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ABSTRACT

This paper introduces a generalization of the Fisher vectors to
the Riemannian manifold. The proposed descriptors, called
Riemannian Fisher vectors, are defined first, based on the
mixture model of Riemannian Gaussian distributions. Next,
their expressions are derived and they are applied in the con-
text of texture image classification. The results are compared
to those given by the recently proposed algorithms, bag of
Riemannian words and R-VLAD. In addition, the most dis-
criminant Riemannian Fisher vectors are identified.

Index Terms— Riemannian Fisher vectors, bag of words,
Riemannian Gaussian distributions, classification, covariance
matrix.

1. INTRODUCTION

Bag of words, Fisher vectors, or vectors of locally aggregated
descriptors represent some of the most frequently used local
models in order to capture the information lying in signals [1],
images [2] or videos [3]. These descriptors have multiple ad-
vantages. First, the obtained information can be used in a
wide variety of applications like classification [2] and catego-
rization [4], text [5] and image [6] retrieval, action and face
recognition [7], etc. Second, combined with powerful local
feature descriptors such as SIFT, they are robust to transfor-
mations like scaling, translation, or occlusion [7].

The bag of words (BoW) model has been used for text
retrieval and categorization [5, 8] and then extended to vi-
sual categorization [9]. This method is based on the con-
struction of a codebook, or a dictionary, that contains the
most significant features in the dataset. Generally, the ele-
ments in the codebook, or the words, are the clusters’ cen-
troids obtained by using the conventional k-means clustering
algorithm. Next, for each element in the dataset, its signa-
ture is determined by computing the histogram of the number
of occurrences of each word in its structure. To improve the
performance of BoW, which counts only the number of local
descriptors assigned to each Voronoi region, Fisher vectors
(FV) have been introduced by including other statistics, such
as the mean and variance of local descriptors.

FV are descriptors based on Fisher kernels [1], represent-
ing methods for measuring if samples are correctly fitted by

some given models. By using FV, a sample is characterized
by the gradient vector of the probability density function that
models it, classically a Gaussian mixture model (GMM) [4].
In practice, the probability density function is replaced by the
log-likelihood and, as mentioned in [4], its gradient describes
the direction in which parameters should be modified to best
fit the data. The derivatives with respect to the model’s pa-
rameters are computed and concatenated to obtain the FV.

The vectors of locally aggregated descriptors (VLAD)
represent a simplification of the Fisher kernel [10], based on
the definition of a codebook. In the computation process,
first of all, the dictionary has to be built. For this reason, the
dataset is partitioned by using a clustering algorithm and the
cluster centroids represent the codebook elements. Next, each
element in the dataset is associated to the closest cluster. Fur-
ther on, for each cluster a vector is computed, containing the
differences between the cluster’s centroid and each element
in that cluster. In the end, the sum of differences concerning
each cluster is computed and the final VLAD feature vector
is given by the concatenation of all the previously obtained
sums. In other way, the VLAD descriptors can be obtained
starting from FV, by taking into consideration only the deriva-
tives with respect to the means of the GMM. Note also that
the homoscedasticity assumption and the hard assignment
scheme are required to obtain VLAD features [7, 10].

Those three approaches have been widely used for many
applications involving non-parametric features. Recently
BoW and VLAD have been extended to the case where each
feature is a point on a Riemannian manifold. This is for
instance the case where local descriptors are covariance ma-
trices. This includes many different applications in image
processing, like classification [11, 12, 13], image segmen-
tation [14], object detection [15, 16], etc. In [3] and [17],
the BoW approach has been extended to the so-called log-
Euclidean bag of words (LE-BoW) and bag of Riemannian
words (BoRW) models by considering respectively the log-
Euclidean and geodesic distance between two points on the
manifold. In addition, the Riemannian version of the VLAD
method (R-VLAD) has been developed in [7] and has shown
superior classification performances, compared to the classic
VLAD algorithm.

Until now, FV have not yet been generalized in the same



manner to Riemannian manifold, due to the lack of proba-
bilistic generative models suited for parametric descriptors.
This represents the main contribution of this paper. The pro-
posed Riemannian Fisher vectors (RFV) are a generalization
of the FV for parametric descriptors based on the recent works
on the definition of the Riemannian Gaussian distributions
(RGDs) [18].

The paper is structured as follows. Section 2 recalls some
elements on the RGD like its definition, the expression of
mixtures of RGDs and the parameter’s estimation procedure.
Section 3 introduces the definition of the proposed RFV,
their computation and their relation with R-VLAD. Section 4
presents an application of the proposed RFV to texture im-
age classification. Conclusions and future works are finally
reported in Section 5.

