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Adaptive Design of Experiments for Conservative

Estimation of Excursion Sets

Dario Azzimonti∗†, David Ginsbourger†∗, Clément Chevalier‡,
Julien Bect§, Yann Richet¶

Abstract

We consider a Gaussian process model trained on few evaluations of
an expensive-to-evaluate deterministic function and we study the problem
of estimating a fixed excursion set of this function. We review the concept
of conservative estimates, recently introduced in this framework, and, in
particular, we focus on estimates based on Vorob’ev quantiles. We present
a method that sequentially selects new evaluations of the function in order
to reduce the uncertainty on such estimates. The sequential strategies are
first benchmarked on artificial test cases generated from Gaussian process
realizations in two and five dimensions, and then applied to two reliability
engineering test cases.

Keywords: Batch sequential strategies; Conservative estimates; Design
of experiments; Excursion sets; Gaussian process models.

1 Introduction

The problem of estimating the set of inputs that leads a system to a particular
behaviour is common in many applications, notably reliability engineering (see,
e.g., Bect et al., 2012; Chevalier et al., 2014), climatology (see, e.g., French and
Sain, 2013; Bolin and Lindgren, 2015) and many other fields (see, e.g., Bayarri
et al., 2009; Arnaud et al., 2010; Wheeler et al., 2014). Here we consider a
system modelled as a continuous function f : X → Y, where X is a locally
compact Hausdorff topological space and Y = Rk, for some k > 0. Typical
examples for X are Rd, differentiable manifolds or discrete spaces. In this work,
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we are interested in estimates for the set

Γ∗ = {x ∈ X : f(x) ∈ T}, (1)

where T ⊂ Y is closed, which implies that Γ∗ is closed as f is continuous.
We focus on the case where few evaluations of the response f can be made
available. This is common if f is expensive-to-evaluate, as, for example, when its
evaluations require time consuming computer experiments (Sacks et al., 1989).

In a Bayesian framework (see, e.g., Chilès and Delfiner, 2012, and ref-
erences therein) we assume that f is a realization of an almost surely con-
tinuous Gaussian process (GP) Z ∼ GP (m,K), with mean function m, de-
fined as m(x) := E[Zx], x ∈ X, and covariance kernel K(x, y), defined as
K(x, y) := Cov(Zx, Zy), x, y ∈ X. For n > 0, we consider evaluations of f ,
fXn

= (f(x1), . . . , f(xn)) ∈ Yn, at an initial design Xn = (x1, . . . , xn) ∈ Xn and
the posterior distribution of the process conditioned on the event ZXn = fXn ,
where ZXn = (Zx1 , . . . , Zxn). We denote with mn(x) = E[Zx | ZXn = fXn ],
x ∈ X, the posterior mean and with Kn(x, x′) = Cov(Zx, Zx′ | ZXn

= fXn
),

x, x′ ∈ X, the posterior covariance kernel. The prior distribution on Z induces
a distribution on the excursion set

Γ = {x ∈ X : Zx ∈ T}. (2)

Analogously, the posterior distribution on Z induces a posterior distribution for
Γ and by summarizing this distribution we obtain an estimate for Γ∗. Random
closed sets do not have a unique definition of expectation, however it is possible
to provide different notions of expectation and variability for such objects (see,
e.g., Molchanov, 2005). The Vorob’ev expectation (Vorob’ev, 1984) is an exam-
ple recently introduced in the GP framework (see, e.g., Chevalier et al., 2013).
Here we focus on conservative estimates for Γ introduced by French and Sain
(2013) and Bolin and Lindgren (2015).

In what follows, we consider a Borel σ-finite measure µ defined on X and
denote with C a family of closed subsets in X. A conservative estimate at level
α for Γ∗ is a set CEα,n defined as

CEα,n ∈ arg max
C∈C

{µ(C) : Pn(C ⊂ Γ) ≥ α}, (3)

where Pn(·) = P (· | ZXn = fXn). This type of set estimate is particularly inter-
esting in problems where Γ∗ is a set of safe configurations for a system. In this
case, by choosing a high α, we provide an estimate for Γ∗ that with high pos-
terior probability is included in Γ. The optimization procedure in equation (3)
can be very challenging to solve, and it crucially depend on the choice of the
family C. A common choice (see, e.g., French and Sain, 2013; Bolin and Lind-
gren, 2015; Azzimonti and Ginsbourger, 2016) is a parametric family of nested
sets depending on a one dimensional parameter. Here we also rely on a specific
one dimensional family and, in Section 2, we provide motivation for this choice.

The main contribution of this work is a framework to evaluate the uncer-
tainty on conservative estimates for Γ∗ and the development of strategies to
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sequentially reduce such uncertainty by adding new function evaluations. If the
input space X is a compact subset of Rd and the output space Y = R, sequen-
tial strategies have already been proposed for contour lines (Ranjan et al., 2008;
Bichon et al., 2008) by adapting the expected improvement algorithm criterion
(Jones et al., 1998). In the case of excursion sets, Stepwise Uncertainty Reduc-
tion (SUR) strategies based on the set’s measure were introduced by Vazquez
and Bect (2009) and Bect et al. (2012). More recently a fast parallel imple-
mentation of these strategies have been proposed (Chevalier et al., 2014) and
applied to the problem of identifying the set Γ∗. Here we extend this framework
to conservative estimates.

