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A Complements on conservative estimates

The following result here presented as a corollary of Proposition 1, is a well
known result Molchanov (2005) for the Vorob’ev expectation.

Corollary 1 (of Proposition 1). The Vorob’ev expectation QρV minimizes the
expected distance in measure with Γ among all measurable (deterministic) sets
M such that µ(M) = µ(QρV ). Moreover if ρV ≥ 1

2 , then the Vorob’ev ex-
pectation also minimizes the expected distance in measure with Γ among all
measurable sets M that satisfy µ(M) = E[µ(Γ)].

Proof of Corollary 1. The first statement is a direct application of Proposition 1
with ρ = ρV .

For the second statement, by definition we have that either µ(QρV ) = E[µ(Γ)]
or µ(Qρ) < E[µ(Γ)] ≤ µ(QρV ) for each ρ > ρV . In the first case we can directly
apply Proposition 1. In the second case we can apply the same reasoning as in
the proof of Proposition 1 however in last step of the proof we need to impose
ρV ≥ 1

2 for obtaining the result.

In general, the Vorob’ev quantile chosen for CEα is not the set S with the
largest measure µ that has the property P (S ⊂ Γ) ≥ α as shown in the coun-
terexample below.
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Example 1. Consider a discrete set D = {x1, x2, x3, x4}, a random field
(Zx)x∈D and assume that Γ = {x ∈ D : Zx ≥ 0}. In this framework we
show the existence of a conservative set at level α = 0.5 larger than the largest
Vorob’ev quantile with the same conservative property.

Assume that for some ρ1 ∈ [0, 1]

P (Qρ1 ⊂ Γ) = P (Zx1
≥ 0, Zx2

≥ 0) = 1/2,

where Qρ1 = {x1, x2} is a Vorob’ev quantile at level ρ1, that is P (Zx1
≥

0), P (Zx2
≥ 0) ≥ ρ1.

Note that in the case where Zx1
⊥⊥Zx2

, the Vorob’ev level is automatically
determined as ρ1 =

√
2/2 and if Zx1

= Zx2
a.s., then ρ1 = 1/2. Let us assume

here that Zx1 6= Zx2 , which implies ρ1 ∈ (1/2,
√

2/2). Let us further denote
with Ω1 the subset of Ω such that for all ω ∈ Ω1 min(Zx1(ω), Zx2(ω)) ≥ 0 and
define Ω2 = Ω \ Ω1.

We further fix the random variable Zx3
as

Zx3(ω) =

{
1 if ω ∈ Ω1

−1 if ω ∈ Ω2.

Then P (Zx3
≥ 0) = P (min(Zx1

, Zx2
) ≥ 0) = P (Zx1

≥ 0, Zx2
≥ 0) = 1/2.

Moreover P (min(Zx1
, Zx2

, Zx3
) ≥ 0) = 1/2, i.e. {x1, x2, x3} has the conserva-

tive property at level α = 0.5.
Consider Ω3 ⊂ Ω1 with P (Ω3) = 1/3 and Ω4 ⊂ Ω2 with P (Ω4) = 1/3.

Define

Zx4(ω) =

{
1 if ω ∈ Ω3 ∪ Ω4

−1 otherwise.

We now have that P (min(Zx1
, Zx2

, Zx3
, Zx4

) ≥ 0) = 1/3 < 1/2 and P (Zx4
≥

0) = 1/3+1/3 > 1/2. Under this construction the Vorob’ev quantiles are Qρ1 =
{x1, x2}, Qρ2 = {x1, x2, x4} and Q0.5 = D. The set {x1, x2, x3} is therefore the
conservative set at level α = 0.5, as it is the largest subset of D with the
conservative property, however it is not a Vorob’ev quantile.

B Sequential conservative excursion set estima-
tion: procedure overview

Consider a function f : X→ R, we are interested in estimating

Γ∗ = {x ∈ X : f(x) ≥ t}, t ∈ R.

from few evaluations. We consider a prior Gaussian process (Zx)x∈X with prior
mean m and covariance kernel K. The estimation procedure often starts with
a small initial design Xn, n ≥ 1, where n is often chosen as a function of the
input space dimension. If X = Rd, as a rule of thumbs, the initial number
of evaluations is often n = 10d. In our framework, often, the initial design is
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chosen as space filling, such as a Latin hypercube sample (LHS) design or points
from a low discrepancy sequence such as the Halton and the Sobol’ sequence. In
Algorithm 1 we summarize the main steps for computing conservative estimates
and evaluating their uncertainties.

Algorithm 1: Sequential conservative excursion set estimation.

Input : Ntot maximum number of evaluations, n size of initial design, q
size of batches, function f , threshold t, criterion J , uncertainty
function H

Output: QNtot,ραNtot
for Γ∗ and the uncertainty value HN

initial DoE select initial DoE Xn, e.g., with space filling design;
evaluate the function f at Xn ;
compute the posterior model Z | An and the estimate Qn,ραn ;
i = n0 ;
while i less than Ntot do

i = i+ q ;

update the model select x(q) by minimizing Ji(x);

evaluate the function f at x(q);
update the posterior model Z | Ai ;
compute the conservative estimate Qi,ραi ;

post-processing evaluate the uncertainty function Hi on Qi,ραi ;

end
optional post-processing on QNtot,ραNtot

;

C Additional numerical results

C.1 Benchmark study on Gaussian processes

In this section we present more details about the test cases on Gaussian process
realizations described in Section 5.1.