2. RIEMANNIAN GAUSSIAN DISTRIBUTIONS

Let Υ = {Yt}t=1:T be a set of T independent and identically
distributed (i.i.d.) samples according to a Riemannian Gaus-
sian distribution of central value Ȳ and dispersion σ. The
probability density function of the RGD with respect to the
Riemannian volume element, in the space Pm of m×m real,
symmetric and positive definite matrices, has been introduced
in [18] as:

p(Yt|Ȳ, σ) =
1

Z(σ)
exp

{
− d2(Yt, Ȳ)

2σ2

}
, (1)

where Z(σ) is a normalization factor independent of the
centroid Ȳ and d(·) is the Riemannian distance given by

d(Y1,Y2) =
[∑

i(lnλi)
2
] 1

2 , with λi, i = 1, . . . ,m being
the eigenvalues of Y−1

2 Y1.
Starting from (1), the probability density function for a

mixture of K RGDs can be defined as [18]:

p(Yt|λ) =

K∑
j=1

$j p(Yt|Ȳj , σj), (2)

where λ = {($j , Ȳj , σj)1≤j≤K} is the parameter vector. $j

are positive weights, with
∑K
j=1$j = 1 and p(Yt|Ȳj , σj) is

given by (1).
Several approaches can be employed to estimate the pa-

rameters { ̂̄Yj , σ̂j , $̂j}1≤j≤K of the mixture ofK RGDs [12].
The simplest one implies the estimation of the centroids ̂̄Yj ,
of clusters cj , j = 1, . . . ,K by using the intrinsic k-means
algorithm on a Riemannian manifold [7]. Thus, for each
cluster cj , the cost function

ε(Ȳj) =
1

Nj

Nj∑
n=1

d2(Ȳj ,Yjn) (3)

has to be minimized, where Yjn is the set of elements Yj

in cluster cj , n = 1, . . . , Nj and Nj is the cardinal of Yjn .

The minimizer of the cost function defined in (3) is known to
be the Riemannian centre of mass of this set. The interested
reader is referred to [19] and [20] for an algorithm to com-
pute the empirical Riemannian centre of mass. Next, for each
cluster cj , the estimated dispersion parameter σ̂j is obtained
as the solution of:

σ3
j ×

d

dσj
Z(σj) = ε( ̂̄Yj). (4)

This latter is solved by a conventional Newton-Raphson algo-
rithm [12]. Finally, the estimated weights $̂j are given by:

$̂j =
Nj∑K
j=1Nj

. (5)

All the elements recalled in this part are applied in the next
section to the definition of the proposed Riemannian Fisher
vectors.

3. RIEMANNIAN FISHER VECTORS

3.1. Definition

Let Υ = {Yt}t=1:T be a sample of T i.i.d observations fol-
lowing a mixture of K RGDs. Under the independence as-
sumption, the probability density function of Υ is given by:

p(Υ|λ) =

T∏
t=1

p(Yt|λ), (6)

where λ = {($j , Ȳj , σj)1≤j≤K} is the parameter vector and
p(Yt|λ) is the probability density function given in (2).

By using the Fisher kernels, the sample is characterized by
its deviation from the model [2]. This deviation is measured
by computing the Fisher score UΥ [1], that is the gradient ∇
of the log-likelihood with respect to the model parameters λ:

UΥ = ∇λ log p(Υ|λ) = ∇λ
T∑
t=1

log p(Yt|λ). (7)

As mentioned in [1], the gradient of the log-likelihood with
respect to a parameter describes the contribution of that pa-
rameter to the generation of a particular observation. In prac-
tice, a large value for this derivative is equivalent to a large
deviation from the model. Further on, that can be translated
into the fact that the model does not correctly fit the data.

In the following, the derivatives for the mixture of RGDs,
are given, knowing that γi(Yt) is the probability that the ob-
servation Yt is generated by the ith RGD and it is computed
as:

γi(Yt) =
$i p(Yt|Ȳi, σi)∑K
j=1$j p(Yt|Ȳj , σj)

. (8)

To determine the gradient with respect to the weight, we con-
sider the procedure described in [2]. For that, the following



parametrization is used in order to ensure the positivity and
sum to one constraints of the weights:

$i =
exp(αi)∑K
j=1 exp(αj)

. (9)

By taking into consideration all these observations, the
derivatives with respect to the parameters in λ can be obtained
as:

∂ log p(Υ|λ)

∂Ȳi
=

T∑
t=1

γi(Yt) σ
−2
i LogȲi

(Yt), (10)

∂ log p(Υ|λ)

∂σi
=

T∑
t=1

γi(Yt)

{
−Z

′(σi)

Z(σi)
+
d2(Yt, Ȳi)

σ3
i

}
,

(11)

∂ log p(Υ|λ)

∂αi
=

T∑
t=1

γi(Yt) (1−$i), (12)

where LogȲi
(·) is the Riemannian logarithm mapping.