In Section 1.1 we briefly recall the set estimates preliminary to this work
and, in Section 1.2, the previously introduced uncertainty reduction techniques.
In Section 2 we study the conservative estimates and we motivate our choice
for the family C. In Section 3 we define the metrics used to quantify the uncer-
tainty on conservative estimates. In Section 4, we detail the proposed sequential
strategies and their implementation in real valued case (Y = R). In Section 5 we
first benchmark the strategies with Gaussian process realizations showing how
the conservative property affects the estimates. We then apply the proposed
strategies on two industrial test cases: a coastal flood problem and a nuclear
criticality safety problem.

1.1 The Vorob’ev approach to excursion set estimation

The posterior distribution of Γ provides estimates for Γ∗ and different ways to
quantify the uncertainty on these estimates. See, e.g. Chevalier et al. (2014);
Bolin and Lindgren (2015); Azzimonti et al. (2016) for more details.

Let us now briefly recall the Vorob’ev approach (see, e.g., Vorob’ev, 1984;
Molchanov, 2005; Chevalier et al., 2013). We define the coverage probability
function of a random closed set Γ as

pΓ(x) = P (x ∈ Γ), x ∈ X.

In our case we consider the posterior coverage function pΓ,n, where we con-
sider the posterior probability Pn. The coverage function defines the family of
Vorob’ev quantiles

Qn,ρ = {x ∈ X : pΓ,n(x) ≥ ρ}, (4)

with ρ ∈ [0, 1]. These sets are closed for each ρ ∈ [0, 1] as the coverage function
is upper semi-continuous (see Molchanov, 2005, Proposition 1.34).

The level ρ can be selected in different ways. A plug-in approach is to
choose ρ = 0.5; this leads to the Vorob’ev median. Another important type of
set estimate based on the Vorob’ev quantiles is the Vorob’ev expectation of Γ,
where the level ρ = ρV is chosen such that Qρ has the closest possible measure
µ(Qρ) to the expected measure of Γ, E[µ(Γ)]. In Section 2 we show that Vorob’ev
quantiles are a reasonable choice for the family C in the conservative estimates
defined in equation (3).
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Finally let us introduce the concept of expected distance in measure between
two random sets. Consider two random closed sets Γ1,Γ2 ⊂ X. The expected
distance in measure between Γ1 and Γ2 with respect to the measure µ is

dµ(Γ1,Γ2) = E[µ(Γ1∆Γ2)],

where Γ1∆Γ2 = (Γ1 \ Γ2)∪ (Γ2 \ Γ1). The expected distance in measure can be
seen as the measure of variability associated with a Vorob’ev quantile and with
the Vorob’ev expectation. In the Ph.D. thesis of Chevalier (2013), this notion
of variability was introduced to adaptively reduce the uncertainty on Vorob’ev
expectations for expensive-to-evaluate functions. Here, it is used in Section 3
to provide uncertainty functions for conservative estimates.

1.2 Background on SUR strategies

The objective of sequential strategies for GP models is to select a sequence of
points X1, X2, . . . , Xn that reduces the uncertainty on selected posterior quanti-
ties. Here we are interested in reducing the uncertainty on CEα,n, as defined in
equation (3). We consider Xn ∈ Xn and fXn

∈ Yn, with Xn the locations where
the function f was evaluated and fXn

the actual evaluations. In the remainder
of the paper we denote with En[·] = E[· | ZXn

= fXn
] the expectation condi-

tioned on the event ZXn = fXn . We focus on Stepwise Uncertainty Reduction
(SUR) strategies. A SUR strategy (see, e.g., Fleuret and Geman, 1999; Bect
et al., 2012; Chevalier et al., 2014) selects the next evaluation in order to reduce
a particular uncertainty function.

Consider a model where n evaluations of f are given. An uncertainty func-
tion for a particular estimate is here defined as a map

Hn : (X× Y)n → R,

that associates to each vector of couples (xi, Zxi)i=1,...,n a real value repre-
senting the uncertainty associated with the selected estimate. Since they are
selected sequentially, both the locations X1, . . . , Xn and the evaluations are ran-
dom. More specifically, denote with An the σ-algebra generated by the couples
X1, ZX1

, . . . , Xn, ZXn . We denote with Hn the An measurable random variable
that returns the uncertainty associated with An, the σ−algebra generated by
(Xi, ZXi)i=1,...,n.

If we assume that the first n evaluations of the field are known, a SUR strat-
egy selects the locations X∗n+1, . . . , X

∗
n+q that minimize En[Hn+q], the future

uncertainty in expectation. For a more complete and theoretical perspective
on SUR strategies see, e.g., Bect et al. (2016) and references therein. There
are many ways to proceed with the minimization introduced above, see, e.g.,
Osborne et al. (2009); Ginsbourger and Le Riche (2010); Bect et al. (2012);
González et al. (2016) and references therein. Here we focus on sub-optimal
strategies, also called batch-sequential one-step lookahead strategies, that select
the next batch of locations by greedily minimizing the expected uncertainty at
the next step. This choice is often justified in practice because it is possible to
run the evaluations of the function in parallel thus saving wall-clock time.
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Definition 1 (batch sequential one-step lookahead criterion). We call batch
sequential one-step lookahead sampling criterion a function Jn : (X)q → R that
associates to each batch of q points x(q) := (xn+1, . . . , xn+q) ∈ Xq the expected
uncertainty at the next step assuming this batch is evaluated

Jn(x(q)) = En [Hn+q | Xn+1 = xn+1, . . . , Xn+q = xn+q] .

In Sections 3 and 4, we revisit the concepts of uncertainty function and
SUR criterion for the problem of computing conservative estimates of an excur-
sion set. In the next section instead we briefly review some properties of the
conservative estimates defined in equation 3.