C.1.1 Dimension 2

Figure 1 shows the type I error for each strategy in Table 1. Strategies B,C
and E show a lower type I error with respect to the other strategies, however
the all strategies present very low type I error compared to the total expected
volume of the set.

Figure 2 shows the total time required to evaluate the criteria and to compute
at each step the conservative estimate. The computational time is mainly driven
by the size of the conservative estimate. In fact, for conservative estimates with
large volumes, the othant probabilities involved in its computation are higher
dimensional.
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Figure 1: Median type I error for Qραn ,
2-dimensional Gaussian processes test
case.
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Figure 2: Total time to compute Qραn ,
2-dimensional Gaussian processes test
case.
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Figure 3: Median type I error for Qραn ,
5-dimensional Gaussian processes test
case.
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Figure 4: Total time to compute Qραn ,
5-dimensional Gaussian processes test
case.
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C.1.2 Dimension 5

Figure 3 shows the type I error and Figure 4 shows the total time required to
evaluate the criteria and to compute at each step the conservative estimate. In
this case strategies IMSE presents a lower type I error. This might be caused by
the better global approximation obtained with a model based on a space filling
design.

Figure 4 shows the total time required to evaluate the criteria and to compute
at each step the conservative estimate.

C.2 Coastal flood test case

In this section we explore the behaviour of the strategies under different scenar-
ios for the covariance hyper-parameters:

1. fixed initial hyper-parameters (FI): the covariance parameters are fixed
throughout the sequential procedure as the maximum likelihood estimates
obtained from the initial evaluations f10;

2. re-estimated hyper-parameters (RE): at each step the hyper-parameter
estimates are updated with the new evaluations of the function;

We consider the same experimental setup of Section 5.2, we fix only one
initial DoE of n = 10 points chosen with the function lhsDesign from the
package DiceDesign (Franco et al., 2013). We run n = 20 iterations of each
strategy in Table 1 where at each iteration we select one evaluation of f .

Let us start with the case where we estimate the hyper-parameters only using
the evaluations of f at X10. Figures 5, 6 show the type II error and the relative
total volume error. These errors are both computed comparing the conservative
estimate with the true set obtained with evaluations of f on a fine grid. True
type I error, not shown, is equal to zero for each strategy at each iteration. Type
II error decreases as a function of the evaluations number for all strategies, in
particular strategies B, tIMSE, C and E provide a good uncertainty reduction.
In particular strategies B,C and E provide a faster uncertainty reduction in
the first 10 iterations than the other strategies. Strategy D focuses on reducing
the type II error for the Vorob’ev median and it is not well adapted to reduce
uncertainties on conservative estimates.

In practice, the covariance parameters are often re-estimated after a new
evaluation is added to the model. While this technique should improve the
model it leads to better conservative estimates only if the hyper-parameter es-
timation is stable and reliable. Conservative estimates are in fact based on the
coverage probability function and in particular on high quantiles of this function.

Figures 7 and 8 show the Type II and relative volume error computed com-
paring the conservative estimate to the true set in the case where covariance
parameters are re-estimated at each step. During the first 10 iterations, all
strategies except IMSE show a small (less than 1%) type I error, not shown,
which becomes equal to zero for all strategies after iteration 10.
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Figure 5: Type II error versus relative
volume error for Qραn for the last 5 itera-
tions, no re-estimation of the covariance
parameters.

0 5 10 15 20

4
5

6
7

True type 2 error 
 hyper-parameters:Fixed, initial 

Iteration

V
o

lu
m

e
 (

%
)

Strategy

IMSE
tIMSE
A
B
C
D
E
F

Figure 6: Type II error of Qραn at each n
computed with respect to the true set,
no re-estimation of the covariance pa-
rameters.

The strategies IMSE and D still show the worst behaviour among the tested
strategies both in terms of true type II error and of relative volume error, how-
ever the remaining strategies do not show big differences. The tIMSE show the
best behaviour closely followed by Strategy E,C,A. The differences between
the final estimated set obtained with these four strategies are small and they are
mainly due to a difference in the hyper-parameter estimation. The tIMSE strat-
egy produces more stable hyper-parameter estimators than Strategy E, where
the range parameters decrease in the last steps. This change leads to smaller
more conservative set estimates.

If the covariance hyper-parameters are kept fixed, Figure 6 shows that the
true type II error tends to stabilize because the conservative estimate is the
best according to the current model. On the other hand the re-estimation of
the parameters leads to a more unstable type II error which also indicates that
the underlying model is adapting to the new observations.

The re-estimation of the covariance parameters at each steps might lead
to instabilities in the maximum likelihood estimators. In this test case the
parameter estimation is very stable, however further studies are required to
better understand the behaviour of maximum likelihood estimators under these
circumstances.
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Figure 7: True type II error versus rel-
ative volume error for Qραn at each n,
re-estimation of the covariance parame-
ters at each step.
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Figure 8: True type II error for Qραn
computed with respect to the true set
at each n, re-estimation of the covari-
ance parameters at each step.
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