The vectorized representation of the derivatives in (10), (11)
and (12) of the log-likelihood, with respect to the parameters
in λ, gives the Riemannian Fisher vectors (RFV). In the end,
by using the RFV, a sample is characterized by a feature
vector containing some, or all the derivatives, having the
maximum length given by the number of parameters in λ.

3.2. Relation with R-VLAD

As mentioned earlier in the introduction, VLAD features are
a special case of FV. Therefore, R-VLAD can be viewed
as a particular case of the proposed RFV. More precisely,
R-VLAD is obtained by taking into consideration only the
derivatives with respect to the central value Ȳi (see (10)).
In addition, a hard assignment scheme is applied. Start-
ing from the definition of the elements vi in the R-VLAD
descriptor [7]:

vi =
∑

Yt∈ci

LogȲi
(Yt), (13)

with Yt ∈ ci being the elements Yt assigned to the cluster
ci, i = 1, . . . ,K, the hard assignment implies that:

γi(Yt) =

{
1, if Yt ∈ ci
0, otherwise.

(14)

Moreover, the assumption of homoscedasticity is considered,
that is σi = σ ,∀i = 1, . . . ,K. By considering these two as-
sumptions, it is clear that (10) reduces to (13) hence confirm-
ing that RFV are a generalization of R-VLAD descriptors.

4. APPLICATION TO TEXTURE IMAGE
CLASSIFICATION

This section introduces an application to texture image clas-
sification. The aim of this experiment is first to analyze the

potential of the proposed RFV compared to the recently pro-
posed bag of Riemannian words (BoRW) model [17] and R-
VLAD [7]. The BoRW, RFV and R-VLAD are built based
on region covariance descriptors [21] containing basic infor-
mation, like image intensity and gradients. The experiment’s
purpose is not to find the best classification rates, but to com-
pare the two methods starting from very simple descriptors.
Second, the objective is to determine the RFV that are the
most discriminant to retrieve the classes: the one associated
to Ȳi (10), σi (11) or αi (12).

4.1. Databases

For this work, two texture databases are used: the VisTex [22]
database and the Outex TC000 13 [23] database. The Vis-
Tex database consists in 40 texture classes. Each class is
composed of 64 images of size 64 × 64 pixels. The Ou-
tex TC000 13 database contains 68 texture classes, where
each class is represented by a set of 20 images of size
128 × 128 pixels. For both databases, the feature extrac-
tion and classification steps are similar and are detailed in the
next subsection.

4.2. Feature extraction and classification

For the classification procedure, the considered database is
equally and randomly divided in order to obtain the training
and the testing sets. For each image in the two sets, local
descriptors have to be extracted first. In this experiment, the
region covariance descriptors (RCovDs) are considered. In
order to build the RCovD for an image I of size W × H ,
several characteristics are extracted for each pixel (x, y) ∈ I .
Here, the image intensities I(x, y) and the norms of the first
and second order derivatives of I(x, y) in both directions x
and y are considered [21]. Thus, a vector v of 5 elements is
obtained for each pixel having the spatial position (x, y) ∈ I:

v(x, y) =
[
I(x, y),

∣∣∣ ∂I(x,y)∂x

∣∣∣ , ∣∣∣ ∂I(x,y)∂y

∣∣∣ , ∣∣∣ ∂2I(x,y)

∂x2

∣∣∣ , ∣∣∣ ∂2I(x,y)

∂y2

∣∣∣]T .

(15)
For the two considered databases, the extracted RCovD are
the estimated covariance matrices of vectors v(x, y) com-
puted on a sliding patch of size 15× 15 pixels. As an overlap
of 8 pixels is considered for the patches, the VisTex and Ou-
tex databases are represented respectively by a set of 36 and
196 covariance matrices per texture class (of size 5 × 5). To
speed-up the computation time, the fast covariance computa-
tion algorithm based on integral images presented in [21] has
been implemented. In the end, each texture class is charac-
terized by a set Y1, . . . ,YN of N covariance matrices, that
are elements in P5. Based on the patches in the training set,
a codebook is created. For each class, the codewords are rep-
resented by the estimated parameters { ̂̄Yj , σ̂j , $̂j}1≤j≤K of
the mixture of K RGDs defined in (2). The estimation pro-
cedure is carried out here by using the intrinsic k-means al-
gorithm (see Section 2). For this experiment, the number of



modes K is set to 3. In the end, the codebook is obtained by
concatenating the previously extracted codewords.