2 Properties of conservative estimate

The conservative estimate introduced in equation (3) requires the specification of
the family C where to search for the optimal set CEα. In practice, it is convenient
to choose a parametric family indexed by a parameter θ ∈ Rk. Consider a nested
family Cθ indexed by a real number θ ∈ [0, 1], i.e. for each θ1 > θ2

Cθ1 ⊂ Cθ2 , (5)

for any Cθ1 , Cθ2 ∈ Cθ. Let us define C0 = X and assume that µ(X) < ∞. This
is often the case as X is either chosen as a compact subset of Rd with µ the
Lebesgue measure or µ is a probability measure on X.

For each θ, we can define the function ϕµ : [0, 1] → [0,+∞) that associates
to each θ ∈ [0, 1] the value ϕµ(θ) := µ(Cθ), with Cθ ∈ Cθ. It is a non increasing
function of θ because the sets Cθ are nested. We further define the function
ψΓ : [0, 1]→ [0, 1] that associates to each θ the probability ψΓ(θ) := P (Cθ ⊂ Γ).
The function ψΓ is non decreasing in θ due to the nested property in equation (5).
In this set-up the computation of CEα is reduced to finding the smallest θ = θ?

such that ψΓ(θ?) ≥ α, which can be achieved with a simple dichotomic search.
The Vorob’ev quantiles introduced in equation (4) are a family of closed sets

that satisfy the property in equation (5). Moreover they have the important
property of being the minimizers of the expected distance in measure among
sets with the same measure.

Proposition 1. Consider a measure µ such that µ(X) < ∞. The Vorob’ev
quantile

Qρ = {x ∈ X : pΓ(x) ≥ ρ}

minimizes the expected distance in measure with Γ among measurable sets M
such that µ(M) = µ(Qρ), i.e.,

E [µ(Qρ∆Γ)] ≤ E [µ(M∆Γ)] , (6)

for each measurable set M such that µ(M) = µ(Qρ).

Proof. see Appendix A
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The Vorob’ev quantiles have the smallest expected distance in measure with
respect to Γ among sets with the same measure. They are thus an optimal family
for conservative estimates with respect to the expected distance in measure. In
general, however, the Vorob’ev quantile chosen for CEα with this procedure is
not the set S with the largest measure satisfying the property P (S ⊂ Γ) ≥ α.
See supplementary material for a counterexample.

In the remainder of the paper we always consider C as the family of Vorob’ev
quantiles. Given an initial design Xn we can exploit the previously described
properties and obtain CEα,n, a conservative estimate at level α for Γ∗. This
estimate will also be denoted with Qn,ραn , where ραn is the conservative Vorob’ev
threshold. In the next section we introduce different ways to quantify the un-
certainty on this estimate, while in Section 4 we introduce sequential strategies
to reduce this uncertainty by adding new evaluations to the model.

3 Uncertainty quantification on CEα,n

In this section we introduce several uncertainty functions for conservative esti-
mates. Here we always assume that n evaluations of f are available.

Our object of interest is Γ∗, therefore we require uncertainty functions that
take into account the whole set. Chevalier and co-authors (Chevalier et al.,
2013; Chevalier, 2013) evaluate the uncertainty on the Vorob’ev expectation
with the expected distance in measure between the current estimate Qn,ρn and
the set Γ. Let us recall here that the Vorob’ev uncertainty of the quantile Qρn
is the quantity

Hn(ρn) = En[µ(Γ∆Qn,ρn)]. (7)

In the following sections, this uncertainty quantification function is applied to
the Vorob’ev expectation, ρn = ρV,n, to the Vorob’ev median, ρn = 0.5, and
to the conservative estimate at level α, ρn = ραn. The thresholds ρV,n and
ραn are An measurable random variables, as they depend on the locations and
observations (Xi, ZXi)i=1,...,n.

Consider a threshold ρ ∈ [0, 1], and note that, by definition, the symmetric
difference can be written as

En[µ(Γ∆Qn,ρ)] = En[µ(Qn,ρ \ Γ)] + En[µ(Γ \Qn,ρ)]. (8)

Let us denote with G
(1)
n (ρ) = µ(Qn,ρ \ Γ) the random variable associated with

the measure of the first set difference and with G
(2)
n (ρ) = µ(Γ\Qn,ρ) the random

variable associated with the second one.

Remark 1. Consider the conservative estimate Qn,ραn , then the ratio between

the error En[G
(1)
n (ραn)] and the measure µ(Qn,ραn) is bounded by 1−α, the chosen

level for the conservative estimates. See Appendix A for a proof.

A conservative estimate Qn,ραn aims at controlling the error En[G
(1)
n (ραn)].

With a broad use of the hypothesis testing lexicon we denote Type I error
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at state n the quantity En[G
(1)
n (ραn)] and Type II error at state n the quantity

En[G
(2)
n (ραn)]. Type II error defines the following uncertainty function for CEα,n.

Definition 2 (Type II uncertainty). Consider the Vorob’ev quantile Qn,ραn cor-
responding to the conservative estimate at level α for Γ. The Type II uncertainty
is the uncertainty function Ht2

n defined as

Ht2
n (ραn) := En[G(2)

n (ραn)] = En[µ(Γ \Qn,ραn)]. (9)

Conservative estimates at high levels α tend to select regions inside Γ, by
definition. In particular if the number of function evaluations is high enough to
have a good approximation of the function f , the conservative estimates with
high α tend to be inside the true excursion set Γ∗. In these situations the
expected type I error is usually very small, as shown in Remark 1, while type II
error could be rather large. Type II uncertainty is thus a relevant quantity when
evaluating conservative estimates. In the test case studies we also compute the
expected type I error to check that it is consistently small.

