B,C instead select more points inside the excursion leading to a good trade-off

between a good global approximation of the set and a good approximation of the boundary.

These observations are reflected in two dimensions, figure 7a, by the proportion of points

inside. This metric in the five dimensional test case, figure 7b, differentiates IMSE from

the other strategies, however indicates little differences between adaptive strategies.

7 Discussion

In this paper we introduced sequential uncertainty reduction strategies for conservative

estimates. This type of set estimates proved to be useful in reliability engineering, how-

ever they could be of interest in all situations where practitioners aim at controlling the

overestimation of the set. The estimator CE, however, is based on a global quantity and

depends on the quality of the underlying GP model. Under the model, conservative es-

timates control, by definition, the false positive or type I error. If the GP model is not

reliable then such estimates are not necessarily conservative. For a fixed model, increasing

the level of confidence might mitigate this problem. We presented test cases with fixed
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α = 0.95, however testing different levels, e.g. α = 0.99, 0.995, and comparing the results is

a good practice. The computation of the estimator CE requires the approximation of the

exceedance probability of a Gaussian process. This is currently achieved with a discrete

approximation, however continuous approximations might be more effective.

The sequential strategies proposed here provide a way to reduce the uncertainty on

conservative estimates by adding new function evaluations. The numerical studies pre-

sented showed that adapted strategies provide a better uncertainty reduction that generic

strategies. In particular, strategy C, i.e. the criterion Jt2
n (·; ραn), resulted among the best

criteria in terms of Type 2 uncertainty and relative volume error in all test cases. In this

work we mainly focused on showing the differences between the strategy with a-posteriori

measures of uncertainty. Nonetheless the expected type I and II errors could be used to

provide stopping criteria for the sequential strategies. Further studies on those quantities

could lead to a better understanding of their the limit behavior as n increases.

The strategies proposed in this work focus on reducing the uncertainty on conservative

estimates. This objective does not necessarily lead to better overall models for the function

or to good covariance hyper-parameters estimation. The sequential behavior of hyper-

parameters maximum likelihood estimators under SUR strategies needs to be studied in

more details. See supplementary material for a preliminary study on this aspect.
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A Sequential strategies

Proof of proposition 3. Recall that

En,x(q) [µ(Γ∆Qn+q,ρn)] = En,x(q) [µ(Qn+q,ρn \ Γ)︸ ︷︷ ︸
=G

(1)
n+q(ρn)]

] + En,x(q) [µ(Γ \Qn+q,ρn)︸ ︷︷ ︸
=G

(2)
n+q(ρn)]

]. (14)

From the definitions of G
(1)
n+q, G

(2)
n+q and the law of total expectation we have

En,x(q)

[
G

(2)
n+q(ρn)

]
=

∫
X
En[pn+q(u)1{pn+q(u)<ρn}]dµ(u) (15)

En,x(q)

[
G

(1)
n+q(ρn)

]
=

∫
X
En[1{pn+q(u)≥ρn}(1− pn+q(u))]dµ(u) (16)

=

∫
X

(
En[1{pn+q(u)≥ρn}]− En[1{pn+q(u)≥ρn}pn+q(u))]

)
dµ(u)

=

∫
X

(
En[1{pn+q(u)≥ρn}]− pn(u)

)
dµ(u) + En,x(q)

[
G

(2)
n+q(ρn)

]
25



Notice that, for each x ∈ X, the coverage function pn+q,x(q) can be written as

pn+q,x(q)(x) = Φ
(
an+q(x) + bTn+qYq

)
, (17)

where an+q,bn+q are defined in equation equation (11) and Yq ∼ Nq(0, Kq) is a q dimensional

normal random vector. The first part of equation (15) is

En[1pn+q(u)≥ρn ] = Pn(pn+q(u) ≥ ρn) = Pn(bTn+q(u)Yq ≥ Φ−1(ρn)− an+q(u))

= Φ

 an+q(u)− Φ−1(ρn)√
bTn+q(u)Kqbn+q(u)

 (18)

where the second equality follows from equation (17) and the third from Yq ∼ N(0, Kq).

Moreover

En[1{pn+q(u)<ρn}pn+q(u)] =

∫
Φ
(
an+q(u) + bTn+q(u)y

)
1{bTn+q(u)y<Φ−1(ρn)−an+q(u)}Ψ(y)

=

∫
P (N1 ≤ an+q(u) + bTn+q(u)y)1{bTn+q(u)y<Φ−1(ρn)−an+q(u)}Ψ(y)

= E
[
P (N1 ≤ an+q(u) + bTn+qy, bTn+q(u)y < Φ−1(ρn)− an+q(u))

]
= Φ2

 an+q(u)

Φ−1(ρn)− an+q(u)

 ;

1 + γn+q(u) −γn+q(u)

−γn+q(u) γn+q(u)

 .

(19)

where Ψ is the p.d.f. of Yq, N1 ∼ N(0, 1) and Φ2 (a; Σ) is the c.d.f. of a centered bivariate

Gaussian random variable with covariance Σ evaluated at a. By equations (14) to (16),

(18) and (19) we obtain equation (10).

Proof of proposition 4. The proof follows from equations (15) and (19).

B Properties of conservative estimates

In the following, let us denote by (Ω,F , P ) a probability space.

Proof of proposition 1. We want to show that the set Qρ satisfies

E [µ(Qρ∆Γ)] ≤ E [µ(M∆Γ)] , (20)
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for each measurable set M such that µ(M) = µ(Qρ). Let us consider a measurable set M

such that µ(M) = µ(Qρ). For each ω ∈ Ω, we have

µ(M∆Γ(ω))− µ(Qρ∆Γ(ω)) = 2

(
µ(Γ(ω) ∩ (Qρ \M))− µ(Γ(ω) ∩ (M \Qρ))

)
+ µ(QC

ρ )− µ(MC).

By applying the expectation on both sides and by remembering that µ(QC
ρ ) = µ(MC) we

obtain

E [µ(M∆Γ)− µ(Qρ∆Γ)] = E
[
2

(
µ(Γ ∩ (Qρ \M))− µ(Γ ∩ (M \Qρ))

)]
= 2

∫
Qρ\M

pΓ(u)dµ(u)− 2

∫
M\Qρ

pΓ(u)dµ(u),

where the second equality comes from the definition of Qρ. Moreover, since pΓ(x) ≥ ρ for

x ∈ Qρ \M and pΓ(x) ≤ ρ for x ∈M \Qρ we have

2

[∫
Qρ\M

pΓ(u)dµ(u)−
∫
M\Qρ

pΓ(u)dµ(u)

]
≥ 2ρ[µ(Qρ \M)− µ(M \Qρ)]

= 2ρ[µ(Qρ)− µ(M)] = 0,

which shows that Qρ verifies equation equation (20).

Proof of proposition 2. Notice that for all ω ∈ Ω such that Qn,ραn ⊂ Γ(ω), we have G
(1)
n (ω) =

0. By applying the law of total expectation we obtain

En[G(1)
n ] = En[G(1)

n | Qn,ραn ⊂ Γ]P (Qn,ραn ⊂ Γ)

+ En[G(1)
n | Qn,ραn \ Γ 6= ∅](1− P (Qn,ραn ⊂ Γ))

≤ 0 + En[G(1)
n | Qn,ραn \ Γ 6= ∅](1− α) ≤ µ(Qn,ραn)(1− α).
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