Starting from the RCovDs and the learned codebook, the
BoRW, RFV and R-VLAD local models are derived, as pre-
sented in the previous section. After their computation, a nor-
malization stage is performed. In the RFV framework, the
classical power and `2 normalizations are applied [17]. The
`2 normalization has been proposed in [24] to minimize the
influence of the background information on the image sig-
nature, while the power normalization corrects the indepen-
dence assumption made on the patches [25]. The same nor-
malization scheme is also applied for R-VLAD models. For
the BoRW algorithm, only `2 normalization is performed, as
recommended in [3].

For the classification step, the SVM algorithm with Gaus-
sian kernel is considered, knowing that the dispersion param-
eter of the Gaussian kernel is optimized by using a cross val-
idation procedure on the training set.

4.3. Results

The classification performances in term of overall accuracy
on the VisTex and Outex TC000 13 databases are reported in
Tables 1 and 2 respectively. Those results are displayed for
10 random partitions in training and testing sets. Columns
homoscedasticity and prior correspond respectively to the ho-
moscedasticity assumption and to the use of the weights$i in
the decision rule. If the homoscedasticity assumption is true,
the dispersion parameter σi is the same for all the clusters ci.
If the prior parameter is set to false, all the clusters have the
same weight. Note that for the BoRW approach published
in [17] and the R-VLAD presented in [7], the dispersion and
weight parameters were not considered. Note also that for the
proposed RFV, those two parameters are respectively set to
“false” and “true”, since both the dispersion and weight pa-
rameters are considered in the derivation of the RFV.

In this experiment, we also analyze the contribution of
each parameter (weight, dispersion and centroid) to the clas-
sification accuracy. For example, the row “RFV : $” indi-
cates the classification results when only the derivatives with
respect to the weights are considered to calculate the RFV
(see (12)), . . .

As observed in Tables 1 and 2, the proposed RFV outper-
forms the BoRW and R-VLAD approaches. A gain of 1 to
3% is observed for the VisTex database. Moreover, among
the RFVs types, the most discriminant feature is obtained by
combining the derivatives with respect to all three parameters:
centroid, dispersion and weight (see (10), (11), (12)).

5. CONCLUSION

In this paper, a new local model for image classification in
the Riemannian space has been proposed. The introduced
method, called Riemannian Fisher vectors, is a generaliza-
tion of the so-called Fisher vectors, when the features are

Method Homoscedasticity Prior Overall accuracy
BoRW false true 87.22 ± 1.19
BoRW false false 87.51 ± 0.92

BoRW [17] true false 87.20 ± 1.55
BoRW true true 76.67 ± 2.35

RFV : $ false true 90.31± 0.94
RFV : σ false true 81.42 ± 1.12
RFV : Ȳ false true 87.22 ± 1.15

RFV : σ,$ false true 83.05 ± 1.15
RFV : Ȳ, $ false true 87.85 ± 0.97
RFV : Ȳ, σ false true 90.41 ± 0.86

RFV : Ȳ, σ,$ false true 90.43 ± 0.84
R-VLAD [7] true false 87.94 ± 0.58

Table 1. Classification results on the VisTex database.

Method Homoscedasticity Prior Overall accuracy
BoRW false true 84.32 ± 0.99
BoRW false false 84.37± 1.28

BoRW [17] true false 84.43 ± 1.23
BoRW true true 79.31 ± 1.86

RFV : $ false true 84.94 ± 1.12
RFV : σ false true 78.46 ± 1.54
RFV : Ȳ false true 83.94 ± 0.90

RFV : σ,$ false true 80.38 ± 1.80
RFV : Ȳ, $ false true 84.26 ± 0.75
RFV : Ȳ, σ false true 84.32 ± 1.19

RFV : Ȳ, σ,$ false true 84.12 ± 1.15
R-VLAD [7] true false 82.99 ± 1.19

Table 2. Classification results on the Outex database.

represented by parametric descriptors, like covariance ma-
trices. The definition and the expression of RFV have been
given, starting from the definition of the mixture of Rieman-
nian Gaussian distributions. In addition, its relation with
R-VLAD has been illustrated. In the end, the RFVs have
been applied for texture image classification on the VisTex
and Outex TC000 13 databases. The results have been com-
pared with those given by BoRW and R-VLAD, showing
better classification rates for the same codebook. In addi-
tion, it has been observed that the most discriminant feature
is obtained by combining the derivatives with respect to all
parameters.

Further works on this subject will concern the extension of
RFV to the recently proposed mixture of Riemannian Laplace
distributions [26, 27].
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