The last uncertainty function introduced in this section is the expected dif-
ference between the measure of Γ and the measure of Qn,ραn .

Definition 3 (Uncertainty meas). We denote the uncertainty function related
to the measure µ with Hmeas

n , defined as

Hmeas
n (ραn) := En[µ(Γ)− µ(Qn,ραn)] (10)

This quantity is a reasonable uncertainty function only for conservative esti-

mates. In this case, in fact, this quantity is equal to En[G
(2)
n (ραn)−G(1)

n (ραn)] and,
if the estimate is completely included in Γ, then it is the Type II uncertainty.

4 SUR strategies for conservative estimates

We now consider a current design of experiments Xn, for some n > 0 and
we introduce one-step lookahead SUR strategies for conservative estimates.
These strategies select the next batch of q > 0 locations Xn+1, . . . , Xn+q ∈ X
in order to reduce the future uncertainty Hn+q defined in equation (7), (9)
and (10). We denote with An+q the σ−algebra generated by the sequence
(Xi, ZXi)i=1,...,n+q ∈ (X × Y)n+q. The uncertainty Hn+q is a An+q measur-
able random variable that depends on the unknown response at the points
Xn+1, . . . , Xn+q. In this section we define the SUR criteria for a conserva-
tive level ραn+q, which is a An+q measurable random variable because it also
depends on the unknown responses. While the criteria are properly defined in
this case, there are no closed form formulae for the level ραn+q. For this reason,
in the next section, we implement the criteria with the last computed level ραn.

We consider three sampling criterion based on the uncertainty functions
introduced in equation (7), (9) and (10). The first is an adaptation of the

7



Vorob’ev criterion introduced in Chevalier (2013) and based on the Vorob’ev
deviation (Vorob’ev, 1984; Molchanov, 2005; Chevalier et al., 2013).

Jn(x(q); ραn+q) = En
[
Hn+q(ρ

α
n+q) | Xn+1 = xn+1, . . . , Xn+q = xn+q

]
(11)

= En
[
µ(Γ∆Qn+q,ραn+q

) | Xn+1 = xn+1, . . . , Xn+q = xn+q

]
for x(q) = (xn+1, . . . , xn+q) ∈ Xq, where Qn+q,ραn+q

is the Vorob’ev quantile
obtained with n + q evaluations of the function at level ραn+q, the conservative
level obtained with n+ q evaluations.

In the case of conservative estimates with high level α, each term of equa-
tion (8) does not contribute equally to the expected distance in measure, as
observed in Remark 1. It is thus reasonable to consider a criterion to reduce
the Type II uncertainty introduced in Definition 2.

Jt2
n (x(q); ραn+q) = En

[
Ht2
n+q(ρ

α
n+q) | Xn+1 = xn+1, . . . , Xn+q = xn+q

]
(12)

= En
[
G(2)
n (Qn+q,ραn+q

) | Xn+1 = xn+1, . . . , Xn+q = xn+q

]
,

for x(q) ∈ Xq. In Section 4.1 this criterion is derived for a fixed, An measurable
level ρn ∈ [0, 1], for the case X ⊂ Rd and Y = R.

The last criterion studied here for conservative estimates relies on the un-
certainty function Hmeas

n . We can define the measure based criterion as

Jmeas
n (x(q); ραn+q) = En

[
µ(Γ)− µ(Qn+q,ραn+q

) | Xn+1 = xn+1, . . . , Xn+q = xn+q

]
.

(13)
Since we are interested in minimizing this criterion and En[µ(Γ)] is independent
from x(q), we consider the equivalent function to maximize

J̃n
meas

(x(q); ραn+q) = En
[
µ(Qn+q,ραn+q

) | Xn+1 = xn+1, . . . , Xn+q = xn+q

]
.

Note that this criterion select points that are meant to increase the measure
of the estimate and it is only reasonable for conservative estimates where the
conservative condition on Qn+q,ραn+q

leads to sets with finite measure in expec-
tation.

4.1 Implementation

In this section we detail the algorithmic aspects of the criteria.
The notions of an estimate’s uncertainty and of sequential criteria can be

defined in the generic setting introduced in Section 1.2, however in order to
provide practical implementations of the criteria we need to restrict ourselves
to a more specific framework. Here we fix X ⊂ Rd, a compact subset of Rd,
and Y = R. These choices are common especially in engineering and other
scientific applications. We assume that Z is a GP with constant prior mean m
and covariance kernel K. Finally we derive formulas for the criteria for the set
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Γ∗ = {x ∈ X : f(x) ∈ T} with T = [t,+∞), where t ∈ R is a fixed threshold. It
is straightforward to compute the criteria for T = (−∞, t] and to extend them
for unions of bounded intervals.

The formulas for the criteria introduced here all rely on the posterior cover-
age probability function pn, where the subscript Γ is dropped as the set is clear
from the context. In particular, from the assumptions previously introduced it
follows that, for each n ≥ 0, pn(x) = Φ ((mn(x)− t)/sn(x)), with x ∈ X, where
Φ is the univariate standard Normal distribution, mn is the posterior mean of
the process and sn(x) =

√
Kn(x, x) for all x ∈ X.

The first criterion introduced in Section 4 is based on the symmetric differ-
ence between the set Γ and the Vorob’ev quantile Qn,ρ. In Chevalier (2013),
Chapter 4.2, the formula for this criterion in this framework was derived for the
Vorob’ev expectation, i.e. the quantile at level ρ=ρn,V . In the following remark
we first extend this result to an An measurable quantile ρn.

Remark 2 (Criterion Jn). Under the previously introduced assumptions the
criterion Jn can be expanded in closed-form as

Jn(x(q); ρn) = En [µ (Γ∆Qn+q,ρn) | Xn+1 = xn+1, . . . , Xn+q = xn+q]

=

∫
X

(
2Φ2

((
an+q(u)

Φ−1(ρn)− an+q(u)

)
;

(
1 + γn+q(u) −γn+q(u)
−γn+q(u) γn+q(u)

))
− pn(u) + Φ

(
an+q(u)− Φ−1(ρn)√

γn+q(u)

))
dµ(u), (14)

where

an+q(u) =
mn(u)− t
sn+q(u)

, bn+q(u) =
K−1
q Kn(x(q), u)

sn+q(u)
, (15)

γn+q(u) = bTn+q(u)Kqbn+q(u), u ∈ X

with Kn(x(q), u) = (Kn(xn+1, u), . . . ,Kn(xn+q, u))T . Kq is covariance matrix
with elements [Kn(xn+i, xn+j)]i,j=1,...,q, Φ2(·; Σ) is the bivariate centred Normal
distribution with covariance matrix Σ.

The proof of the previous remark is a simple adaptation of the proof in
Chevalier (2013), Chapter 4.2.

Proposition 2. The criterion Jt2
n (·; ραn) can be expanded in closed-form as

Jt2
n (x(q); ραn) = En

[
G(2)
n (Qn+q,ραn

) | Xn+1 = xn+1, . . . , Xn+q = xn+q

]
(16)

=

∫
X

Φ2

((
an+q(u)

Φ−1(ραn)− an+q(u)

)
;

(
1 + γn+q(u) −γn+q(u)
−γn+q(u) γn+q(u)

))
dµ(u).

Proof. The proof is a simple adaptation of the Remark 2. See Chevalier (2013).
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Proposition 3. The criterion Jmeas
n can be expanded in closed-form as

J̃n
meas

(x(q); ραn) = En
[
µ(Qn+q,ραn

) | Xn+1 = xn+1, . . . , Xn+q = xn+q

]
=

∫
X

Φ

(
an+q(u)− Φ−1(ραn)√

γn+q(u)

)
dµ(u). (17)

Proof. First of all notice that, for each x ∈ X, the coverage function pn+q(x
(q))

can be written as

pn+q(x
(q))(x) = Φ

(
an+q(x) + bTn+qYq

)
, (18)

where an+q,bn+q are defined in equation (15) and Yq ∼ Nq(0,Kq) is a q dimen-
sional normal random vector. The indicator function of the set Qn+q,ραn

can be
written as 1pn+q(x)≥ραn . By Tonelli’s theorem we exchange the expectation with
the integral over X and we obtain

En
[
E
[
µ(Qn+q,ραn

) | Xn+1 = xn+1, . . . , Xn+q = xn+q

] ]
=

∫
X
En
[
1pn+q(u)≥ραn

]
dµ(u) =

∫
X
Pn (pn+q(u) ≥ ραn) dµ(u).

By substituting the expression in equation (18) we obtain∫
X
Pn (pn+q(u) ≥ ραn) dµ(u) =

∫
X
Pn
(
an+q(u) + bTn+q(u)Yq ≥ Φ−1(ραn)

)
dµ(u)

=

∫
X

Φ

(
an+q(u)− Φ−1(ραn)√

γn+q(u)

)
dµ(u)

For the practical implementation of the sampling criteria we exploit the
kriging update formulas (Chevalier et al., 2014; Emery, 2009) for faster updates
of the posterior mean and covariance when new evaluations are added.

The sampling criteria, implemented above in equation (14), (16) and (17),
are used to select the next evaluations of the function f as a part of a larger
algorithm that provides conservative estimates for Γ∗. See supplementary mate-
rial for more details. The conservative level ραn is computed with the algorithm
detailed by Azzimonti and Ginsbourger (2016).

5 Test cases

In this section we apply the proposed sequential uncertainty reduction methods
to different test cases. First we develop a benchmark study with Gaussian
process realizations to study the different behaviour of the proposed strategies.
Then, we apply the methods to two reliability engineering test cases. In the first
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Table 1: Strategies implemented in the test cases.

Strategy number criterion parameters
Benchmark 1 IMSE

Benchmark 2 tIMSE target=t

A Jn(·; ρn) ρn = 0.5

B Jn(·; ρn) ρn = ραn, α = 0.95

C J̃n
meas

(·; ρn) ρn = ραn, α = 0.95

D Jt2
n (·; ρn) ρn = 0.5

E Jt2
n (·; ραn) α = 0.95

F (hybrid strategy) Jt2
n (·; ραn) + IMSE 2 iterations IMSE,

1 iteration with E

test case, the set of interest represents the offshore conditions that do not lead
the water level at the coast to be larger than a critical threshold above which
flood would occur. In the second test case the set of interest is the set of safe
parameters for nuclear storage facility.

In each test case we choose a tensor product covariance kernel from the
Matérn family, see Rasmussen and Williams (2006, Chapter 4), for details on
the parametrization.

All computations are carried out in the R programming language (R Core
Team, 2016), with the packages DiceKriging (Roustant et al., 2012) and DiceDesign

(Franco et al., 2013) for Gaussian modelling, KrigInv (Chevalier et al., 2014)
for already existing sampling criterion and ConservativeEstimates (Azzimonti
and Ginsbourger, 2016) to compute the conservative estimates.

5.1 Benchmark study: Gaussian processes

Let us first benchmark the different strategies introduced in Section 4 on Gaus-
sian process realizations in two and five dimensions. The following setup is
shared between the two test case. We consider the unit hypercube X = [0, 1]d,
d = 2, 5 and we choose a Gaussian process (Zx)x∈X ∼ GP (m,K). The GP has
a constant prior mean m = 0 and a tensor product Matérn covariance kernel
with parameters fixed as detailed in Table 2. The objective is to obtain a con-
servative estimate at level α = 0.95 for Γ = {x ∈ X : Zx ≥ 1}. The measure of
reference µ is the Lebesgue measure on X. Here we test the strategies detailed
in Table 1.

We consider an initial design of experiments Xninit , obtained with the func-
tion optimumLHS from the package lhs and we simulate the field at Xninit

. The
size ninit is chosen small to highlight the differences between the sequential
strategies. We select the next evaluations by minimizing each sampling criteria
detailed in Table 1. Each criterion is run for n = 30 iterations, updating the
model with q = 1 new evaluations at each step. We consider mdoe different

11



Table 2: Test cases parameter choices.

Test case d covariance parameters mdoe ninit

GP 2 ν = 3/2, θ = [0.2, 0.2]T , σ2 = 1 10 3

GP 5 ν = 3/2, θ =
√

5
2 [0.2, 0.2, 0.2, 0.2, 0.2]T , σ2 = 1 10 6

Costal 2 ν = 5/2, MLE for θ, σ2, σ2
noise 10 10

Nuclear 2 ν = 5/2, MLE for θ, σ2, σ2
noise 10 10
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Figure 1: Median type II error for Qραn
across the different designs of experi-
ments, after n = 30 iterations. Test case
in dimension 2.
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Figure 2: Measure µ(Qραn) across the
different designs of experiments, after
n = 30 iterations. Test case in dimen-
sion 2.

initial design of experiments and, for each design, we replicate the procedure 10
times with different initial values ZXninit

.

5.1.1 Dimension 2

We evaluate the strategies by looking at the type I and type II errors for Qραn ,
defined in Section 3, and by computing the measure µ(Qραn). For each of these
quantities we report the median result over the replications obtained after n =
30 evaluations for each initial design.

Expected type I error does not vary much among the different strategies as
it is controlled by the probabilistic condition imposed on the estimate, as shown
in Section 2. See supplementary material for the results on expected type I error
and the total computing time.

We show the distribution of expected type II error, in Figure 1, and the ex-
pected volume µ(Qραn) after n = 30 new evaluations, in Figure 2. The strategies
A,B,C,E, F all provide better uncertainty reduction for conservative estimates
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Figure 3: Median type II error for Qραn
across different designs of experiments,
after n = 30 iterations. Test case in
dimension 5.
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Figure 4: Measure µ(Qραn) across differ-
ent designs of experiments, after n = 30
iterations. Test case in dimension 5.

than a standard IMSE strategy or than a tIMSE strategy. In particular strat-
egy E has the lowest median type 2 error while at the same time providing
an estimate with the largest measure, thus yielding a conservative set which is
likely to be included in Γ∗ and not too small in volume. All estimates are very
conservative: the median ratio between the expected type I error and the esti-
mate’s volume is 0.03%, thus much smaller than the upper bound 1 − α = 5%
computed in Remark 1. On the other hand the expected type II error is in
median 178% bigger than the estimate volume.

5.1.2 Dimension 5

In Figures 3 and 4 we show the distribution of expected type II errors for Qραn
and its measure µ(Qραn) obtained with the different design of experiments, after
30 iterations of each strategy. The resulting expected type I error and the total
computational time are reported in the supplementary material.

In this test case the strategies are harder to rank. The IMSE strategy pro-
vides conservative estimates with small measure and with slightly larger type
II error. Strategies A,B,C,E provide a good trade off between small type II
error and large measure of the estimate, however they are not clearly better
than the other strategies in this case. The estimates provided by all methods
are very conservative also in this case. The median ratio over all DoEs and all
replications between the expected type I error and volume is 0.33%, which is
smaller than the upper bound 5%, as computed in Remark 1. The expected
type II error is instead 3 orders of magnitude larger than the estimate’s volume.
This indicates that we have only recovered a small portion of the true set Γ∗,
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Figure 6: Coastal flood test case. Cov-
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(shaded green, α = 0.95) after 30 func-
tion evaluations (strategy E).

however, under the model, this estimate is very conservative.

5.2 Coastal flood test case

In this section we present a coastal flood test case introduced in Rohmer and
Idier (2012). We focus here on studying the parameters that lead to floods on the
coastlines. While similar studies are often conducted with full grid simulations,
those techniques require many hours of computational time and, thus, render set
estimation problems often infeasible. The use of meta-models, recently revisited
in this field (see, e.g., Rohmer and Idier, 2012, and references therein), allows
tackling this computational issue.

Here we consider a simplified coastal flood case as described by Rohmer
and Idier (2012). The water level at the coast is modelled as a deterministic
function f : X ⊂ Rd → R, assuming steady offshore conditions, without solving
the flood itself inland. The input space X = [0.25, 1.50]×[0.5, 7] are the variables
storm surge magnitude S and significant wave height Hs. We are interested in
recovering the set Γ∗ = {x ∈ X : f(x) ≤ t}, with t = 2.15. In order to evaluate
the quality of the meta-model, we rely on a grid experiment of 30 × 30 runs
carried out by Rohmer and Idier (2012).

Here we consider a Gaussian process prior (Zx)x∈X ∼ GP (m,K), with con-
stant prior mean function and Matérn covariance kernel with ν = 5/2. We as-
sume that the function evaluations are noisy with zero noise mean and variance
σ2

noise. We select mdoe = 10 different initial DoEs, with equal size ninit = 10.
The initial designs are chosen with a maximin LHS design Xninit = {x1, . . . , xninit} ⊂
X with the function optimumLHS from the package lhs. The covariance kernel
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randomized initial DoEs. True
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Figure 8: Coastal flood test case, randomized
initial DoEs. Relative volume error as a function
of iteration number. Strategies tIMSE, A,B,E.

hyper-parameters and the noise variance are estimated with maximum likeli-
hood. Figure 5 shows the true function f we are aiming at reconstructing, the
critical level and one initial design of experiments. We compute conservative set
estimates for Γ∗ at level α = 0.95, as defined in Section 2, with the Lebesgue
measure on X.

We proceed to add 20 evaluations with the strategies detailed in Table 1.
The covariance hyper-parameters are re-estimated at each step with maximum
likelihood. See supplementary material for a study on the effect of parameter re-
estimation. Figure 6 shows the conservative estimate obtained after 30 functions
evaluations at locations chosen with Strategy E.

Figure 7 shows the true type II error at the last iteration of each strategy,
after 30 evaluations of the function. The true type II error is computed by
comparing the conservative estimate with an estimate of Γ∗ obtained from the
30× 30 grid experiment. Monte Carlo integration over this grid of evaluations
leads to a volume of Γ∗ equal to 77.56%.

At the last iteration, strategies A,B,E provide estimates with higher volume
and lower type II error in median than IMSE and tIMSE. For example, the
median type II error for Strategy E is 38% smaller than the IMSE type II error.
For all strategies the true type I error is zero for almost all initial DoEs, thus
indicating that all strategies lead to conservative estimates.

Figure 8 shows the behaviour of relative volume error as a function of the iter-
ation number for Strategies tIMSE, A,B,E. The hyper-parameter re-estimation
causes the model to be overconfident at the initial iterations, thus increasing
the relative volume error. As the number of evaluations increases the hyper-
parameter estimates become more stable and the relative error decreases as
conservative estimates are better included in the true set.
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5.3 Nuclear criticality safety test case

In this section we test the proposed strategies in a reliability engineering test
case from the French Institute of nuclear safety (IRSN). The problem at hand
concerns a nuclear storage facility and we are interested in estimating the set of
parameters that lead to a safe storage of the material. This is closely linked to
the production of neutrons. In fact, since neutrons are both the product and the
initiator of nuclear reactions, an overproduction could lead to a chain reaction.
The safety of a system is usually evaluated with the neutron multiplication
factor, here called k-effective or k-eff : X→ [0, 1] defined on X = [0.2, 5.2]×[0, 5].
The two parameters represent the fissile material density, PuO2, and the water
thickness, H2O. We are interested in recovering the set of safe configurations

Γ∗ = {(PuO2,H2O) ∈ X : k-eff(PuO2,H2O) ≤ 0.92},

where the threshold was chosen at 0.92 for safety reasons.
In general, the evaluation of k-eff at one point requires a MCMC simulation

whose results have an heterogeneous noise variance. This is an expensive com-
puter experiment thus our objective is to provide an estimate for Γ∗ from few
evaluations of k-eff and to quantify its uncertainty. The criteria implemented in
Section 4.1 are not adapted to heterogeneous noise variance and could choose
suboptimal locations. We could consider the noise homogeneous and estimate
it from the data. However this procedure might lead to large errors in the esti-
mates if the true noise variance is highly heterogeneous. In order to avoid such
pitfalls we consider a smoothed version of k-eff. An approximation of k-eff is
first computed from a 50 × 50 grid of evaluations of k-eff in X. We then con-
sider k-eff as a realization of a Gaussian process with mean zero, tensor product
Matérn (ν = 5/2) covariance kernel and heterogeneous noise variance equal to
the MCMC variance and we compute the posterior mean of this field given the
2500 observations. We use this function as the true function. In what follows
we denote with k-eff the result of this smoothing operation. Figure 9 shows this
function and the set Γ∗.

Given the previous assumptions on k-eff we fix a prior (Z)x∈X ∼ GP (m,K)
with constant mean function m and tensor product Matérn covariance kernel
with ν = 5/2. Even if we consider the smoothed function, we still assume that
evaluations are noisy with zero mean noise and variance σ2

noise for numerical
stability. We consider mdoe = 10 different initial DoEs of size n0 = 10, obtained
with the function optimumLHS from the package lhs in R. Figure 9 one initial
design of experiments. Each initial DoE is used to estimate the covariance
hyper-parameters and the noise variance with maximum likelihood.

We now test how to adaptively reduce the uncertainty on the estimate with
different strategies. Table 1 lists the strategies tested in this section. We run
n = 20 iteration of each strategy and at each step we select a batch of q = 3
new points where to evaluate k-eff. The covariance hyper-parameters are re-
estimated at each iteration by adding 3 new evaluations. The starting model
provides a conservative estimate for Γ∗ at level α = 0.95, with the Lebesgue
measure µ on X. Figure 10 shows the coverage function of the random set Γ
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Figure 9: Nuclear criticality safety
test case. Smoothed function k-eff,
set of interest Γ∗ (shaded blue,
volume=88.16%) and one initial design
of experiments.
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Figure 10: Nuclear criticality safety test
case. Coverage function, conservative
estimate (α = 0.95, shaded green) after
70 function evaluations (strategy E).

obtained after 70 function evaluations at locations selected with Strategy E and
the corresponding conservative estimate.

Figure 11 shows a comparison of the type II error at the last iteration, i.e.
after 70 evaluations of the function, for each initial DoE and each strategy.
Strategy D as in the previous test cases is the worse performer, thus showing
that minimization of type II error works only for conservative quantiles. Strate-
gies A,B,E perform well both in terms of final volume and true type II error.
Strategy E, for example achieves a type II error 27% lower than IMSE. While
still performing better than strategy D, F does not show any improvement over
other strategies. Strategy C also performs well in this test case showing a 16%
lower median type II error than IMSE.

Figure 12 shows the relative volume error as a function of the iteration
number for strategies tIMSE, A,B,C,E. The relative volume error is computed
by comparing the conservative estimate with an estimate of Γ∗ obtained from
evaluations of k-eff on a grid 50× 50. The volume of Γ∗ computed with Monte
Carlo integration from this grid of evaluations is 88.16%. All strategies presented
show a strong decrease in relative volume error in the first 10 iteration, i.e.
until 40 evaluations of k-eff are added. In particular strategies B,C,E show the
strongest decline in error in the first 5 iterations. Overall, as in the previous
test cases, strategy E, the minimization of the expected type II error, seem to
provide the best uncertainty reductions both in terms of relative volume error
and in terms of type II error.
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as a function of the iteration number. Strategies
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6 Discussion

In this paper we introduced sequential uncertainty reduction strategies for con-
servative estimates. This type of set estimates proved to be useful in reliability
engineering, however they could be of interest in all situations where practition-
ers aim at controlling the overestimation of the set. The estimator CE, however,
is based on a global quantity and an underlying GP model that badly approxi-
mates f will not lead to reliable estimates. For a fixed model, this issue might
reduced by increasing the level of confidence. We presented test cases with fixed
α = 0.95, however testing different levels, e.g. α = 0.99, 0.995, and comparing
the results is a good practice.

The sequential strategies proposed here provide a way to reduce the un-
certainty on conservative estimates by adding new function evaluations. The
numerical studies presented showed that adapted strategies provide a better
uncertainty reduction that generic strategies. In particular, strategy E, i.e. the
criterion Jt2

n (·; ραn), resulted among the best criteria in terms of Type 2 uncer-
tainty and relative volume error in all test cases. In this work we mainly focused
on showing the differences between the strategy with a-posteriori measures of
uncertainty. Nonetheless the expected type I and II errors could be used to
provide stopping criteria for the sequential strategies. Further studies in this
direction are needed to understand the limit behaviour of these quantity as the
number of evaluation increases.

The strategies proposed in this work focus on reducing the uncertainty on
conservative estimates. This objective does not necessarily lead to better overall
models for the function or to good covariance hyper-parameters estimation. The
sequential behaviour of hyper-parameters maximum likelihood estimators under
SUR strategies needs to be studied in more details. See supplementary material
for a preliminary study on this aspect.

18



Acknowledgements

The first author gratefully acknowledges the support of the Swiss National Sci-
ence Foundation, grant number 146354. The authors wish to thank Jérémy
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A Properties of conservative estimates

In the following, let us denote with (Ω,F , P ) a probability space.

Proof of Proposition 1. Let us consider a measurable set M such that µ(M) =
µ(Qρ). For each ω ∈ Ω, we have

µ(M∆Γ(ω))− µ(Qρ∆Γ(ω)) = 2

(
µ(Γ(ω) ∩ (Qρ \M))− µ(Γ(ω) ∩ (M \Qρ))

)
+ µ(QCρ )− µ(MC).

By applying the expectation on both sides and by remembering that µ(QCρ ) =

µ(MC) we obtain

E [µ(M∆Γ)− µ(Qρ∆Γ)] = E
[
2

(
µ(Γ ∩ (Qρ \M))− µ(Γ ∩ (M \Qρ))

)]
= 2

∫
Qρ\M

pΓ(u)dµ(u)− 2

∫
M\Qρ

pΓ(u)dµ(u),
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where the second equality comes from the definition of Qρ. Moreover, since
pΓ(x) ≥ ρ for x ∈ Qρ \M and pΓ(x) ≤ ρ for x ∈M \Qρ we have

2

[∫
Qρ\M

pΓ(u)dµ(u)−
∫
M\Qρ

pΓ(u)dµ(u)

]
≥ 2ρ[µ(Qρ \M)− µ(M \Qρ)]

= 2ρ[µ(Qρ)− µ(M)] = 0,

which shows that Qρ verifies equation (6).

Proof of Remark 1. Notice that for all ω ∈ Ω such that Qn,ραn ⊂ Γ(ω), we have

G
(1)
n (ω) = 0. By applying the law of total expectation we obtain

En[G(1)
n ] = En[G(1)

n | Qn,ραn ⊂ Γ]P (Qn,ραn ⊂ Γ)

+ En[G(1)
n | Qn,ραn \ Γ 6= ∅](1− P (Qn,ραn ⊂ Γ))

≤ 0 + En[G(1)
n | Qn,ραn \ Γ 6= ∅](1− α) ≤ µ(Qn,ραn)(1− α).
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